
Computationally Efficient Algorithms for Radar

Signal Design in Spectrally Busy Environment

Author: Markus Yli-Niemi

Instructor: Sergiy Vorobyov

November 2, 2018

Master’s Thesis,
Aalto University School of Electrical Engineering,
Department of Signal Processing and Acoustics

Author Markus Yli-Niemi
Title of thesis Computationally Efficient Algorithms for Radar
Signal Design in Spectrally Busy Environment
Degree Master of Science
Degree programme Signal Processing and Data Science
Thesis advisor(s) Sergiy Vorobyov
Year of approval 2018 Number of pages 87+8 Language English

Abstract

In this thesis the problem of designing radar transmitter waveforms in a
spectrally busy environment is considered. Spectrally busy environment is
an environment where radar operates in a congested frequency spectrum
with other radiators. Both single waveform design and multiple wave-
forms design problems are considered.
The solution algorithms for the design problems are based on Alternating
Direction Method of Multipliers (ADMM) algorithm alongside computa-
tionally efficient projection techniques. Solution algorithms are verified
to run on quadratic (i.e., O(N2), where N is the problem dimension) or
cubic (i.e., O(N3)) time complexities by time complexity graphs. Solution
algorithms are also tested with example environment simulations.
The quality of designed transmitter waveforms are assessed with signal-to-
interference-plus-noise ratio (SINR) and ambiguity function figures. Ac-
cording to these figures designed waveforms have adequate SINR while
ambiguity functions have small Doppler leakages and sharp autocorrela-
tion functions.

Keywords Radar transmitter waveform design, ADMM, Majorization-
Minimization

Publications based on this thesis

title: Computationally Efficient Waveform Design in Spectrally Dense Envi-
ronment
authors: Markus Yli-Niemi & Sergiy A. Vorobyov
conference: IEEE SAM 2018 in Sheffield, UK
description: This paper considers unimodular radar transmitter waveform de-
sign in spectrally dense environment. New computationally efficient method
for the design problem is proposed. New method is based on ADMM-algorithm
alongside Majorization-Minimization (MaMi) and computationally efficient pro-
jection techniques.

title: Computationally Efficient Algorithms for Designing Multiple Waveforms
in Spectrally Dense Environment
authors: Markus Yli-Niemi, Sergiy A. Vorobyov & Patrik Dammert
journal: Not decided yet, article is under preparation.
description: This article considers problems of designing multiple unimodular
radar transmitter waveforms in spectrally dense environment. Two new problem
formulations are derived and they are solved in computationally efficient man-
ner. This article is extension on our earlier work on design of single unimodular
radar transmitter waveform in spectrally dense environment.

Contents

1 Introduction 2

2 Prerequisites 4
2.1 Dual Ascent algorithm . 4
2.2 Method of Multipliers . 7
2.3 ADMM . 8
2.4 Majorization-Minimization (MM) techniques in Large-Scale Op-

timization . 10

3 Single waveform design in spectrally busy environment 13
3.1 SINR maximization problem in spectrally busy environment . . . 13
3.2 ADMM-type algorithm derivation 18

3.2.1 c-variable update . 21
3.2.2 z-variable update . 28
3.2.3 Proposed algorithm . 31

3.3 Performance analysis and simulation example 35
3.3.1 Simulation set up . 35

3.4 Single waveform algorithm extension 41
3.4.1 z-variable update . 41

4 Multiple waveforms design in spectrally busy environment 44
4.1 Simplified version of P2 . 46
4.2 1st algorithm for multiple waveform design 48

4.2.1 z-variable update . 48
4.2.2 Performance analysis . 54
4.2.3 Simulation set up . 54

4.3 2nd algorithm for multiple waveform design 62
4.3.1 Single waveform update 64
4.3.2 Performance analysis and example simulation 70

4.4 3rd algorithm for multiple waveform design 73
4.4.1 c-variable update . 74
4.4.2 Performance analysis . 77
4.4.3 Simulation set up . 79

5 Conclusion 86

6 References 87

7 Appendices 88
7.1 Appendix A . 88
7.2 Appendix B . 90
7.3 Appendix C . 91

1

1 Introduction

Waveform design is one of the classical problems in radar and communication
systems [1, 2, 3, 4, 5, 6, 7]. In recent years there have been a lot of interest in
designing radar signals in spectrally busy environments, when frequency bands
are highly congested. In this type of environment, it is challenging to design
radar signals that have adequate signal-to-interference-plus-noise ratio (SINR),
while undesired radiation to overlaid systems is kept under control. This prob-
lem leads to an NP-hard SINR-value maximization problem, as derived in [8]
and [9], with constraints applied both to disturbance level on overlaid band-
withs and fast-time radar code energy. The basic setting of the SINR-value
maximization problem in spectrally busy environment is derived in Section 3.1
of this Master’s Thesis.

When the waveform design problem needs to be solved in radar systems that
operate in GHz region, the resulting maximization problem is essentially large-
scale optimization problem with fast-time radar code vector reaching to dimen-
sions of tens of thousands. This large-scale optimization problem requires very
efficient algorithm to be solved accurately enough in a very short time.

In [8], certain type of relaxation and randomization procedure is introduced to
solve SINR maximization problem. Unfortunately, this type of solution method
is very inefficient, with the time complexity of O(N3.5) to O(N4.5), where N
is the problem dimension, which equals the transmitter waveform code length
squared in here because of the lifting of the code optimization variable to a
positive semidefinite (PSD) matrix variable as a relaxation step. Thus, such
problem cannot be solved in feasible time if fast-time radar code vector has di-
mension of tens of thousands. Therefore, more efficient solution methods must
be developed.

To tackle the problem, we will use Alternating Direction Method of Multi-
pliers (ADMM) algorithm as our base approach. ADMM is one of the best
algorithms to date to solve convex optimization problems. ADMM provides
fast convergence rate with adequate solution resolution, which is desirable in
this application. The details of ADMM and its preceding methods can be found
in Section 2 of this Master’s Thesis.

In this thesis, we will consider both single waveform and multiple waveform
design problems in a spectrally busy environment. Multiwaveform design prob-
lem is a straight extension of the single waveform design problem with objec-
tive to maximize the sum of SINR-values of designed signals. Also, additional
constraints for integrated sidelobe level (ISL) and peak-to-average-power ratio
(PAPR) are considered. Single waveform design problem is considered in Sec-
tion 3, while multiple waveform design problem is considered in Section 4. For
all derived algorithms, we will execute the performance analysis to evaluate the
time-complexities of the methods, and run simulations in which we implement

2

our design algorithms in an example environment.

3

2 Prerequisites

In this section, we introduce optimization techniques and mathematical frame-
works that are needed in the next sections. The aim is to introduce ADMM by
first discussing details of its precursors, called Dual Ascent and Method of Mul-
tipliers. ADMM combines the advantageous properties of these precursors. It
motivates the use of ADMM in the later algorithm derivations (see subsections
3.2, 4.2, 4.3 and 4.4).

In addition to ADMM, Majorization-Minimization (MM) techniques using first-
order surrogate functions are discussed. In many cases, the objective functions
in optimization problems are so complex that they cannot be efficiently solved in
their original forms. One way to tackle this problem is to use approximate func-
tions that bound the original objectives. In the case of minimization problem,
objective function is upper-bounded by surrogate, and instead of minimizing
objective, surrogate is minimized, which gives an approximation of the mini-
mum point of the objective. This technique is called then MM. In Subsection
3.2, MM methods turn out to play a central role in the algorithm derivation.

If reader is interested to deepen the knowledge of prerequisites introduced here,
more details about the techniques and results can be found in [10], [11], [12].

2.1 Dual Ascent algorithm

Consider a minimization problem of the form:

{
minimize f(x) (2.1.1a)

subject to: Ax ≤ b, (2.1.1b)

where x ∈ R
n, b ∈ R

m, A ∈ R
m×n and f : Rn → R is convex. The Lagrangian

function for the problem (2.1.1a)-(2.1.1b) is given as:

L(x,λ) = f(x) + λT (Ax− b), (2.1.2)

where λ ∈ R
m is the vector of Lagrange multipliers. By rewriting constraint

(2.1.1b), Ax ≤ b ⇒ Ax − b ≤ 0, and requiring λT ≥ 0, i.e. λi ≥ 0, ∀i, the
Lagrangian can be upper-bounded by the objective function f :

L(x,λ) = f(x) + λT (Ax− b)︸ ︷︷ ︸
≤0

≤ f(x). (2.1.3)

Infimum of the Lagrangian function can be written as

4

inf
x

L(x,λ) = inf
x

{
f(x) + λT (Ax− b)

}
= inf

x

{
f(x) + λTAx− λTb

}

= inf
x

{
f(x) + λTAx

}
− λTb

λTb=bTλ
= sup

x

{
−
(
f(x) + λTAx

)}
− bTλ

= sup
x

{
−λTAx− f(x)

}
− bTλ

= f∗
(
−ATλ

)
− bTλ, (2.1.4)

where convex conjugate f∗(λ) is defined as [10]:

f∗(λ) = sup
x∈dom(f)

{
−λTx− f(x)

}
. (2.1.5)

Function dom(f) refers to the domain where f(x) is defined. Denote g(λ) =
infx L(x,λ) and p∗ = infx f(x). From (2.1.3) it is clear that g(λ) ≤ p∗. To
attain p∗ using g(λ), we write:

p∗ = max
λ

g(λ) = sup
λ

inf
x

L(x,λ). (2.1.6)

Expression (2.1.6) is called Lagrangian dual problem. The idea of dual problem
is that minimum point of objective can be found by maximizing dual function
and vice versa. Maximum point obtained from (2.1.6) is called dual optimal
point λ∗, while primal optimal point x∗ is the point where objective f is mini-
mized.

Primal optimal point x∗ can be restored from dual optimal point λ∗:

x∗ = argmin
x

L (x,λ∗) . (2.1.7)

To iteratively find primal optimal point x∗, approximations of x∗ and λ∗ are
calculated as long as feasible tolerance is reached. Steps can be written as:





xk+1 = argmin
x

L (x,λk) (2.1.8a)

λk+1 = argmax
λ

g(λ) = sup
λ

inf
x

L(x,λ). (2.1.8b)

Step (2.1.8a) restores primal optimal point from dual optimal point, and step
(2.1.8b) finds update for dual optimal point. In Dual Ascent algorithm, gradient
ascent method, i.e., λk+1 = λk + αk∇g(λ), where αk is step-length, is used to
find dual optimal point. Gradient of the dual function g(λ) is given as:

5

∇g(λ) = ∇λ

(
inf
x

{
f(x) + λTAx

}
− λTb

)

= ∇λ

(
f
(
x+
)
+ λTAx+ − λTb

)

= Ax+ − b, (2.1.9)

where x+ is optimal point of infx L(x,λ). Hence Dual Ascent algorithm can be
written as:

{
xk+1 = argmin

x

L (x,λk) (2.1.10a)

λk+1 = λk + αk (Axk+1 − b) . (2.1.10b)

6

2.2 Method of Multipliers

For optimization problem (2.1.1a)-(2.1.1b) augmented Lagrangian is defined as:

Lρ(x,λ) = f(x) + λT (Ax− b) +
ρ

2
‖Ax− b‖22, (2.2.1)

where ρ > 0 is penalty parameter and ‖v‖2 =
√∑N

k=1 v[k]
2,v = Ax − b,

denotes the L2-norm of a vector. Augmented Lagrangian (2.2.1) can also be
considered as Lagrangian of optimization problem of the form (2.1.1a-2.1.1b),
where objective function is augmented as F (x) = f(x) + ρ

2‖Ax − b‖22. Dual
Ascent for this problem can be written as:

{
xk+1 = argmin

x

Lρ (x,λk) (2.2.2a)

λk+1 = λk + ρ (Axk+1 − b) , (2.2.2b)

where gradient ascent step length α is chosen to be the penalty parameter ρ.
Steps (2.2.2a)-(2.2.2b) are called Method of Multipliers.

The advantage of the Method of Multipliers compared to the Dual Ascent
method is that it converges faster and for more general conditions [10]. The
disadvantage however is that it does not support parallel computations (as the
Dual Ascent does, if the objective is separable) because the augmented objec-
tive F is not separable due to L2-norm term. This means that the Method of
Multipliers can be significantly slower than the Dual Ascent method in some
cases.

7

2.3 ADMM

Alternating Direction Method of Multipliers (ADMM) can be considered as a
combination of the Dual Ascent method and the Method of Multipliers intro-
duced in Subsections 2.1 and 2.2, respectively. In ADMM, objective function is
assumed to be separable. Thus, ADMM can be applied to minimization problem
of the form:

{
minimize f(x) + g(z) (2.3.1a)

subject to: Ax+Bz = c, (2.3.1b)

where x ∈ R
n, z ∈ R

m, c ∈ R
p,A ∈ R

p×n,B ∈ R
p×m, and functions f : Rn →

R and g : Rm → R are convex. Augmented Lagrangian for (2.3.1a)-(2.3.1b) is
given as:

Lρ(x, z,λ) = f(x) + g(z) + λT (Ax+Bz− c) +
ρ

2
‖Ax+Bz− c‖22. (2.3.2)

The Method of Multipliers for problem (2.3.1a)-(2.3.1b) can be expressed as:

{
(xk+1, zk+1) = argmin

x,z
Lρ (x, z,λk) (2.3.3a)

λk+1 = λk + ρ (Axk+1 − b) . (2.3.3b)

By splitting step (2.3.3a) for separate x- and z-variable updates, the following
three-step iteration is obtained:





xk+1 = argmin
x

Lρ (x, zk,λk) (2.3.4a)

zk+1 = argmin
z

Lρ (xk+1, z,λk) (2.3.4b)

λk+1 = λk + ρ (Axk+1 +Bzk+1 − c) . (2.3.4c)

Steps (2.3.4a)-(2.3.4c) are called ADMM. The popularity of ADMM in con-
vex objective optimization is due to its general convergence properties and the
support for parallel computations [10]. ADMM can be thought of having the
advantages of both the Dual Ascent method and the Method of Multipliers.

In some applications, ADMM steps are written in so-called scaled form. In
this form constraint (2.3.1b) is written as residual r:

r(x, z) = Ax+Bz− c. (2.3.5)

Augmented Lagrangian (2.3.3) in this case becomes:

8

Lρ(x, z,λ) = f(x) + g(z) + λT r+
ρ

2
‖r‖22

= f(x) + g(z) + λT r+
ρ

2
rT r

= f(x) + g(z) + λT r+
ρ

2
rT r+

1

2ρ
λTλ− 1

2ρ
λTλ

= f(x) + g(z) +
ρ

2

(
2

ρ
λT r+ rT r+

1

ρ2
λTλ

)
− 1

2ρ
λTλ

λT r=rTλ
= f(x) + g(z) +

ρ

2

(
1

ρ
λT r+

1

ρ
rTλ+ rT r+

1

ρ2
λTλ

)

︸ ︷︷ ︸
=(r+ 1

ρ
λ)

T
(r+ 1

ρ
λ)

− 1

2ρ
λTλ

= f(x) + g(z) +
ρ

2

(
r+

1

ρ
λ

)T (
r+

1

ρ
λ

)
− 1

2ρ
λTλ

= f(x) + g(z) +
ρ

2

∥∥∥∥
λ

ρ

∥∥∥∥
2

2

− ρ

2

∥∥∥∥
λ

ρ

∥∥∥∥
2

2

u=λ/ρ
= f(x) + g(z) +

ρ

2
‖r+ u‖22 −

ρ

2
‖u‖22.

Then ADMM in scaled form becomes:





xk+1 = argmin
x

(
f(x) +

ρ

2
‖r (x, zk) + uk‖22

)
(2.3.6a)

zk+1 = argmin
z

(
g(z) +

ρ

2
‖r (xk+1, z) + uk‖22

)
(2.3.6b)

uk+1 = uk + r (xk+1, zk+1) . (2.3.6c)

9

2.4 Majorization-Minimization (MM) techniques in Large-
Scale Optimization

In Majorization-Minimization (MM) optimization methods the idea is to find
a simpler surrogate function g(x) that upper-bounds a more complex objective
function f(x). Instead of minimizing the objective function, the surrogate func-
tion is then minimized. Since the objective is upper-bounded by the surrogate,
minimum value of the surrogate also approaches minimum value of the objec-
tive. This approach is very useful in situations where the objective function
cannot be easily minimized.

In this work, Lipschitz gradient surrogate and Proximal gradient surrogate func-
tions are used. These two surrogate function families belong to the first-order
surrogate functions. The definition of the first-order surrogate functions is given
in [11] and [12]:

Definition 2.4.1 (Family of first-order surrogate functions) Let κ be in
convex region Θ and f ∈ C0 be the objective function. Denote by SL,ρ(f,κ) the
set of ρ-strongly convex functions g such that g ≥ f, g(κ) = f(κ), the approx-
imation error e = g − f is differentiable, and the gradient ∇e is L-Lipschitz
continuous. Then the functions g in SL,ρ(f,κ) are called ”first-order surrogate
functions”.

In Definition 2.4.1, the function family Cn denotes family of n-times continu-
ously differentiable functions, ρ-strong convexity is defined as:

g(κ) ≥ g(θ) +∇g(θ)(κ− θ)︸ ︷︷ ︸
tangent hyperplane

+
ρ

2
‖κ− θ‖22 (2.4.2)

and L-Lipschitz continuity as:

|g(κ)− g(θ)| ≤ L |κ− θ| . (2.4.3)

It is important to notice that inequality (2.4.3) also applies to L2-norm:

‖g(κ)− g(θ)‖2 = 〈g(κ)− g(θ), g(κ)− g(θ)〉1/2

=

(∫

θ=Θ

|g(κ)− g(θ)|2 dθ
)1/2

≤
(∫

θ=Θ

(L |κ− θ|)2dθ
)1/2

= L

(∫

θ=Θ

|κ− θ|2 dθ
)1/2

= L‖κ− θ‖2.

10

The definitions of Lipschitz gradient surrogates and Proximal gradient surro-
gates can be found in [4] and [5], and are given below.

Definition 2.4.4 (Lipschitz gradient surrogates) Let f ∈ C1 and its gra-
dient ∇f is L-Lipschitz. Lipschitz gradient surrogate g in S2L,L(f,κ) is:

g(θ) = f(κ) +∇f(κ)(θ − κ) + L
2 ‖θ − κ‖22.

If f is convex, g is in SL,L(f,κ), and when f is µ-strongly convex, g is in
SL−µ,L(f,κ). Surrogate g(θ) can be minimized with gradient descent step θ ←
κ− 1

L∇f(κ).

Definition 2.4.5 (Proximal gradient surrogates) Let f = f1 + f2, where
f1 ∈ C1,∇f1 is L-Lipschitz continuous and f2 is convex. The proximal gradient
surrogate g in S2L,L(f,κ) is:

g(θ) = f1(κ) +∇f1(κ)(θ − κ) + L
2 ‖θ − κ‖22 + f2(θ).

If f1 is convex, g is in SL,L(f,κ), and when f1 is µ-strongly convex, g is in
SL−µ,L(f,κ). Surrogate g(θ) can be minimized with proximal gradient step

θ ← argminθ

{
1
2

∥∥κ− 1
L∇f1(κ)− θ

∥∥2
2
+ 1

Lf2(θ)
}
.

In Definition 2.4.4, the objective function is differentiable and hence its first-
order Taylor expansion can be written as:

f(θ)
Taylor
= f(κ) +∇f(κ)(θ − κ) + gi(θ), (2.4.6)

where gi(θ) denotes the difference f(θ)− (f(κ) +∇f(κ)(θ − κ)). It is easy to
check that

f(θ) = f(κ) +

∫ 1

0

∇f(κ+ τ(θ − κ))(θ − κ)dτ |u = κ+ τ(θ − κ), du = (θ − κ)dτ

= f(κ) +

∫ θ

u=κ

∇f(u)du |τ = 0⇒ u = κ and τ = 1⇒ u = θ

= f(κ) + f(θ)− f(κ) = f(θ).

Now (2.4.6) can be rewritten as:

11

f(θ) = f(κ) +

∫ 1

0

∇f(κ+ τ(θ − κ))(θ − κ)dτ

= f(κ) +

∫ 1

0


∇f(κ+ τ(θ − κ))(θ − κ)−∇f(κ)(θ − κ) +∇f(κ)(θ − κ)︸ ︷︷ ︸

=0


 dτ

= f(κ) +∇f(κ)(θ − κ) +

∫ 1

0

[∇f(κ+ τ(θ − κ))(θ − κ)−∇f(κ)(θ − κ)] dτ

⇒ gi(θ) = f(θ)− f(κ)−∇f(κ)(θ − κ)

=

∫ 1

0

[∇f(κ+ τ(θ − κ))(θ − κ)−∇f(κ)(θ − κ)] dτ.

Absolute value of gi(θ) is:

|gi(θ)| =
∣∣∣∣
∫ 1

0

[∇f(κ+ τ(θ − κ))(θ − κ)−∇f(κ)(θ − κ)] dτ

∣∣∣∣

≤
∫ 1

0

‖∇f(κ+ τ(θ − κ))(θ − κ)−∇f(κ)(θ − κ)‖2 dτ

=

∫ 1

0

‖(∇f(κ+ τ(θ − κ))−∇f(κ))(θ − κ)‖2 dτ

≤
∫ 1

0

‖∇f(κ+ τ(θ − κ))−∇f(κ)‖2 ‖θ − κ‖2 dτ

=

(∫ 1

0

‖∇f(κ+ τ(θ − κ))−∇f(κ)‖2 dτ
)
‖θ − κ‖2

∗
≤
(∫ 1

0

τL ‖θ − κ‖2 dτ
)
‖θ − κ‖2

=
L

2
‖θ − κ‖22 .

(*) Lipschitz continuity has been used here: ‖∇f(κ+ τ(θ − κ))−∇f(κ)‖2 ≤
L ‖κ+ τ(θ − κ)− κ‖2 = τL ‖θ − κ‖2.

With the above calculation and using the fact L
2 ‖θ − κ‖22 ≥ 0, the surrogate

function can be written as g(θ) = f(κ) + ∇f(κ)(θ − κ) + L
2 ‖θ − κ‖22 ≥ f(θ)

and the Lipschitz surrogate function g(θ) indeed upper-bounds f(θ). The proof
above follows closely the proof of Lemma 1.2.3 in [13].

In Definition 2.4.5, the objective function is splitted into two parts, where f1
has identical properties with those for the objective in Definition 2.4.4. Hence,
similar surrogate can be used. For f2 surrogate is not needed since f2 is already
convex.

12

3 Single waveform design in spectrally busy en-
vironment

In this chapter, SINR maximization problem of radar signal design is introduced.
In spectrally busy environment, radar signal radiation energy is constrained in
specified frequency bands. Also fast-time radar-code energy is constrained to
make sure that the radar signal can be sent with feasible energy. In addition to
these constraints, we require that designed radar-code signal is close to refer-
ence signal which is usually a linearly modulated signal. The details about the
problem derivation can be found from [8] and [9].

After introduction of SINR-maximization problem, ADMM-type algorithm for
solving it is developed [14]. The tools provided in Section 2 are used in the
derivation together with some fundamental results from linear algebra. All steps
of derivations will be shown in details with explaining figures so that a reader
can follow the algorithm construction without a need for additional material.

3.1 SINR maximization problem in spectrally busy envi-
ronment

Let us consider linearly modulated sinusoidal signals x(t), x, t ∈ R, which are
often used in radar applications due to their beneficial properties (e.g., pulse
compression):

x(t) = A cos

(
2π

∫ t

0

f(τ)dτ

)

= A cos

(
2π

∫ t

0

f0 + f∆r(τ)dτ

)
, (3.1.1)

where f∆ denotes frequency range, A ∈ R and r(τ) = α τ, α ∈ R. Change in
frequency with respect to time is linear:

df

dτ
= α f∆.

Signal x(t) can be decomposed to orthogonal components using trigonometric
identity cos (a+ b) = cos a cos b− sin a sin b:

13

x(t) = A cos

(
2π

∫ t

0

f0 + f∆r(τ)dτ

)

= A cos

(
2π(f0 +

1

2
α f∆ t)t

)

= A cos

(
2πf0t+

1

2
α f∆ t2

)

= A

(
cos (2πf0t) cos

(
1

2
α f∆ t2

)
− sin (2πf0t) sin

(
1

2
α f∆ t2

))

= A(I(t) +Q(t)), (3.1.2)

where I(t) and Q(t) are called in-phase and quadrature components respec-
tively. In complex notations, (3.1.2) can be written as:

xI(t) = A(I(t) + jQ(t)) = A ∗ Z(t), (3.1.3)

where Z(t) = I(t) + jQ(t) is called baseband signal of x(t).

To extract only positive frequencies of baseband signal Z(t) (and hence rep-
resent the physical signal) single-sided frequency spectrum of Z(t) needs to be
considered, and it is given as:

S+(f) = F+{Z(t)}(f) = 2u(f)F{Z(t)}(f), (3.1.4)

where F{Z(t)}(f) =
∫
R
Z(t)e−j2πftdt is Fourier transform of Z(t) and u(f) is

the Heaviside step function. Hence, physical signal is

Z+(t) = F−1{S+(f)}(t) =
∫

R

S+(f)e
+j2πftdf. (3.1.5)

This yields (see for example [1]):

Z+(t) = s(t) + jŝ(t), (3.1.6)

where s(t) = I(t) cos (2πf0t) − Q(t) sin (2πf0t) and ŝ(t) = I(t) sin (2πf0t) +
Q(t) cos (2πf0t). To use physical signal representation introduced in (3.1.1)-
(3.1.2), signal s(t) is chosen to represent physical signal.

With the use of (3.1.6), the relationship between (3.1.2) and (3.1.3) is expressed
as:

x(t) = Re{xI(t)} cos (2πf0t)− Im{xI(t)} sin (2πf0t)
= I(t) cos (2πf0t)−Q(t) sin (2πf0t)

= Re{xI(t)e
j2πf0t}. (3.1.7)

14

Now baseband representation of x(t) in (3.1.2) can be written as:

xI(t) = A(cos

(
1

2
α f∆ t2

)
+ j sin

(
1

2
α f∆ t2

)
)

= Aej
1
2αf∆t2 . (3.1.8)

Representation (3.1.8) is called complex representation of chirp signal. In [8]
and [9], chirp is defined with A = 1/

√
N , α = 4π, and f∆ = Ks.

Let us define the fast-time radar code signal c (transmitted signal) as a base-
band signal of transmitted radar pulse. The fast-time radar code is a digital
signal and it can be represented as vector of length N in which each element is
linearly modulated subpulse:

c = [c1, c2, ..., cN]
T ∈ C

N , (3.1.9)

where cn, n ∈ {1, ..., N} is code element of n’th subpulse. An example of code
signal is discrete version of (3.1.8) with parameters A = 1/

√
N , α = 4π and

f∆ = Ks:

cchirp(n) =
1√
N

ej2πKs(nT)2 =
1√
N

ej2πKs(n/fs)2 . (3.1.10)

The transmitted signal (the fast-time radar code) is called fast-time observation
signal once it reaches radar receiver. The received fast-time observation signal
can be written as:

v = [v1, v2, ..., vN]
T ∈ C

N . (3.1.11)

The observation signal v can be modeled with the use of the radar code signal
c as:

v = αT c+ n, (3.1.12)

where n is called a vector of filtered disturbance echo samples and αT is a
parameter contributing to backscatter effects. Vector n includes both noise
and disturbance signals (e.g. signals from jammers and other radiators) that
deteriorate the observation signal quality. Vector n is usually modeled as a
complex-valued, zero-mean Gaussian random vector with covariance matrix:

E
[
nnH

]
= M. (3.1.13)

It is important to notice that the covariance matrix M in (3.1.13) is Hermi-
tian, i.e., MH = M. The energy transmitted by radar to specific bandwith is
expressed as:

15

∫ fk
2

fk
1

Sc(f)df = cHRk
Ic, (3.1.14)

where fk
1 is the lower-bound and fk

2 is the upper-bound of k’th bandwith and
Sc(f) is the energy of radar-code signal frequency components, that is:

Sc(f) = |FN{c(n)}|2

=

∣∣∣∣∣

∞∑

n=−∞
c(n)e−j2πfn

∣∣∣∣∣

2

=

∣∣∣∣∣

N−1∑

n=0

c(n)e−j2πfn

∣∣∣∣∣

2

, (3.1.15)

where FN{c(n)} denotes the discrete-time Fourier transform (DTFT) of signal
c. The matrix Rk

I can be written as:

Rk
I (m, l) =

{
fk
2 − fk

1 , m = l

ej2πfk
2 (m−l)−ej2πfk

1 (m−l)

j2π(m−l) m 6= l,
(3.1.16)

where (m, l) ∈ {1, ..., N}2.

If radar transmits energy over K different frequency bands, the total trans-
mitted energy over the frequency bands is:

K∑

k=1

cHRk
Ic. (3.1.17)

In spectrally busy environments, it is important to constraint the amount of en-
ergy that radar transmits over different frequency bands. Otherwise, radar can
deteriorate the performance of other radiators (e.g., telecommunication devices
etc.) significantly. Let us denote the total maximum allowed disturbance to
frequency bands by EI . The disturbance constraint can now be expressed as:

cHRIc ≤ EI , (3.1.18)

where the left-hand-side is the weighted sum (with weights wk ≥ 0) of energies
radiated to frequency bands:

RI =

K∑

k=1

wkR
k
I . (3.1.19)

For designing the fast-time radar code signal, one way to determine quality of
the signal is to determine its SINR:

16

SINR = |αT |2 cHRc, (3.1.20)

where R = M−1 (M defined in (3.1.13)). Because M is Hermitian, the inverse
M−1 is Hermitian. SINR tells how distinguishable is the given radar code signal
c from disturbance signals. The greater the SINR value the better. Thus, the
objective for designing c is to maximize SINR (3.1.20).

In addition to the energy radiated to frequency bands, the fast-time radar code
energy is also constrained to make sure that the transmitted signal can be sent
with feasible energy:

‖c‖22 = cHc = 1. (3.1.21)

Moreover, to make sure that radar signal is well-behaving (in the sense that for
example the radar signal has desired ambiguity function properties) it needs to
be close to a given unit energy (i.e., ‖c0‖2 = 1) reference signal c0:

‖c− c0‖22 ≤ ε, (3.1.22)

where ε defines the similarity region.

To maximize SINR (3.1.20) under constraints (3.1.18), (3.1.21) and (3.1.22),
the following maximization problem P1 is introduced:

P1 :





max
c

|αT |2 cHRc (3.1.23a)

s.t. : ‖c‖2 = 1 (3.1.23b)

cHRIc ≤ EI (3.1.23c)

‖c− c0‖2 ≤ ε. (3.1.23d)

Because αT is constant, it can be dropped from the objective function and
P1 simplifies to:

P(1)
1 :





max
c

cHRc (3.1.24a)

s.t. : ‖c‖2 = 1 (3.1.24b)

cHRIc ≤ EI (3.1.24c)

‖c− c0‖2 ≤ ε. (3.1.24d)

Problem P(1)
1 can be equivalently written as minimization problem:

17

P(2)
1 :





min
c

−cHRc (3.1.25a)

s.t. : ‖c‖2 = 1 (3.1.25b)

cHRIc ≤ EI (3.1.25c)

‖c− c0‖2 ≤ ε. (3.1.25d)

3.2 ADMM-type algorithm derivation

Before tackling minimization problem P(2)
1 , it is important to notice that ob-

jective (3.1.25a) is non-convex because matrix R is positive semidefinite (PSD).
Indeed, it is inverse of PSD noise covariance matrix. If matrix R was negative
semidefinite (R � 0) it would guarantee that (3.1.25a) is convex. This can be
seen using convexity property (2.4.2):

f(x) +∇f(x)(y− x) |f(x) = xTRx

= xTRx+ ((R+RT)x)T (y− x) |∇f(x) = (R+RT)x

= xTRx+ xT (R+RT)(y− x)

= xTRx+ xTRy+ xTRTy− xTRx− xTRTx

= xTRTy+ xTRy− xTRTx |x = y+α

= (y+α)TRTy+ (y+α)TRy− (y+α)TRT (y+α)

= yTRTy+αTRy− yTRTα−αTRTα

= yTRTy+αTRy−
(
αTRy

)T −αTRTα |αTRy =
(
αTRy

)T
since RT = R

= yTRTy−αTRTα |If R � 0, αTRTα ≥ 0

≤ yTRTy = f(y). |convexity: f(y) ≥ f(x) +∇f(x)(y− x)

It is worth noticing that for any R � 0, convexity of −cHRc holds, not only for
Hermitian R, although in this work only Hermitian R needs to be considered.

To ensure that objective (3.1.25a) is convex, let us rewrite P(2)
1 as:

P(3)
1 :





min
c

cHQc (3.2.1a)

s.t. : ‖c‖2 = 1 (3.2.1b)

cHRIc ≤ EI (3.2.1c)

‖c− c0‖2 ≤ ε, (3.2.1d)

18

where Q = µI − R, I is identity matrix and µ is positive constant such that
Q � 0. Because Q � 0, the objective function is convex. Also Q is Hermitian
because R is Hermitian.

Objective (3.2.1a) upper-bounds objective (3.1.25a):

cHQc = cH(µI−R)c

= µcHc− cHRc

= µ‖c‖22︸ ︷︷ ︸
≥0

−cHRc

≥ −cHRc,

which implies that the minimum value of objective (3.2.1a) is an approximation

of the minimum value of (3.1.25a). Hence transformation from P(2)
1 to P(3)

1 can
be seen as Majorization-Minimization step.

Next let us write the complex valued matrix Q ∈ C
N×N and vectors c, c0 ∈ C

N

in real-valued notations as:

Q =

[
Re{Q} −Im{Q}
Im{Q} Re{Q}

]
, c =

[
Re{c}
Im{c}

]
and c0 =

[
Re{c0}
Im{c0}

]
.

To justify the transformation above when real and imaginary parts are indepen-
dent, we check that the product of complex numbers can be written as:

z1z2 = (a+ jb)(c+ jd)

= Re {z1}Re {z2} − Im {z1} Im {z2}+ j (Re {z1} Im {z2}+ Im {z1}Re {z2})
∗
=

[
Re{z1}Re{z2} − Im{z1}Im{z2}
Re{z1}Im{z2}+ Im{z1}Re{z2}

]

=

[
Re{z2} −Im{z2}
Im{z2} Re{z2}

] [
Re{z1}
Im{z1}

]
.

(*) Move to vector notation z = a+ jb =

[
a
b

]
.

Also it is worth noting that L2-norm remains unchanged in this transforma-
tion:

‖z1 − z2‖22 = |z1 − z2|2

= (Re {z1} − Re {z2})2 + (Im {z1} − Im {z2})2

=
[
Re {z1} − Re {z2} Im {z1} − Im {z2}

] [Re {z1} − Re {z2}
Im {z1} − Im {z2}

]
.

19

and

‖z‖22 = |z|2 = (Re {z})2 + (Im {z})2

=
[
Re {z} Im {z}

] [Re {z}
Im {z}

]
.

Now P(3)
1 can be written as the following real-valued optimization problem:

P(4)
1 :





min
c

cTQc (3.2.2a)

s.t. : ‖c‖2 = 1 (3.2.2b)

cTRIc ≤ EI (3.2.2c)

‖c− c0‖2 ≤ ε, (3.2.2d)

where Q,RI ∈ R
2N×2N , c ∈ R

2N , and c0 ∈ R
2N .

In P(4)
1 , objective (3.2.2a) is convex but not separable which is needed in ADMM.

To allow separability let us introduce the slack variable z and the constraint
c = z. Now, it is easy to write Augmented Lagrangian Lρ(c, z,λ) for the mini-
mization problem minc c

TQc s.t.: c = z:

Lρ(c, z,λ) = cTQc+ λT (c− z) +
ρ

2
‖c− z‖2. (3.2.3)

ADMM-steps for P(4)
1 are:





ck+1 = argmin
c

Lρ (c, zk,λk) (3.2.4a)

zk+1 = argmin
z

Lρ (ck+1, z,λk) (3.2.4b)

λk+1 = λk + ρ (ck+1 − zk+1) , (3.2.4c)

where Augmented Lagrangian Lρ(c, z,λ) is defined in (3.2.3). It is important
to notice that constraints (3.2.2b)-(3.2.2d) are not included in Augmented La-
grangian. These constraints need to be addressed either in ADMM step (3.2.4a)
or (3.2.4b). The order in which constraints (3.2.2b)-(3.2.2d) are addressed in
steps (3.2.4a) and (3.2.4b) does not matter since z and c are essentially the
same variable, which is ensured by the constraint c = z.

Step (3.2.4c) (λ-variable update) is trivial, while steps (3.2.4a) and (3.2.4b)
need further simplifications. In Subsections 3.2.1 and 3.2.2, these steps respec-
tively, are simplified to their final forms. Also in Appendix A (Subsection 7.1)
step (3.2.4a) is further analyzed. In Subsection 3.2.3, final ADMM-type algo-

rithm for solving problem P(4)
1 is proposed.

20

3.2.1 c-variable update

c-variable update (3.2.4a) can be written as:

ck+1 = argmin
c

Lρ (c, zk,λk)

= argmin
c

{
cTQc+ λT (c− z) +

ρ

2
‖c− z‖2

}

= argmin
c

{
cTQc+ (λ− ρz)T c+

(ρ
2

(
1 + ‖z‖2 − λT z

))}

= argmin
c

{
cTQc+ (λ− ρz)T c

}

= argmin
c

h(c) |s.t. ‖c‖2 = 1, ‖c− c0‖2 ≤ ε. (3.2.5)

To efficiently solve minimization problem (3.2.5), Majorization-Minimization
techniques (as introduced in Subsection 2.4) need to be used. Let us split
h(c) into two parts h(c) = h1(c) + h2(c). Now h1(c) = cTQc is convex and
h2(c) = (λ − ρz)T c ∈ C1 is continuously differentiable. Gradients of h1(c),
h2(c), and h(c) are given as:

∇ch1(c) = ∇c

(
cTQc

)

=
(
∇cc

T
)
Qc+ cT

= (∇cQc) = Qc+QT c

=
(
Q+QT

)
c, (3.2.6)

∇ch2(c) = (λ− ρz), (3.2.7)

and

∇ch(c) = ∇ch1(c) +∇ch2(c)

=
(
Q+QT

)
c+ (λ− ρz). (3.2.8)

Gradient ∇ch(c) is L-Lipschitz continuous because we can find L such that
|∇ch(κ)−∇ch(c)| ≤ L |κ− c|:

21

|∇ch(κ)−∇ch(c)| =
∣∣∣
(
Q+QT

)
κ+ (λ− ρz)−

((
Q+QT

)
c+ (λ− ρz)

)∣∣∣

=
∣∣∣
(
Q+QT

)
κ−

(
Q+QT

)
c
∣∣∣

=
∣∣∣
(
Q+QT

)
(κ− c)

∣∣∣

=
∣∣∣
(
Q+QT

)∣∣∣ |(κ− c)| ≤ L |κ− c|

⇒
∣∣∣
(
Q+QT

)∣∣∣ ≤ L

⇔




∣∣∣
[
Q+QT

]

1

∣∣∣ ≤ L∣∣∣
[
Q+QT

]

2

∣∣∣ ≤ L

...∣∣∣
[
Q+QT

]

2N

∣∣∣ ≤ L



,

where
[
Q+QT

]

i
denotes i’th row of the matrix Q + QT and L is Lipschitz

constant.

Because h(c) ∈ C1 and ∇ch(c) is L-Lipschitz continuous, according to Defi-
nition 2.4.4, the following Lipschitz gradient surrogate g ∈ S2L,L(h,κ) for h(c)
can be used:

g(c) = h(κ) +∇h(κ)(c− κ) +
L

2
‖c− κ‖22

= κTQκ+ (λ− ρz)Tκ+
((

Q+QT
)
κ+ (λ− ρz)

)T
(c− κ) +

L

2
‖c− κ‖22.

Surrogate g(c) can be minimized using gradient descent step:

c← κ− 1

L
∇h(κ)

= κ− 1

L

((
Q+QT

)
κ+ (λ− ρz)

)
,

where κ ∈ Θ = {c ∈ R
2N | ‖c‖2 = 1 and ‖c − c0‖2 ≤ ε, for some c0 ∈ R

2N}.
Hence the iteration update becomes:

ck+1 = ck −
1

L

((
Q+QT

)
ck + (λ− ρz)

)
. (3.2.9)

Gradient descent yields updated c that has ‖c‖22 6= 1. Cheap way to, possibly
suboptimally, project it back to the feasible region is to divide updated c by its
L2-norm:

22

ĉk+1 = ck+1/‖ck+1‖2 (3.2.10)

Now obviously ‖ĉk+1‖22 = 1. The idea of the projection is illustrated in Figure 1.

Next, the similarity constraint ‖c− c0‖22 ≤ ε needs to be considered. The idea
is to find the component of c0 perpendicular to c and move to that direction
length α and then project back to the region ‖c‖22 = 1. This operation is per-
formed as long as region ‖c− c0‖ ≤ ε is reached. Component perpendicular to
c can be found by Gram-Schmidt process.

Vector v can be projected to vector u by operator:

proju(v) =
〈v,u〉
〈u,u〉u. (3.2.11)

Hence component of v perpendicular to u is simply

ṽ = v− proju(v) = v− 〈v,u〉〈u,u〉u (3.2.12)

and unit vector to perpendicular direction:

e =
ṽ

‖ṽ‖2
. (3.2.13)

With the help of (3.2.11)-(3.2.13) rotation steps for c-variable can be written as
in Table 1. The steps mentioned in Table 1 are illustrated in Figure 2.

Table 1: c-variable rotation.

Step 1: Find component of c0 perpendicular to c: c̃ = c0 − projc(c0) = c0 − 〈c0,c〉
〈c,c〉 c.

Step 2: Find unit vector to this direction: e = c̃
‖c̃‖2

.

Step 3: Move the length α in direction of unit vector e: c∗ = c+ αe.
Step 4: Project c∗ back to region ‖c‖ = 1.
Step 5: Check if ‖c∗ − c0‖22 ≤ ε. If not repeat steps, otherwise exit.

23

〚c〛2 =1

〚c- c0〛
2 ≤ϵ

c c0

e

Projection of c back to region 〚c〛2=1

Figure 1: Projection of c back to region ‖c‖22 = 1

24

〚c〛2 =1

〚c- c0〛
2 ≤ϵ

c0�c
*

c c
�

c0

α*e

α*e

Rotation of c towards c0

Figure 2: Rotation of c towards c0

25

The steps in Table 1 can be written as a function as shown in Algorithm 1.

Algorithm 1: Rotate c toward c0 as long as region ‖c− c0‖ ≤ ε is reached

1 function RotateVector(c, c0, α, ε);
Input : c, c0, α, and ε
Output : c

2 while ‖c− c0‖ > ε do

3 c̃ = c0 − projc(c0) = c0 − 〈c0,c〉
〈c,c〉 c;

4 e = c̃
‖c̃‖2

;

5 c∗ = c+ αe;

6 c = c∗

‖c∗‖2
;

7 end

The combination of steps (3.2.9), (3.2.10) and Table 1 are the steps to the
projected gradient step for the problem:

min
c

g(c) subject to c ∈ Θ. (3.2.14)

Projected gradient step for (3.2.14) is:





yk+1 = ck −
1

L
∇h(ck) (3.2.15a)

ck+1 = argmin
c∈Θ

∥∥yk+1 − c
∥∥
2
. (3.2.15b)

The region Θ is a part of 2N -dimensional sphere surface. By using angular coor-

dinates φ = [φ1, φ2, ..., φ2N−1], where c1 = cos (φ1) , cn =
(∏n−1

j=1 sin (φj)
)
cos (φn) ,

n ∈ [2, 2N −1] and c2N =
∏2N−1

j=1 sin (φj), c ∈ Θ can be expressed as a function
of φ. Hence step (3.2.15b) can be written as:

ck+1 = argmin
φ∈Ω

∥∥yk+1 − c(φ)
∥∥
2
, (3.2.16)

where Ω = {φ ∈ R
2N−1 | ‖c(φ)‖22 = 1︸ ︷︷ ︸

satisfied ∀φ

and ‖c(φ)− c0(φ)‖22 ≤ ε}

=
{
φ ∈ R

2N−1 | ‖c(φ)− c0(φ)‖22 ≤ ε
}
.

Let us define optimal φ∗ ∈ R
2N−1 for which g(c(φ∗)) ≤ g(c(φ)) , ∀φ ∈ R

2N−1.
Let us also assume that φ∗ is reached by the projection ŷk+1 = yk+1/‖yk+1‖2 =
ŷk+1(φ

∗). We can show that g(c(φ)) is convex in Ω by writing the Taylor ex-

26

pansion of g:

g(c) = κTQκ+ (λ− ρz)Tκ+ ((Q+QT)c+ (λ− ρz))T (c− κ) +
1

2
‖c− κ‖22,

∇cg(c) = (Q+QT)(2c− κ) + (λ− ρz) + L(c− κ),

∇ccg(c) = 2(Q+QT) + LI � 0,

∇cccg(c) = 0

⇒ g(c+ r) = g(c) + rT∇cg(c) +
1

2
rT∇ccg(c)r, ∀r ∈ R

N

⇒ g(c+ r)− g(c) = rT∇cg(c) +
1

2
rT∇ccg(c)r
︸ ︷︷ ︸

≥0,∀r∈RN

, ∀r ∈ R
N , (3.2.17)

where r is a small step to a certain direction. From (3.2.17) it can be seen that
g fulfills convexity property g(c + r) − g(c) ≥ rT∇cg(c) because ∇ccg(c) � 0.
By choosing r such that ‖c+ r‖2 = 1 and ‖c+ r− c0‖2 ≤ ε (i.e. c+ r ∈ Θ), it
is clear that g is convex in the region Θ. The operation c + r ∈ Θ is equal to
c(φ+ φ′) for some φ′ ∈ R

2N−1 such that φ+ φ′ ∈ Ω.

Since g is convex and ∇ccg(c) = 2(Q+QT) + LI � 0, we have g(φ1) ≤ g(φ2)
if ‖φ1 −φ∗‖2 � ‖φ2 −φ∗‖2. This can be seen by choosing r1 and r2 such that
‖r1‖2 � ‖r2‖2 and c(φ∗) + r1 ∈ Θ and c(φ∗) + r2 ∈ Θ. Now we have:

g(c(φ∗) + r2)− g(c(φ∗) + r1)

= rT2∇cg(c(φ
∗))︸ ︷︷ ︸

=0

+
1

2
rT2∇ccg(c(φ

∗))r2 − (rT1∇cg(c(φ
∗))︸ ︷︷ ︸

=0

+
1

2
rT1∇ccg(c(φ

∗))r1)

=
1

2
rT2∇ccg(c(φ

∗))r2 −
1

2
rT1∇ccg(c(φ

∗))r1 ≥ 0.

This allows to rewrite (3.2.16) as

{
φk+1 = argmin

φ∈Ω
‖φ∗ − φ‖2 (3.2.18a)

ck+1 = c(φk+1). (3.2.18b)

It is important to notice that (3.2.18) is a convex problem, while (3.2.15) is not
because Θ is not convex region. Problem (3.2.18a) can be solved using rotation
step introduced in Table 1. One complete c-variable update is illustrated in
Appendix A.

27

3.2.2 z-variable update

z-variable update (3.2.4b) can be written as:

zk+1 = argmin
z

Lρ (ck+1, z,λk)

= argmin
z

{
cTQc+ λT (c− z) +

ρ

2
‖c− z‖2

}

= argmin
z

{
λT (c− z) +

ρ

2
‖c− z‖2

}

= argmin
z

u(z). |s.t. zTRIz ≤ EI . (3.2.19)

Let us rewrite the objective function u(z) as:

u(z) = λT (c− z) +
ρ

2
‖c− z‖2

= λT (c− z) +
ρ

2
(c− z)T (c− z)

= λT (c− z) +
ρ

2
(c− z)T (c− z) +

1

2ρ
λTλ− 1

2ρ
λTλ

=
ρ

2
(
2

ρ
λT (c− z) + (c− z)T (c− z) +

1

ρ2
λTλ)− 1

2ρ
λTλ

=
ρ

2
(
1

ρ
λT (c− z) +

1

ρ
(c− z)Tλ+ (c− z)T (c− z) +

1

ρ2
λTλ)− 1

2ρ
λTλ

=
ρ

2
((c− z) +

1

ρ
λ)T ((c− z) +

1

ρ
λ))− 1

2ρ
λTλ

=
ρ

2

∥∥∥∥c− z+
1

ρ
λ

∥∥∥∥
2

2

− 1

2ρ
‖λ‖22.

The above manipulation is essentially the same as converting ADMM steps to
scaled form (see Subsection 2.3). Now minimization problem (3.2.19) can be
written as:

zk+1 = argmin
z

{
λT (c− z) +

ρ

2
‖c− z‖2

}

= argmin
z

{
ρ

2

∥∥∥∥c− z+
1

ρ
λ

∥∥∥∥
2

2

− 1

2ρ
‖λ‖22

}

= argmin
z

{∥∥∥∥c− z+
1

ρ
λ

∥∥∥∥
2

2

}

= argmin
z

{∥∥∥∥z− (c+
1

ρ
λ)

∥∥∥∥
2

2

}
|s.t. zTRIz ≤ EI . (3.2.20)

28

It is important to notice that minimization problem (3.2.20) is non-convex be-
cause matrix RI is indefinite. Lagrangian for (3.2.20) is given as:

L(z, γ) =

∥∥∥∥z− (c+
1

ρ
λ)

∥∥∥∥
2

2

+ γ(zTRIz− EI), (3.2.21)

where γ ∈ R is the Lagrange multiplier.

Karush-Kuhn-Tucker (KKT) conditions for minimization problem (3.2.20) are
given as:





∇zL(z
∗, γ∗) = 0 (3.2.22a)

γ∗ ≥ 0 (3.2.22b)

γ∗((z∗)TRIz
∗ − EI) = 0 (3.2.22c)

(zTRIz− EI) ≤ 0 (3.2.22d)

∇zzL(z
∗, γ∗) � 0, (3.2.22e)

where z∗ and γ∗ denote critical points of the Lagrangian L(z, γ). From (3.2.22a),
we find:

∇zL(z
∗, γ∗)

∗
= γ∗(RI +RT

I)z
∗ + 2(z∗ − (c+

1

ρ
λ)) = 0

⇒
(
I+ γ∗

(
RI +RT

I

2

))
z∗ = c+

1

ρ
λ

∗∗⇔ (I+ γ∗RI) z
∗ = c+

1

ρ
λ. (3.2.23)

(*) ∇zγ(z
TRIz− EI) = ∇zγz

TRIz = γ(RI +RT
I)z and

∇z

∥∥∥z− (c+ 1
ρλ

∥∥∥
2

2
= ∇z

(
z−

(
c+ 1

ρλ
))T (

z−
(
c+ 1

ρλ
))

=
(
z−

(
c+ 1

ρλ
))

+
(
z−

(
c+ 1

ρλ
))

= 2
(
z−

(
c+ 1

ρλ
))

(**) For symmetric matrices A+AT

2 = A.

Now with (3.2.22c) and (3.2.23), the iteration steps for γk+2 and zk+1 can
be written as:





γk+2

(
zTk+1RIzk+1 − EI

)
= 0 (3.2.24a)

(I+ γk+2RI) zk+1 = c+
1

ρ
λ. (3.2.24b)

Solve (3.2.24b) for γk+1 > 0:

29

zk+1 = (I+ γk+1RI)
−1

(
c+

1

ρ
λ

)
, (3.2.25)

where γk+1 can be found as the solution to (3.2.24a):

zTk+1RIzk+1 − EI = 0

∗⇒
(
c+

1

ρ
λ

)T

(I+ γk+1RI)
−1

RI (I+ γk+1RI)
−1

(
c+

1

ρ
λ

)
= EI . (3.2.26)

(*)
(
(I+ γk+1RI)

−1
)T

= (I+ γk+1RI)
−1

(see appendix B).

We can further simplify (3.2.25):

zk+1 = (I+ γk+1RI)
−1

(
c+

1

ρ
λ

)

=

(
I−

2N∑

n=1

γk+1σn

1 + γk+1σn
pnp

T
n

)(
c+

1

ρ
λ

)
(3.2.27)

where σn is n’th eigenvalue and pn is the corresponding eigenvector of RI ,
which can be precomputed for given RI .

30

3.2.3 Proposed algorithm

By collecting the results from Subsections 3.2.1 and 3.2.2, The ADMM steps
(3.2.4a)-(3.2.4c) can be written as Algorithm 2.

Algorithm 2: Single waveform design algorithm

1 function Singlewaveform(Q, c0,RI , EI , ε,K);
Input : Q = µI−R � 0, c0, RI , EI , ε and K
Output : c

2 Initialize c, z and λ;
3 for k = 1, k ≤ K, k ++ do

4 ĉk+1 = ck − 1
L

((
Q+QT

)
ck + (λ− ρz)

)
;

5 c̃k+1 = ĉk+1

‖ĉk+1‖ ;

6 ck+1 = RotateVector(c̃k+1, c0, α, ε);

7 Solve
(
c+ 1

ρλ
)T

(I+ γk+1RI)
−1

RI (I+ γk+1RI)
−1
(
c+ 1

ρλ
)
= EI

for γk+1 > 0;

8 zk+1 = (I+ γk+1RI)
−1
(
c+ 1

ρλ
)
=

(
I−

2N∑
n=1

γk+1σn

1+γk+1σn
pnp

T
n

)(
c+ 1

ρλ
)
;

9 λk+1 = λk + ρ(ck+1 − zk+1);

10 end

In Algorithm 2, function RotateVector is defined as in Algorithm 1 (see Subsec-
tion 3.2.1).

One way to efficiently solve the equation in line 7 of Algorithm 2 is to define
function

f(γ) =

(
c+

λ

ρ

)T

(I+ γk+1RI)
−1

RI (I+ γk+1RI)
−1

(
c+

λ

ρ

)
− EI

(3.2.28)

=

(
c+

λ

ρ

)T

X(γ)

(
c+

λ

ρ

)
− EI ,

and find roots of f (i.e., find f(γ) = 0) using Newton’s method.

By Woodbury’s matrix identity:

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1, (3.2.29)

where the kernel matrix X(γ) can be written as:

31

X(γ) = (I+ γk+1RI)
−1

RI (I+ γk+1RI)
−1

=
(
I+ γk+1PDP−1

)−1
PDP−1

(
I+ γk+1PDP−1

)−1

=

(
I−P

(
1

γ
D−1 + I

)−1

P−1

)
PDP−1

(
I−P

(
1

γ
D−1 + I

)−1

P−1

)

=

(
PDP−1 −P

(
1

γ
D−1 + I

)−1

DP−1

)(
I−P

(
1

γ
D−1 + I

)−1

P−1

)

= PDP−1 −P

(
1

γ
D−1 + I

)−1

DP−1 −PD

(
1

γ
D−1 + I

)−1

P−1+

P

(
1

γ
D−1 + I

)−1

D

(
1

γ
D−1 + I

)−1

P−1

∗
= PDP−1 −PCDP−1 −PDCP−1 +PCDCP−1

= PDP−1 +PCDCP−1 − 2PCDP−1

= P (D+CDC− 2CD)P−1

= P
(
C2 − 2C+ I

)
DP−1,

(*) C =
(

1
γD

−1 + I
)−1

=




σ1γ
1+σ1γ

. . .
σ2Nγ

1+σ2Nγ


.

where RI = PDP−1 is eigenvalue decomposition of RI . Let the vector of
eigenvalues be denoted as σ = [σ1 ... σ2N].

The derivative of the kernel matrix X(γ) is:

dX

dγ
= −P

[
d

dγ

(
1

γ
D−1 + I

)−1
]
DP−1 −PD

[
d

dγ

(
1

γ
D−1 + I

)−1
]
P−1+

P

[
d

dγ

(
1

γ
D−1 + I

)−1
]
D

(
1

γ
D−1 + I

)−1

P−1+

P

(
1

γ
D−1 + I

)−1

D

[
d

dγ

(
1

γ
D−1 + I

)−1
]
P−1,

where d
dγ

(
1
γD

−1 + I
)−1

is simply:

32

d

dγ

(
1

γ
D−1 + I

)−1

= G(γ) =




d
dγ

σ1γ
1+σ1γ

. . .
d
dγ

σ2Nγ
1+σ2Nγ




=




σ1(1+σ1γ)−σ2
1γ

(1+σ1γ)2

. . .
σ2N (1+σ2Nγ)−σ2

2Nγ
(1+σ2Nγ)2


 .

Now it is easy to write the derivative of f with respect to γ as:

df

dγ
=

(
c+

λ

ρ

)T
dX

dγ

(
c+

λ

ρ

)

=

(
c+

λ

ρ

)T

(−PGDP−1 −PDGP−1 +PGD

(
1

γ
D−1 + I

)−1

P−1+

P

(
1

γ
D−1 + I

)−1

DGP−1)

(
c+

λ

ρ

)

∗
=

(
c+

λ

ρ

)T (
−PGDP−1 −PDGP−1 +PGDCP−1 +PCDGP−1

)(
c+

λ

ρ

)

=

(
c+

λ

ρ

)T (
−2PGDP−1 + 2PGDCP−1

)(
c+

λ

ρ

)

= 2

(
c+

λ

ρ

)T (
PGDCP−1 −PGDP−1

)(
c+

λ

ρ

)

= 2

(
c+

λ

ρ

)T (
P (GDC+GD)P−1

)(
c+

λ

ρ

)

= 2

(
c+

λ

ρ

)T (
PGD (C+ I)P−1

)(
c+

λ

ρ

)
. (3.2.30)

(*) C =
(

1
γD

−1 + I
)−1

=




σ1γ
1+σ1γ

. . .
σ2Nγ

1+σ2Nγ


.

Newton’s method for solving the equation in line 7 of Algorithm 2 is summarized
in Algorithm 3.

33

Algorithm 3: Newton’s method to find positive root of f

1 function NewtonMethod(x0, N);
Input : x0 and N
Output : x

2 while true do
3 for k = 1, k ≤ N, k ++ do

4 xk = xk−1 − f(xk−1)
f ′(xk−1)

;

5 end
6 if xN < 0 then
7 x0 = x0 + a, where a > 0;
8 else
9 break;

10 end

11 end

34

3.3 Performance analysis and simulation example

In this section, we evaluate the performance of Algorithm 2 in terms of simula-
tion example. The time complexity graph of Algorithm 2 is shown in Figure 3,
alongside reference curves ranging from O(Nlog(N) to O(N4.5). The problem
dimension (x-axis) is the number of elements in the fast-time radar code vec-
tor c, and the runtime is the time of one iteration of Algorithm 2 ran on the
desktop computer (HP Z240 Tower Workstation with Xeon E3-1230v5 3.40GHz
8MB processor). By comparing the slope of Algorithm 2 runtime to slope of ref-
erence curves, we see that the time-complexity of Algorithm 2 is approximately
quadratic (i.e., O(N2)). This is expected since the most expensive operation
in Algorithm 2 is matrix to vector product which essentially requires O(N2)
operation.

Next, we use Algorithm 2 in simulation example. We consider frequency band
occupied by several unlicensed and licensed radiators. For reference signal, we
use linearly modulated signal.

3.3.1 Simulation set up

Let us consider radar system with transmit bandwidth of 6GHz. Radar uses
sampling frequency fs = 12GHz. Radar pulse has length T = 2µs with duty
cycle d = 0.5. This implies that the fast-time radar code has the length 1µs,
which corresponds to 12000 dimensional fast-time radar code vector by using
sampling frequency fs.

Covariance matrix M is modelled as:

M = σ0I+

K∑

k=1

σI,k

∆fk
Rk

I +

KJ∑

k=1

σJ,kRJ,k, (3.3.1)

where

• σ0 = 0dB (thermal noise level);

• K = 7 (number of licensed radiators);

• σI,k = 10dB, ∀k ∈ {1, ...,K} (energy of coexisting telecom network oper-
ating on normalized frequency band Ωk = [fk

1 , f
k
2]);

• ∆fk = fk
2 − fk

1 , ∀k ∈ {1, ...,K} (bandwidth associated with the k’th li-
censed radiator);

• KJ = 2 (number of active and unlicensed narrowband jammers);

• σJ,k =

{
50dB, k = 1

40dB, k = 2,
(energy of active jammers);

35

10
0

10
1

10
2

10
3

10
4

10
5

Problem dimension

10
-5

10
0

10
5

10
10

10
15

10
20

R
u
n
ti
m

e
 (

s
)

Algorithm 2 n
2 n n*log(n) n

4.5

Figure 3: Time complexity graph of Algorithm 2

36

• RJ,k = rJ,kr
H
J,k, k = 1, ...,KJ (normalized disturbance covariance matrix

of the k’th active unlicensed jammer);

• rJ,k = ej2πfj,kn/fs , fJ,1/fs = 0.7 and fJ,2/fs = 0.75;

• wk = 1, ∀k ∈ {1, ..., 7} (weights in RI).

The parameter values for noise covariance matrix M are exactly the same as
the parameter values in [9]. For reference signal, we use linearly modulated
signal c0 = ei2π(f∆t+f0)t with carrier frequency f0 = 1.8GHz and frequency
range f∆ = 3.6GHz/µs. The licensed radiators operate at normalized frequency
bands:

• Ω1 = [f1
1 , f

1
2] = [0.0000, 0.0617]

• Ω2 = [f2
1 , f

2
2] = [0.0700, 0.1247]

• Ω3 = [f3
1 , f

3
2] = [0.1526, 0.2540]

• Ω4 = [f4
1 , f

4
2] = [0.3086, 0.3827]

• Ω5 = [f5
1 , f

5
2] = [0.4074, 0.4938]

• Ω6 = [f6
1 , f

6
2] = [0.6185, 0.7600]

• Ω7 = [f7
1 , f

7
2] = [0.8200, 0.9500]

We set the similarity and radiation constraint levels to ε = 0.9 and EI = 0.87.
In Figure 4, convergence graph of Algorithm 2 is shown alongside constraint
levels per each iteration. In Figure 5, frequency spectrum of designed signal
(i.e. signal maximizing SINR) is shown. In Figure 6, SINR of the designed sig-
nal per iteration is shown, and in Figure 7, the ambiguity function of designed
signal is shown.

From Figure 5, we see that designed signal uses all available bands except the
bands in the range 0.0617-0700 and 0.3827-0.4074. The reference signal c0 is in
the range 0.3-0.9, and the level of ε determines how freely designed signal can
use allowed bands outside this region.

From Figure 6, we see that while minimizing surrogate objective, we are si-
multaneously maximizing original objective which is the SINR of the designed
signal. Finally, from Figure 7, we see that our designed waveform has similar
ambiguity function as the reference linearly modulated signals. Autocorrelation
is very narrow and Doppler leakage is small.

Here the ambiguity transform X (u,u) : ZN × ZN → C (ZN is N -periodic
discrete space) is defined as:

37

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.2

0.4

0.6

0.8

c
T
 Q

 c

Convergence graph (problem dimension: 12000)

0 2 4 6 8 10 12 14 16 18 20

Iterations

0.99

1

1.01

||
c
||

2

Energy constraint ||c||
2
 = 1

0 2 4 6 8 10 12 14 16 18 20

Iterations

0.5

1

1.5

2

||
c
-c

0
||

2

Similarity constraint ||c-c
0
||

2
 <

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

0.5

1

c
T
 R

I c

Radiation constraint c
T
 R

I
 c < E

I

Figure 4: Convergence graph of Algorithm 2

X (u,u)(ξ, y) = 1

N

N−1∑

k=0

e−j2πkξ/Nu(k + y/2)u(k − y/2)∗, (3.3.2)

where ξ denotes frequency shift, y is time shift, and (•)∗ is complex conjugate
operation. Autocorrelation has the form:

X (u,u)(0, y) = 1

N

N−1∑

k=0

u(k + y/2)u(k − y/2)∗, (3.3.3)

i.e., it is a 0-Doppler cut of (3.3.2).

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency

-70

-60

-50

-40

-30

-20

-10

0

10

M
a
g
n
it
u
d
e
 i
n
 d

B

Figure 5: Frequency spectrum of designed signal

39

0 5 10 15 20

Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c

T
 Q

 c

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 w

it
h

 |
T
|2

=
1

Figure 6: SINR of designed signal per iteration

Figure 7: Ambiguity function of designed signal

40

3.4 Single waveform algorithm extension

In this subsection we consider radiation energy constraint (3.2.2c) separately
for each constrained frequency band instead of summing them together as we
do in Subsection 3.2. This is essentially the extension from paper [9] to [8].
Motivation for doing this is based on the discussions we had in IEEE SAM 2018
conference in Sheffield.

Therefore, the minimization problem P(4)
1 is written as:

P(5)
1 :





min
c

cTQc (3.4.1a)

s.t. : ‖c‖2 = 1 (3.4.1b)

cTRk
Ic ≤ Ek

I , ∀k ∈ {1, ...,K} (3.4.1c)

‖c− c0‖2 ≤ ε, (3.4.1d)

where Q,RI ∈ R
2N×2N , c ∈ R

2N and c0 ∈ R
2N .

To solve P(5)
1 we address constraints (3.4.1c) in z-variable update. The c-

variable update remains the same as in Algorithm 2.

3.4.1 z-variable update

We have minimization problem of form:

zk+1 = argmin
z

{∥∥∥∥z− (c+
1

ρ
λ)

∥∥∥∥
2

2

}
|s.t. zTRk

Iz ≤ Ek
I , ∀k ∈ {1, ...,K}.

(3.4.2)

Lagrangian for (3.4.2) is given as:

L(z,γ) =

∥∥∥∥z− (c+
1

ρ
λ)

∥∥∥∥
2

2

+

K∑

k=1

γ(k)(zTRk
Iz− Ek

I), (3.4.3)

where γ = (γ(1), γ(2), ..., γ(K))T , with γ(k) ∈ R, k ∈ {1, ...,K}, are the Lagrange
multipliers.

Karush-Kuhn-Tucker (KKT) conditions for the minimization problem (3.4.2)
are given as:





∇zL(z
∗, γ∗) = 0 (3.4.4a)

γ∗ ≥ 0 (3.4.4b)

(γ(k))∗((z∗)TRk
Iz

∗ − Ek
I) = 0, ∀k ∈ {1, ...,K} (3.4.4c)

(zTRIz− EI) ≤ 0 (3.4.4d)

∇zzL(z
∗, γ∗) � 0, (3.4.4e)

41

where z∗ and γ∗ denote critical points of the Lagrangian L(z,γ). To solve γ’s
we use complementary slackness conditions (3.4.4c) and z-variable update is
obtained by gradient condition (3.4.4a). Gradient ∇zL(z

∗, γ∗):

∇zL(z
∗, γ∗) = 2(z− (c+

1

ρ
λ)) +

K∑

k=1

γ(k)
(
(Rk

I)
T +Rk

I

)
z

= 2(z− (c+
1

ρ
λ)) +

(
K∑

k=1

2γ(k)Rk
I

)
z

=

(
2I+

K∑

k=1

2γ(k)Rk
I

)
z− 2

(
c+

1

ρ
λ

)
(3.4.5)

Therefore condition (3.4.4a) yields:

z =

(
I+

K∑

k=1

γ(k)Rk
I

)−1(
c+

1

ρ
λ

)
(3.4.6)

Substitution of (3.4.6) to complementary slackness conditions (3.4.4c) yields:

zTk+1R
k
Izk+1 − Ek

I = 0

∗⇒
(
c+

1

ρ
λ

)T
(
I+

K∑

k=1

γ(k)Rk
I

)−1

Rk
I

(
I+

K∑

k=1

γ(k)Rk
I

)−1(
c+

1

ρ
λ

)
= Ek

I .

(3.4.7)

(*)

((
I+

∑K
k=1 γ

(k)Rk
I

)−1
)T

=
(
I+

∑K
k=1 γ

(k)Rk
I

)−1

(see appendix B).

By denoting:

fi(γ) =

(
c+

1

ρ
λ

)T
(
I+

K∑

k=1

γ(k)Rk
I

)−1

Ri
I

(
I+

K∑

k=1

γ(k)Rk
I

)−1(
c+

1

ρ
λ

)
−Ei

I ,

(3.4.8)

we have system of K equations with K unknowns:





f1(γ) = 0, (3.4.9a)

f2(γ) = 0, (3.4.9b)

...

fK(γ) = 0. (3.4.9c)

42

To solve system of equations (3.4.9a)-(3.4.9c) we use Newton’s method:

γk+1 = γk − [J (γk)]
−1

F (γk) , (3.4.10)

where J (γk) =







∂f1
∂γ(1) (γk)

∂f1
∂γ(2) (γk) . . . ∂f1

∂γ(K) (γk)
...

...
. . .

...
∂fK
∂γ(1) (γk)

∂fK
∂γ(2) (γk) . . . ∂fK

∂γ(K) (γk)





 (Jacobian) and

F (γk) = (f1(γk), f2(γk), ..., fK(γk))
T
. Jacobian entries are given as:

∂fi(γ)

∂γ(j)
=

(
c +

1

ρ
λ

)T ∂

∂γ(j)



(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R

i
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 (
c +

1

ρ
λ

)
+

(
c +

1

ρ
λ

)T
(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
i
I

∂

∂γ(j)



(
I +

K∑

k=1

γ
(k)

R
k
I

)−1


(
c +

1

ρ
λ

)

∗
= −

(
c +

1

ρ
λ

)T
(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 [
∂

∂γ(j)

(
I +

K∑

k=1

γ
(k)

R
k
I

)](
I +

K∑

k=1

γ
(k)

R
k
I

)−1

∗

R
i
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 (
c +

1

ρ
λ

)
−
(
c +

1

ρ
λ

)T
(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
i
I∗

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 [
∂

∂γ(j)

(
I +

K∑

k=1

γ
(k)

R
k
I

)](
I +

K∑

k=1

γ
(k)

R
k
I

)−1 (
c +

1

ρ
λ

)

= −
(
c +

1

ρ
λ

)T
(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
j
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
i
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 (
c +

1

ρ
λ

)
−

(
c +

1

ρ
λ

)T
(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
i
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1

R
j
I

(
I +

K∑

k=1

γ
(k)

R
k
I

)−1 (
c +

1

ρ
λ

)

(3.4.11)

(*) Derivative of inverse matrix (K−1)′ = −K−1K ′K−1.

43

4 Multiple waveforms design in spectrally busy
environment

Next, we extend our single waveform design algorithm to multiple waveforms
design, i.e., we simultaneously design P signals. To do this, we need to add
constraint for integrated side-lobe level (ISL). ISL controls auto- and cross-
correlation between designed signals. This is required to make sure that each
signals are not deteriorating the detection performance of distinctive transmit-
ter signals.

For P radar codes (or sequences in general) of length N , c(p) = {cpj}N−1
j=0 , we

define ISL as (see e.g. [15]):

ISL(c(p), c(q)) =

P∑

p=1

N−1∑

k=−N+1,k 6=0

|Xc(p)c(p)(k)|2 +

P∑

p=1

P∑

q=1,p 6=q

N−1∑

k=−N+1

|Xc(p)c(q)(k)|2 , (4.0.1)

where the cross-correlation Xc(p)c(q)(k) is defined as:

Xc(p)c(q)(k) =

min{N−k,N}−1∑

j=max{0,−k}
c
(p)
j (c

(q)
j+k)

∗, k = {−N+1, ..., N−1}. (4.0.2)

In (4.0.2), c∗ denotes complex conjugate. We aim to obtain sequences c(p) such
that the autocorrelation for any non-zero time shifts, i.e., Xc(p)c(p)(k), ∀k 6= 0,
is low. This means sequences that are uncorrelated with time-shifted versions
of themselves. Also, the cross-correlations between each pair of sequences, i.e.,
Xc(p)c(q)(k), ∀k{−N + 1, ..., N − 1}, need to be low. This means that each
sequence must be uncorrelated with other sequences. These requirements are
achieved by requiring ISL to be low, more precisely by ISL to be upper-bounded
by some small constant.

Next, we will write the similarity constraint (3.1.22) in more general form (as
discussed in [8]):

‖c− αc0
c0‖2 ≤ ε, (4.0.3)

where |αc0
|2 ≤ 1, ‖c‖2 ≤ 1 and ‖c0‖2 = 1. It is worth pointing out that if

‖c‖2 = 1 (i.e., radar code is unit energy signal), we have:

44

f(αc0
) = ‖c− αc0

c0‖2

= ‖c‖2 + α2
c0
‖c0‖2 − 2αc0c

T c0

= 1 + α2
c0
− 2αc0

cHc0.

To minimize f(αc0), we find:

f ′(αc0
) = 2αc0

− 2cHc0 = 0

⇒ αc0 = cHc0,

which leads to similarity ‖c− αc0c0‖2 = 1− |cHc0|2. By comparing it to simi-
larity constraint (3.1.22) ‖c− c0‖2 = 2(1− cHc0), we see that both expressions
are minimized when c = c0 and they are monotonically increasing around this
point. Hence, these constraints can be said to be equivalent.

For multiple waveform design, let us use the sum of SINR values
P∑

p=1
(c(p))HM−1c(p)

as the objective. Now, we can write the optimization problem for multiple wave-
form design as P2:

P2 :





max
c

P∑
p=1

(c(p))HM−1c(p) (4.0.4a)

s.t. : ‖c(p)‖2 ≤ 1, ∀p ∈ {1, ..., P} (4.0.4b)

(c(p))HRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (4.0.4c)

∥∥∥c(p) − αc0
c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (4.0.4d)

|αc0 |2 ≤ 1 (4.0.4e)

ISL(c(p), c(q)) ≤ δ, ∀p, q ∈ {1, ..., P}, p 6= q, (4.0.4f)

where c(p), c
(p)
0 ∈ C

N , p ∈ 1, ..., P , M,RI ∈ C
N×N , αc0

∈ C, and EI , ε, δ ∈ R+.
It is worth pointing out that objective (4.0.4a) is separable which makes it nat-
ural to be approached by splitting methods such as ADMM.

In addition to constraints (4.0.4b-4.0.4f), we can consider PAPR (peak-to-
average power ratio) constraint. PAPR constraint can be written as:

|c(p)peak|√
1
N ‖c(p)‖2

≤ β, (4.0.5)

where β > 0. However in this section, we will ignore the PAPR-constraint and
focus on solving problem P2.

45

4.1 Simplified version of P2

We first write problem P2 as the following minimization problem:

P(1)
2 :





min
c

-
P∑

p=1
(c(p))HM−1c(p) (4.1.1a)

s.t. : ‖c(p)‖2 ≤ 1, ∀p ∈ {1, ..., P} (4.1.1b)

(c(p))HRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (4.1.1c)

∥∥∥c(p) − αc0
c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (4.1.1d)

|αc0 |2 ≤ 1 (4.1.1e)

ISL(c(p), c(q)) ≤ δ, ∀p, q ∈ {1, ..., P}, p 6= q.(4.1.1f)

Next step is to define side-lobe level as:

SL
(
c(p), c(q)

)
=

N−1∑

k=−N+1,k 6=0

|Xc(p)c(p)(k)|2 +
P∑

q=1,p 6=q

N−1∑

k=−N+1

|Xc(p)c(q)(k)|2 .

(4.1.2)

Equation (4.1.2) can be equivalently (from optimization point of view) written
as:

SL2
(
c(p)

)
=

N−1∑

k=1

|
N−1∑

j=0

c(p)(j)
(
c(p)(j + k)

)∗

︸ ︷︷ ︸
Autocorrelation

|2+
P∑

q=1,p 6=q

N−1∑

k=0

|
N−1∑

j=0

c(p)(j)
(
c(q)(j + k)

)∗

︸ ︷︷ ︸
Cross−correlation

|2.

(4.1.3)

In matrix notation, we can write the autocorrelation as:

N−1∑

k=1

∣∣∣∣∣∣

N−1∑

j=0

c(p)(j)
(
c(p)(j + k)

)∗
∣∣∣∣∣∣

2

= 1T

∣∣∣∣∣∣∣∣∣∣∣∣∣




(
c(p)(j + 1)

)H
(
c(p)(j + 2)

)H
...(

c(p)(j +N − 2)
)H

(
c(p)(j +N − 1)

)H




c(p)(j)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= 1T
∣∣∣Ac(p)

∣∣∣
2

,

and the cross-correlation as:

46

P∑

q=1,p 6=q

N−1∑

k=0

∣∣∣∣∣∣

N−1∑

j=0

c(p)(j)
(
c(q)(j + k)

)∗
∣∣∣∣∣∣

2

=
P∑

q=1,p 6=q

1T

∣∣∣∣∣∣∣∣∣∣∣∣∣




(
c(q)(j)

)H
(
c(q)(j + 1)

)H
...(

c(q)(j +N − 2)
)H

(
c(q)(j +N − 1)

)H




c(p)(j)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

.

In above expressions, |v|2 =




|(v)1|2
|(v)2|2

...

|(v)N |2


, where (v)i is the i’th element of the

vector v. Hence SL2 is written as:

SL2
(
c(p)

)
= 1T

∣∣∣Ac(p)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

. (4.1.4)

By using SL2, we can rewrite P(1)
2 as:

P(2)
2 :





min
c

-
P∑

p=1
(c(p))HM−1c(p) (4.1.5a)

s.t. : ‖c(p)‖2 = 1, ∀p ∈ {1, ..., P} (4.1.5b)

(c(p))HRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (4.1.5c)

∥∥∥c(p) − c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (4.1.5d)

SL2(c(p)) ≤ δ, ∀p ∈ {1, ..., P}. (4.1.5e)

Let us rewrite the objective −∑P
p=1

(
c(p)

)H
M−1c(p) as

∑P
p=1

(
c(p)

)H
Qc(p),

where Q = µI − R, R = M−1 (Hermitian), and µ is positive constant such
that Q � 0. Because Q � 0, the objective function f(c) is convex. Also Q
is symmetric. Let us write the complex valued matrices Q,RI ,Bq ∈ C

N×N ,

A ∈ C
N−1×N and vectors c(p), c

(p)
0 ∈ C

N in real-valued notation as we did in
the single waveform design case. We get the real-valued optimization problem:

47

P(3)
2 :





min
c

P∑
p=1

(c(p))TQc(p) (4.1.6a)

s.t. : ‖c(p)‖2 = 1, ∀p ∈ {1, ..., P} (4.1.6b)

(c(p))TRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (4.1.6c)

∥∥∥c(p) − c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (4.1.6d)

SL2(c(p)) ≤ δ, ∀p ∈ {1, ..., P}. (4.1.6e)

To address P(3)
2 , we derive two different algorithms. The first one is straightfor-

ward extension of our single-waveform design algorithm developed in Section 3,
and the second one is a new approach which aims to achieve lower computational
complexity.

4.2 1st algorithm for multiple waveform design

For given c(k), ∀k 6= i, P(3)
2 can be decomposed into the single waveform update:

P(i)
3 :





min
c(i)

(c(i))TQc(i) (4.2.1a)

s.t. : ‖c(i)‖2 = 1, (4.2.1b)

(c(i))TRIc
(i) ≤ EI , (4.2.1c)

∥∥∥c(i) − c
(i)
0

∥∥∥
2

≤ ε, (4.2.1d)

SL2(c(i)) ≤ δ.. (4.2.1e)

Notice that P(i)
3 is exactly the same problem as we had in the single waveform

design case, except that we also have side-lobe level constraint (4.2.1e). There-
fore, we can use our single-waveform design algorithm embedded with side-lobe
constraint. We can do this by addressing the side-lobe constraint in z-variable
update, while c-variable update remains the same.

4.2.1 z-variable update

We have the following minimization problem (derived in Subsection 3.2.2):

zk+1 = argmin
z

{∥∥∥∥z− (c+
1

ρ
λ)

∥∥∥∥
2

2

}
|s.t. zTRIz ≤ EI , SL2(c

(i)) ≤ δ

(4.2.2)
The Lagrangian L(z, γ, ν) for the problem is:

48

L(z, γ, ν) =

∥∥∥∥z−
(
c+

1

ρ
λ

)∥∥∥∥
2

2

+ γ
(
zTRIz− EI

)
+ ν(SL2(z)− δ)

=

∥∥∥∥z−
(
c+

1

ρ
λ

)∥∥∥∥
2

2

+ γ
(
zTRIz− EI

)
+ ν


1T |Az|2 +

P∑

q=1,p 6=q

1T |Bqz|2 − δ


 .

The KKT conditions for the problem are then:





∇zL(z
∗, γ∗, ν∗) = 0 (4.2.3a)

γ∗ ≥ 0 (4.2.3b)

ν∗ ≥ 0 (4.2.3c)

γ∗((z∗)TRIz
∗ − EI) = 0 (4.2.3d)

ν∗(SL2(z∗)− δ) = 0. (4.2.3e)

From (4.2.3a), we obtain:

∇zL (z∗, γ∗, ν∗) = 2

(
z∗ −

(
c+

1

ρ
λ

))
+ γ∗

(
RI +RT

I

)
z∗+

ν∗


4AT (Az∗) + 2

P∑

q=1,p 6=q

BT
q (Bqz

∗)


 = 0

⇔
(
z∗ −

(
c+

1

ρ
λ

))
+ γ∗

(
RI +RT

I

2

)

︸ ︷︷ ︸
=RI

z∗+

ν∗


2AT (Az∗) +

P∑

q=1,p 6=q

BT
q (Bqz

∗)


 = 0

⇒ z∗ −
(
c+

1

ρ
λ

)
+ γ∗RIz

∗ + 2ν∗ATAz∗ +
P∑

q=1,p 6=q

ν∗BT
q Bqz

∗ = 0

⇒ z∗ + γ∗RIz
∗ + 2ν∗ATAz∗ +

P∑

q=1,p 6=q

ν∗BT
q Bqz

∗ = c+
1

ρ
λ

⇒


I+ γ∗RI + 2ν∗ATA+

P∑

q=1,p 6=q

ν∗BT
q Bq


 z∗ = c+

1

ρ
λ.

49

By using (4.2.3a), (4.2.3d) and (4.2.3e), we get system of three equations with
three unknowns:





γ
(
zTRIz− EI

)
= 0 (4.2.4a)

ν(SL2(z)− δ) = 0 (4.2.4b)
I+ γRI + 2νATA+

P∑

q=1,p 6=q

νBT
q Bq


 z = c+

1

ρ
λ. (4.2.4c)

Then we solve (4.2.4c) for γ > 0 and ν > 0:

z =


I+ γRI + 2νATA+

P∑

q=1,p 6=q

νBT
q Bq




−1(
c+

1

ρ
λ

)
. (4.2.5)

Now the system reduced to two equations with two unknowns:

{
zTRIz = EI (4.2.6a)

SL2(z) = δ (4.2.6b)

⇔




(
c +

1

ρ
λ

)T


I + γRI + 2νA

T
A +

P∑

q=1,p 6=q

νB
T
q Bq




−1

RI ∗


I + γRI + 2νA

T
A +

P∑

q=1,p 6=q

νB
T
q Bq




−1 (
c +

1

ρ
λ

)
= EI ,

1
T

∣∣∣∣∣∣
A


I + γRI + 2νA

T
A +

P∑

q=1,p 6=q

νB
T
q Bq




−1 (
c +

1

ρ
λ

)∣∣∣∣∣∣

2

+

P∑

q=1,p 6=q

1
T

∣∣∣∣∣∣
Bq


I + γRI + 2νA

T
A +

P∑

q=1,p 6=q

νB
T
q Bq




−1 (
c +

1

ρ
λ

)∣∣∣∣∣∣

2

= δ.

This can be rewritten as:

{
f1(γ, ν) = 0 (4.2.8a)

f2(γ, ν) = 0, (4.2.8b)

where f1(γ, ν) =
(
c+ 1

ρλ
)T (

I+ γRI + 2νATA+
∑P

q=1,p 6=q νB
T
q Bq

)−1

RI∗
(
I+ γRI + 2νATA+

∑P
q=1,p 6=q νB

T
q Bq

)−1 (
c+ 1

ρλ
)
− EI , and

f2(γ, ν) = 1T

∣∣∣∣A
(
I+ γRI + 2νATA+

∑P
q=1,p 6=q νB

T
q Bq

)−1 (
c+ 1

ρλ
)∣∣∣∣

2

+

50

∑P
q=1,p 6=q 1

T

∣∣∣∣Bq

(
I+ γRI + 2νATA+

∑P
q=1,p 6=q νB

T
q Bq

)−1 (
c+ 1

ρλ
)∣∣∣∣

2

− δ.

System (4.2.8a-4.2.8b) can be solved by Newton’s method:

xk+1 = xk − [J (xk)]
−1

F (xk) , (4.2.9)

where xk = (γk, νk)
T
, J (xk) =

(
∂f1
∂γ (xk)

∂f1
∂ν (xk)

∂f2
∂γ (xk)

∂f2
∂ν (xk)

)
(Jacobian) and F (xk) =

(f1(xk), f2(xk))
T
.

Let us calculate Jacobian (notice that Jacobian does not depend on x):

51

∂f1

∂γ
=

∂

∂γ
[

(

c+
1

ρ
λ

)T



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1

RI∗



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

− EI]

=

(

c+
1

ρ
λ

)T

R
−1
I

RIR
−1
I

(

c+
1

ρ
λ

)

=

(

c+
1

ρ
λ

)T

R
−1
I

(

c+
1

ρ
λ

)

,

∂f1

∂ν
=

∂

∂ν
[

(

c+
1

ρ
λ

)T



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1

RI∗



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

− EI]

=

(

c+
1

ρ
λ

)T



2ATA+
P
∑

q=1,p 6=q

BT
q Bq





−1

RI



2ATA+
P
∑

q=1,p 6=q

BT
q Bq





−1
(

c+
1

ρ
λ

)

,

∂f2

∂γ
=

∂

∂γ
[1T

∣

∣

∣

∣

∣

∣

A



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

+

P
∑

q=1,p 6=q

1T

∣

∣

∣

∣

∣

∣

Bq



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

− δ]

= 1T

∣

∣

∣

∣

AR
−1
I

(

c+
1

ρ
λ

)∣

∣

∣

∣

2

+

P
∑

q=1,p 6=q

1T

∣

∣

∣

∣

BqR
−1
I

(

c+
1

ρ
λ

)∣

∣

∣

∣

2

,

∂f2

∂ν
=

∂

∂ν
[1T

∣

∣

∣

∣

∣

∣

A



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

+

P
∑

q=1,p 6=q

1T

∣

∣

∣

∣

∣

∣

Bq



I+ γRI + 2νATA+
P
∑

q=1,p 6=q

νBT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

− δ]

= 1T

∣

∣

∣

∣

∣

∣

A



2ATA+
P
∑

q=1,p 6=q

BT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

+

P
∑

q=1,p 6=q

1T

∣

∣

∣

∣

∣

∣

Bq



2ATA+

P
∑

q=1,p 6=q

BT
q Bq





−1
(

c+
1

ρ
λ

)

∣

∣

∣

∣

∣

∣

2

.

52

Now we can write the 1st multiple waveform design algorithm as Algorithm 4:

Algorithm 4: 1st multiple waveform design algorithm

1 function Multiplewaveform1(Q, {c(p)0 }p∈{1,...,P},RI , EI , ε, δ,K);

Input : Q = µI−R � 0, {c(p)0 }p∈{1,...,P}, RI , EI , ε and K

Output : {c(p)}p∈{1,...,P}
2 Initialize {c(p)}p∈{1,...,P}, {z(p)}p∈{1,...,P} and {λ(p)}p∈{1,...,P};
3 for k = 1, k ≤ K, k ++ do

4 Solve P(i)
3 , ∀i ∈ {1, ..., P};

5 Update cross-correlation matrices Bq, ∀q ∈ {1, ..., P};
6 end

where P(i)
3 is solved as shown in Algorithm 5:

Algorithm 5: Solve P(i)
3

1 function Solve P(i)
3 (Q, c

(i)
0 ,RI , EI , ε, δ,K);

Input : Q = µI−R � 0, c
(i)
0 , RI , EI , ε and K

Output : c(i)

2 Initialize c(i), z(i) and λ(i);
3 for k = 1, k ≤ K, k ++ do

4 ĉ
(i)
k+1 = c

(i)
k − 1

L

((
Q+QT

)
c
(i)
k +

(
λ(i) − ρz(i)

))
;

5 c̃
(i)
k+1 =

ĉ
(i)
k+1∥∥∥ĉ(i)
k+1

∥∥∥
;

6 c
(i)
k+1 = RotateVector(c̃

(i)
k+1, c

(i)
0 , α, ε);

7 Solve system (4.2.8a-4.2.8b);

8 z
(i)
k+1 =

(
I+ γRI + 2νATA+

∑P
q=1,p 6=q νB

T
q Bq

)−1 (
c(i) + 1

ρλ
(i)
)
;

9 λ
(i)
k+1 = λ

(i)
k + ρ(c

(i)
k+1 − z

(i)
k+1);

10 end

The problem in line 7 in Algorithm 5 can be solved by Newton’s method (4.2.9).

53

10
0

10
1

10
2

10
3

10
4

10
5

Problem dimension

10
-5

10
0

10
5

10
10

10
15

R
u
n
ti
m

e
 (

s
)

Algorithm 4 n
2 n n*log(n) n

3

Figure 8: Time-complexity graph of Algorithm 4

4.2.2 Performance analysis

In this section, we evaluate the performance of Algorithm 4 by plotting its time
complexity graph and other relevant figures of merit. In Figure 8, time com-
plexity graph of Algorithm 4 is drawn alongside reference curves ranging from
time-complexities Nlog(N) to N3. The blue line is the runtime of Algorithm 4
for one iteration when we design 3 different waveforms (i.e., P = 3) on desktop
computer (HP Z240 Tower Workstation with Xeon E3-1230v5 3.40GHz 8MB
processor). By comparing the slope of Algorithm 4 runtime curve to reference
curves, we can see that time complexity is approximately cubic (i.e. O(N3)).
This is due to the fact that in line 7 of Algorithm 5 we use Newton’s method
which requires many matrix inversions. Also line 8 of Algorithm 5 requires ma-
trix inversion. Matrix inversions are roughly obtained with O(N3) operations.

4.2.3 Simulation set up

Let us consider radar system with transmit bandwidth of 1.5 GHz and sampling
frequency fs = 3GHz. Radar pulse has length T = 2µs with duty cycle d = 0.5.
This implies that the fast-time radar code has length of 1µs, which corresponds

54

to 3000 dimensional fast-time radar code vector by using sampling frequency fs.
We use covariance matrix M as defined in (3.3.1) with same parameter values
as in section 3.3.1.

We aim to design three (i.e., P = 3) waveforms to frequency band, with refer-

ence signals being {c(p)0 = ei2π(f
(p)
∆ t+f

(p)
0)t}p∈{1,2,3}, where f

(1)
∆ = f

(2)
∆ = f

(3)
∆ =

0.2GHz/µs and f
(1)
0 = 250MHz, f

(2)
0 = 700MHz and f

(3)
0 = 1.1GHz.

The licensed radiators operate at normalized frequency bands:

• Ω1 = [f1
1 , f

1
2] = [0.0000, 0.1500]

• Ω2 = [f2
1 , f

2
2] = [0.2300, 0.3000]

• Ω3 = [f3
1 , f

3
2] = [0.4200, 0.4800]

• Ω4 = [f4
1 , f

4
2] = [0.5000, 0.6000]

• Ω5 = [f5
1 , f

5
2] = [0.8300, 0.8800]

• Ω6 = [f6
1 , f

6
2] = [0.9200, 0.9600]

For constraint levels we use values EI = 0.45, ε = 0.6, and δ = 7.

In Figure 9, the convergence graph of the objective is shown alongside constraint
levels per iteration. In Figure 10, the frequency spectrums of the designed wave-
forms {c(p)}p∈{1,2,3} are plotted. In Figure 11, the SINR values of the designed
waveforms are shown per each iteration, and finally in Figures 12, 13 and 14,
the ambiguity functions of the designed waveforms are plotted.

We see from Figure 10 that the first and second designed waveforms occupy
mainly one allowed band, while the third designed waveform occupies two dif-
ferent allowed bands. The difference between allowed and constrained band
radiation levels is about 20-30dB. From Figures 12, 13 and 14, we can see that
the ambiguity functions of the designed waveforms are close to the ambiguity
functions of the linearly modulated reference signals.

55

0 5 10 15 20

Iterations

0

0.2

0.4

0.6

(c
(1

))T
 Q

 c
(1

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(1
) ||

2

Energy constraint ||c
(1)

||
2
 = 1

0 5 10 15 20

Iterations

0.5

1

1.5

2

||
c

(1
) -c

0(1
) ||

2

Similarity constraint ||c
(1)

-c
0

(1)
||

2
 <

0 5 10 15 20

Iterations

0

0.2

0.4

(c
(1

))T
 R

i
c

(1
)

Radiation constraint (c
(1)

)
T

 R
I
 c

(1)
 < E

I

0 5 10 15 20

Iterations

4

5

6

7

S
L
2
(c

(1
))

Side-lobe constraint SL2(c
(1)

) <

0 5 10 15 20

Iterations

0

0.2

0.4

0.6

(c
(2

))T
 Q

 c
(2

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(2
) ||

2

Energy constraint ||c
(2)

||
2
 = 1

0 5 10 15 20

Iterations

0.5

1

1.5

2

||
c

(2
) -c

0(2
) ||

2

Similarity constraint ||c
(2)

-c
0

(2)
||

2
 <

0 5 10 15 20

Iterations

0

0.2

0.4

0.6

(c
(2

))T
 R

i
c

(2
)

Radiation constraint (c
(2)

)
T

 R
I
 c

(2)
 < E

I

0 5 10 15 20

Iterations

4

5

6

7

S
L
2
(c

(2
))

Side-lobe constraint SL2(c
(2)

) <

0 5 10 15 20

Iterations

0

0.2

0.4

0.6

(c
(3

))T
 Q

 c
(3

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(3
) ||

2

Energy constraint ||c
(3)

||
2
 = 1

0 5 10 15 20

Iterations

0.5

1

1.5

2

||
c

(3
) -c

0(3
) ||

2

Similarity constraint ||c
(3)

-c
0

(3)
||

2
 <

0 5 10 15 20

Iterations

0

0.2

0.4

(c
(3

))T
 R

i
c

(3
)

Radiation constraint (c
(3)

)
T

 R
I
 c

(3)
 < E

I

0 5 10 15 20

Iterations

2

4

6

8

S
L
2
(c

(3
))

Side-lobe constraint SL2(c
(3)

) <

Figure 9: Convergence graph of Algorithm 4

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
a

g
n

it
u

d
e

 i
n

 d
B

Single-Sided Amplitude Spectrum of c

Frequency spectrum of c
(1)

Frequency spectrum of c
(2)

Frequency spectrum of c
(3)

Figure 10: Frequency spectrum of designed signals {c(p)}p∈{1,2,3}

57

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

0.2

0.4

0.6

c
T
 Q

 c

0.4

0.6

0.8

1

S
IN

R
 w

it
h

T
=

1

Waveform c
(1)

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

0.2

0.4

0.6

c
T
 Q

 c

0.4

0.6

0.8

1

S
IN

R
 w

it
h

T
=

1

Waveform c
(2)

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

0.2

0.4

0.6

c
T
 Q

 c

0.4

0.6

0.8

1

S
IN

R
 w

it
h

T
=

1

Waveform c
(3)

Figure 11: SINR values per iteration of designed signals {c(p)}p∈{1,2,3}

58

Figure 12: Ambiguity function of designed waveform c(1)

59

Figure 13: Ambiguity function of designed waveform c(2)

60

Figure 14: Ambiguity function of designed waveform c(3)

61

4.3 2nd algorithm for multiple waveform design

In this section we develop the second algorithm to solve problem P(3)
2 introduced

in Subsection 4.1. The motivation for this development is that Algorithm 4 in-
volves many unavoidable matrix inversions which cost O(N3) operations. Ide-
ally, we would like to reduce the time-complexity of operations to O(N2) in
order to ensure that the operations are suitable for large-scale problems.

We begin by writing the augmented Lagrangian to P(3)
2 using side-lobe level

constraint SL2(c(p)) ≤ δ:

62

Lρ

(
c(1), c(2), ..., c(P),λ

)

= −
P∑

p=1

(
c(p)

)T
Qc(p) +

P∑

p=1

λ(p)
(
SL2

(
c(p)

)
− δ
)
+

ρ

2

P∑

p=1

(
SL2

(
c(p)

)
− δ
)2

︸ ︷︷ ︸
Augmentationpart

= −
P∑

p=1

(
c(p)

)T
Qc(p) + λ(p)SL2

(
c(p)

)
− δλ(p) +

ρ

2
SL2

(
c(p)

)2
− ρδSL2

(
c(p)

)
+

ρ

2
δ2

= −
P∑

p=1

(
c(p)

)T
Qc(p) +

(
λ(p) − ρδ

)
SL2

(
c(p)

)
+

ρ

2
SL2

(
c(p)

)2
− δλ(p) +

ρ

2
δ2

= −
P∑

p=1

(
c(p)

)T
Qc(p) +

(
λ(p) − ρδ

)

1T

∣∣∣Ac(p)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2


+

ρ

2


1T

∣∣∣Ac(p)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2




2

− δλ(p) +
ρ

2
δ2

= −
P∑

p=1

(
c(p)

)T
Qc(p) + λ(p)1T

∣∣∣Ac(p)
∣∣∣
2

+ λ(p)
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

− ρδ1T
∣∣∣Ac(p)

∣∣∣
2

−

ρδ

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

+
ρ

2


1T

∣∣∣Ac(p)
∣∣∣
2

+
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2




2

− δλ(p) +
ρ

2
δ2

= −
P∑

p=1

(
c(p)

)T
Qc(p) + λ(p)1T

∣∣∣Ac(p)
∣∣∣
2

+ λ(p)
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

− ρδ1T
∣∣∣Ac(p)

∣∣∣
2

−

ρδ

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

+
ρ

2



(
1T
∣∣∣Ac(p)

∣∣∣
2
)2

+ 2 ∗ 1T
∣∣∣Ac(p)

∣∣∣
2

∗
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2

+




P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2




2

− δλ(p) +

ρ

2
δ2,

where λ =
[
λ(1), λ(2), ..., λ(P)

]T
is the vector of Lagrange multipliers.

Using the augmented Lagrangian Lρ

(
c(1), c(2), ..., c(P),λ

)
, we can write ADMM

steps:

63





c
(1)
k+1 = argmin

c(1)

Lρ

(
c(1), c

(2)
k , ..., c

(P)
k ,λk

)
(4.3.1a)

c
(2)
k+1 = argmin

c(2)

Lρ

(
c
(1)
k+1, c

(2), ..., c
(P)
k ,λk

)
(4.3.1b)

...

c
(P)
k+1 = argmin

c(P)

Lρ

(
c
(1)
k+1, c

(2)
k+1, ..., c

(P),λk

)
(4.3.1c)

λ
(p)
k+1 = λ

(p)
k + ρ

(
SL2

(
c
(p)
k+1

)
− δ
)

(4.3.1d)

It is important to notice that the side-lobe level constraint (4.1.6e) is non-convex.
This means that the convergence is not guaranteed when using ADMM. Also
the fact that we have more than two primal variable updates in our ADMM
steps (4.3.1) can cause problems with convergence. More details can be found
from [10] Section 9.

In ADMM-steps (4.3.1a - 4.3.1c), we need to consider constraints ‖c(p)‖2 = 1,(
c(p)

)H
RIc

(p) ≤ EI , and ‖c(p)−c(p)0 ‖2 ≤ ε, ∀p ∈ {1, ..., P}. Hence minimization
problems (4.3.1a - 4.3.1c) can be written as:





c
(i)
k+1 = argmin

c(i)

Lρ

(
c
(1)
k+1, ..., c

(i−1)
k+1 , c(i), c

(i+1)
k , ..., c

(P)
k ,λk

)
(4.3.2a)

s.t. ‖c(i)‖2 = 1 (4.3.2b)
(
c(i)
)T

RIc
(i) ≤ EI (4.3.2c)

‖c(i) − c
(i)
0 ‖2 ≤ ε. (4.3.2d)

Let us thus address optimization problem (4.3.2a-4.3.2d).

4.3.1 Single waveform update

Objective function (4.3.2a) can be simplified to:

64

Lρ

(
c
(1)
k+1, ..., c

(i−1)
k+1 , c(i), c

(i+1)
k , ..., c

(P)
k ,λk

)

= −
P∑

p=1

(
c(p)

)T
Qc(p) +

(
λ(p) − ρδ

)
SL2

(
c(p)

)
+

ρ

2
SL2

(
c(p)

)2
− δλ(p) +

ρ

2
δ2

= −
(
c(i)
)T

Qc(i) +
(
λ(i) − ρδ

)
SL2

(
c(i)
)
+

ρ

2
SL2

(
c(i)
)2
− δλ(i) +

ρ

2
δ2

∝ −
(
c(i)
)T

Qc(i) +
(
λ(i) − ρδ

)
SL2

(
c(i)
)
+

ρ

2
SL2

(
c(i)
)2

= −
(
c(i)
)T

Qc(i) +
(
λ(i) − ρδ

)

1T

∣∣∣Ac(i)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(i)
∣∣∣
2


+

ρ

2


1T

∣∣∣Ac(i)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(i)
∣∣∣
2




2

.

This yields the simplified minimization problem:

P
(i)
4 :



































































c
(i)
k+1 = argmin

c
(i)

(

c(i)
)T

Qc(i) +
(

λ(i) − ρδ
)

(

1T
∣

∣

∣Ac(i)
∣

∣

∣

2
+

P
∑

q=1,q 6=i

1T
∣

∣

∣Bqc
(i)

∣

∣

∣

2



+
ρ

2



1T
∣

∣

∣Ac(i)
∣

∣

∣

2
+

P
∑

q=1,p 6=q

1T
∣

∣

∣Bqc
(i)

∣

∣

∣

2





2

(4.3.3a)

s.t. ‖c(i)‖2 = 1 (4.3.3b)
(

c(i)
)T

RIc
(i) ≤ EI (4.3.3c)

‖c(i) − c
(i)
0 ‖2 ≤ ε. (4.3.3d)

Let us rewrite the objective function in above minimization problem as

f0

(
c(i)
)
=
(
c(i)
)T

Qc(i) +
(
λ(i) − ρδ

)

1T

∣∣∣Ac(i)
∣∣∣
2

+
P∑

q=1,q 6=i

1T
∣∣∣Bqc

(i)
∣∣∣
2


+

ρ

2


1T

∣∣∣Ac(i)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(i)
∣∣∣
2




2

.

Our aim is to use Dual Ascent for the following minimization problem:





c
(i)
k+1 = argmin

c(i)

f0

(
c(i)
)

(4.3.4a)

(
c(i)
)T

RIc
(i) ≤ EI , (4.3.4b)

65

and project the result of applying Dual Ascent in to regionD =
{
c | ‖c(i)‖2 = 1, ‖c(i) − c

(i)
0 ‖2 ≤ ε

}
.

Notice that the radiation energy constraint (4.3.4b) is non-convex too. As in
the case of ADMM-steps (4.3.1a-4.3.1c), this means that the convergence is not
guaranteed.

The Lagrangian L
(
c(i), ζ

)
is given as:

L
(
c(i), ζ

)
= f0

(
c(i)
)
+ ζ

((
c(i)
)T

RIc
(i) − EI

)
. (4.3.5)

The dual function g(ζ) is expressed as:

g(ζ) = inf
c(i)

{
f0

(
c(i)
)
+ ζ

((
c(i)
)T

RIc
(i) − EI

)}

= inf
c(i)

{
f0

(
c(i)
)
+ ζ

(
c(i)
)T

RIc
(i) − ζEI

}

= inf
c(i)

{
f0

(
c(i)
)
+ ζ

(
c(i)
)T

RIc
(i)

}
− ζEI .

The Lagrangian (4.3.5) can be minimized by Gradient Descent, and the dual
function can be maximized by Gradient Ascent. This yields routine:





ĉ
(i)
k+1 = c

(i)
k −

1

L
∇c(i)L

(
c
(i)
k , ζk

)
(4.3.6a)

Project ĉ
(i)
k+1 to region D to obtain c

(i)
k+1 (4.3.6b)

ζk+1 = ζk +
1

α

d

dζ
g(ζ). (4.3.6c)

In (4.3.6b), we project ĉ
(i)
k+1 to region ‖c(i)‖2 = 1 by dividing it by its L2-norm

as we did in Subsection 3.2.1, equation (3.2.10). The rotation to similarity re-

gion ‖c(i) − c
(i)
0 ‖2 ≤ ε is done by Algorithm 1. Only thing remained to be done

is to find gradient ∇c(i)L
(
c
(i)
k , ζ

)
and derivative d

dζ g(ζ).

The derivative d
dζ g(ζ) is given as:

d

dζ
g(ζ) =

d

dζ

[
inf
c(i)

{
f0

(
c(i)
)
+ ζ

(
c(i)
)T

RIc
(i)

}
− ζEI

]

=
d

dζ

[
f0

(
c
(i)
opt

)
+ ζ

(
c
(i)
opt

)T
RIc

(i)
opt − ζEI

]

=
(
c
(i)
opt

)T
RIc

(i)
opt − EI ,

66

where c
(i)
opt is obtained from steps (4.3.6a-4.3.6b). The gradient of the La-

grangian ∇c(i)L
(
c
(i)
k , ζ

)
can be found by considering all parts of the sum sep-

arately as follows:

The 1st part of the sum:

∇c(i)

((
c(i)
)T

Qc(i)
)

=
(
Q+QT

)
c(i) = 2Qc(i),

The 2nd part of the sum:

∇c(i)



(
λ(i) − ρδ

)

1T

∣∣∣Ac(p)
∣∣∣
2

+
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(p)
∣∣∣
2






=
(
λ(i) − ρδ

)

∇c(p)1T

∣∣∣Ac(p)
∣∣∣
2

+

P∑

q=1,p 6=q

∇c(p)1T
∣∣∣Bqc

(p)
∣∣∣
2




∗
=
(
λ(i) − ρδ

)

∇c(p)1T

(
Ac(p)

)2
+

P∑

q=1,p 6=q

∇c(p)1T
(
Bqc

(p)
)2



∗∗
= 2

(
λ(i) − ρδ

)

2AT

(
Ac(p)

)
+

P∑

q=1,p 6=q

BT
q

(
Bqc

(p)
)



The 3rd part of the sum:

∇c(i)



ρ

2


1T

∣∣∣Ac(i)
∣∣∣
2

+
P∑

q=1,p 6=q

1T
∣∣∣Bqc

(i)
∣∣∣
2




2



= ρ


1T

∣∣∣Ac(i)
∣∣∣
2

+

P∑

q=1,p 6=q

1T
∣∣∣Bqc

(i)
∣∣∣
2




∇c(p)1T

∣∣∣Ac(p)
∣∣∣
2

+

P∑

q=1,p 6=q

∇c(p)1T
∣∣∣Bqc

(p)
∣∣∣
2




∗
= ρ


1T

(
Ac(i)

)2
+

P∑

q=1,p 6=q

1T
(
Bqc

(i)
)2



∇c(p)1T

(
Ac(p)

)2
+

P∑

q=1,p 6=q

∇c(p)1T
(
Bqc

(p)
)2



= 2ρ


1T

(
Ac(i)

)2
+

P∑

q=1,p 6=q

1T
(
Bqc

(i)
)2



2AT

(
Ac(p)

)
+

P∑

q=1,p 6=q

BT
q

(
Bqc

(p)
)



The 4th part of the sum:

67

∇c(i)ζ

((
c(i)
)T

RIc
(i) − EI

)
= ζ

(
RI +RT

I

)
c(i)

RT
I =RI

= 2ζRIc
(i)

Then the overall gradient can be found as:

∇c(i)L
(
c
(i)
k , ζ

)
= 2Qc(i) + 2

(
λ(i) − ρδ

)

2AT

(
Ac(i)

)
+

P∑

q=1,p 6=q

BT
q

(
Bqc

(i)
)

+

2ρ



1T
(
Ac(i)

)2
+

P∑

q=1,p 6=q

1T
(
Bqc

(i)
)2

︸ ︷︷ ︸
∈R(Scalar)





2AT

(
Ac(i)

)

︸ ︷︷ ︸
∈R2N

+

P∑

q=1,p 6=q

BT
q

(
Bqc

(i)
)

︸ ︷︷ ︸
∈R2N


+ 2ζRIc

(i).

(*) Because the vector Ac(p) is real valued
∣∣Ac(p)

∣∣2 =
(
Ac(p)

)2
, where (•)2 is

elementwise second power.

(**) ∇c(p)1T
(
Ac(p)

)2
= 4ATAc(p).

We obtained the final algorithm for multiple waveforms design as in Algorithm 6.

Algorithm 6: 2nd multiple waveforms design algorithm

1 function Multiplewaveform2(Q, {c(p)0 }p∈{1,...,P},RI , EI , ε, δ,K);

Input : Q = µI−R � 0, {c(p)0 }p∈{1,...,P}, RI , EI , ε and K

Output : {c(p)}p∈{1,...,P}
2 Initialize {c(p)}p∈{1,...,P} and {λ(p)}p∈{1,...,P};
3 for k = 1, k ≤ K, k ++ do

4 Solve P(i)
4 , ∀i ∈ {1, ..., P};

5 λ
(i)
k+1 = λ

(i)
k + ρ

(
SL2

(
c
(i)
k+1

)
− δ
)
, ∀i ∈ {1, ..., P};

6 end

68

where P(i)
4 are solved as shown in Algorithm 7.

Algorithm 7: Solve P(i)
4

1 function Solve P(i)
4 (Q, c(i), c

(i)
0 ,RI , EI , ε, δ,K);

Input : Q = µI−R � 0, c
(i)
0 , RI , EI , ε and K

Output : c(i)

2 Initialize ζ(i);
3 for k = 1, k ≤ K, k ++ do

4 ĉ
(i)
k+1 = c

(i)
k − 1

L∇c(i)L
(
c
(i)
k , ζk

)
;

5 c̃
(i)
k+1 =

ĉ
(i)
k+1∥∥∥ĉ(i)
k+1

∥∥∥
;

6 c
(i)
k+1 = RotateVector(c̃

(i)
k+1, c

(i)
0 , α, ε);

7 ζ
(i)
k+1 = ζ

(i)
k + 1

α

((
c
(i)
k+1

)T
RIc

(i)
k+1 − EI

)
;

8 end

69

4.3.2 Performance analysis and example simulation

In Figure 15, the time complexity graph of Algorithm 6 is plotted alongside
reference curves ranging from time-complexities O(Nlog(N)) to O(N2). The
runtime is for one iteration of Algorithm 6 when we design three distinctive
waveforms (i.e., P = 3) on desktop computer (HP Z240 Tower Workstation
with Xeon E3-1230v5 3.40GHz 8MB processor). By comparing the slope of
runtime of Algorithm 6 to slopes of reference curves, we see that time complex-
ity of Algorithm 6 is approximately quadratic, i.e., O(N2), which is expected
since the heaviest operation we do is matrix to vector product. This was also the
case in Algorithm 2, and therefore the time complexity graphs of Algorithm 2
and Algorithm 6 are similar.

Although Algorithm 6 is efficient, it has some technical issues to point out.
We discussed in Subsection 4.3 that the side-lobe level constraint (4.1.6e) and
radiation energy constraint (4.1.6c) are non-convex. In addition to these, we
had more than two primal variable updates in ADMM steps (4.3.1). These fea-
tures mean that by applying ADMM and Dual Ascent the convergence of the
method is not guaranteed.

We also face this issue when applying the method in example environment.
For randomly generated data (i.e. matrices Q � 0,RI , s.t. RT

I = RI and
vectors c, c0 are randomly generated) the method is able to minimize the ob-
jective and satisfy constraints, as can be seen in Figure 16, but in an example
environment similar to the environment of Subsection 4.2.3, the method is able
to find a solution inside feasible region (i.e., region where constraints are sat-
isfied), but cannot do any minimization inside the feasible region. For future
work, it would make sense to analyze this method further and try to make it
more reliable, since although it is quick it does not guarantee convergence in all
situtations.

70

10
0

10
1

10
2

10
3

10
4

10
5

Problem dimension

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

R
u
n
ti
m

e
 (

s
)

Algorithm 6 n
2 n n*log(n)

Figure 15: Time-complexity graph of Algorithm 6

71

0 5 10 15 20

Iterations

4000

6000

8000

(c
(1

))T
 Q

 c
(1

)

0 5 10 15 20

Iterations

1

||
c

(1
) ||

2

Energy constraint ||c
(1)

||
2
 = 1

0 5 10 15 20

Iterations

0

1

2

||
c

(1
) -c

0(1
) ||

2

Similarity constraint ||c
(1)

-c
0

(1)
||

2
 <

0 5 10 15 20

Iterations

0

0.5

1

(c
(1

))T
 R

I c
(1

)

Radiation constraint (c
(1)

)
T

 R
I
 c

(1)
 < E

I

0 5 10 15 20

Iterations

3

3.5

S
L
2
(c

(1
))

Side-lobe constraint SL2(c
(1)

) <

0 5 10 15 20

Iterations

0

5

(c
(2

))T
 Q

 c
(2

)

104

0 5 10 15 20

Iterations

1

||
c

(2
) ||

2

Energy constraint ||c
(2)

||
2
 = 1

0 5 10 15 20

Iterations

0

1

2

||
c

(2
) -c

0(2
) ||

2

Similarity constraint ||c
(2)

-c
0

(2)
||

2
 <

0 5 10 15 20

Iterations

0

0.5

1

(c
(2

))T
 R

I c
(2

)

Radiation constraint (c
(2)

)
T

 R
I
 c

(2)
 < E

I

0 5 10 15 20

Iterations

3

3.5

S
L
2
(c

(2
))

Side-lobe constraint SL2(c
(2)

) <

0 5 10 15 20

Iterations

0.5

1

1.5

(c
(3

))T
 Q

 c
(3

)

104

0 5 10 15 20

Iterations

1

||
c

(3
) ||

2

Energy constraint ||c
(3)

||
2
 = 1

0 5 10 15 20

Iterations

0

1

2

||
c

(3
) -c

0(3
) ||

2

Similarity constraint ||c
(3)

-c
0

(3)
||

2
 <

0 5 10 15 20

Iterations

-1

-0.5

0

0.5

(c
(3

))T
 R

I c
(3

)

Radiation constraint (c
(3)

)
T

 R
I
 c

(3)
 < E

I

0 5 10 15 20

Iterations

3

3.5

S
L
2
(c

(3
))

Side-lobe constraint SL2(c
(3)

) <

Figure 16: Convergence graph of Algorithm 6 on randomly generated data

72

4.4 3rd algorithm for multiple waveform design

In this section, we develop yet another algorithm for addressing multiple wave-

forms design problem P(3)
2 . In addition to constraints (4.1.6b-4.1.6e), we con-

sider now PAPR constraint. PAPR constraint can be written as:

PAPR(c(p)) =
maxn

∣∣c(p)(n)
∣∣2

1
N ‖c(p)‖2

≤ η, η ≥ 1, (4.4.1)

where N denotes waveform length. The maximum operator in numerator of
(4.4.1) can be eliminated by rewriting (4.4.1) as:

∣∣c(p)(n)
∣∣2

1
N ‖c(p)‖2

≤ η, ∀n ∈ {1, 2, ..., N}. (4.4.2)

By constraint (4.1.6b), we have that ‖c(p)‖2 = 1. Thus:

∣∣∣c(p)(n)
∣∣∣
2

≤ η

N
, ∀n ∈ {1, 2, ..., N}. (4.4.3)

If we introduce matrices En, in which En(i, j) =

{
1, i = n and j = n

0, otherwise
, we can

rewrite (4.4.3) as:

(
c(p)

)H
Enc

(p) ≤ η

N
, ∀n ∈ {1, 2, ..., N}. (4.4.4)

By adding constraint (4.4.1) to P(3)
2 , we get the following optimization problem:

P5 :





min
c

P∑
p=1

(c(p))TQc(p) (4.4.5a)

s.t. : ‖c(p)‖2 = 1, ∀p ∈ {1, ..., P} (4.4.5b)
(
c(p)

)T
Enc

(p) ≤ η
N , n ∈ {1, ..., N}, ∀p (4.4.5c)

(c(p))TRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (4.4.5d)

∥∥∥c(p) − c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (4.4.5e)

SL2(c(p)) ≤ δ, ∀p ∈ {1, ..., P}. (4.4.5f)

For given c(k), ∀k 6= i, P5 can be decomposed into single waveform updates as:

73

P(i)
5 :





min
c(i)

P∑
p=1

(c(i))TQc(i) (4.4.6a)

s.t. : ‖c(i)‖2 = 1, (4.4.6b)
(
c(i)
)T

Enc
(i) ≤ η

N , n ∈ {1, ..., N}, (4.4.6c)

(c(i))TRIc
(i) ≤ EI , (4.4.6d)

∥∥∥c(i) − c
(i)
0

∥∥∥
2

≤ ε, (4.4.6e)

SL2(c(i)) ≤ δ. (4.4.6f)

To solve P(i)
5 we use 1st algorithm we developed for multiple waveforms

design in Section 4.2. We implement additional constraint (4.4.6c) in c-variable
update, while the z-variable update remains the same.

4.4.1 c-variable update

We have the following minimization problem:

c
(i)
k+1 = argmin

c(i)

(c(i))TQc(i) + (λ− ρz)T c(i),

s.t. ‖c(i)‖2 = 1,
∥∥∥c(i) − c

(i)
0

∥∥∥
2

≤ ε,
(
c(i)
)T

Enc
(i) ≤ η

N
, n ∈ {1, ..., N}. (4.4.7)

The Lagrangian L
(
c(i), ξ

)
for (4.4.7) by using constraint (4.4.6c) can be written

as:

L
(
c(i), ξ

)
=
(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

ξn

((
c(i)
)T

Enc
(i) − η

N

)
.

(4.4.8)

74

The dual function g(ξ) can be found as:

g(ξ) = inf
c(i)

L
(
c(i), ξ

)
= inf

c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i)+ (4.4.9)

N∑

n=1

ξn

((
c(i)
)T

Enc
(i) − η

N

)}

= inf
c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

ξn

(
c(i)
)T

Enc
(i) − η

N

N∑

n=1

ξn

}

= inf
c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

ξn

(
c(i)
)T

Enc
(i)

}
− η

N

N∑

n=1

ξn

∗
=
(
c
(i)
opt

)T
Qc

(i)
opt + (λ− ρz)T c

(i)
opt +

N∑

n=1

ξn

(
c
(i)
opt

)T
Enc

(i)
opt −

η

N

N∑

n=1

ξn.

(4.4.10)

(*) c
(i)
opt obtained by first step in dual ascent (primal problem minimization).

Denote Ω(i) =
{
c(i) ∈ R

2N | ‖c(i)‖2 = 1 and ‖c(i) − c
(i)
0 ‖2 ≤ ε

}
. By using Dual

ascent to the problem





min
c

(c(i))TQc(i) + (λ− ρz)T c(i) (4.4.11a)

s.t.:
(
c(i)
)T

Enc
(i) ≤ η

N , n ∈ {1, ..., N}, (4.4.11b)

we get the routine:





ĉ
(i)
k+1 = c

(i)
k −

1

L
∇c(i)L

(
c
(i)
k , ξk

)
(4.4.12a)

Project ĉ
(i)
k+1 to region Ω(i) to obtain c

(i)
k+1 (4.4.12b)

ξk+1 = ξk +
1

α
∇ξg(ξk). (4.4.12c)

75

The gradients can be found as:

∇c(i)L
(
c(i), ξ

)
=
(
QT +Q

)
c(i) + (λ− ρz) +

N∑

n=1

ξn

(
ET

n +En

)
c(i)

QT=Q,ET
n=En

= 2Qc(i) + (λ− ρz) + 2

N∑

n=1

ξnEnc
(i),

∂

∂ξk
g(ξ) =

∂

∂ξk

[(
c
(i)
opt

)T
Qc

(i)
opt + (λ− ρz)T c

(i)
opt+

N∑

n=1

ξn

(
c
(i)
opt

)T
Enc

(i)
opt −

η

N

N∑

n=1

ξn

]

=
(
c
(i)
opt

)T
Ekc

(i)
opt −

η

N
,

∇ξg(ξ) =




(
c
(i)
opt

)T
E1c

(i)
opt − η

N(
c
(i)
opt

)T
E2c

(i)
opt − η

N

...(
c
(i)
opt

)T
ENc

(i)
opt − η

N




.

Steps (4.4.12a) and (4.4.12c) are straightforward. The projections in step (4.4.12b)
are performed as in the single waveform update case.

Now we can write the 3rd multiple waveforms design algorithm as Algorithm 8,

where P(i)
5 is solved as shown in Algorithm 9. The system of equations in line

8 in Algorithm 9 can be solved by Newton’s method (4.2.9).

Algorithm 8: 3rd multiple waveforms design algorithm

1 function Multiplewaveform3(Q, {c(p)0 }p∈{1,...,P},RI , EI , ε, δ,K);

Input : Q = µI−R � 0, {c(p)0 }p∈{1,...,P}, RI , EI , ε, δ and K

Output : {c(p)}p∈{1,...,P}
2 Initialize {c(p)}p∈{1,...,P}, {z(p)}p∈{1,...,P} and {λ(p)}p∈{1,...,P};
3 for k = 1, k ≤ K, k ++ do

4 Solve P(i)
5 , ∀i ∈ {1, ..., P};

5 Update cross-correlation matrices Bq, ∀q ∈ {1, ..., P};
6 end

76

Algorithm 9: Solve P(i)
5

1 function Solve P(i)
5 (Q, c

(i)
0 ,RI , EI , ε, δ,K);

Input : Q = µI−R � 0, c
(i)
0 , RI , EI , ε, δ and K

Output : c(i)

2 Initialize c(i), z(i), ζ(i) and λ(i);
3 for k = 1, k ≤ K, k ++ do

4 ĉ
(i)
k+1 = c

(i)
k − 1

L∇c(i)L
(
c
(i)
k , ζk

)
;

5 c̃
(i)
k+1 =

ĉ
(i)
k+1∥∥∥ĉ(i)
k+1

∥∥∥
;

6 c
(i)
k+1 = RotateVector(c̃

(i)
k+1, c

(i)
0 , α, ε);

7 ζ
(i)
k+1 = ζ

(i)
k + 1

α∇ζg(ζ
(i));

8 Solve system (4.2.8a-4.2.8b);

9 z
(i)
k+1 =

(
I+ γRI + 2νATA+

∑P
q=1,p 6=q νB

T
q Bq

)−1 (
c(i) + 1

ρλ
(i)
)
;

10 λ
(i)
k+1 = λ

(i)
k + ρ(c

(i)
k+1 − z

(i)
k+1);

11 end

4.4.2 Performance analysis

In Figure 17, the time complexity graph of Algorithm 8 is drawn alongside refer-
ence curves ranging from time-complexities Nlog(N) to N3. The blue line is the
runtime of Algorithm 8 for one iteration when designing 3 different waveforms
(i.e., P = 3) on desktop computer (HP Z240 Tower Workstation with Xeon
E3-1230v5 3.40GHz 8MB processor). By comparing the slope of Algorithm 8
runtime curve to reference curves, we can see that the time complexity is ap-
proximately cubic (i.e. O(N3)). This is similar to runtime of Algorithm 4, which
is expected because Algorithms 4 and 8 are based on the same implementation.

77

10
0

10
1

10
2

10
3

10
4

10
5

Problem dimension

10
-5

10
0

10
5

10
10

10
15

R
u
n
ti
m

e
 (

s
)

Algorithm 8 n
2 n n*log(n) n

3

Figure 17: Time-complexity graph of Algorithm 8

78

4.4.3 Simulation set up

In this Subsection we use Algorithm 8 in an example environment similar to
the environment of Subsection 4.2.3. All parameter values are the same as in
simulation in Subsection 4.2.3, but we also add PAPR-constraint with the con-
straint level of δ = 5.5.

In Figure 18, the convergence graph of the objective is shown alongside con-
straint levels per iteration. In Figure 19, the frequency spectrums of the de-
signed waveforms {c(p)}p∈{1,2,3} are plotted. In Figure 20, SINR values of the
designed waveforms are shown per each iteration, and finally in Figures 21, 22
and 23, the ambiguity functions of the designed waveforms are plotted.

By comparing designed waveforms to the waveforms obtained by Algorithm 4,
we can see that Algorithms 4 and 8 yield very similar waveforms. The only dif-
ference between these algorithms is that Algorithm 8 includes PAPR-constraint,
and in the cases where PAPR-constraint is active these two methods can yield
different results.

79

0 5 10 15 20

Iterations

0

0.5

(c
(1

))T
 Q

 c
(1

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(1
) ||

2

Energy constraint ||c
(1)

||
2
 = 1

0 5 10 15 20

Iterations

1

2

||
c

(1
) -c

0(1
) ||

2

Similarity constraint ||c
(1)

-c
0

(1)
||

2
 <

0 5 10 15 20

Iterations

0

0.5

(c
(1

))T
 R

I c
(1

)

Energy constraint (c
(1)

)
T

 R
I
 c

(1)
 < E

I

0 5 10 15 20

Iterations

4

5

6

7

S
L
2
(c

(1
))

Side-lobe constraint SL2(c
(1)

) <

0 5 10 15 20

Iterations

3

4

5

P
A

P
R

(c
(1

))

PAPR constraint PAPR(c
(1)

) <

0 5 10 15 20

Iterations

0

0.5

(c
(2

))T
 Q

 c
(2

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(2
) ||

2

Energy constraint ||c
(2)

||
2
 = 1

0 5 10 15 20

Iterations

1

2

||
c

(2
) -c

0(2
) ||

2

Similarity constraint ||c
(2)

-c
0

(2)
||

2
 <

0 5 10 15 20

Iterations

0

0.5

(c
(2

))T
 R

I c
(2

)

Energy constraint (c
(2)

)
T

 R
I
 c

(2)
 < E

I

0 5 10 15 20

Iterations

4

5

6

7

S
L
2
(c

(2
))

Side-lobe constraint SL2(c
(2)

) <

0 5 10 15 20

Iterations

3

4

5

P
A

P
R

(c
(2

))

PAPR constraint PAPR(c
(2)

) <

0 5 10 15 20

Iterations

0

0.5

(c
(3

))T
 Q

 c
(3

)

0 5 10 15 20

Iterations

0.99

1

1.01

||
c

(3
) ||

2

Energy constraint ||c
(3)

||
2
 = 1

0 5 10 15 20

Iterations

1

2

||
c

(3
) -c

0(3
) ||

2

Similarity constraint ||c
(3)

-c
0

(3)
||

2
 <

0 5 10 15 20

Iterations

0

0.5

(c
(3

))T
 R

I c
(3

)

Energy constraint (c
(3)

)
T

 R
I
 c

(3)
 < E

I

0 5 10 15 20

Iterations

4

5

6

7

S
L
2
(c

(3
))

Side-lobe constraint SL2(c
(3)

) <

0 5 10 15 20

Iterations

4

6

P
A

P
R

(c
(3

))

PAPR constraint PAPR(c
(3)

) <

Figure 18: Convergence graph of Algorithm 8

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 i
n

 d
B

Frequency spectrum of c
(1)

Frequency spectrum of c
(2)

Frequency spectrum of c
(3)

Figure 19: Frequency spectrum of designed signals {c(p)}p∈{1,2,3}

81

0 2 4 6 8 10 12 14 16 18 20

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

c
T
 Q

 c

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 w

it
h

T
=

1

Waveform c(1)

0 2 4 6 8 10 12 14 16 18 20

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

c
T
 Q

 c

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 w

it
h

T
=

1

Waveform c(2)

0 2 4 6 8 10 12 14 16 18 20

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

c
T
 Q

 c

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 w

it
h

T
=

1

Waveform c(3)

Figure 20: SINR values per iteration of designed signals {c(p)}p∈{1,2,3}

82

Figure 21: Ambiguity function of designed waveform c(1)

83

Figure 22: Ambiguity function of designed waveform c(2)

84

Figure 23: Ambiguity function of designed waveform c(3)

85

5 Conclusion

In this thesis, we developed computationally efficient algorithms for radar trans-
mit waveform design in spectrally busy environment. We derived one algorithm
(i.e., Algorithm 2) for single waveform design, in which only one transmit wave-
form is designed, and three algorithms (i.e., Algorithm 4, 6 and 8) for multiple
waveform design, in which multiple transmit waveforms are designed simultane-
ously. The developed algorithms have been tested by means of simulations and
their computational complexities have been shown in terms of time complexity
graphs. The multiple waveforms algorithm simulations have been performed by
designing three different transmit signals simultaneously. For Algorithm 6 we
have only shown simulation with random data (i.e., vectors and matrices have
been random) because of the convergence issues with the algorithm. This is due
to the shortcomings of Algorithm 6 which have been discussed in Subsection 4.3.

All four algorithms are based on ADMM, which is one of the most powerful
convex optimization algorithms up-to-date. ADMM guarantees fast conver-
gence with general convergence properties which are desirable in this type of
applications. Also Dual Ascent algorithm have been used in sub-problems of
Algorithms 6 and 8.

By examining the time complexity graphs of the algorithms (see Figures 3,
8, 15, and 17) we have shown that Algorithms 2 and 6 reached quadratic time-
complexity (i.e., time-complexity O(N2), where N is problem dimension), while
Algorithms 4 and 8 reached cubic time complexity (i.e., O(N3)). This is due
to the fact that Algorithms 4 and 8 performed several matrix inversions, while
Algorithms 2 and 6 avoided them completely. Matrix inversion has roughly
cubic time-complexity (i.e., O(N3)). Although passing quadratic time complex-
ity, Algorithms 4 and 8 are still suitable for large-scale optimization problems
as long as matrix inversion is computationally feasible operation.

By examining the ambiguity graphs (i.e., Figures 7, 12, 13, 14, 21, 22, and
23), we have shown that the designed signals by Algorithms 2, 4 and 8 have had
the ambiguity properties similar to that of the linearly modulated signals. This
means that the designed signals have had small Doppler-leakages and autocor-
relation functions have been sharp and narrow. These properties are desired
because they help radar system to identify possible targets.

Finally, by examining frequency spectrum graphs (i.e., Figures 5, 10, and 19) we
have shown that the designed signals by Algorithms 2, 4, and 8 have efficiently
used available frequency bands while constrained bands have been left unused.
The designed waveforms have had radiation magnitude difference of 10 to 50
dB between allowed and constrained bands which can be considered adequate
for radar systems.

86

6 References

[1] Proakis, G. John, Digital Communications (Chapter 4-1), 4th edition.
McGraw-Hill, 2001.

[2] S. W. Golomb, Shift Register Sequences. San Francisco: Holden-Day, 1967.

[3] L. R. Welch, “Lower bounds on the maximum cross correlation of signals,”
IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397–399, 1974.

[4] M. R. Bell, “Information theory and radar waveform design,” IEEE Trans.
Inf. Theory, vol. 39, no. 5, pp. 1578–1597, 1993.

[5] N. Levanon and E. Mozeson, Radar Signals. Hoboken, NJ: Wiley, 2004.

[6] H. Hao, P. Stoica, and J. Li, “Designing unimodular sequences sets with
good correlations—Including an application to MIMO radar,” IEEE Trans.
Signal Process., vol. 57, no. 11, pp. 4391–4405, 2009.

[7] P. Stoica, H. He, and J. Li, “New algorithms for designing unimodular
sequences with good correlation properties,” IEEE Trans. Signal Process.,
vol. 57, no. 4, pp. 1415–1425, 2009.

[8] A. Aubry, V. Carotenuto and A. De Maio, “Forcing multiple spectral com-
patibility constraints in radar waveforms,” IEEE Signal Processing Letters,
vol. 23, no. 4, pp. 483–487, 2016.

[9] A. Aubry, A. De Maio, M. Piezzo and A. Farina, “Radar waveform design in
a spectrally crowded environment via nonconvex quadratic optimization,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2,
pp. 1138–1152, 2014.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[11] J. Mairal, “Stochastic majorization-minimization algorithms for large-scale
optimization,” 2013.

[12] J. Mairal, “Optimization with first-order surrogate functions,” 2013.

[13] Y. Nesterov, Introductory Lectures on Convex Optimization, A Basic
Course. Springer US, 2004.

[14] M. Yli-Niemi and S. A. Vorobyov, “Computationally efficient waveform de-
sign in spectrally dense environment,” IEEE 10th Sensor Array and Mul-
tichannel Signal Processing Workshop (SAM), pp. 277–281, 2018.

[15] J. Haboba, R. Rovatti, G. Setti, “Determination of the integrated sidelobe
level of sets of rotated legendre sequences,” 2011.

87

7 Appendices

7.1 Appendix A

One c-variable update step is illustrated in Figure 24.

Steps in Figure 24:

(0) Beginning of the iteration update:

Initially we have ck with length ‖ck‖22 = 1 and angle φk. This can be out-
side of the feasible region Θ = {c ∈ R

2N | ‖c‖2 = 1 and ‖c− c0‖2 ≤ ε, for some
c0 ∈ R

2N} (initial guess) or inside the feasible region (at least one iteration
done or initial guess is inside feasible region).

(1) Restoring primal optimal c∗ from dual optimal λ∗:

Primal optimal is restored by identity c∗ = minc Lρ (c,λ
∗). We have f(c∗) ≤

f(c), where f is the objective. Minimization problem (3.2.5) is solved with MM-

method which yields iteration update ĉk+1 = ck− 1
L

((
Q+QT

)
ck + (λ− ρz)

)
.

This update both scales and rotates vector ck, which yields better length ‖c‖2
and angle φk+1. Thus, ĉ

T
k+1Qĉk+1 ≤ cTkQck.

(2) Projecting ĉk+1 back to region ‖c‖22 = 1:

c̃k+1 = ĉk+1/‖ĉk+1‖22. Still c̃Tk+1Qc̃k+1 ≤ cTkQck, since angle φk+1 is bet-
ter than φk.

(3) Rotation of c̃k+1 to region ‖c− c0‖22 ≤ ε:

Vector c̃k+1 is rotated to region ‖c− c0‖22 ≤ ε with Gram-Schmidt process if its
outside feasible region. If φ∗ is outside the region ‖c(φ) − c0(φ)‖22 ≤ ε, rota-
tion yields worse φ than φ′

k+1, but since ∇φf(φ
∗) = 0 and ∇φφf(φ

∗) � 0
(Hessian), where φ∗ is the angle for which f(φ) is minimized, ∇φg(φ) =

µ
(
c(φ∗)− 〈c(φ∗),c(φ)〉

〈c(φ),c(φ)〉 c(φ)
)
, µ ≤ 0, the best feasible angle φ is at the boundary

of the feasible region and hence cannot be worse than φk if φk is in the feasible
region.

(4) ck+1 has been found and it complies with constraints ‖c‖22 = 1 and ‖c− c0‖22 ≤
ε.

88

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

One update of c-variable

Figure 24: c-variable update

89

7.2 Appendix B

Matrix RI =

[
Re{R̂I} −Im{R̂I}
Im{R̂I} Re{R̂I}

]
, where R̂I ∈ C

N×N is defined as in (3.1.8)

and (3.1.11). For this construction, we have
(
Re{R̂I}

)T
= Re{R̂I} and

(
−Im{R̂I}

)T
= Im{R̂I}.

Block matrix transpose identity is given as:

[
A B
C D

]T
=

[
AT CT

BT DT

]

which yields

RT
I =

[
(Re{R̂I})T (Im{R̂I})T
(−Im{R̂I})T (Re{R̂I})T

]
=

[
Re{R̂I} −Im{R̂I}
Im{R̂I} Re{R̂I}

]
= RI .

Hence RT
I = RI , that is RI is symmetric.

For symmetricRI , identity ((I+ γk+1RI)
−1

)T = (I+ γk+1RI)
−1

holds ∀γ ∈ R,
because

((I+ γk+1RI)
−1

)T =
(
I+ γk+1R

T
I

)−1

= (I+ γk+1RI)
−1

.

90

7.3 Appendix C

In Subsection 4.4 we introduced the PAPR-constraint which essentially yielded
an additional constraint of a form:

∣∣∣c(p)(n)
∣∣∣
2

≤ η

N
, ∀n ∈ {1, 2, ..., N}. (7.3.1)

In the simulation setup this constraint did not seem to contribute to the wave-
form design. We were not able to set up simulation in such a way that modifying
the η parameter (i.e., suppressing the PAPR-constraint) would affect the wave-
form design. If η was chosen to be small, we ran out of feasible region.

To avoid this problem we can reformulate the constraint (7.3.1) to following
forms:





∣∣∣c(p)(n)
∣∣∣ ≤ 1 +

η

N
, ∀n ∈ {1, 2, ..., N}, (7.3.2a)

∣∣∣c(p)(n)
∣∣∣ ≥ 1− η

N
, ∀n ∈ {1, 2, ..., N}, (7.3.2b)

or





∣∣∣c(p)(n)
∣∣∣ ≤ 1 + η√

N
, ∀n ∈ {1, 2, ..., N}, (7.3.3a)

∣∣∣c(p)(n)
∣∣∣ ≥ 1− η√

N
, ∀n ∈ {1, 2, ..., N}. (7.3.3b)

In (7.3.2a)-(7.3.2b) we require all elements of the designed waveforms to be
close to 1. It is worth noting that with this type of constraints we cannot use
sinusoidal reference codes, because otherwise the similarity constraint (4.4.5e)
would not be attainable. This means we would run out of feasible region in
optimization.

By using constraints (7.3.2a)-(7.3.2b) instead of (7.3.1) we get a minimization
problem:

P6 :





min
c

P∑
p=1

(c(p))TQc(p) (7.3.4a)

s.t. : ‖c(p)‖2 = 1, ∀p ∈ {1, ..., P} (7.3.4b)∣∣c(p)(n)
∣∣ ≤ 1 + η

N , n ∈ {1, ..., N}, ∀p (7.3.4c)

−
∣∣c(p)(n)

∣∣ ≤ η
N − 1, n ∈ {1, ..., N}, ∀p (7.3.4d)

(c(p))TRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (7.3.4e)

∥∥∥c(p) − c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (7.3.4f)

SL2(c(p)) ≤ δ, ∀p ∈ {1, ..., P}. (7.3.4g)

91

Then again, by using constraints (7.3.2a)-(7.3.2b) instead of (7.3.1) we get a
minimization problem:

P7 :





min
c

P∑
p=1

(c(p))TQc(p) (7.3.5a)

s.t. : ‖c(p)‖2 = 1, ∀p ∈ {1, ..., P} (7.3.5b)∣∣c(p)(n)
∣∣ ≤ 1+η√

N
, ∀n ∈ {1, 2, ..., N}, ∀p (7.3.5c)

−
∣∣c(p)(n)

∣∣ ≤ η−1√
N
, n ∈ {1, ..., N}, ∀p (7.3.5d)

(c(p))TRIc
(p) ≤ EI , ∀p ∈ {1, ..., P} (7.3.5e)

∥∥∥c(p) − c
(p)
0

∥∥∥
2

≤ ε, ∀p ∈ {1, ..., P} (7.3.5f)

SL2(c(p)) ≤ δ, ∀p ∈ {1, ..., P}. (7.3.5g)

The constraints (7.3.4c)-(7.3.4d) and (7.3.5c)-(7.3.5d) are handled in the c-
variable update similarly as the original PAPR-constraint in 3rd multiple wave-
form algorithm.

In case of the minimization problem P6, we have a following minimization prob-
lem:

c
(i)
k+1 = argmin

c(i)

(c(i))TQc(i) + (λ− ρz)T c(i)

s.t. ‖c(i)‖2 = 1,
∥∥∥c(i) − c

(i)
0

∥∥∥
2

≤ ε,
∣∣∣c(i)(n)

∣∣∣ ≤ 1 +
η

N
,

−
∣∣∣c(i)(n)

∣∣∣ ≤ η

N
− 1, n ∈ {1, ..., N}, (7.3.6)

and in case of the minimization problem P7, we have a following minimization
problem:

c
(i)
k+1 = argmin

c(i)

(c(i))TQc(i) + (λ− ρz)T c(i)

s.t. ‖c(i)‖2 = 1,
∥∥∥c(i) − c

(i)
0

∥∥∥
2

≤ ε,
∣∣∣c(i)(n)

∣∣∣ ≤ 1 + η√
N

,

−
∣∣∣c(i)(n)

∣∣∣ ≤ η − 1√
N

,n ∈ {1, ..., N}, (7.3.7)

The Lagrangians LP6

(
c(i), ξ, ζ

)
and LP7

(
c(i), ξ, ζ

)
for (7.3.6) and (7.3.7)

92

by using the constraints (7.3.4c)-(7.3.4d) and (7.3.5c)-(7.3.5d), respectively:

LP6

(
c(i), ξ, ζ

)
=
(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +
N∑

n=1

ξn

(∣∣∣c(i)(n)
∣∣∣−
(
1 +

η

N

))

−
N∑

n=1

ζn

(∣∣∣c(i)(n)
∣∣∣−
(
1− η

N

))
, (7.3.8)

LP7

(
c(i), ξ, ζ

)
=
(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

ξn

(∣∣∣c(i)(n)
∣∣∣−
(
1 + η√

N

))

−
N∑

n=1

ζn

(∣∣∣c(i)(n)
∣∣∣−
(
1− η√

N

))
, (7.3.9)

where ξ = (ξ1, ξ2, ..., ξN) and ζ = (ζ1, ζ2, ..., ζN) are Lagrange multipliers. The
dual functions gP6(ξ, ζ) and gP7(ξ, ζ) are given as:

gP6
(ξ, ζ) = inf

c(i)
L
(
c(i), ξ, ζ

)

= inf
c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

ξn

(∣∣∣c(i)(n)
∣∣∣−
(
1 +

η

N

))

−
N∑

n=1

ζn

(∣∣∣c(i)(n)
∣∣∣−
(
1− η

N

))}

= inf
c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +
N∑

n=1

(ξn − ζn)
∣∣∣c(i)(n)

∣∣∣

+

N∑

n=1

[
ζn

(
1− η

N

)
− ξn

(
1 +

η

N

)]}

= inf
c(i)

{(
c(i)
)T

Qc(i) + (λ− ρz)T c(i) +

N∑

n=1

(ξn − ζn)
∣∣∣c(i)(n)

∣∣∣
}

+

N∑

n=1

[
ζn

(
1− η

N

)
− ξn

(
1 +

η

N

)]

∗
=
(
c
(i)
opt

)T
Qc

(i)
opt + (λ− ρz)T c

(i)
opt +

N∑

n=1

(ξn − ζn)
∣∣∣c(i)opt(n)

∣∣∣

+

N∑

n=1

[
ζn

(
1− η

N

)
− ξn

(
1 +

η

N

)]
, (7.3.10)

93

gP7(ξ, ζ) = inf
c(i)

L
(
c(i), ξ, ζ

)

∗
=
(
c
(i)
opt

)T
Qc

(i)
opt + (λ− ρz)T c

(i)
opt +

N∑

n=1

(ξn − ζn)
∣∣∣c(i)opt(n)

∣∣∣

+
N∑

n=1

[
ζn

(
1− η√

N

)
− ξn

(
1 + η√

N

)]
. (7.3.11)

(*) c
(i)
opt obtained by the first step in dual ascent (primal problem minimization).

Denote Ω(i) =
{
c(i) ∈ R

2N | ‖c(i)‖2 = 1 and ‖c(i) − c
(i)
0 ‖2 ≤ ε

}
. By using Dual

ascent to problem





min
c

(c(i))TQc(i) + (λ− ρz)T c(i) (7.3.12a)

s.t.:
∣∣c(i)(n)

∣∣ ≤ 1 + η
N , n ∈ {1, ..., N}, (7.3.12b)

−
∣∣c(i)(n)

∣∣ ≤ η
N − 1, n ∈ {1, ..., N} (7.3.12c)

or





min
c

(c(i))TQc(i) + (λ− ρz)T c(i) (7.3.13a)

s.t.:
∣∣c(i)(n)

∣∣ ≤ 1+η√
N
, n ∈ {1, ..., N}, (7.3.13b)

−
∣∣c(i)(n)

∣∣ ≤ η−1√
N
, n ∈ {1, ..., N} (7.3.13c)

we get routines:





ĉ
(i)
k+1 = c

(i)
k −

1

L
∇c(i)LP{6,7}

(
c
(i)
k , ξk, ζk

)
(7.3.14a)

Project ĉ
(i)
k+1 to region Ω(i) to obtain c

(i)
k+1 (7.3.14b)

ξk+1 = ξk +
1

α
∇ξgP{6,7}

(ξk, ζk) (7.3.14c)

ζk+1 = ζk +
1

β
∇ζgP{6,7}

(ξk, ζk). (7.3.14d)

Gradients in (7.3.14) are given as:

94

∇c(i)LP6

(
c
(i)
k , ξk, ζk

)
= 2Qc(i) + (λ− ρz)T + ξ − ζ, (7.3.15)

∇c(i)LP7

(
c
(i)
k , ξk, ζk

)
= 2Qc(i) + (λ− ρz)T + ξ − ζ, (7.3.16)

∇ξgP6
(ξ, ζ) = c(i) −

(
1 +

η

N

)
, (7.3.17)

∇ζgP6
(ξ, ζ) = −c(i) +

(
1− η

N

)
, (7.3.18)

∇ξgP7(ξ, ζ) = c(i) − 1 + η

N
, (7.3.19)

∇ζgP7(ξ, ζ) = −c(i) +
1− η

N
. (7.3.20)

95

