Nuutti Hyvönen

Education
 PhD (with distinction) in mathematics, Department of Engineering Physics and Mathematics, Helsinki University of Technology, 2004
 MSc (with distinction) in mathematics, Department of Engineering Physics and Mathematics, Helsinki University of Technology, 2000
 Lecture notes of Computational methods in inverse problems (spring 2011).
 Lecture notes for the second half ("numerics") of Partial differential equations (fall 2013).
 Lecture notes of Finite difference methods (fall 2013).
 Minicourse Factorization and source support methods for electrical impedance tomography at the Summer school on computational solution of inverse problems (FICS 2010).
 Inverse boundary value problems (theory and numerics)
 Optical absorption and scattering tomography
 Electrical impedance tomography
 Locating/reconstructing inclusions via boundary measurements
 Modelling and mathematical properties of reallife measurements
 Miscellaneous
Submitted manuscripts
 H. Garde and N. Hyvönen, Optimal depthdependent distinguishability bounds for electrical impedance tomography in arbitrary dimension.
 H. Garde, N. Hyvönen, and T. Kuutela, On regularity of the logarithmic forward map of electrical impedance tomography.
 V. Candiani, A. Hannukainen, and N. Hyvönen, Computational framework for applying electrical impedance tomography to head imaging.
Articles in refereed international scientific journals
 A. Hannukainen, N. Hyvönen, and L. Mustonen, An inverse boundary value problem for the pLaplacian: a linearization approach, Inverse Problems, 35, 034001 (2019).
 N. Hyvönen and L. Mustonen, Thermal tomography with unknown boundary, SIAM Journal on Scientific Computing, 40, B663B683 (2018).
 N. Hyvönen and L. Mustonen, Generalized linearization techniques in electrical impedance tomography, Numerische Mathematik, 140, 95120 (2018).
 N. Hyvönen, L. Päivärinta, and J. Tamminen, Enhancing Dbar reconstructions for electrical impedance tomography with conformal maps, Inverse Problems and Imaging, 12, 373400 (2018).
 N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77, 22502271 (2017).
 A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen, Detecting stochastic inclusions in electrical impedance tomography, Inverse Problems, 33, 115012 (2017).
 N. Hyvönen, H. Majander, and S. Staboulis, Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography, Inverse Problems, 33, 035006 (2017).
 N. Hyvönen, V. Kaarnioja, L. Mustonen, and S. Staboulis, Polynomial collocation for handling an inaccurately known measurement configuration in electrical impedance tomography, SIAM Journal on Applied Mathematics, 77, 202223 (2017).
 A. Hannukainen, N. Hyvönen, H. Majander, and T. Tarvainen, Efficient inclusion of total variation type priors in quantitative photoacoustic tomography, SIAM Journal on Imaging Sciences, 9, 11321153 (2016).
 A. Hannukainen, L. Harhanen, N. Hyvönen, and H. Majander, Edgepromoting reconstruction of absorption and diffusivity in optical tomography, Inverse Problems, 32, 015008 (2016).
 N. Hyvönen and M. Leinonen, Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography, SIAM/ASA Journal on Uncertainty Quantification, 3, 9981019 (2015).
 L. Chesnel, N. Hyvönen, and S. Staboulis, Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM Journal on Applied Mathematics, 75, 20932109 (2015).
 L. Harhanen, N. Hyvönen, H. Majander, and S. Staboulis, Edgeenhancing reconstruction algorithm for threedimensional electrical impedance tomography, SIAM Journal on Scientific Computing, 37, B60B78 (2015).
 N. Hyvönen, A. Seppänen, and S. Staboulis, Optimizing electrode positions in electrical impedance tomography, SIAM Journal on Applied Mathematics, 74, 18311851 (2014).
 H. Hakula, N. Hyvönen and M. Leinonen, Reconstruction algorithm based on stochastic Galerkin finite element method for electrical impedance tomography, Inverse Problems, 30, 065006 (2014).
 M. Leinonen, H. Hakula, and N. Hyvönen, Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography, Journal of Computational Physics, 269, 181200 (2014).
 J. Dardé, A. Hannukainen, and N. Hyvönen, An H_{div}based mixed quasireversibility method for solving elliptic Cauchy problems, SIAM Journal on Numerical Analysis, 51, 21232148 (2013).
 J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation, Inverse Problems, 29, 085004 (2013).
 N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media, Mathematical Methods in the Applied Sciences, 36, 14471458 (2013).
 R. Griesmaier, N. Hyvönen, and O. Seiskari, A note on analyticity properties of far field patterns, Inverse Problems and Imaging, 7, 491498, (2013).
 J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6, 176198 (2013).
 N. Hyvönen, P. Piiroinen, and O. Seiskari, Point measurements for a NeumanntoDirichlet map and the Calderón problem in the plane, SIAM Journal on Mathematical Analysis, 44, 35263536 (2012).
 N. Hyvönen and O. Seiskari, Detection of multiple inclusions from sweep data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).
 J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis, Finetuning electrode information in electrical impedance tomography, Inverse Problems and Imaging, 6, 399421 (2012).
 H. Hakula, N. Hyvönen, and T. Tuominen, On hpadaptive solution of complete electrode forward problems of electrical impedance tomography, Journal of Computational and Applied Mathematics, 236, 46454659 (2012).
 M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert, Convex source support in three dimensions, BIT Numerical Mathematics, 52, 4563 (2012).
 R. Griesmaier and N. Hyvönen, A regularized Newton method for locating thin tubular conductivity inhomogeneities, Inverse Problems 27, 115008 (2011).
 H. M. Varma, K. P. Mohanan, N. Hyvönen, A. K. Nandakumaran, and R. M. Vasu, Ultrasoundmodulated optical tomography: Recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation, Journal of the Optical Society of America A, 28, 23222331 (2011).
 H. Hakula, L. Harhanen, and N. Hyvönen, Sweep data of electrical impedance tomography, Inverse Problems, 27, 115006 (2011).
 M. Hanke, B. Harrach, and N. Hyvönen, Justification of point electrode models in electrical impedance tomography, Mathematical Models and Methods in Applied Sciences, 21, 13951413 (2011).
 M. Hanke, N. Hyvönen, and S. Reusswig, Erratum: An inverse backscatter problem for electric impedance tomography, SIAM Journal on Mathematical Analysis, 43, 14951497 (2011).
 M. Hanke, N. Hyvönen, and S. Reusswig, Convex backscattering support in electric impedance tomography, Numerische Mathematik, 117, 373396 (2011).
 L. Harhanen and N. Hyvönen, Convex source support in halfplane, Inverse Problems and Imaging, 4, 429448 (2010).
 N. Hyvönen, M. Kalke, M. Lassas, H. Setälä, and S. Siltanen, Threedimensional dental Xray imaging by combination of panoramic and projection data, Inverse Problems and Imaging, 4, 257271 (2010).
 N. Hyvönen, K. Karhunen, and A. Seppänen, Fréchet derivative with respect to the shape of an internal electrode in electrical impedance tomography, SIAM Journal on Applied Mathematics, 70, 18781898 (2010).
 M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter problem for electric impedance tomography, SIAM Journal on Mathematical Analysis, 41, 19481966 (2009).
 N. Hyvönen, Comparison of idealized and electrode DirichlettoNeumann maps in electric impedance tomography with an application to boundary determination of conductivity, Inverse Problems, 25, 085008 (2009).
 N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements, Mathematical Models and Methods in Applied Sciences, 19, 11851202 (2009).
 H. Hakula and N. Hyvönen, On computation of test dipoles for factorization method, BIT Numerical Mathematics, 49, 7591 (2009).
 M. Hanke, N. Hyvönen, and S. Reusswig, Convex source support and its application to electric impedance tomography, SIAM Journal on Imaging Sciences, 1, 364378 (2008).
 H. Hakula and N. Hyvönen, Two noniterative algorithms for locating inclusions using one electrode measurement of electric impedance tomography, Inverse Problems, 24, 055018 (2008).
 B. Gebauer and N. Hyvönen, Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Problems and Imaging, 2, 355372 (2008).
 M. Hanke, N. Hyvönen, M. Lehn, and S. Reusswig, Source supports in electrostatics, BIT Numerical Mathematics, 48, 245264 (2008).
 A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM Journal on Applied Mathematics, 68, 10971121 (2008).
 N. Hyvönen, Fréchet derivative with respect to the shape of a strongly convex nonscattering region in optical tomography, Inverse Problems 23, 22492270 (2007). (IOP SELECT)
 B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems 23, 21592170 (2007).
 N. Hyvönen, Locating transparent regions in optical absorption and scattering tomography, SIAM Journal on Applied Mathematics 67, 11011123 (2007).
 N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Advances in Applied Mathematics 39, 197221 (2007).
 N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Problems and Imaging 1, 299317 (2007).
 N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography, Inverse Problems 21, 13311342 (2005).
 N. Hyvönen, Characterizing inclusions in optical tomography, Inverse Problems 20, 737751 (2004).
 N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM Journal on Applied Mathematics 64, 902931 (2004).
 N. Hyvönen, Analysis of optical tomography with nonscattering regions, Proceedings of the Edinburgh Mathematical Society 45, 257276 (2002).
Papers in conference proceedings
 N. Hyvönen and O. Seiskari, Electrical impedance tomography with two electrodes, Oberwolfach Report, 2012
 N. Hyvönen, Locating transparent cavities in optical absorption and scattering tomography, Oberwolfach Report, 13, 726728 (2007).
Theses
 N. Hyvönen, Diffusive Tomography Methods: Special Boundary Conditions and Characterization of Inclusions, Dissertation, Helsinki University of Technology, 2004.