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Sound as signal

In signal representations a physical or abstract variable is typically
represented as a function of time, such as:

m Signal as a mathematical function:
m Pure tone:
y(t) = Asin(2rft) = Asin(wt)
m Random signal:
n(t) = rand(t)
m Discrete-time numeric sequence
x(n)=1[0.122354.031 -092105 —11 —21 —-0.80.2]



Graphical presentations of signals
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Linear and time-invariant (LTI) systems
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Properties of LTI systems

m Any (stable) LTI system can be fully represented by its impulse
response

m Output cannot include any frequencies that are not in the input (no
nonlinear distortion)

m Any bandlimited LTI system can be approximated by digital filters with
arbitrary accuracy (theoretically)



Signal processing algorithms

m Convolution

+oo

y(n) = x(n) x h(n) = > x(i)h(n— )

i=—00

m Fourier analysis

X(w) = F{x(1)} = /_ T () e dt

N—1

X(k) = Fa{x(n)} = Z x(n) e~ ik@m/N)n

n=0



Signal processing algorithms

m Fourier synthesis
—1 1 e jwt
x()=F" X} =5- [ Xwedw

N—

x(n) = Fy {X(K)} Z (k) giE/Mn

m Convolution and Fourier transform
F{x(t)xy(t)} = X(w) - Y(w)

Fa{x(n) x y(n)} = X(k) - Y(k)



Decomposition of sawtooth waveform
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Spectrum analysis
m Magnitude spectrum
|X(w)lap = 20l0g, | X(w)]

[X(K)lag = 201l0gy, | X (k)|

m Phase spectrum
p(w) = £X(w) = arg{X(w)}

p(k) = £X(k) = arg{X(k)}
B Phase delay 7, (w) = —p(w)/w
m Group delay 75(w) = —dy(w)/dw



Fourier analysis with windowing

X(w) = /te w(t) x(t) e <t dt

b
Ne
X(k) =Y w(n) x(n) e 3KE/Nn
n=n,

Rectangular window

Hamming window

Hann(ing) window

Kaiser window

Blackman (Blackman-Harris) window



Spectrum analysis using Fourier analysis with
windowing
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Amplitude

Magnitude [dB]

Magnitude spectra of example signals
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Spectrogram
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Windowed Fourier magnitude spectrum shown for each time position



Corresponding waveform
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Auto- and cross-correlation
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Cepstrum

cx(t) = F~{log | F{x()}}
Commonly used in speech recognition as feature vector.
m Compute Fourier transform
m Logarithm of magnitude spectrum
m Inverse Fourier transform
m "Spectrum of the curve of magnitude spectrum”



Digital audio signal processing
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m Analog-to-digital (A/D) converter

m Digital signal processor

m Digital signal processing (DSP) software
m Digital-to-analog (D/A) converter



Signal quantization in A/D conversion

-
-

output
o

o

a) c)

-1 -1
-1 0 input 1 0 1

m Linear quantization (PCM-coding)

m Discrete levels: 2" (n= number of bits)

B 16—-24 bits/sample in audio (> 96 dB SNR)
m Sample rate: e.g. 44100 or 48000 samples/s



Filtering

Filters are DSP components that have frequency-dependent magnitude
and/or phase response. Needed often in audio techniques.

low-pass filter, attenuate high frequencies above cutoff frequency

m high-pass filter, attenuate low frequencies
m band-pass filter, attenuate low and high, and leave a band unmodified
m band-reject filter, correspondingly

m all-pass filter, modify only phase response

]

arbitrary-response filter, design the response as needed for each
frequency



Z-transform

Linear transform of sequence

o0

X(2)=Z{x(n)}= > x(n)z™"

n=—oo

Unit delay as building element:

Z{x(n—1)} =z 'X(z)

Digital filtering can be expressed as a polynomial of z~"



Digital filtering: FIR filters

FIR = Finite impulse response

Hrr(2) =




Digital filtering: IR filters

IIR = Infinite impulse response

N byz " byt byz et by_y 2= (V1)
n=0 _

Hir(z) = =
hir(2) 115" gyzp  Ataz o tapz P




Linear prediction (AR-modeling)

Modeling of signal generation with flat spectrum excitation (impulse or
noise) and IIR (all-pole) filter.
Speech example:
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Hidden Markov models (HMM)
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m For probabilistic modeling of state sequences
m Used especially in speech recognition and synthesis
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