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INTRODUCTION

For a wide class of control objects (such as electric
motors and generators). the harmonics of a constant
frequency may be regarded as the output signal under
norrrtal operating conditions: when a malfunction
develops, higher multiple-frequency harmonics appear
and are superimposed on the main signal. The problem
of recognizing the states of such objects is reduced to
detection of the emergence of higher harmonics with
rather small amplitudes and is complicated by the fact
that the checked signal can be distorted by fairly
intense noise.

In accordrnce with the above, a dynamic object can
he in various states corresponding to different diag
noses. For the majority of technical systems, it is rea
sonable to assume that the number of states is finite
because either the number of malfunctions, which can
develop in the object. is limited or the number of mal
functions foreseen beforehand is spcifIed.

Consider a set of possible states of the object

S {s,: I = 0. a — I },

and assume that the state s corresponds to normal
operating conditions.

The states of the system are described by a set of
catures. Thus. for an object with polyharmonic output

signal. it is reasonable to take the parameters ol’ curie—
s x’nd itig harmonics as the above features.
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Let the output signal of the object be described by
the model equation

v(t) = czksin(kwQt+Fk)+e(t), (I)

which can be easily transformed to

y(t) =(acosFsinkwot ± aksinFkcoskcoOt) + e(t)

= (bksinkwOt + crcoskoot) + e(t),

where bk = ULLOS FL and CL = a1 sin F1 are the coefficients

of the harmonics for the frequencies (O& = ko0: w0 is the
fundamental frequency: F1 is the phase of the kth har
monic: c(t) is an interference in measurements of the
output signal and is such that E{ e(t) } 0 and E{e2(t))

< . ith E{) being the symbol of expectation
value; and t is continuous time.

Introducing the vector of parameters with the
dimension of (It + I) x I

C(t) = (b(t), 1(r). ,(t) b,(t), (,(t)),

and the vector of the sane (It nension

W(t) = (I. Silt tOot, cosw11t,..., sinw0nt, cos w11,i t)

we can rewrite model equal on (I) in i he ‘ccor torm as

R’,.ci veil Oct’l’i 30, I 90$ (t) = ‘(t)Nl(t) + e(t). () S
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I. REPRESENTATION OF THE FOURIER
SERiES MODEL IN Ti-IF FORM
OF AUTOREGRESSIVE MODEL

We can put the following autoregressive model
equation with complex-Conjugate roots [lj into corre
spondence with (2):

d+ ,d,y(r—i) +e(t). (3)

Here, t is the current discrete time U 0, 1, 2, . ..). Intro
ducing the [(2,i + I) x I ]-dimensional vector of coelfi
c ients of autoregressive model (3)

8(r) = (d0(t), d1 (t)

and the history vector

T(p(t) = (I, y(r— I),....v(t—2n))

we can write model equation (3) in the vector form as

c(t) = OT(r)p(i) + e(t).

Relations between the parameters of models (l)and
(4) [for example. for a model corresponding to the nor
mal operating conditions (ii = 1)1 can easily be derived
in the following way.

The following description corresponds to the nor
mal operating conditions where only the fundamental
harmonic is present in the output signal:

= d,v(r — 1) +d2y(r — 2) + e(r). (5)

The characteristic polynomial of the differential
equation of the form

v(t)( D Dd1
— ‘: =

where D = dvldt. which is used to derive the difference
equation (5). takes the following form after sampling
the output variable with the frequency of T0 I:

0.

We use the condition for the complex conjugacy of

-

the roots

to determine the roots 01 the characteiistic polynomial as

2
=

± lX,o =

where In RI = ln(—d) = F.

The corresponding equation of the type (it (I) Ioicase of normal operating conditions can be wrI tIc
the following form after sampling:

y(t) = asin(w0t+ F) + e(t)

h5inW11+cCOSO)0t+L’((),

d,= arccos-j-1
2JL

in turn, d1 and d2 are defined as

d1 = 2JEcoscio = 2eFcoSclo,

2Fd2 = —e

Each possible state of the object corresponds to
specific diagnostic.model given by

vk(t) =

where C’(t) = (b(t), b1(t). c1(t) I.iL(t), c(t))T, an
qi(t) = (1, sin w0t, cosw0t sino1>kt, cos wQkt) at
the vectors with a dimension of (2k + I) x I. Thus,
state’s change. manifesting itself in the emergence c
new multiple-frequency harmonics in the output sign
of the object, corresponds to an increase in the order a
the autoregressive model. The latter, in the ease o
superposition of k harmonics of multiple frequencie
on the output signal, takes the form of the autoregres
sive model with complex-conjugate roots i.e.. we havi

= O(t- I)p(fl, (7

where O(r— I) =(clo(i- I). d1(t— I)
is the parameter-estimate vector with a dimension o
(2k + I ) x I and

(I. v(1 - I) VU - kfl1 k = 1.2 ,.., ,i.

In view of the fact that

(1 =

we finally have

b = acosF = /Zcos(4ln(_d2),

c = asinF = JZsin(ln(_d2)),

1W0 lO)l1= d1 = lX(e +e ) = 2IXlcoswo.

(4) Consequently,
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O+(r) = Ok+l((— I)

v(t)—G+i(-— I)(Pk+I(t)
+ it;.7 .,

IPk(t)II + y(t — 2k — 1)

O&’i(t) = I )R.1(I)

x(v(r)—Ok+I(r— I)(f’l(t))(Pk+l(1),

—

— I- — - -
LAi1 A

R(r) = R’(i— I)

- R’(i- I )(t)P(I)R -
I)

1’
I +q(t)R(t— I)Pk(!)

R’(i)u (‘),
‘I2 =

—

___________

vk+I(I)RL(I)

13L. (‘)

=

PATTERN RECOGNITION AND I\IAGE ANALYSIS

2. RECURSIVE ESTIMATION OF PARAMETERS
OF AN AUTOREGRESSIVE MODEL

WITH ALLOWANCE MADE FOR THE POSSIBLE
INCREASE IN THE ORDER

In order to estimate the parameters of models given
by (7), with allowance made for a possible increase in
the model’s order and for the fact that the diagnostics is
performed in real time. we suggest the following recur
sive algorithms.

(I) The Kaczmarz algorithm takes the following
form with allowance made for the possible increase in
the autoregression order:

and 1k (‘), v 0). and CL1. + (t) are the en Iumn , row,
and scalai respectively, of the following bordered
matrix:

I?A+)(r)
[Rk(i);itk+f(r)

In deriving the algorithm defined by (9)—(l I), we
used the formulas for calculating the matrix reciprocal
to the covariance matrix Rk+ () with allowance made
for an increase in dimension [21.

As mentioned above, a fault in the object manifests
itself by the emergence of higher frequency harmonics
in the output signal, which corresponds to an increase

(8) in the autoregressive-model order. Thus, if at step t the
+ (t). quantity w(t) = y(t)

— k (I) represents the white noise,
then it signifies that the model k (I) correctly describesHere,
the output signal. However, if at the (t + h)th step the

(t)II = IIPk()II + v2(t — 2k — 1) quantity w(t + h) y(t + Ii)
— k+v (t + h) represents the

2 -i white noise, whereas the quantity oQ + h) = y(I + h) —

= (i) + y (r — 2k — I) = Yk+ (r),
+ h) does not, then this signifies that the higher fre

O’ , r —

quency harmonics appear in the output signal and theYkt) — k+ tt ,Pk+ i I — k+ I’. diagnosed object is in the state corresponding to the
= v(t) - O(j — l)Pk(t) — a2k+1(t— I )(t — 2k— 1) model k+.(’)’

= ek(o)-(’2k+l(t 1)v(r— 2k—I).
3. CALCULATION OF THE PROBABILITY(II) The recursive least-squares method has the fol- OF FAULTSlowirrt form if allowance is made for an increase in the• Each of the models corresponds to a certain fault inautoreoressive model s order:

. .the object and is in direct correspondence with the
number of harmonics in the output signal. Furthermore,

(9) each model is based on a specific hypothesis 1-4 (k = I,
2 1?) with respect to the nature of the faults. Conse
quently, the truth of the hypothesis 11k indicates that the
object has a fault corresponding to the kth diagnostic
model, which, in turn, is indicative of the presence of
the kth frequency hannonic in the output signal.

In order to identify the true hypothesis about the
nature of faults in the object. we introduce a multimo

(Ii) del filtered sequence [3) as

= i(’)Y(’), (l2

where P (,) = (j, (, 7 (I).,., j,, (t))’’ is an (n x I)—
dimensional vector of unLnown adjustable weighting
coefficients, which define the closeness of the output

_____________________________________

signal of the model k (I) to the actual signal vQ) and
satisfy the conditions for unbiasedness

ETP(,) = I.

where E is an (n x I )—dirnensioiial vector consisting ot
unities and Y 0) = (v1 (I). (‘L.’ V

(1))T is an (it x I)—
dimensional vector composed of the magnitudes of out
put signals corresponding to the diagnostic models
Yk(t)’

l-lere,

L+,(!)=ak+l(n+vk+Ii1)R;’(t)uk+I(1)

A11 = R’(t)
+ R(1)uk+,r)v÷I(t)R(I)
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W(i) = y(t) - (r)

= 7,(t)(Ev(t) - Y())
= F(,)

V(t),

v,(I) vU) —,(t)

V(t) = v.(1) = ‘1!)
—

v(t) (t)

P(t)
- If

- E1H(nE

(t) = Prt(t - I) -

Taking into account conditions (13) and the conditions
[or flonnegativity of the coefficients 7 (i) in model (12),
we formulate the Lagrangian with respect to the resid
ual function

this Lagrangian has the form

L(P,
, t) =PT(t)H(t)P(r)

-T
+(P E—l)—t P(r),

where 11(r) V(i)VT(i), is the indeterminate

Lagrange multiplier, and t is the vector of nonnegative
indeterminate Lagrange multipliers with the dimension
of(nx 1).

Using the AITow—Flurwitz—Uzawa procedure [4], we
find the value of the Langrangian (15) saddle point as

P(t) = P(r) + 0.5(!_ If (r)EET)fl-l(t)(f I ),(16)
E If (r)E

(17)’

it is noteworthy that the value of the saddle l)oiln inLagrangian (15) ensures minimization of the test

J = P’ (r)H(t)P(r) (20)
with allowance made for the conditions for uribiasetiness

(14)
(13) and nonnegativity of the coefficients of model (I 2).

We now supplement the procedure defined by (16)—
(19) by an obvious rule for the choice of the hypothesis
Hk concerning the nature of the fault. This rule is as fol
lows: the hypothesis 11k is regarded as true if it corre
sponds to the highest probability U). To put it for
mally, if Pk (t) > 7 (t) (Vi l,n , and i k), the hypoth
esis 1-4 is true.

4. EXAMPLE

(15) As an example, we report the results of a numerical
experiment concerning the recognition of the states of
a dynamic object with a periodic output signal.

Normal operating conditions correspond to model
Ml defined as

= lsin6O’t+e(t),

where noise e(t) has the mean value E{ e(t)} = 0 and the
standard deviation c3. = 0.05.

The object can be in two other states characterized
by emergence of additional higher frequency harmon
ics in the output signal; these two states correspond to
models M2 and M3 given by

y,(T) = I sinó0t +a2sin2 x 60’t + e(t),

y1(t) = I sin 60t +a2sin2 x 60’t

+a1sin3 x 60t + e(t),

where the amplitude coefficients of additional harmon-(18) ics 02 and a1 can take various values.
The autoregressive model having complex-conju

gate roots and corresponding to the model of normal-
operating condition Ml is written as

(i) = I v(r - I) — I y(t —2) + e(t).

The structure of autoregressive models correspond
ing to models M2 and M3 coincides with the structure
of (7) for k = 2 and k = 3. where

02(1) = (1,-I. (I(1),d4(rflT,

(p(!) = (v(t- I). vU - 2). v(t —3), vU —4))’

O(t) = (I. I. d(t)

= (vU — I ),v(—2) v(t _6))1.

lii order to adjust the ecturs of parameters 0? (t)

and O (t) in the models ,) and (,), we used a mod
i lication of the Kaczmarz aleoritlim with allowance
made [or an increase in the order of autoregressIon I 8).

where I is an identity matrix,

y,) = diag(y1(t), ‘(2(’)

Pr() is the projector on positive ortani, and the matrix
reciprocal to the covariance matrix of errors of the
models ff1() is calculated usine the Sherman—Morri
son recursive formula [5) as

IF’(r) = H’(i - I)

— H’(t — I
).(,)1/T(/fI1

— I) (19)

I + V’(i)H— I IV(t)

Since ( i) = I and j U) 0. the quantity (t)

has a significance for the probability of die hypothesis
11k with respect to the nature ot the faults because the
corresponding model (t) actually describes the out
Put harmonic signal of the objci vt I).
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Furthermore, the variables of the model (1) were
taken as initial parameters.

A switclmver between models Ml —N’13 occurs at
random pointS in t me: the pi oblem consists in the
accurate i ecogniuon of the curient object state
described by one of the above no lels and in the precise
smiulatiuti ot the output stunal.

Iii nider to calculate the piobahili(v of the oheei
being in a specific state. e used the procedute given by
(16)—(19),

The results of simulation are shown in graphic form
in Figs. I and 2. Figute I shows the plots of the diag—
nosed—object output sietiil vjfl and the siiiiulating sig—

imf (i) calculated by fotniula (12 s ith ii 3. In Fig. 2,
the plots for Pt ohabilities of The object being in specific
states p ( . p (1), and p (/) are shown. The lai gest
eiiin iii stiniilatin the output sienal occtns at the
instants of eineigence of idditiotuil higher lieqncnev
hiattitoitics. Within the time inteiafs (when the object
is in a speci tic state), the erroi does not exceed I 0 of
the vai iation range En the output signal. The longest
delay in ieeiienittoti of The obleLt state nuonilis to
9 nme steps

ITios, for die given level of dis(ui hinees, reasonii4e
piecision of si imlating the output signal and the speed of
recogt(i/ing the eui rent state of the object ate ensoied.
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