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Abstract—A new approach to solving the problem of recognizing the states of a dynamic object with periodic
output signal is suggested. A synthesized algorithin for recognition of such states of objects constitutes a two-
level procedure. At the first level, the analyzed signal described by a model of the Fourier series type is put into
correspondence with a finite set of autoregressive models with complex-conjugate roots; a specific state is
revealed with the use of adaptive weighting of outputs of all the models in the bank with the constraints imposed
on unbiasedness of the weighted output rclative to the actual signal. Al the second level, the probabilities of
specilic faults corresponding to probabilities of hypotheses related to specific models of the first level are deter-

mined.

INTRODUCTION

For a wide class of control objects (such as electric
motors and generators). the harmonics of a constant
frequency may be regarded as the output signal under
normal operating conditions: when a malfunction
develops, higher multiple-frequency harmonics appear
and are superimposed on the main signal. The problem
of recognizing the states of such objects is reduced to
detection of the emergence of higher harmonics with
rather small amplitudes and is complicated by the fact
that the checked signal can be distorted by fairly
intense noise.

In accordance with the above. a dynamic object can

be in various states corresponding to different diag-

noses. For the majority of technical systems, it is rea-
sonable to assume that the number of states is finite
because either the number of malfunctions, which can
develop in the object. is limited or the number of mal-
functions foreseen beforehand is specified. ‘

Consider a set of possible states of the object

S=dx:i=0n-1},
and assume that the state s, corresponds to normal
operating conditions.

The states of the system are described by a set of
features. Thus. for an object with polyharmonic output
signal. it is reasonable to take the parameters of corre-
sponding harmonics as the above features.
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Let the output signal of the object be described by
the model equation

"

Y1) = Y asin(kogT+Fy) +e(1), )
k=0
which can be easily transformed to
¥(1) = Z(akcos FL. Sink®yT + a,sin FcoskmyT) +e(1)
k=0

1
= ) (bysinkwyT + ¢,coskwyT) + (1),
k=0
where b, = agcos Fy and ¢ = agsin [ are the coefficients
of the harmonics for the frequencies w, = Awy; 0y 15 the
fundamental frequency: F, is the phase of the kth har-

monic; e(T) is an interference in measurements of the
output signal and is such that £{e(1)} = 0 and E{eX(1)} =

2 L . i .
o, < oo, with E{-} being the symbol of expectation
value; and 1 is continuous time.

Introducing the vector of parameters with the
dimension of (2n+ 1) x|

. T

C(t) = (hy(1), b (D). (1), .. b (1), (1)),
and the vector of the same dimension

) . T

W(t) = (1. sinyT, cosw,T, ..., SINWYNT, COSWEnT) .

we can rewrite model equation (1) in the vector form as

V(1) = 1'.1(1)\(1(”() +e{1).
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I. REPRESENTATION OF THE FOURIER
SERIES MODEL IN THE FORM
OF AUTOREGRESSIVE MODEL

We can put the following autoregressive model
equation with complex-conjugate roots [1] into corre-
spondence with (2):

Y(6) = dy+ Y diy(t—i) + e(1). (3)

k=1

Here, t is the current discrete time (7 = 0,1,2,...). Intro-
ducing the [(2n + 1) x |]-dimensional vector of coeffi-
cients of autoregressive model (3)

8(1) = (do(1), dy(1), ..., dy (1)),

and the history vector

O(1) = (Ly(r-1), ..., ¥(r -2n))",

we can write model equation (3) in the vector form as

¥(1) = 8T (0)@(1) + e(r). (4)

Relations between the parameters of models (1) and
(4) [for example, for a model corresponding to the nor-
mal operating conditions (n = 1)] can easily be derived
in the following way.

The following description corresponds to the nor-
mal operating conditions where only the fundamental
harmonic is present in the output signal:

y(1) = d\y(1- 1) +dyy(1-2) + e(1). (5)

The characteristic polynomial of the differential
equation of the form

Y(IUD = Dd, = d) = (),

where D = dv/dt. which is used to derivé the difference
equation (5). takes the following form after sampling
the output variable with the frequency of T = |:

i3

)\. "(llk*‘(lz = O

We use the condition for the complex conjugacy of
the roots

,2
i’l"(17<0.
4 2

to determine the roots of the characteristic polynomial as

d X f I . T, InfAl £
A.l_zz“i"il "“‘Il""‘f[::{)\;(’ ’:(' “!

In(~=d) = F.

L} e

where [n]A] =

The corresponding equation of the type ol (1) {oy
case of normal operating conditions can be writle
the following form after sumpling:

y(1) = asin(wyt + F) + ¢(1)

= bsinwyt + ccoswyl + e(t) .
In view of the fact that
{a = —dz,

we finally have

b = ucosF = ,/~dzcos(%ln(—«d2)),
3 s
¢ = asinF = /= lzsin(%ln(»dz)),

M+dy =d = ™ +e™™) = 2/ cosw,.

Consequently,

oy d‘
0)0 = ﬂrCCOS"T"‘ =

2!)"‘ 2,./"‘(12;

in turn, d, and d, are defined as

, , F
d, = 2. /~d,cosw, = 2¢ cos Wy,

Each possible state of the object corresponds to
specific diagnostic-model given by

V(1) = COW(T). («

where Ci(T) = (by(T), b\ (1). ¢,(T), .... b(t), c (1)), an
Y(1) = (1, sinwyT, coswyT. ... SinwykT, cos k)T ay
the vectors with a dimension of (2k + 1) x |. Thus,

state’s change. manifesting itself in the emergence ¢
new multiple-frequency harmonics in the output sign:
of the object, corresponds to an increase in the order o
the autoregressive model. The latter, in the case o
superposition of k harmonics of multiple frequencie
on the output signal, takes the form of the autoregres
sive model with complex-conjugate roots: i.e.. we haw

3 (

vir) = 8u(r = D@(r). 7
where 8, (t = 1) = (do(r= 1. dy (1~ 1), ..., dautr = 19)
is the parameter-estimate vector with a dimension o

Zk+ x| and

@) = (Lov=1) v =260", k=12 0.
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2. RECURSIVE ESTIMATION OF PARAMETERS
OF AN AUTOREGRESSIVE MODEL
WITH ALLOWANCE MADE FOR THE POSSIBLE
INCREASE IN THE ORDER

In order to estimate the parameters of models given
by (7), with allowance made for a possible increase in
the model’s order and for the fact that the diagnostics is
performed in real time. we suggest the following recur-
sive algorithms.

(I) The Kaczmarz algorithm takes the following
form with allowance made for the possible increase in
the autoregression order:

ék&l(f} = élu»l(t" ')

V(1) = Bear (1= D)gp, (1) (8)
+ ’H 3 Ll Prer (1)
ol + v (e -2k - 1) |

Here, -
loca O = lgu(l* + v (0 -2k - 1)
= Y (D +V(-2k-1) = .\, (D),
MO =80e 1 (1= D (1) = E¢01(0)

= V()= B (1= D@u(r) = ke (£ = Dy(1 =2k~ 1)

= g(t) —daur (2= 1)v(t -2k~ 1),

, (II) The recursive least-squares method has the fol-
lowing form if allowance is made for an increase in the
autoregressive model’s order:

ék-&l(” = ékn(t-— I)R;iq(t) k

T ©)
X((0) = Ot (1= D)@ ()@, (1),
R (1) = [.Aj'i’f'EJ. (10)
A Ay
Ri'(1) = R{'(1-1)
R =Dl (R (- 1) (an

L+ @ (NR; (£ = Dgy(1)
Here,
Biai(n) = ak+|(»’)+v“,(!)R;l(t)u“,(z);
R;'(’)“u1(’)“'“:(’)/{;'(1)‘ Y
Blwl([)
- —_R,:l(l)u‘,,,(l)‘
i ’Bk+!(*’)
1 = _Via(ORC(),
o ; Blwl“)
An = B (1)

Ay = R&—'(")‘*'
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and uy , (1), v, (1), and o, , (1) are the column, row,
and scalar, respectively, of the following bordered

matrix:
Reu (1) = {.{eﬁ({)_:f{’iﬂ(ﬂ.} .

V&u(’)fakn(f)

In deriving the algorithm defined by (9)—(1 D), we
used the formulas for calculating the matrix reciprocal
to the covariance matrix R, , ,(r) with allowance made
for an increase in dimension [2].

As mentioned above, a fault in the object manifests
itself by the emergence of higher frequency harmonics
in the output signal, which corresponds to an increase
in the autoregressive-model order. Thus, if at step 1 the

quantity (1) = y(1) — ¥, (1) represents the white noise,
then it signifies that the model y, (¢) correctly describes
the output signal. However. if at the (r + h)th step the
quantity @(t + h) = y(t + h) = ¥, . (t + ) represents the
white noise, whereas the quantity w(r + h) = ¥t + h) —
i (t + ) does not, then this signifies that the higher fre-
quency harmonics appear in the output signal and the
diagnosed object is in the state corresponding to the
model y,, (1).

3. CALCULATION OF THE PROBABILITY
o OF FAULTS

Each of the models corresponds to a certain fault in
the object and is in direct correspondence with the
number of harmonics in the output signal. Furthermore,
each model is based on a specific hypothesis H, (k = I,
2, ..., n) with respect to the nature of the faults. Conse-
quently, the truth of the hypothesis H, indicates that the
object has a fault corresponding to the kth diagnostic
model, which. in turn, is indicative of the presence of
the kth frequency harmonic in the output signal.

In order to identify the true hypothesis about the
nature of faults in the object. we introduce a multimo-

del filtered sequence [3] as

Y1) = plny), (123

where P (1) = (p, (1), pa(1). ... p, ()T is an (n x 1)-
dimensional vector of unknown adjustable weighting
coefficients. which define the closeness of the output

signal of the model y, (1) to the actual signal v(r) and
satisfy the conditions for unbiasedness
e
E P =1, (I3
where £ is an (n x I)-dimensional vector consisting of
unitiesand Y (1) = (3, (1). ¥- (1), ..., ¥, ()T is an (% 1)-

dimensional vector composed of the magnitudes of out-
put signals corresponding to the diagnostic models

vi ().
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Taking into account conditions (13) and the conditions
{or nonnegativity of the coefficients P (1) in model (12),

we formulate the Lagrangian with respect to the resid-
ual function

W(r) = y(1) - ¥(1)

= o = (14)
= p UNEY()-Y(1) = P ()V(1),
vi(t) ¥l) =y (1)
Vi) = V(1) xit) = vy(1) :
V"(l) )'(.,)“j}n(t)
this Lagrangian has the form
L(P = p' P
(P A1) = P ()H()P(1) (15)

+MPTE- 1) - P(),
1]
where H(t) = Z V(D) VT(i) , A is the indeterminate
i=1
Lagrange multiplier, and pt is the vector of nonnegative
indeterminate Lagrange multipliers with the dimension
of (nx 1).

Using the Arrow-Hurwitz-Uzawa procedure [4], we
find the value of the Langrangian (15) saddle point as

H'(NEET
T

Pty = P(z)+o.5(1
E

950 oute - 1).06)
H (n)E

-1
P(1) = -—-————--.i’ _(l')E .
E'H (nE
H(D) = Pr(u(r - 1) - v,()P(1)), (18)
where [ is an identity matrix,

Yu(t) = diag(y, (1), Y- ... y,.(0)).

Pr,(-) is the projector on positive ortant, and the matrix
reciprocal to the covariance matrix of errors of the
models H-Y(1) is calculated using the Sherman-Morri-
son recursive formula [5] as

H”l(r) =H'(1-1)

CH =DV I E 1 -1
L+ VIR (- 1vy

(19)

"

Since zf)k(t) = Land p (1) 2 0. the quantity p, (1)

k=1
has a significance for the probability of the hypothesis
M, with respect to the nature of the faults because the

corresponding model v, (1) actuallv describes the out-
put harmonic signal of the abject ).
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It is noteworthy that the value of the saddle point in
Lagrangian (15) ensures minimization of the te s(

- .
J = P(OH)P(1) (20)

with allowance made for the conditions for unbiasedness

(13) and nonnegativity of the coefficients of model (12).

We now supplement the procedure defined by (16)-
(19) by an obvious rule for the choice of the hypothesis
H, concerning the nature of the fault. This rule is as fol-
lows: the hypothesis H, is regarded as true if it corre-

sponds to the highest probability p,(1). To put it for-

mally, if p, (> p, (1) (Vi=1,n,andi= k), the hypoth-
esis H, is true.

4. EXAMPLE

As an example, we report the results of a numerical
experiment concerning the recognition of the states of
a dynamic object with a periodic output signal.

Normal operating conditions correspond to model
M1 defined as ’

vi{1) = 1sin601 + e(1),
where noise e(1) has the mean value E{ (1)} =0 and the
standard deviation o, = 0.05. )

The object can be in two other states characterized
by emergence of additional higher frequency harmon-

ics in the output signal; these two states correspond to
models M2 and M3 given by T

¥2(1) = 1sin60T + a,5sin2 X 60T + e(1),
vi(T) = Isin601 + a,sin2 x 601
+da,;sin3 X 60T + e(1),

where the amplitude coefficients of additional harmon-
ics a, and a; can take various values.

The autoregressive model having complex-conju-
gate roots and corresponding to the model of normal-
operating conditions M1 is written as -

vi(ry = Iy(r-1)- Iy(r—=2)+e(1).

The structure of autoregressive models correspond-
ing to models M2 and M3 coincides with the structure
of (7)for k=2 and k = 3, where

0200 = (1, =1 (1), dy(D)",
P2(1) = (Y= 1) v (1 =2). y(1=3), y(r = 4)) "
By = (=1 dy(0)y oo do(1))
Pu(1) = (¥(r= 1) v(1=2), .., v(1=6)) .

In order to adjust the vectors of parameters 0, (1)

and 0, (1) in the models va(t)yand vy (1). we used a mod-

ification of the Kaczmarz algorithm with allowance
made for an increase in the order of awtoregression (8).
1999
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Furthermore. the variables of the model v, (1) were
taken as initial parameters.

A switchover between models M1-M3 occurs at
random points in time: the problem consists in the
accurate recognition of the current object state
described by one of the above models and in the precise
stmulation of the output signal.

In order to calculate the probability of the object
being in a specific state. we used the procedure given by
(16)-(19).

The results of simulation are shown in graphic form
in Figs. 1 and 2. Figure | shows the plots of the diag-

« nosed-object output signal v(1) and the simulating sig-
nal v(1) caleulated by formula (121 with 1= 3. In Fig. 2,
the plots for probabilities of the object being in specific
states py (N, pa (), and p(n) are shown. The largest
error i simulating the output signal occurs: at the
mstants of emergence of additional higher frequency
harmonics. Within the time intervals (when the object
1s m a spectfic state), the error does not exceed 10% of
the vartation range for the output signal. The longest
delay in recognition of the object state amounts to
Y time steps.
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Thus, for the given level of disturbances. reasonable
precision of simutating the output signal and the speed of
recognizing the current state of the object are ensured.
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