Papers on locating/reconstructing inclusions via
boundary measurements
-
H. Garde and N. Hyvönen, Reconstruction of singular and degenerate inclusions in Calderon's problem, Inverse Problems and Imaging, 16, 1219-1227 (2022).
-
V. Candiani, J. Dardé, H. Garde, and N. Hyvönen,
Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 52, 6234-6259 (2020).
-
H. Garde and N. Hyvönen,
Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM Journal on Applied Mathematics, 80, 20-43 (2020).
-
A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen,
Detecting stochastic inclusions in electrical impedance tomography, Inverse Problems, 33, 115012 (2017).
-
A. Hannukainen, L. Harhanen, N. Hyvönen, and H. Majander,
Edge-promoting reconstruction of absorption and diffusivity in optical tomography, Inverse Problems, 32, 015008 (2016).
-
L. Harhanen, N. Hyvönen, H. Majander, and S. Staboulis,
Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography, SIAM Journal on Scientific Computing, 37, B60-B78 (2015).
-
J. Dardé, A. Hannukainen, and N. Hyvönen,
An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems,
SIAM Journal on Numerical Analysis, 51, 2123-2148 (2013).
-
N. Hyvönen and O. Seiskari,
Detection of multiple inclusions from sweep
data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).
-
R. Griesmaier and N. Hyvönen,
A regularized Newton method for
locating thin tubular conductivity inhomogeneities,
Inverse Problems 27, 115008 (2011).
-
H. Hakula, L. Harhanen, and N. Hyvönen,
Sweep data of electrical impedance
tomography, Inverse Problems, 27, 115006 (2011).
-
M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert,
Convex source support in three dimensions, BIT Numerical Mathematics, 52, 45-63 (2012).
-
M. Hanke, N. Hyvönen, and S. Reusswig,
Convex backscattering support in electric
impedance tomography, Numerische Mathematik,
117, 373-396 (2011).
-
L. Harhanen and N. Hyvönen, Convex source support in half-plane,
Inverse Problems and Imaging, 4, 429-448 (2010).
-
N. Hyvönen, K. Karhunen, and A. Seppänen, Frechet derivative with respect to the
shape of an internal electrode in electrical impedance
tomography, SIAM Journal on Applied Mathematics,
70, 1878-1898 (2010).
-
M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter
problem for electric impedance tomography,
SIAM Journal on Mathematical Analysis, 41, 1948-1966
(2009).
-
H. Hakula and N. Hyvönen, On computation
of test dipoles
for factorization method,
BIT Numerical Mathematics, 49, 75-91 (2009).
-
M. Hanke, N. Hyvönen, and S. Reusswig, Convex
source support and its application to
electric impedance tomography, SIAM Journal
on Imaging Sciences, 1, 364-378 (2008).
-
H. Hakula and N. Hyvönen, Two noniterative
algorithms
for locating inclusions using one electrode
measurement of electric impedance tomography, Inverse
Problems, 24, 055018 (2008).
-
B. Gebauer and N. Hyvönen,
Factorization method and inclusions of mixed type in
an inverse elliptic boundary value problem, Inverse Problems and
Imaging, 2, 355-372 (2008).
- A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method
applied to the complete electrode model of impedance
tomography, SIAM Journal on Applied
Mathematics, 68, 1097-1121 (2008).
- N. Hyvönen,
Frechet derivative with respect to the shape of a strongly convex
nonscattering region in optical tomography, Inverse
Problems 23, 2249-2270 (2007). (IOP SELECT)
- B. Gebauer and N. Hyvönen,
Factorization method and irregular inclusions in electrical impedance
tomography, Inverse Problems 23, 2159-2170 (2007).
- N. Hyvönen, Locating transparent
regions in optical absorption
and scattering tomography, SIAM Journal on Applied Mathematics
67, 1101-1123 (2007).
- N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Advances in Applied Mathematics 39, 197-221 (2007).
- N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method
within the complete electrode model of electrical impedance
tomography, Inverse Problems and Imaging 1, 299-317 (2007).
- N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography, Inverse Problems 21, 1331-1342 (2005).
- N. Hyvönen, Characterizing inclusions in optical tomography, Inverse Problems 20, 737-751 (2004).
- N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions,
SIAM Journal on Applied Mathematics 64, 902-931 (2004).