Papers on electrical impedance tomography
-
J. Toivanen, A. Paldanius, B. Dekdouk, V. Candiani, A. Hänninen, T. Savolainen, D. Strbian, N. Forss, N. Hyvönen, J. Hyttinen, and V. Kolehmainen, An algorithm for detection and monitoring of intracerebral hemorrhages using EIT, submitted.
-
H. Garde and N. Hyvönen, Reconstruction of singular and degenerate inclusions in Calderon's problem, Inverse Problems and Imaging, 16, 1219-1227 (2022).
-
H. Garde and N. Hyvönen, Series reversion in Calderon's problem, Mathematics of Computation, 91, 1925-1953 (2022).
-
J. Dardé, N. Hyvönen, T. Kuutela, and T. Valkonen, Contact adapting electrode model for electrical impedance tomography, SIAM Journal on Applied Mathematics, 82, 427-449 (2022).
-
V. Candiani, N. Hyvönen, J. Kaipio, and V. Kolehmainen, Approximation error method for imaging the human head by electrical impedance tomography, Inverse Problems, 37, 125008 (2021).
-
H. Garde and N. Hyvönen,
Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numerische Mathematik, 147, 579-609 (2021).
-
V. Candiani, J. Dardé, H. Garde, and N. Hyvönen,
Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 6234-6259 (2020).
-
H. Garde, N. Hyvönen, and T. Kuutela,
On regularity of the logarithmic forward map of electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 197-220 (2020).
-
H. Garde and N. Hyvönen,
Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM Journal on Applied Mathematics, 80, 20-43 (2020).
-
V. Candiani, A. Hannukainen, and N. Hyvönen,
Computational framework for applying electrical impedance tomography to head imaging, SIAM Journal on Scientific Computing, 41, B1034-B1060 (2019).
-
N. Hyvönen and L. Mustonen,
Generalized linearization techniques in electrical impedance tomography, Numerische Mathematik, 140, 95-120 (2018).
-
N. Hyvönen, L. Päivärinta, and J. Tamminen,
Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Problems and Imaging, 12, 373-400 (2018).
-
N. Hyvönen and L. Mustonen,
Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77, 2250-2271 (2017).
-
A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen,
Detecting stochastic inclusions in electrical impedance tomography, Inverse Problems, 33, 115012 (2017).
-
N. Hyvönen, H. Majander, and S. Staboulis,
Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography, Inverse Problems, 33, 035006 (2017).
-
N. Hyvönen, V. Kaarnioja, L. Mustonen, and S. Staboulis,
Polynomial collocation for handling an inaccurately known measurement configuration in electrical impedance tomography, SIAM Journal on Applied Mathematics, 77, 202-223 (2017).
-
N. Hyvönen and M. Leinonen,
Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography, SIAM/ASA Journal on Uncertainty Quantification, 3, 998-1019 (2015).
-
L. Chesnel, N. Hyvönen, and S. Staboulis,
Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM Journal on Applied Mathematics, 75, 2093-2109 (2015).
-
L. Harhanen, N. Hyvönen, H. Majander, and S. Staboulis,
Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography, SIAM Journal on Scientific Computing, 37, B60-B78 (2015).
-
N. Hyvönen, A. Seppänen, and S. Staboulis,
Optimizing electrode positions in electrical impedance tomography, SIAM Journal on Applied Mathematics, 74, 1831-1851 (2014).
-
H. Hakula, and N. Hyvönen and M. Leinonen,
Reconstruction algorithm based on stochastic Galerkin finite element method for electrical
impedance tomography, Inverse Problems, 30, 065006 (2014).
-
M. Leinonen, H. Hakula, and N. Hyvönen,
Application of stochastic Galerkin FEM to the complete electrode model
of electrical impedance tomography, Journal of Computational Physics, 269, 181-200 (2014).
-
J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis,
Simultaneous recovery of admittivity
and body shape in electrical impedance tomography: An experimental
evaluation, Inverse Problems, 29, 085004 (2013).
-
J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis,
Simultaneous reconstruction of outer boundary shape and
admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6, 176-198 (2013).
-
N. Hyvönen and O. Seiskari,
Detection of multiple inclusions from sweep
data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).
-
J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis,
Fine-tuning electrode information in electrical impedance tomography, Inverse Problems and Imaging, 6, 399-421 (2012).
-
H. Hakula, N. Hyvönen, and T. Tuominen,
On hp-adaptive solution of complete electrode model
forward problems of electrical impedance tomography, Journal of
Computational and Applied Mathematics, 236, 4645-4659 (2012).
-
M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert,
Convex source support in three dimensions, BIT Numerical Mathematics, 52, 45-63 (2012).
-
R. Griesmaier and N. Hyvönen,
A regularized Newton method for locating thin tubular conductivity inhomogeneities, Inverse Problems, 27, 115008 (2011).
-
H. Hakula, L. Harhanen, and N. Hyvönen,
Sweep data of electrical impedance
tomography, Inverse Problems, 27, 115006 (2011).
-
M. Hanke, B. Harrach, and N. Hyvönen, Justification of point electrode models in electrical impedance tomography, Mathematical Models and Methods
in Applied Sciences, 21, 1395-1413 (2011).
-
M. Hanke, N. Hyvönen, and S. Reusswig,
Convex backscattering support in electric
impedance tomography, Numerische Mathematik,
117, 373-396 (2011).
-
L. Harhanen and N. Hyvönen, Convex source support in half-plane,
Inverse Problems and Imaging, 4, 429-448 (2010).
-
N. Hyvönen, K. Karhunen, and A. Seppänen, Frechet derivative with respect to the
shape of an internal electrode in electrical impedance
tomography, SIAM Journal on Applied Mathematics,
70, 1878-1898 (2010).
-
M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter
problem for electric impedance tomography,
SIAM Journal on Mathematical Analysis, 41, 1948-1966
-
N. Hyvönen, Comparison of
idealized and electrode Dirichlet-to-Neumann maps in electric impedance
tomography with an application to boundary determination of
conductivity, Inverse Problems, 25, 085008
(2009).
-
N. Hyvönen, Approximating idealized
boundary data of electric impedance tomography
by electrode measurements, Mathematical Models
and Methods in Applied Sciences, 19, (2009).
-
H. Hakula and N. Hyvönen, On computation of
test dipoles
for factorization method,
BIT Numerical Mathematics, 49, 75-91 (2009).
-
M. Hanke, N. Hyvönen, and S. Reusswig, Convex
source support and its application to
electric impedance tomography, SIAM Journal
on Imaging Sciences, 1, 364-378 (2008).
-
H. Hakula and N. Hyvönen, Two noniterative
algorithms
for locating inclusions using one electrode
measurement of electric impedance tomography, Inverse
Problems, 24, 055018 (2008).
- A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method
applied to the complete electrode model of impedance
tomography, SIAM Journal on Applied
Mathematics, 68, 1097-1121 (2008).
- B. Gebauer and N. Hyvönen,
Factorization method and irregular inclusions in electrical impedance
tomography, Inverse Problems 23, 2159-2170 (2007).
- N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Advances in Applied Mathematics 39, 197-221 (2007).
- N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method
within the complete electrode model of electrical impedance
tomography, Inverse Problems and Imaging 1, 299-317 (2007).
- N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions,
SIAM Journal on Applied Mathematics 64, 902-931 (2004).