Papers on theory of inverse boundary value problems
-
H. Garde and N. Hyvönen, Linearised Calderon problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations, submitted.
-
H. Garde, N. Hyvönen, and T. Kuutela, Series reversion for practical electrical impedance tomography with modeling errors, Inverse Problems, 39, 085007 (2023).
-
H. Garde and N. Hyvönen, Reconstruction of singular and degenerate inclusions in Calderon's problem, Inverse Problems and Imaging, 16, 1219-1227 (2022).
-
H. Garde and N. Hyvönen, Series reversion in Calderon's problem, Mathematics of Computation, 91, 1925-1953 (2022).
-
H. Garde and N. Hyvönen,
Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numerische Mathematik, 147, 579-609 (2021).
-
V. Candiani, J. Dardé, H. Garde, and N. Hyvönen,
Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 6234-6259 (2020).
-
H. Garde, N. Hyvönen, and T. Kuutela,
On regularity of the logarithmic forward map of electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 197-220 (2020).
-
H. Garde and N. Hyvönen,
Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM Journal on Applied Mathematics, 80, 20-43 (2020).
-
A. Hannukainen, N. Hyvönen, and L. Mustonen,
An inverse boundary value problem for the p-Laplacian: a linearization approach, Inverse Problems, 35, 034001 (2019).
-
A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen,
Detecting stochastic inclusions in electrical impedance tomography, Inverse Problems, 33, 115012 (2017).
-
N. Hyvönen, H. Majander, and S. Staboulis,
Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography, Inverse Problems, 33, 035006 (2017).
-
J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis,
Simultaneous reconstruction of outer boundary shape and
admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6, 176-198 (2013).
-
N. Hyvönen, P. Piiroinen, and O. Seiskari,
Point measurements for a Neumann-to-Dirichlet map
and the Calderón problem in the plane, SIAM Journal on
Mathematical Analysis, 44, 3526-3536 (2012).
-
N. Hyvönen and O. Seiskari,
Detection of multiple inclusions from sweep
data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).
-
J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis,
Fine-tuning electrode information in electrical impedance tomography, Inverse Problems and Imaging, 6, 399-421 (2012).
-
H. Hakula, L. Harhanen, and N. Hyvönen,
Sweep data of electrical impedance tomography, Inverse Problems, 27, 115006 (2011).
-
M. Hanke, N. Hyvönen, and S. Reusswig,
Convex backscattering support in electric
impedance tomography, Numerische Mathematik, 117, 373-396 (2011).
-
L. Harhanen and N. Hyvönen, Convex source support in half-plane,
Inverse Problems and Imaging, 4, 429-448 (2010).
-
N. Hyvönen, K. Karhunen, and A. Seppänen, Frechet derivative with respect to the
shape of an internal electrode in electrical impedance
tomography, SIAM Journal on Applied Mathematics,
70, 1878-1898 (2010).
-
M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter
problem for electric impedance tomography,
SIAM Journal on Mathematical Analysis, 41, 1948-1966
(2009).
-
M. Hanke, N. Hyvönen, and S. Reusswig, Convex
source support and its application to
electric impedance tomography, SIAM Journal
on Imaging Sciences, 1, 364-378 (2008).
-
B. Gebauer and N. Hyvönen,
Factorization method and inclusions of mixed type in
an inverse elliptic boundary value problem, Inverse Problems and
Imaging, 2, 355-372 (2008).
-
M. Hanke, N. Hyvönen, M. Lehn, and S. Reusswig,
Source
supports in electrostatics,
BIT Numerical Mathematics, 48, 245-264
(2008).
- A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method
applied to the complete electrode model of impedance
tomography, SIAM Journal on Applied
Mathematics, 68, 1097-1121 (2008).
- N. Hyvönen,
Frechet derivative with respect to the shape of a strongly convex
nonscattering region in optical tomography, Inverse
Problems 23, 2249-2270 (2007). (IOP SELECT)
- B. Gebauer and N. Hyvönen,
Factorization method and irregular inclusions in electrical impedance
tomography, Inverse Problems 23, 2159-2170 (2007).
- N. Hyvönen, Locating transparent
regions in optical absorption
and scattering tomography, SIAM Journal on Applied Mathematics
67, 1101-1123 (2007).
- N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Advances in Applied Mathematics 39, 197-221 (2007).
- N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography, Inverse Problems 21, 1331-1342 (2005).
- N. Hyvönen, Characterizing inclusions in optical tomography, Inverse Problems 20, 737-751 (2004).
- N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions,
SIAM Journal on Applied Mathematics 64, 902-931 (2004).