Papers on numerics of inverse boundary value problems

N. Hyvönen and L. Mustonen,
Smoothened complete electrode model, submitted.

N. Hyvönen, L. Päivärinta, and J. Tamminen,
Enhancing Dbar reconstructions for electrical impedance tomography with conformal maps, submitted.

N. Hyvönen and L. Mustonen,
Thermal tomography with unknown boundary, submitted.

A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen,
Detecting stochastic inclusions in electrical impedance tomography, submitted.

N. Hyvönen, H. Majander, and S. Staboulis,
Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography, Inverse Problems, 33, 035006 (2017).

N. Hyvönen, V. Kaarnioja, L. Mustonen, and S. Staboulis,
Polynomial collocation for handling an inaccurately known measurement configuration in electrical impedance tomography, SIAM Journal on Applied Mathematics, 77, 202223 (2017).

A. Hannukainen, L. Harhanen, N. Hyvönen, and H. Majander,
Edgepromoting reconstruction of absorption and diffusivity in optical tomography, Inverse Problems, 32, 015008 (2016).

N. Hyvönen and M. Leinonen,
Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography, SIAM/ASA Journal on Uncertainty Quantification, 3, 9981019 (2015).

L. Chesnel, N. Hyvönen, and S. Staboulis,
Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM Journal on Applied Mathematics, 75, 20932109 (2015).

L. Harhanen, N. Hyvönen, H. Majander, and S. Staboulis,
Edgeenhancing reconstruction algorithm for threedimensional electrical impedance tomography, SIAM Journal on Scientific Computing, 37, B60B78 (2015).

N. Hyvönen, A. Seppänen, and S. Staboulis,
Optimizing electrode positions in electrical impedance tomography, SIAM Journal on Applied Mathematics, 74, 18311851 (2014).

H. Hakula, and N. Hyvönen and M. Leinonen,
Reconstruction algorithm based on stochastic Galerkin finite element method for electrical
impedance tomography, Inverse Problems, 30, 065006 (2014).

J. Dardé, A. Hannukainen, and N. Hyvönen,
An H_{div}based mixed quasireversibility method for solving elliptic Cauchy problems,
SIAM Journal on Numerical Analysis, 51, 21232148 (2013).

J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis,
Simultaneous recovery of admittivity
and body shape in electrical impedance tomography: An experimental
evaluation, Inverse Problems, 29, 085004 (2013).

J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis,
Simultaneous reconstruction of outer boundary shape and
admittivity distribution in electrical impedance tomography, SIAM Journal on Imaging Sciences, 6, 176198 (2013).

N. Hyvönen and O. Seiskari,
Detection of multiple inclusions from sweep
data of electrical impedance tomography, Inverse Problems, 28, 095014 (2012).

J. Dardé, H. Hakula, N. Hyvönen, and S. Staboulis,
Finetuning electrode information in electrical impedance tomography, Inverse Problems and Imaging, 6, 399421 (2012).

M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert,
Convex source support in three dimensions,
BIT Numerical Mathematics, 52, 4563 (2012).

R. Griesmaier and N. Hyvönen,
A regularized Newton method for
locating thin tubular conductivity inhomogeneities,
Inverse Problems, 27, 115008 (2011).

H. M. Varma, K. P. Mohanan, N. Hyvönen, A. K. Nandakumaran, and R. M.
Vasu,
Ultrasoundmodulated optical tomography: Recovery of amplitude of
vibration in the insonified region from
boundary measurement of light correlation, Journal
of the Optical Society of America A, 28, 23222331 (2011).

H. Hakula, L. Harhanen, and N. Hyvönen,
Sweep data of electr$
tomography, Inverse Problems, 27, 115006 (2011).

M. Hanke, N. Hyvönen, and S. Reusswig,
Convex backscattering support in electric
impedance tomography, Numerische Mathematik,
117, 373396 (2011).

L. Harhanen and N. Hyvönen, Convex source support in halfplane,
Inverse Problems and Imaging, 4, 429448 (2010).

N. Hyvönen, K. Karhunen, and A. Seppänen, Frechet derivative with respect to the
shape of an internal electrode in electrical impedance
tomography, SIAM Journal on Applied Mathematics,
70, 18781898 (2010).

N. Hyvönen, Comparison of
idealized and electrode DirichlettoNeumann maps in electric impedance
tomography with an application to boundary determination of
conductivity, Inverse Problems, 25, 085008
(2009).

H. Hakula and N. Hyvönen, On computation
of test dipoles
for factorization method,
BIT Numerical Mathematics, 49, 7591 (2009).

M. Hanke, N. Hyvönen, and S. Reusswig, Convex
source support and its application to
electric impedance tomography, SIAM Journal
on Imaging Sciences, 1, 364378 (2008).

H. Hakula and N. Hyvönen, Two noniterative
algorithms
for locating inclusions using one electrode
measurement of electric impedance tomography, Inverse
Problems, 24, 055018 (2008).

B. Gebauer and N. Hyvönen,
Factorization method and inclusions of mixed type in
an inverse elliptic boundary value problem, Inverse Problems and
Imaging, 2, 355372 (2008).

M. Hanke, N. Hyvönen, M. Lehn, and S. Reusswig,
Source
supports in electrostatics,
BIT Numerical Mathematics, 48, 245264
(2008).
 A. Lechleiter, N. Hyvönen, and H. Hakula, The factorization method
applied to the complete electrode model of impedance
tomography, SIAM Journal on Applied
Mathematics, 68, 10971121 (2008).
 N. Hyvönen,
Frechet derivative with respect to the shape of a strongly convex
nonscattering region in optical tomography, Inverse
Problems 23, 22492270 (2007). (IOP SELECT)
 B. Gebauer and N. Hyvönen,
Factorization method and irregular inclusions in electrical impedance
tomography, Inverse Problems 23, 21592170 (2007).
 N. Hyvönen, Locating transparent
regions in optical absorption
and scattering tomography, SIAM Journal on Applied Mathematics
67, 11011123 (2007).
 N. Hyvönen, H. Hakula, and S. Pursiainen, Numerical implementation of the factorization method
within the complete electrode model of electrical impedance
tomography, Inverse Problems and Imaging 1, 299317 (2007).