Note
Go to the end to download the full example code.
Construct a model RDM#
This example shows how to create RDMs from arbitrary data. A common use case for this is to construct a “model” RDM to RSA against the brain data. In this example, we will create a RDM based on the length of the words shown during an EEG experiment.
# Import required packages
import mne
import mne_rsa
MNE-Python contains a built-in data loader for the kiloword dataset, which is used
here as an example dataset. Since we only need the words shown during the experiment,
which are in the metadata, we can pass preload=False
to prevent MNE-Python from
loading the EEG data, which is a nice speed gain.
data_path = mne.datasets.kiloword.data_path(verbose=True)
epochs = mne.read_epochs(data_path / "kword_metadata-epo.fif", preload=False)
# Show the metadata of 10 random epochs
print(epochs.metadata.sample(10))
Reading C:\Users\wmvan\mne_data\MNE-kiloword-data\kword_metadata-epo.fif ...
Isotrak not found
Found the data of interest:
t = -100.00 ... 920.00 ms
0 CTF compensation matrices available
Adding metadata with 8 columns
960 matching events found
No baseline correction applied
0 projection items activated
WORD Concreteness ... ConsonantVowelProportion VisualComplexity
723 hell 2.950 ... 0.750 57.089775
105 nature 4.300 ... 0.500 62.193324
503 item 5.100 ... 0.500 65.858512
924 entrance 4.450 ... 0.625 64.234616
237 modality 3.125 ... 0.500 65.056680
556 shirt 6.350 ... 0.800 54.295790
273 pack 4.550 ... 0.750 72.813626
244 book 6.250 ... 0.500 72.980394
709 clarinet 6.250 ... 0.625 56.367344
472 breakage 4.150 ... 0.500 75.217461
[10 rows x 8 columns]
Now we are ready to create the “model” RDM, which will encode the difference in length between the words shown during the experiment.
rdm = mne_rsa.compute_rdm(epochs.metadata.NumberOfLetters, metric="euclidean")
# Plot the RDM
fig = mne_rsa.plot_rdms(rdm, title="Word length RDM")
fig.set_size_inches(3, 3) # Make figure a little bigger to show axis properly

Total running time of the script: (0 minutes 0.630 seconds)