Nuutti Hyvönen
|
Education
- PhD (with distinction) in mathematics, Department of Engineering Physics and Mathematics, Helsinki University of Technology, 2004
- MSc (with distinction) in mathematics, Department of Engineering Physics and Mathematics, Helsinki University of Technology, 2000
- Lecture notes of Computational methods in inverse problems (spring 2011).
- Lecture notes for the second half ("numerics") of Partial differential equations (fall 2013).
- Lecture notes of Finite difference methods (fall 2013).
- Minicourse Factorization and source support methods for electrical impedance tomography at the Summer school on computational solution of inverse problems (FICS 2010).
- Inverse boundary value problems (theory and numerics)
- Optical absorption and scattering tomography
- Electrical impedance tomography
- Locating/reconstructing inclusions via boundary measurements
- Modelling and mathematical properties of real-life measurements
- Optimal experimental design
- Miscellaneous
Submitted manuscripts
- Y. Suzuki, N. Hyvönen, and T. Karvonen, Möbius-transformed trapezoidal rule.
- A. Autio, H. Garde, M. Hirvensalo, and N. Hyvönen, Linearization-based direct reconstruction for EIT using triangular Zernike decompositions.
Articles in refereed international scientific journals
- N. Hyvönen, A. Jääskeläinen, R. Maity, and A. Vavilov, Bayesian experimental design for head imaging by electrical impedance tomography, SIAM Journal on Applied Mathematics, 84, 1718--1741, 2024.
- S. Eberle-Blick and N. Hyvönen, Bayesian experimental design for linear elasticity, Inverse Problems and Imaging, 18, 1294--1319, 2024.
- J. Nousiainen, J.-P. Puska, T. Helin, N. Hyvönen, and M. Kasper, The power of prediction: spatiotemporal Gaussian process modeling for predictive control in slope-based wavefront sensing, Journal of Astronomical Telescopes, Instruments, and Systems, 10, 039001 (2024).
- H. Garde and N. Hyvönen, Linearised Calderon problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations, SIAM Journal on Mathematical Analysis, 56, 3588-3604 (2024).
- J. Toivanen, A. Paldanius, B. Dekdouk, V. Candiani, A. Hänninen, T. Savolainen, D. Strbian, N. Forss, N. Hyvönen, J. Hyttinen, and V. Kolehmainen, An algorithm for detection and monitoring of intracerebral hemorrhages using EIT, Journal of Medical Imaging, 11, 014502 (2024).
- T. Helin, N. Hyvönen, J. Maaninen, and J.-P. Puska, Bayesian design of measurements for magnetorelaxometry imaging, Inverse Problems, 39, 125020 (2023).
- H. Garde, N. Hyvönen, and T. Kuutela, Series reversion for practical electrical impedance tomography with modeling errors, Inverse Problems, 39, 085007 (2023).
- P. Hirvi, T. Kuutela, Q. Fang, A. Hannukainen, N. Hyvönen, and I. Nissilä, Effects of atlas-based anatomy on modelled light transport in the neonatal head, Physics in Medicine & Biology, 68, 135019 (2023).
- H. Garde and N. Hyvönen, Reconstruction of singular and degenerate inclusions in Calderon's problem, Inverse Problems and Imaging, 16, 1219-1227 (2022).
- T. Helin, N. Hyvönen, and J.-P. Puska, Edge-promoting adaptive Bayesian experimental design for X-ray imaging, SIAM Journal on Scientific Computing, 44, B506-B530 (2022).
- H. Garde and N. Hyvönen, Series reversion in Calderon's problem, Mathematics of Computation, 91, 1925-1953 (2022).
- J. Dardé, N. Hyvönen, T. Kuutela, and T. Valkonen, Contact adapting electrode model for electrical impedance tomography, SIAM Journal on Applied Mathematics, 82, 427-449 (2022).
- V. Candiani, N. Hyvönen, J. Kaipio, and V. Kolehmainen, Approximation error method for imaging the human head by electrical impedance tomography, Inverse Problems, 37, 125008 (2021).
- M. Burger, A. Hauptmann, T. Helin, N. Hyvönen, and J.-P. Puska, Sequentially optimized projections in X-ray imaging, Inverse Problems, 37, 075006 (2021).
- A. Hannukainen, N. Hyvönen, and L. Perkkiö, Inverse heat source problem and experimental design for determining iron loss distribution, SIAM Journal on Scientific Computing, 43, B243-B270 (2021).
- H. Garde and N. Hyvönen, Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numerische Mathematik, 147, 579-609 (2021).
- V. Candiani, J. Dardé, H. Garde, and N. Hyvönen, Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 6234-6259 (2020).
- H. Garde, N. Hyvönen, and T. Kuutela, On regularity of the logarithmic forward map of electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 197-220 (2020).
- H. Garde and N. Hyvönen, Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM Journal on Applied Mathematics, 80, 20-43 (2020).
- V. Candiani, A. Hannukainen, and N. Hyvönen, Computational framework for applying electrical impedance tomography to head imaging, SIAM Journal on Scientific Computing, 41, B1034-B1060 (2019).
- A. Hannukainen, N. Hyvönen, and L. Mustonen, An inverse boundary value problem for the p-Laplacian: a linearization approach, Inverse Problems, 35, 034001 (2019).
- N. Hyvönen and L. Mustonen, Thermal tomography with unknown boundary, SIAM Journal on Scientific Computing, 40, B663-B683 (2018).
- N. Hyvönen and L. Mustonen, Generalized linearization techniques in electrical impedance tomography, Numerische Mathematik, 140, 95-120 (2018).
- N. Hyvönen, L. Päivärinta, and J. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Problems and Imaging, 12, 373-400 (2018).
- N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77, 2250-2271 (2017).
- A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen, Detecting stochastic inclusions in electrical impedance tomography, Inverse Problems, 33, 115012 (2017).
- N. Hyvönen, H. Majander, and S. Staboulis, Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography, Inverse Problems, 33, 035006 (2017).
- N. Hyvönen, V. Kaarnioja, L. Mustonen, and S. Staboulis, Polynomial collocation for handling an inaccurately known measurement configuration in electrical impedance tomography, SIAM Journal on Applied Mathematics, 77, 202-223 (2017).
- A. Hannukainen, N. Hyvönen, H. Majander, and T. Tarvainen, Efficient inclusion of total variation type priors in quantitative photoacoustic tomography, SIAM Journal on Imaging Sciences, 9, 1132-1153 (2016).
- A. Hannukainen, L. Harhanen, N. Hyvönen, and H. Majander, Edge-promoting reconstruction of absorption and diffusivity in optical tomography, Inverse Problems, 32, 015008 (2016).
- N. Hyvönen and M. Leinonen, Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography, SIAM/ASA Journal on Uncertainty Quantification, 3, 998-1019 (2015).
- L. Chesnel, N. Hyvönen, and S. Staboulis, Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM Journal on Applied Mathematics, 75, 2093-2109 (2015).
- L. Harhanen, N. Hyvönen, H. Majander, and S. Staboulis, Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography, SIAM Journal on Scientific Computing, 37, B60-B78 (2015).
- N. Hyvönen, A. Seppänen, and S. Staboulis, Optimizing electrode positions in electrical impedance tomography, SIAM Journal on Applied Mathematics, 74, 1831-1851 (2014).
- H. Hakula, N. Hyvönen and M. Leinonen, Reconstruction algorithm based on stochastic Galerkin finite element method for electrical impedance tomography, Inverse Problems, 30, 065006 (2014).
- M. Leinonen, H. Hakula, and N. Hyvönen, Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography, Journal of Computational Physics, 269, 181-200 (2014).
- J. Dardé, A. Hannukainen, and N. Hyvönen, An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems, SIAM Journal on Numerical Analysis, 51, 2123-2148 (2013).
- J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation, Inverse Problems, 29, 085004 (2013).
- N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media, Mathematical Methods in the Applied Sciences, 36, 1447-1458 (2013).
- R. Griesmaier, N. Hyvönen, and O. Seiskari, A note on analyticity properties of far field patterns, Inverse Problems and Imaging, 7, 491-498, (2013).
- J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6, 176-198 (2013).
- N. Hyvönen, P. Piiroinen, and O. Seiskari, Point measurements for a Neumann-to-Dirichlet map and the Calderón problem in the plane, SIAM Journal on Mathematical Analysis, 44, 3526-3536 (2012).
- N. Hyvönen and O. Seiskari, Detection of multiple inclusions from sweep data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).
- J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis, Fine-tuning electrode information in electrical impedance tomography, Inverse Problems and Imaging, 6, 399-421 (2012).
- H. Hakula, N. Hyvönen, and T. Tuominen, On hp-adaptive solution of complete electrode forward problems of electrical impedance tomography, Journal of Computational and Applied Mathematics, 236, 4645-4659 (2012).
- M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert, Convex source support in three dimensions, BIT Numerical Mathematics, 52, 45-63 (2012).
- R. Griesmaier and N. Hyvönen, A regularized Newton method for locating thin tubular conductivity inhomogeneities, Inverse Problems 27, 115008 (2011).
- H. M. Varma, K. P. Mohanan, N. Hyvönen, A. K. Nandakumaran, and R. M. Vasu, Ultrasound-modulated optical tomography: Recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation, Journal of the Optical Society of America A, 28, 2322-2331 (2011).
- H. Hakula, L. Harhanen, and N. Hyvönen, Sweep data of electrical impedance tomography, Inverse Problems, 27, 115006 (2011).
- M. Hanke, B. Harrach, and N. Hyvönen, Justification of point electrode models in electrical impedance tomography, Mathematical Models and Methods in Applied Sciences, 21, 1395-1413 (2011).
- M. Hanke, N. Hyvönen, and S. Reusswig, Erratum: An inverse backscatter problem for electric impedance tomography, SIAM Journal on Mathematical Analysis, 43, 1495-1497 (2011).
- M. Hanke, N. Hyvönen, and S. Reusswig, Convex backscattering support in electric impedance tomography, Numerische Mathematik, 117, 373-396 (2011).
- L. Harhanen and N. Hyvönen, Convex source support in half-plane, Inverse Problems and Imaging, 4, 429-448 (2010).
- N. Hyvönen, M. Kalke, M. Lassas, H. Setälä, and S. Siltanen, Three-dimensional dental X-ray imaging by combination of panoramic and projection data, Inverse Problems and Imaging, 4, 257-271 (2010).
- N. Hyvönen, K. Karhunen, and A. Seppänen, Fréchet derivative with respect to the shape of an internal electrode in electrical impedance tomography, SIAM Journal on Applied Mathematics, 70, 1878-1898 (2010).
- M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter problem for electric impedance tomography, SIAM Journal on Mathematical Analysis, 41, 1948-1966 (2009).
- N. Hyvönen, Comparison of idealized and electrode Dirichlet-to-Neumann maps in electric impedance tomography with an application to boundary determination of conductivity, Inverse Problems, 25, 085008 (2009).
- N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements, Mathematical Models and Methods in Applied Sciences, 19, 1185-1202 (2009).
- H. Hakula and N. Hyvönen, On computation of test dipoles for factorization method, BIT Numerical Mathematics, 49, 75-91 (2009).
- M. Hanke, N. Hyvönen, and S. Reusswig, Convex source support and its application to electric impedance tomography, SIAM Journal on Imaging Sciences, 1, 364-378 (2008).
- H. Hakula and N. Hyvönen, Two noniterative algorithms for locating inclusions using one electrode measurement of electric impedance tomography, Inverse Problems, 24, 055018 (2008).
- B. Gebauer and N. Hyvönen, Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Problems and Imaging, 2, 355-372 (2008).
- M. Hanke, N. Hyvönen, M. Lehn, and S. Reusswig, Source supports in electrostatics, BIT Numerical Mathematics, 48, 245-264 (2008).
- A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM Journal on Applied Mathematics, 68, 1097-1121 (2008).
- N. Hyvönen, Fréchet derivative with respect to the shape of a strongly convex nonscattering region in optical tomography, Inverse Problems 23, 2249-2270 (2007). (IOP SELECT)
- B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems 23, 2159-2170 (2007).
- N. Hyvönen, Locating transparent regions in optical absorption and scattering tomography, SIAM Journal on Applied Mathematics 67, 1101-1123 (2007).
- N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Advances in Applied Mathematics 39, 197-221 (2007).
- N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Problems and Imaging 1, 299-317 (2007).
- N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography, Inverse Problems 21, 1331-1342 (2005).
- N. Hyvönen, Characterizing inclusions in optical tomography, Inverse Problems 20, 737-751 (2004).
- N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM Journal on Applied Mathematics 64, 902-931 (2004).
- N. Hyvönen, Analysis of optical tomography with non-scattering regions, Proceedings of the Edinburgh Mathematical Society 45, 257-276 (2002).
Papers in conference proceedings
- N. Hyvönen and O. Seiskari, Electrical impedance tomography with two electrodes, Oberwolfach Report, 2012
- N. Hyvönen, Locating transparent cavities in optical absorption and scattering tomography, Oberwolfach Report, 13, 726-728 (2007).
Theses
- N. Hyvönen, Diffusive Tomography Methods: Special Boundary Conditions and Characterization of Inclusions, Dissertation, Helsinki University of Technology, 2004.