mne_rsa.rsa#
- mne_rsa.rsa(rdm_data, rdm_model, metric='spearman', ignore_nan=False, n_data_rdms=None, n_jobs=1, verbose=False)[source]#
Perform RSA between data and model RDMs.
- Parameters:
- rdm_datandarray, shape (n_items, n_items) | list | generator
The data RDM (or list/generator of data RDMs).
- rdm_modelndarray, shape (n_items, n_items) | list of ndarray
The model RDM (or list of model RDMs).
- metricstr
The RSA metric to use to compare the RDMs. Valid options are:
‘spearman’ for Spearman’s correlation (the default)
‘pearson’ for Pearson’s correlation
‘kendall-tau-a’ for Kendall’s Tau (alpha variant)
‘partial’ for partial Pearson correlations
‘partial-spearman’ for partial Spearman correlations
‘regression’ for linear regression weights
Defaults to ‘spearman’.
- ignore_nanbool
Whether to treat NaN’s as missing values and ignore them when computing the distance metric. Defaults to
False
.New in version 0.8.
- n_data_rdmsint | None
The number of data RDMs. This is useful when displaying a progress bar, so an estimate can be made of the computation time remaining. This information is available if
rdm_data
is an array or a list, but if it is a generator, this information is not available and you may want to set it explicitly.- n_jobsint
The number of processes (=number of CPU cores) to use. Specify -1 to use all available cores. Defaults to 1.
- verbosebool
Whether to display a progress bar. In order for this to work, you need the tqdm python module installed. Defaults to False.
- Returns:
- rsa_valfloat | ndarray, shape (len(rdm_data), len(rdm_model))
Depending on whether one or more data and model RDMs were specified, a single similarity value or a 2D array of similarity values for each data RDM versus each model RDM.
See also