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Abstract

Wireless communication systems have traditionally relied on carefully designed
receiver algorithms, such as channel estimation, to mitigate impairments and ensure
reliable data transmission. Although these traditional methods have been refined over
decades, they often fall short when faced with the complexity of real-world wireless
environments. In recent years, Artificial Intelligence (AI) has become a promising
tool to enhance or even replace conventional receiver components. However, many
Al-based methods in channel estimation still rely on distance-based loss functions
for channel smoothing. These objectives may not correlate well with overall system
performance and can lead to overfitting, especially when estimation errors have little
impact on throughput.

This thesis investigates the use of Al for channel estimation, especially channel
smoothing, in the 5G receiver chain with a particular focus on the Physical Uplink
Shared Channel. A novel neural network is proposed that integrates Convolutional
Neural Network and Residual neural Network, trained with a system-level, throughput-
oriented objective function. By leveraging a fully differentiable receiver chain, the
neural network is able to directly optimize decoding performance at the bit level. This
method is compared against a conventional AI method using the same neural network
architecture but optimized with a loss based on ideal channel conditions.

Both methods are trained under simulated 5G channel environments Clustered
Delay Line (CDL) A/B/D and evaluate under CDL C/E, using the Sionna simula-
tion framework. Results demonstrate that the throughput-optimized neural network
consistently outperforms traditional least squares estimation in terms of Bit Error
Rate and Block Error Rate, and in certain scenarios also surpasses the neural network
trained with ideal channel conditions. Because ideal channel conditions are only
available in simulation, these results highlight the practical value of learning directly
for throughput and point toward a viable path for Al-enhanced receivers in real-world
5G deployments.

Keywords Channel Estimator, Neural Network, Throughput Optimization, Channel
Smoothing
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Symbols and abbreviations

Abbreviations
3GPP the 3rd Generation Partnership Project
Al Artificial Intelligence
Adam Adaptive Moment Estimation

AWGN Additive White Gaussian Noise
BER Bit Error Rate
BLER Block Error Rate

CDL Clustered Delay Line

CDM Code Division Multiplexing
CNN Convolutional Neural Network
Cp Cyclic Prefix

CRC Cyclic Redundancy Check

DMRS DeModulation Reference Signals

DL Deep Learning

eMBB enhanced Mobile BroadBand

FDM Frequency-Division Multiplexing

FNN Feedforward Neural Network

GSMA  Global System for Mobile communications Association
IP Internet Protocol

ISI InterSymbol Interference

LDPC Low-Density Parity-Check

LLRs Log Likelihood Ratios

mMTC  massive Machine-Type Communications
MIMO Multiple-Input Multiple-Output

MMSE  Minimum Mean Square Error

NR New Radio

OCC Orthogonal Cover Code

OFDM  Orthogonal Frequency-Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PUSCH  Physical Uplink Shared CHannel

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RB Resource Block

RE Resource Element

ReLU Rectified Linear Unit

ResNet  Residual neural Network

UE User Equipment

SCS SubCarrier Spacing

SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio

TDL Tapped Delay Line

URLLC  Ultra-Reliable Low-Latency Communications



1 Introduction

With the rapid advancement of mobile communication technologies, SG has emerged
as an essential enabler of high-speed, low-latency, and highly reliable wireless
communication, as demonstrated in several studies [1, 2, 3]. Sophisticated physical
layer is key to the performance of 5G systems, in which channel impairments such as
noise, fading, and interference are effectively mitigated to ensure robust and efficient
data transmission [4].

Engineered receiver algorithms within several components, including channel
estimation, are used to support reliable data transmission in 5G physical layer [5].
Although these algorithms have been refined over decades, they often fall short in
capturing the full complexity of real-world wireless environments [6]. In recent years,
artificial intelligence (AI) techniques have emerged as powerful tools to enhance or even
replace some traditional receiver components. Leveraging their data-driven nature, Al
offer the potential to significantly improve the system performance in dynamic and
non-linear channel conditions commonly encountered in practical deployments [7].

Although Al techniques perform better then traditional components in the receiver
algorithms [8], most Al methods primarily focus on minimizing errors within specific
components of the receiver architecture [9], rather than addressing system-level
performance. For example, Al technique in channel smoothing component often
optimize distance-based metrics leading to suboptimal overall performance or increased
neural network complexity. Moreover, strict reliance on such distance-based loss
functions can result in overfitting [10], especially when the neural network pays
attention to errors that have the least impact on system performance. Consequently,
there is a clear need for a methodology that prioritizes throughput optimization over
intermediate channel smoothing metrics.

This thesis aims to design and implement a throughput optimized Al method
for channel smoothing which is involved in channel estimation, and compare it
with a conventional AI method that uses the same neural network architecture but
different optimization strategies. The neural network architecture, as referenced by
[11], combines Convolutional Neural Network (CNN) and Residual neural Network
(ResNet) to denoise raw channel estimates from a preceding component in channel
estimation and interpolate all channel estimates for equalizer in 5G receiver. The
optimization strategy used to update the learnable parameters of the throughput
optimized Al method is based on the probability of predicted bits. This optimization
at the system level can be achieved due to the fully differentiable receiver chain.
Conversely, the optimization strategy for the conventional Al method is solely based
on the distance between ideal channel conditions and the channel estimates.

This thesis focuses on the Physical Uplink Shared CHannel (PUSCH) within the
physical layer of 5G systems, with particular emphasis on the receiver design. The
study is focused on integrating neural networks into the receiver chain to enhance
traditional receiver algorithms, rather than replacing the entire receiver with end-to-end
AT architectures. Although the deployment scenarios are simulated, the proposed
approach demonstrates strong potential for real-world application.

The rest of this thesis is organized as follows. Chapter 2 provides an introduction



to 5G New Radio (5G NR), outlining key concepts relevant to the thesis. Chapter 3
presents an overview of neural network architectures, with a particular focus on
Feedforward Neural Network (FNN), CNN and ResNet. Chapter 4 reviews related
work in the field of channel estimation and details the proposed methodology. Chapter 5
describes the data characteristics and the experiments. Chapter 6 offers a comprehensive
analysis and discussion of the results. Finally, Chapter 7 concludes the thesis and
proposes potential directions for future research.



2 5G New Radio

5G mobile communications marks a significant milestone in the evolution of wireless
technology. Itis driven by the need to support use cases with high requirements on data
rates, latency, reliability, and connectivity. These use cases shown in Figure 1 include
enhanced Mobile BroadBand (eMBB), Ultra-Reliable Low-Latency Communications
(URLLC), and massive Machine-Type Communications (mMTC) [12], posing unique
challenges on the design of 5G physical layer.

Enhanced mobile broadband

<,

Gigabytes
in a second

e S

3D video, UHD screens
Work & play
in the cloud

Future
IMT -
S @

Indust
automation

2 AR &

Smart City Mission critical application Self driving car

Massive machine type communications Ultra-reliable and low latency communications

Figure 1: 5G Usage Scenarios [12].

5G physical layer covers critical concepts such as the spectrum, Orthogonal
Frequency-Division Multiplexing (OFDM), and Resource Grid (RG). Additionally,
5G uplink transmission is introduced with an emphasis on the PUSCH and the role
of DeModulation Reference Signals (DMRS). Finally, the conditions of propagation
channel models are explored in simulation environments where we could achieve ideal
channel conditions for channel estimation.
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2.1 Spectrum in 5G

Wireless communication relies on the radio spectrum, which is divided into different
frequency bands used to transmit data over the air [13]. This large range of frequency
bands can be divided into Low bands, Mid bands, and High bands in 5G (See Figure 2).

High bands
S pec-trU.m 24GHZz-40GHz
determines
5G coveragc—

and speed

Mid bands
1GHz-2.6GHz

Low bands
< 1GHz

Figure 2: Frequency bands for 5G wireless communication [14].

Low band spectrum is typically below 1 GHz. It is suitable for rural and wide-area
deployments with extensive coverage and strong penetration capabilities. Mid band
spectrum tend to range from 1 GHz to 6GHz. It can carry plenty of data while traveling
significant distances and make up the majority of the total frequencies assigned. As
declared by Global System for Mobile communications Association (GSMA), the 3.3
GHz to 3.8 GHz range of the spectrum is ideal as many countries in the world have
already designated it for 5G. Other mid band spectrum is in use as well. High band
frequencies refer to the spectrum above 24 GHz, where the signal is called millimeter
wave (mmWave). It provides extremely high data rates and capacity, enabling ultra-fast
communication, but mmWave has limited penetration and shorter coverage ranges.
Thus, advanced network planning and deployment of small cells is necessary to
enhance connectivity.

The demand for eMBB, URLLC and mMTC requires well-suited spectrum
allocation to maximize efficiency and minimize interference. Spectrum allocation
influences key network performance factors, including data throughput, coverage, and
interference mitigation.

2.2 Orthogonal Frequency Division Multiplexing

OFDM is a widely adopted multi-carrier modulation technique used in modern
broadband communication systems, including 5G NR. It is a specialized form of
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Frequency Division Multiplexing (FDM), designed to enhance spectral efficiency and
data transmission rates. Unlike traditional FDM assigning non-overlapping frequency
bands to different data streams, OFDM employs a large number of closely spaced
orthogonal subcarriers within the same frequency channel.

. Channel Bandwidth N
£
FFT Bins
/ : : =1 OFDM Symboal
gg%ﬁt%ﬁrz%gls !\ Orthogonal Subcarriers! |
Freguency
* | modulated subcarrier=1 point in frequency and time
,06{5 = » IFFT creates OF DM Waveform from OFDM Subcarriers
c;f;n Time ® 1 OF DM symbol = IFFT OFDM Waveform + Guard Interval
= 1 OFDM Burst = one or more OFDM Symbols

Frequency-Time Representative of an OFDM signal

Figure 3: Frequency-time representation of an OFDM signal [15]. The horizontal
axis represents frequency, while the vertical axis represents time. The time domain
shows discrete OFDM symbols, each preceded by a CP to mitigate ISI. The frequency
domain illustrates modulated subcarriers, each corresponding to a unique point in the
time-frequency grid.

Asillustrated in Figure 3, the OFDM signal spans both time and frequency domains.
In the time domain, the signal is segmented into discrete OFDM symbols, each of
which is preceded by a guard interval known as the Cyclic Prefix (CP). This CP can
effectively mitigate InterSymbol Interference (ISI) where one symbol interferes with
following symbols [16]. ISI arises when transmitted symbols overlap at the receiver
due to delayed signal reflections caused by obstacles in the transmission path. These
delays result in multiple versions of the transmitted signal arriving at different times,
with some delayed copies of one symbol interfering with subsequent symbols. This
temporal overlap compromises the receiver’s ability to distinguish between adjacent
symbols.

The CP is constructed by copying the last segment of an OFDM symbol and
appending it to the beginning of that symbol before transmission. This redundancy
ensures that the delayed copies of a symbol that extend into the beginning of the next
symbol are confined within the CP rather than corrupting the actual symbol data in
the presence of multipath delays. Provided the maximum delay spread of the channel
is less than or equal to the duration of the CP, ISI can be effectively eliminated. At the
receiver, the CP is removed prior to demodulation. Thereby, it discards the portion of
the signal potentially affected by interference, while preserving the integrity of the
core OFDM symbol.

In the frequency domain, each OFDM symbol comprises multiple orthogonal
subcarriers. Orthogonality ensures that the peak of one subcarrier coincides with the

12
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Figure 4: Illustration of orthogonality in OFDM systems [17]. The time-domain
representation (left) shows multiple subcarriers (f1, 2, f3, f4) with different frequencies.
The frequency-domain representation (right) demonstrates how the peak of each
subcarrier aligns with the nulls of others, effectively eliminating ICI. This orthogonality
enables efficient spectral resource utilization and facilitates implementation using the
FFT and its inverse IFFT.

nulls of all other subcarriers, shown in Figure 4, effectively eliminating inter-carrier
interference (ICI). This property enables efficient use of spectral resources and allows
for straightforward implementation using the Fast Fourier Transform (FFT) and its
inverse (IFFT).

The subcarriers in an OFDM system are modulated with data symbols, such
as N-Quadrature Amplitude Modulation (QAM), resulting in a composite signal
that is the sum of these modulated carriers. As depicted in the Figure 3, each
modulated subcarrier corresponds to a unique point in the time-frequency grid, where
the horizontal axis represents frequency and the vertical axis represents time. A single
OFDM burst may consist of one or more such OFDM symbols, each occupying the
entire channel bandwidth.

2.3 Numerology

In 5G NR, numerology is defined by the parameter y as shown in detail in Table 1,
which governs primarily SubCarrier Spacing (SCS). As illustrated in Figure 5, the
hierarchical time-domain framework comprises frames, subframes, slots, and OFDM

13



u | Af =2#.15 [kHz] (0

0 15 Normal

1 30 Normal

2 60 Normal, Extended
3 120 Normal

4 240 Normal

Table 1: Supported transmission numerologies.

One frame, 10 ms
(— L.

One subframe, | ms

——
0 | 1 [ 2 | 3 | 4 | 5 6 7 8 9
Oneslot, I ms e
—
| Af = 15 kHz One OFDM symbol
One slot. 0.5 ms ‘--’ duration, 71.37 ps
| | of = 30Ktz T
One slot, 0.25 ms o . hie X
> ) Cyclic prefix, Useful symbol
| | | | Af = 60kHz 4.7 us time, 66.67 ps
One slot, 0.125 ms
—
| [ [ [ [ [ 1 |]af=120kH

Figure 5: Time-domain structure of 5G NR illustrating the hierarchical framework
of frames, subframes, slots, and OFDM symbols [18]. The figure shows how slot
duration varies with SCS A f, demonstrating durations of 1 ms for Af = 15 kHz, 0.5
ms for Af = 30 kHz, 0.25 ms for Af = 60 kHz, and 0.125 ms for Af = 120 kHz.
Each slot typically contains 14 OFDM symbols, with a detailed view of the OFDM
symbol duration, including a CP of 4.7 us and a useful symbol time of 66.67 us.

symbols. A frame spans 10 ms and is partitioned into ten 1 ms subframes. Each
subframe is further divided into slots, whose duration inversely depends on the SCS
Af.

The slot duration scales as Tgor = 2% ms. As shown in Figure 5, a slot tend
to contains 14 OFDM symbols but the duration of a slot is different depending on
various value of . Higher numerology correspond to increased subcarrier spacing.
However, the slot duration is inversely proportional to the subcarrier spacing. This
figure illustrates slot durations of 0.5 ms for u = 1 (30 kHz) , 0.25 ms for u = 2 (60
kHz) and 0.125 ms for u = 3 (120 kHz).

Each OFDM symbol comprises a CP and a useful symbol time. For A f = 15 kHz,
the symbol duration is 71.37 us, with a CP of 4.7 us and a useful time of 66.67 us.
Notably, u = 2 supports an extended CP to mitigate ISI in challenging channel
conditions, though the default CP remains normal for most numerologies.
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The flexibility in ¢ enables 5G to address diverse deployment scenarios [19].
Lower SCS such as 15 kHz, enhances robustness against delay spread in large cells,
while higher SCS, such as 120 kHz and 240 kHz, reduces latency and supports high-
frequency bands for ultra-reliable applications. Additionally, the 15 kHz subcarrier
spacing ensures compatibility between 5G and 4G, as 4G only supported 15 kHz.

2.4 Resource Grid

The RG is a matrix representation of time-frequency resources over a specific bandwidth
and time duration (one subframe). A Resource Block (RB) is a fundamental unit of
resource allocation defined in the frequency domain. It comprises 12 consecutive
subcarriers and is a little bit ambiguous in the time domain. Its minimum time duration

One Subframe

«—k=Ng -NZ-1

- Resource Block

RE

-Ngo subcarriers

Resource Element
(k. T) in Resource Grid
(k.£) in Resource Block

Subcarriers = 12

I
RE

RE

SC

N;
N

< 38.211-Table 4.2.2-1 =

i I Slot configuration
0
T relots o — i
NE oy Nt £=142%-1
[] 14 10 ——» 13
T 14 20 s 37
2 14 a0 ——» 55
3 14 a0 —» 111
k=0 E] 14 T80 —» 223
£=0 £=14.2%-1

Figure 6: RG structure [20]. This figure illustrates the matrix representation of time-
frequency resources within one subframe, highlighting the arrangement of RBs and
REs. Each RB consists of 12 consecutive subcarriers, with the smallest time-frequency
unit being the RE, defined by a subcarrier and an OFDM symbol index. The diagram
also indicates the indexing of subcarriers and the configuration of slots based on
different numerologies.
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is only one OFDM symbol. As shown in Figure 6, each RB consists of resource
elements (REs). The RB is indexed in frequency by k, where k = 0 corresponds to
the lowest subcarrier index and k = NﬁB . Né%3 — 1 corresponds to the highest. NgB
denotes the number of RBs for specific numerology u, and Ngg‘ = 12 is the number
of subcarriers per RB.

A RE is the smallest unit of time-frequency resource and represents one subcarrier
for one OFDM symbol, which refers to a QAM-modulated symbol carrying data or a
pilot symbol. Each RE is uniquely identified by the pair (k, {), where k denotes the
subcarrier index and ¢ is the OFDM symbol index. Within a RB, the RE is located at
position (k,£).

2.5 Uplink Transmission and the Physical Uplink Shared Chan-
nel

PUSCH in 5G NR is responsible for the transmission of user data and uplink control
information from UE to the base station (BS). As depicted in Figure 7, the PUSCH
processing chain includes various modules that handle tasks such as modulation,
coding, and multiple antenna processing, ensuring robust data transmission over
wireless fading channels.

Codeblock . -
PRBS | 5 eementationand [ IPPC L Ratematching |—> Scrambling |—>| Modulation [—>| Ver2dREL o[ OFDMA Transmit filterl___
generator 2 encoder 2 mapping modulator (lowpass)
CRC attachment
v ¥
Coded BER BLER Uncoded BER DMRS Wireless
calculation calculation calculation generation gadmi
x x X
: ' V. Noise
CRC check : " variance H
H Y
Codeblock Rate unmatching Soft MMSE ) STO and
%‘e'::“i‘:‘ le—{ desegmentation and [€—{ LDPC decoder [€—  ( l—{D. 2 [€LLR; Channel <—L:;§:a“‘in§5 e~ cro d:gzl[:m
CRC detachment Redundancy) (MAP) Estimator Pping correction
v
EVM | Equalized MMSE
DMRS Equalizer

Figure 7: Diagram of the 5G NR PUSCH processing chain, illustrating the sequence
of operations from the PRBS generation to the bitstream reception [21]. The chain
includes key processes such as LDPC encoding, rate matching, modulation, and
OFDMA modulation, followed by transmission through a wireless fading channel.
The receiver side encompasses OFDMA demodulation, synchronization, equalization,
and error correction, culminating in the calculation of BLER and BER metrics for
performance evaluation.

The user data conveyed over the PUSCH refers to the actual content generated or
requested by the end user. This may include, for example, Internet Protocol (IP) packets
that encapsulate data from applications such as web browsing, video conferencing,
email, or file uploads. For instance, when a user uploads a photo to a social media
platform, the image data is packetized into IP packets, which are then transmitted over
the air interface using the PUSCH.

16



In our simplified model of the full PUSCH chain, the PUSCH transmitter begins
with a Pseudo-Random Binary Sequence (PRBS) generator, which generates test
data that simulates the payload of real user data for system verification or simulation.
The data undergoes codeblock segmentation with Cyclic Redundancy Check (CRC)
attachment, enabling error detection at the receiver. Subsequently, Low-Density
Parity-Check (LDPC) coding is applied for forward error correction, followed by
rate matching to adapt the code rate to channel conditions and resource allocation.
The encoded bits are scrambled to randomize interference and avoid spectral peaks.
The scrambled bits are mapped to complex modulation symbols, such as Quadrature
Phase Shift Keying (QPSK) through modulation. These symbols are distributed across
layers which are spatial streams for Multiple-Input Multiple-Output (MIMO) and REs
in the time-frequency grid. The OFDMA modulator transforms the symbols into
time-domain signals using IFFT, while a lowpass transmit filter shapes the waveform
to comply with spectral mask requirements.

The transmitted signal propagates through a wireless fading channel characterized
by multipath propagation with noise. These impairments distort the signal amplitude
and phase, necessitating robust synchronization and equalization at the receiver.

The received signal is processed by an OFDMA demodulator, which converts the
time-domain waveform into frequency-domain symbols using FFT. Symbol Timing
Offset (STO) and Carrier Frequency Offset (CFO) correction are used to align the time
and frequency domains of the received signal. The symbols in the time-frequency grid
are extracted and separated in layer and RE demapping. A Minimum Mean Square
Error (MMSE) channel estimator computes the channel estimate, enabling the MMSE
equalizer to mitigate ISI and recover the transmitted symbols. Soft demodulation using
Maximum A Posteriori (MAP) detection computes Log-Likelihood Ratios (LLRs) for
each bit, which are descrambled to reverse the transmitter’s scrambling operation. The
LLRs are fed to the LDPC decoder for error correction, followed by rate unmatching
to reassemble codeblocks. A CRC check validates the integrity of the decoded data.
Finally, BLock Error Rate (BLER) and Bit Error Rate (BER) metrics are calculated to
evaluate link performance.

The PUSCH architecture delivers high spectral efficiency, low latency, and ultra-
reliable performance. The equalizer and channel estimator in PUSCH optimize signal
recovery in multipath environments, minimizing ISI while adapting to time-varying
channel states. Flexible modulation schemes such as N-QAM, and MIMO layer
mapping enable dynamic adaptation to varying throughput and Signal-to-Noise Ratio
(SNR) demands. Additionally, BER and BLER metrics provide comprehensive
diagnostics for evaluating modulation fidelity and link robustness.

2.6 Demodulation Reference Signal

The Demodulation Reference Signal (DMRS) primarily used for coherent demodulation
of uplink transmissions. It facilitates accurate channel estimation, enabling the next-
generation Node B (gNB) receiver to compensate for channel impairments such as
fading and phase noise. Unlike downlink reference signals, the uplink DMRS is
UE-specific and transmitted alongside uplink data on the PUSCH.

17
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Figure 8: Illustration of Type 1 DMRS configuration, showing single-symbol and
double-symbol DMRS arrangements with OCC applied in frequency and time do-
mains [22]. The single-symbol DMRS utilizes length-2 OCC in frequency for
code-division multiplexing across antenna ports, while the double-symbol DMRS
applies OCC in both frequency and time, enhancing robustness against fading and
Doppler effects.
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Figure 9: Depiction of Type 2 DMRS configuration, highlighting the use of single-
symbol and double-symbol DMRS with frequency and time domain OCCs [22].
The single-symbol DMRS is designed for low overhead, suitable for stable channels,
whereas the double-symbol DMRS offet9improved performance in high-mobility
scenarios by spanning two OFDM symbols.



The DMRS in uplink can be configured flexibly in terms of symbol duration, fre-
quency domain spreading, and code-division multiplexing. Two typical configurations
are single-symbol DMRS and double-symbol DMRS, each offering different trade-offs
between overhead and channel estimation performance. The detailed structures of
these configurations are depicted in the Figure 8 and 9, respectively.

In the single-symbol DMRS configuration (top part of Figure 8 and 9), the DMRS
is transmitted in a single OFDM symbol. It utilizes orthogonal cover codes (OCCs) in
the frequency domain to achieve code-division multiplexing across different antenna
ports or layers as well. As shown, Code Division Multiplexing (CDM) groups, for
example, group O, group 1, and group 2 in the Figure 9 are mapped to specific REs
within one symbol in each slot. A length-2 OCC is applied in frequency, spreading the
reference signal across two subcarriers per group to ensure mutual orthogonality. This
arrangement supports efficient multiplexing while minimizing inter-layer interference.
The DMRS typically occupies one OFDM symbol out of a total of fourteen within a
time slot when using a normal CP. This corresponds to approximately 7.14% of the
OFDM symbols in a slot being allocated to reference signaling. Such a configuration
introduces minimal overhead, making it particularly suitable for scenarios characterized
by low-to-moderate user mobility and relatively stable wireless channels.

In contrast to the single-symbol case, the DMRS can also span two consecutive
OFDM symbols. It applies OCC in both frequency and time domains in the double-
symbol DMRS configuration (bottom part of each figure). Each CDM group in
this configuration is mapped to specific sets of REs in both the frequency and time
domains, providing enhanced robustness to fading and Doppler effects. This makes
the double-symbol DMRS particularly suitable for high-mobility scenarios and cases.

2.7 Propagation Channels in 5G

Wireless communication systems rely on propagation channels to describe how radio
signals travel from a transmitter to a receiver. In standardized system-level simulations,
the 3rd Generation Partnership Project (3GPP) specifies two principal channel models
capable of supporting wireless communication simulations: the Tapped Delay Line
(TDL) and the Clustered Delay Line (CDL) models [23].

The TDL model characterizes the channel using a fixed number of delay taps, each
associated with a power level. It is primarily intended for Single-Input Single-Output
(SISO) scenarios. Conversely, the CDL model is designed to accommodate multiple
antenna configurations in single-user contexts, making it particularly suitable for
MIMO systems. Given that our experimental setup involves a single User Equipment
(UE) having multiple antennas, the CDL model is adopted to capture the spatial
characteristics intrinsic to such systems.

The CDL model [23] supports a broad frequency range, from 0.5 GHz to 100 GHz,
and a maximum bandwidth of 2 GHz. It is especially well-suited for single-user
MIMO scenarios. It represents the wireless channel as a set of multipath clusters
which is shown in Figure 10. Each cluster is characterized by parameters such as
path delays, Angle-of-Arrival (AoA), Angle-of-Departure (AoD), Doppler shifts, and
relative power levels.
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Figure 10: Spatial representation of N.; clustered channel between the transmitter and
receiver antenna arrays [24]. This figure illustrates the CDL model used for capturing
spatial characteristics in single-user MIMO systems. Each cluster is characterized
by path delays, AoA, AoD, Doppler shifts, and relative power levels, providing a
comprehensive depiction of multipath propagation.

To capture diverse propagation environments, 3GPP defines five standardized CDL
profiles. CDL A, CDL B, and CDL C are designed for Non-Line-Of-Sight (NLOS)
scenarios, while CDL D and CDL E are tailored for Line-Of-Sight (LOS) conditions
[23]. Moreover, the model allows for both delay and angular scaling to match target
Root-Mean-Square (RMS) delay spreads and angular spreads, providing flexibility to
adapt to different deployment environments. In LOS conditions, the Rician K-factor
can be adjusted to reflect varying levels of dominant signal strength.

Channel coefficient generation within the CDL framework follows a structured
methodology. The process begins with the generation of angular parameters (AoA,
AoD) for each ray within a cluster which is shown in Figure 10, based on predefined
angular spreads and offset distributions. These angles are coupled within each cluster
to reflect spatial correlation. Each ray is also assigned a cross-polarization power ratio
according to model-specific distributions. The final channel coefficients are computed
following a standardized procedure that treats all clusters equally, without employing
sub-clustering in the delay domain.

In addition to the propagation channel CDL model, Additive White Gaussian
Noise (AWGN) is incorporated to simulate thermal noise at the receiver. AWGN
is modeled as a zero-mean Gaussian random process with constant power spectral
density, representing the ambient noise present in all practical wireless communication
systems.
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2.8 Performance Metrics and Evaluation in 5G

BER and BLER are two of widely used evaluation metrics in 5G. BER is defined as
the ratio of the number of erroneous bits to the total number of transmitted bits. In
contrast, BLER is the ratio of the number of erroneous blocks to the total number of
transmitted blocks. Each block typically consists of multiple bits. BLER is measured
after applying block-level error correction techniques which use LLR.

An example of such an error correction technique is the LDPC code, which is
used to correct errors at the block level. Before the transmission, signals carrying data
are divided into blocks, and each block is encoded using an LDPC encoder. After
reception, LLR is computed for each bit within the received block. LLR provides
likelihood information about each bit and serves as input to the LDPC decoder, which
iteratively processes them to correct errors. The decoder uses the parity-check matrix
of the LDPC code to identify and correct errors in the block, using the LLR values to
make informed decisions regarding the most likely transmitted bits. The output of
the LDPC decoder is a corrected block of bits, ideally with all errors removed. This
corrected block is then used to compute the BLER.

A lower BLER indicates better performance of the error correction scheme, as
fewer blocks are received with errors. BER, on the other hand, is the ratio of the
number of erroneous bits to the total number of transmitted bits. It measures the
quality of the transmission channel at the bit level. BER evaluates the raw error rate
of individual bits, before any error correction is applied. A lower BER indicates a
cleaner transmission channel with fewer bit errors, but it does not account for the
improvements provided by block-level error correction techniques.

In the visualization of evaluation, BER and BLER tend to act as dependent variables
that reflect the error performance of a receiver algorithmn, while the energy per bit to
noise power spectral density ratio (E,/Np) and SNR serve as independent variables
reflecting the simulated channel conditions.

The ratio E; /Ny provides a normalized measure of signal energy relative to the
noise level. A higher E, /Ny shows that the energy per bit is high relative to the noise
level, which generally implies better channel conditions and potentially lower BER
and BLER values. While SNR characterizes the overall channel quality at the signal
level, its relationship to E; /Ny depends on the modulation order and bit rate, given by

E, SNR:-B
—-—=— (1

No Ry
with B denoting the system bandwidth and R, referring to the bit rate. This relationship
allows SNR-based evaluations to be directly mapped to E; /Ny, and subsequently to
BER or BLER performance. The evaluation visualizations are typically presented as

BER or BLER curves versus Ej /Ny or SNR.
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3 Neural Network Background

Neural networks form a class of Al algorithms designed to emulate the intricate
operations of the human brain. One common use case is to be powerful function
approximators to simulate the relationship between features and labels. It makes
a machine learn from data through a training stage which include validation, and
evaluates the performance of this machine through testing stage. The training process
adjusts the neural network’s internal parameters, such as weights and biases, to make
the predictions approximate the target labels. Conversely, the testing process evaluates
the neural network’s predictive ability on data not encountered during training.

In contrast to the neural network’s internal parameters, hyperparameters define the
configuration of neural network training. One of the hyperparameters is the number
of epochs, which shows the number of iterative cycles used in training. During each
epoch, all samples in the training are propagated forward through the neural network
layers to produce predictions. These predictions are compared with the corresponding
target labels and then a loss function is used to show the quantified distance between
them. The parameters of the neural network are updated by minimizing this loss with
the optimization algorithms which tend to be a variant of stochastic gradient descent.
Gradients are computed by the backpropagation algorithm via the chain rule, which
facilitate the end to end learning process.

Validation is used for hyperparameter tuning and early detection of overfitting
or underfitting behaviors. However, since the signals in this thesis are randoAly
simulated, and the quantity of data is thus unbounded, the likelihood of overfitting is
reduced.

After training, the neural network is evaluated with the testing dataset. This phase
assesses the neural network’s generalization performance on unseen data. BER and
BLER serve as the evaluation metrics to estimate the neural network performance in
this thesis.

3.1 Artificial Neuron and Activation Functions

The artificial neuron is also called node or unit, and it constitutes the fundamental
computational building block of a neural network. The artificial neuron was first
introduced in [25], where it was illustrated as a mathematical representation of a
biological neuron to provide a binary threshold-based mechanism for simulating basic
logical operations. Later, [26] enhanced it by incorporating adjustable weights and a
learning algorithm, which makes many future advancements possible.
Mathematically, the artificial neuron operates by receiving multiple features, which
are then associated with specific weights and aggregated through a weighted sum. A
bias is typically added to it for the node to represent a broader class of functions. This
linear combination can be transformed by a non-linear activation function to produce
the final output of the artificial neuron. Formally, this operation can be described as

y=9¢ (Z Wik + b) @)
i=1
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,where x; denotes the /" input feature, w; denotes the corresponding weight, b is bias,

¢(+) is the activation function, and y is the output of the artificial neuron.

Middle Layer

Input Layer Output Layer

Figure 11: Neural network architecture demonstrating the modular arrangement of
artificial neurons into input, hidden, and output layers [27].

The design of the artificial neuron permits modular structure. Multiple nodes can
be organized into layers to form complex neural network structures. As illustrated in
Figure 11, nodes are arranged sequentially into input, middle (hidden), and output
layers, allowing for hierarchical feature learning. Each artificial neuron in a hidden
layer processes the outputs from the previous layer, enabling the neural network to
learn increasingly abstract representations of the features.

Activation functions are responsible for introducing non-linearity into the neural
network. They enable the neural networks to learn non-linear patterns within data.
Without activation functions, a neural network composed of nodes in multiple layers
is equivalent to a linear neural network with only one layer, lacking the representa-
tional capacity needed for complex learning tasks [28]. Universal Approximation
Theorem [29] supports it, which states that a feedforward neural network with at least
one hidden layer and non-linear activation functions can approximate any continuous
function using a sufficient number of neurons. This theoretical result confirms that
neural networks, when equipped with non-linear activation, have the potential to
represent highly complex relationships between inputs and outputs.

Historically, the step function was one of the earliest activation functions. However,
due to its non-differentiability, it is unsuitable for modern learning algorithms that rely
on gradient-based optimization. Then, the sigmoid function [30], which is defined by

o(2) =1/(1+e™), 3)

became a widely adopted alternative [31]. However, although the sigmoid function
is differentiable, it suffer the non zero centered problem and is prone to the van-
ishing gradient problem, where the derivatives of the activation functions become
progressively smaller during backpropagation [32]. The hyperbolic tangent (Tanh)
function [30] was introduced to offer a zero-centered output in the range (-1, 1), but
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still exhibits vanishing gradients under certain conditions. Then, the rectified linear
unit (ReLLU) [30], defined as

ReLU(z) = max(0, z) 4)

was introduced. It mitigates the vanishing gradient problem for positive inputs, making
it particularly effective for deep networks. Nonetheless, ReLU can cause some artificial
neurons to become inactive, leading to the "dying ReLU" problem. To address this,
various modifications such as Leaky ReLLU [33], Parametric ReLU (PReL.U) [34],
and Exponential Linear Units (ELU) [35] have been proposed. These variants aim to
maintain non-zero gradients for negative inputs, thereby ensuring more robust training
dynamics.

3.2 Loss Function and Optimization Function

The loss function guides the learning process by providing an error that needs to
be minimized by the neural network, which is achieved through updating the neural
network’s parameters. Common loss functions vary depending on the tasks.

For regression problems, two loss functions are widely used. One is the Mean
Squared Error (MSE) defined as

N
1 2
Lymsg = I ;(yz' -3, (5)
and the other is the Mean Absolute Error (MAE), defined as

N
1 .
LMAE = N;M—M- (6)

In 5 and 6, y; and J; represent the true label and the predicted value, respectively,
while N is the number of samples in the dataset.

MSE corresponds to the £, norm, penalizing larger errors more heavily due to the
squaring operation, making it sensitive to outliers. It is commonly used when large
errors should be strongly discouraged. In contrast, MAE is defined using the £; norm. It
treats all errors equally, regardless of their magnitude, making it more robust to outliers
but potentially slower to converge during training. The choice between MSE and MAE
often depends on the specific characteristics of the task. For smoother predictions and
when large errors are especially undesirable, MSE is typically preferred.

For classification tasks, the Cross-Entropy Loss is often employed, especially when
the predictions are probabilities after a Softmax activation. It is given as

C
Leg =~ vilog(5). ()
i=1
where C is the number of classes.
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The most common selection of optimization techniques is based on gradient
descent. One of them is Stochastic Gradient Descent (SGD) [36] [37] which updates
parameters according to the gradient of the loss function with respect to each parameter.
Given a hyperparameter learning rate 7, the parameter update rule is illustrated in
Equation 8.

0 —6-nVeL, (8)

where 6 denotes the parameters and Vg L is the gradient. Variants of SGD, such as
Momentum, RMSprop, and Adam [38], have been developed to improve convergence
speed and stability. Adam, in particular, combines the advantages of adaptive learning
rates and momentum, making it highly effective and popular in many neural network
applications.

3.3 Basic Neural Network Architectures
3.3.1 Convolutional Neural Network

The CNN is another foundational neural network. It is designed specifically for
processing data with a grid-like topology, such as images. Figure 12 presents an
example of the CNN architecture.

Fully

Convolution Connected

Input

Figure 12: General architecture of a CNN, consisting of an input layer, convolutional
and pooling layers for feature extraction, and fully connected layers for classifica-
tion [39].

Images are used as data to illustrate the architecture of CNN here. Convolution
is applied to create feature maps by performing convolution operations via filters.
Pooling can be used after convolution to reduce dimensions of feature maps while
preserving the important information. Fully connected tend to be applied at the end
of CNN to transform the flattened feature maps into outputs, where the number of
outputs corresponds to the number of labels. The features to the CNN is typically a
multidimensional tensor, as shown in Figure 13. Its dimension is (C, H, W), where C,
H and W denote the number of channels, height and width.
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Figure 13: Illustration of the convolution operation in a CNN [27]. Input data with
dimensions is processed using a set of filters , producing output feature maps of size .
A bias term is added before applying non-linear activation functions.

A set of learnable filters, which are also called kernels, are applied to the features
with the shape (C, FH, FW) each, where FH and FW are the filter height and width,
respectively. Thus, the full set of filters is denoted with the shape (FN,C, FH, FW),
where F'N is the number of filters applied. These filters are convolved with the
features using the convolution operator, producing an intermediate tensor with the
shape (FN,OH,OW), where OH and OW represent the height and width determined
by the convolutional stride and padding parameters.

Following the convolution operation, a bias with the shape (FN, 1, 1) is added
via broadcasting to help the neural network improve the representational capacity.
The output of this process is a tensor with the shape (FN, OH, OW), constituting the
transformed feature maps. Following the convolutional layer, a non-linear activation
function, which tend to be ReLLU, is applied to introduce non-linearity into the neural
network.

3.3.2 Residual neural Network

Neural networks encounter challenges in optimization, especially the vanishing gradient
problem when the depth of neural network is quite large. In this problem, increasing
the number of layers beyond a certain point leads to a decline in training accuracy. It
contradicts the expected behavior that deeper networks should perform at least as well
as shallower ones. ResNet is a neural network introduced in [40] to solve this problem
by incorporating residual learning into the network architecture.

Instead of attempting to learn an underlying mapping directly, a ResNet block
learns the residual function with respect to the input [40]. Figure 14 illustrates the
structure of a typical residual block, in which x denote the input to this block. Rather
than directly learning a mapping H(x), the residual block aims to learn a residual
function F(x) = H(x) — x, thereby reformulating the mapping as

H(x) = F(x) +x. )]

This formulation is implemented by introducing an identity connection that bypasses
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x + F(x)

Figure 14: Structure of a Residual Block in ResNet [40]. This block demonstrates
the concept of residual learning, where the input (x) is directly added to the output of
the residual function (£ (x)) through an identity connection. This design facilitates
improved gradient flow during backpropagation, addressing the vanishing gradient
problem in deep networks.

one or more layers to enable the input x to be added directly to the output of the
residual function F(x).

These residual connections could improve the gradient flow during backpropa-
gation, since the identity connections enable gradients to propagate more directly
through the network. Thus, it mitigates the vanishing gradient problem that typically
hampers the training of very deep architectures. This enhancement allows networks
with residual blocks to converge faster and more reliably than their plain counterparts.

Figure 15: Architecture of a ResNet Model [40]. The diagram illustrates a sequence
of residual blocks, each comprising convolutional layers, batch normalization, and
activation functions. The identity connections in each block enable the direct addition
of the input to the output, enhancing training efficiency and convergence.

The architecture of a ResNet is composed of multiple residual blocks, as shown in
Figure 15. They are stacked sequentially to form a deep computational graph. Each
residual block typically consists of two or more convolutional layers, followed by
batch normalization and non-linear activation functions. The key characteristic of the
ResNet’s architecture is the identity connection in each block. This architectural design
allows for the construction of neural networks with greater depth than previous neural
networks, enabling the extraction of complex features with improved performance.
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4 Methodology

4.1 Related Work

Over the past few years, Al techniques have emerged as powerful tools to enhance
or replace the classical channel estimation methods such as Least Squares (LS) and
MMSE. Although these traditional approaches are analytically tractable, they often
struggle to adapt to the complex and non-linear conditions in wireless channels in 5G.
Neural networks, particularly convolutional and recurrent architectures, have shown
significant promise in capturing both spatial and temporal dependencies in channel
conditions, particularly under pilot scarce or high mobility scenarios [41].

The CNN is effective for channel estimation due to its ability to exploit local spatial
correlations in time-frequency grids. In [42], a CNN-based approach to estimate
cascaded 5G channels was introduced, showing that CNN outperforms classical
estimators in dense multipath scenarios. Similarly, [43] proposed an enhanced CNN
framework for MIMO-OFDM systems with polar-coded transmission over realistic
5G channels, achieving notable accuracy improvements.

To further improve depth and representational power, ResNet has been incorporated
in recent works. Particularly, [44] demonstrated the effectiveness of 2D/3D ResNet
architectures for channel estimation in 4G and 5G NR systems. Moreover, [45]
advanced this direction by combining ResNet and U-Net in a two-stage estimation
scheme, optimized for mmWave massive MIMO settings.

While CNN and ResNet architectures excel at spatial interpolation, they do not
inherently account for temporal correlation. Long Short-Term Memory (LSTM)
networks are designed precisely for sequential dependencies. For example, [46]
showed that a bi-directional LSTM can denoise time-varying TDL-C channels in
massive-MIMO OFDM and outperform static estimators. Beyond the physical layer,
residual LSTM neural networks have improved mobility management by forecasting
future user positions [47] and enabled intelligent traffic steering in Open RAN [48].

Other innovations have been proposed to enhance channel estimation, which
include SRGAN-based estimation [49] and compressed sensing approaches [50],
revealing a broad spectrum of DL architectures applicable to the channel estimation
problem. Moreover, [51] proposed Channelformer, a Transformer-based neural
network employing self-attention to capture global dependencies in the channel matrix,
and achieving real-time adaptability via online training. While Transformers show
promise, they often come with high computational overhead, making CNN and ResNet
hybrids more suitable for low-latency applications.

Compared to the most commonly used Al-based methods in channel estimation,
which focus on minimizing the MSE between predicted and ideal channel conditions,
several recent studies have emphasized throughput as a critical optimization objective
in 5G systems. The throughput-oriented design seeks not just to reconstruct channel
conditions accurately, but also enhances end-to-end communication performance. For
example, [52] employed Al techniques to predict LTE and 5G network throughput,
aiding in dynamic resource allocation and improving QoS provisioning. Similarly,
[53] has proposed a data-driven framework for downlink throughput prediction across
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4G-LTE and 5G networks, demonstrating improved accuracy through feature-rich
modeling of network states. More granular approaches, such as the LSTM-based
method in [54], modeled user traffic patterns to anticipate future data rates, enabling
proactive scheduling and traffic steering. These works illustrate a growing trend
toward aligning Al-driven neural networks with system-level metrics, moving beyond
traditional estimation errors to optimize the metrics that matter most in deployment,
particularly throughput.

The work in this thesis takes a novel approach by embedding throughput directly
into the training objective of a CNN-based ResNet neural network. Rather than
using traditional loss functions between predicted and ideal channel conditions,
soft demapper’s outputs LLRs are incorporated into the throughput optimized loss
function. While channel smoothing has not been trained before with LLR-based loss
functions, this loss function has been succesfully explored by DeepRx [55] and Sionna
tutorials [56]. This loss function allows the neural network to iteratively refine its
channel estimates based on the throughput, which could improve performance in the
system level and enable training to be done on data collected from real BSs.

4.2 Signal Transmission and Reception
4.2.1 Signal Transmission

As illustrated in Figure 16, the payload is generated by UE itself and transmitted on
uplink channels, such as PUSCH. The binary payload can be represented as a bitstream

b= [by,bs,..., b (10)

which can be modulated, for example, using 16-QAM in modulation block, where
each complex-valued symbol represents 4 bits,

X = [X1, X, ..., Xi], wherek:% (11

Each symbol X; is drawn from the 16-QAM constellation. For a single transmit
antenna (N = 1), the modulated symbols are directly mapped to one transmission
layer. These symbols are placed into a time-frequency RG € CNoXNiayersXNsymbXNsubcarriers |

In this thesis, 14 OFDM symbols per slot and 96 subcarriers per OFDM symbol
are configured. A pilot signal DMRS is inserted into the third OFDM symbol across
all subcarriers to enable channel estimation. To simulate the characteristics of 5G
pilot features, a pilot mask M is applied to DMRS, which is illustrated in detial in
subsection 5.2.1. This mask ensures that the pilot values alternate across subcarriers,
enhancing the signal’s ability to carry more data, which is a key characteristic of 5G
technology. The pilot values are defined as

X, [i] %, for even i (12)
1| =
b 0, for odd i,

where j = V-1.
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Figure 16: Diagram of the signal processing chain for uplink transmission in the
thesis, illustrating the generation and modulation of the payload, layer and resource
element mapping, and modulation. The process includes DMRS generation for channel
estimation, followed by transmission through a wireless fading channel with noise.
The received signal undergoes demodulation, channel smoothing, and equalization,
with feedback loops for optimization and soft demodulation.

The RG undergoes OFDMA modulation via an IFFT, yielding the time-domain
signal

x(f) = Z Xel 211, (13)
7

Thus, the received signal y(7) is aligned when the transmitted signal x(¢) is filtered
and transmitted over a wireless channel modeled using the CDL and AWGN as

N
y(1) = D hi(0) - x(t =) +n(t). (14)
i=1

where h;(¢) and 7; denote the gain and delay of the i-th path, and n(z) refer to the
noise.

4.2.2 5G Receiver Architecture

At the receiver stage, it first synchronizes using STO and CFO correction. The
time-domain signal is then transformed back into the frequency domain using the FFT
as

Y:/ y(1)e /21 gt (15)

oo

31



Channel estimation which includes raw channel estimation and channel smoothing
is based on
Y=H-X+N, (16)

where H refer to ideal fading channel conditions, X is transmitted signals, N is
Gaussian noise following N (0, 02), and Y is the received signal in frequency domain.
LS method is used for raw channel estimation Hy g via minimizing the LS cost function

J(Hyis) = ||Y, — HisX,|*. (17)

Through setting the cost function’s derivative equal to zero, A g is obtained with pilot
transmitted symbol X, and pilot received symbol Y, given as

Ais = X;'Y,. (18)

This raw estimate H g is noisy and discrete in time and frequency domain. In
channel smoothing, a neural network is applied to smooth it, given as

H = f(WH.s + B) (19)

where W and B are learnable parameters and f is the activation function. The channel
estimate A is then used in equalization. MMSE equalization is applied to estimate
the transmitted signal carrying data X; from the received signal carrying data Y,
according to the equation:

Xy = GumseYy (20

where Gyvsg can be derived from minimizing the MSE ||GyvvseYy — X4 ||? via setting
its derivative with repect to Gyvsg to zero. Thus, Gyvse can be found to be

27\l
o A O'I) ' 21

GMMSE = I:IH (HHH + T

After setting 16-QAM modulation under Gaussian noise N (0, o-?) in this thesis,
the LLR is computed by MAP estimation as

Pwmzly&w
P(by=0]Xy))"

LLR(b,,) = log ( (22)
This provides LLR for the loss function in the thesis to update the parameters W

and B in channel smoothing. This loss function is defined as Binary Cross-Entropy
(BCE) fuction between LLR which is RY and true coded bits b € {0, 1}V as follows.

N
1
LBcE = N [bmlog o (LLR(Dy)) + (1 = by) log(1 — o (LLR(by)))]  (23)
m=1
where o (-) is the sigmoid function that maps LLRs to bit probabilities.
The BCE loss function is differentiable, allowing the gradients to be computed

with respect to the neural network parameters W and B in the channel smoothing
neural network. The gradients are computed using the chain rule as follows:
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4.3 Key Architectures

In order to comply with 5G standards, the thesis is developed using Sionna simu-
lator [56], which is an open-source library for research on communication systems
developed by NVIDIA, and with TensorFlow for building neural network. Sionna
simulator provides a modular framework for simulating various components of the 5G
NR physical layer, in alignment with the 3GPP specifications. Key features used in the
thesis are supported by Sionna include stream management, OFDM RG generation,
antenna array modeling and channel modeling.

4.3.1 Proposed Neural Network Architecture

As illustrated in Figure 17, the proposed neural network combines CNN and ResNet to
interpolate and denoise raw channel estimate obtained using LS. This neural network
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Figure 17: Proposed neural network architecture combining CNN and ResNet for
channel interpolation and denoising. The network processes a tensor input of LS
channel estimates through convolutional layers and residual blocks, enhancing feature
extraction and preserving input information. The architecture includes a final dense
layer for subcarrier interpolation, outputting a refined complex-valued channel estimate.
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is applied for channel smoothing to improve the raw channel estimate.

The input to the neural network is a tensor His € REXT*7*2L where B denotes
the batch size, T corresponds to the time, g refers to the number of subcarriers
with values in a pilot symbol, and the final dimension distinguishes the real and
imaginary components of the LS channel estimate across layers L. These components
are concatenated along the channel axis to form a real-valued representation suitable
for processing by convolution.

The input firstly goes through a convolutional layer with 32 filters and kernel
size 3, which acts across the L layer axis to extract features. Its output is processed
sequentially by two residual blocks, each of which contains convolutional layers with
ReLU activations and skip connections to preserve input information. After residual
processing, the output passes through another convolutional layer that return the layers
to 2L, while keeping the real and imaginary parts of the complex form of channel
estimates separate. Then, the resulting tensor is transposed and passed through a FNN
that performs subcarrier interpolation, transforming % into F' which represents the
number of subcarriers.

Finally, interpolation is applied by repeating the channel estimate from this neural
network based on the observed pilot signals. The estimate H; € REXT*FX2L g the
output of this neural network, which is then reshaped and split into real and imaginary
components R{Har} and F{Ha}, respectively. These are combined to form the
complex-valued channel estimate as

H = R{Ha1} + j - I{Hu1}. (26)

The refined channel estimate H is then reshaped and permuted to match the format
required by the equalization process.

4.3.2 Backpropagation through classical components

Compared with the traditional training strategy that solely focuses on reconstructing
channel conditions by minimizing the error between predicted channel conditions
from the neural network and ideal ones, the key optimization strategy in this thesis is
training the neural network based on end-to-end system-level metrics to maximize
throughput. The neural network is trained by minimizing the loss between the LLRs
and the original coded bits. Unlike traditional optimization strategy that relies on
ideal channel conditions which are only achievable in simulation environments, the
necessary elements for the throughput optimized strategy are readily available in
real-life scenarios.

The loss function for the throughput optimized strategy is defined as the BCE
LpcEg between the predicted LLR vector and the true coded bit vector. Thanks to the
differentiability of the components following the channel smoothing, the gradients can
propagate from soft output decoding back to the channel estimation. The gradients of
this loss are computed with respect to the trainable parameters of the neural network,
which are shown in (24) and (25). This strategy enables this CNN-based ResNet
neural network to learn optimal channel conditions based on throughput rather than a
specific distance-based error calculation about channel conditions.
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4.4 Training and Testing Design
4.41 Training Setup

The training environment is configured to use a single GPU for efficient resource
usage. The training pipeline is made deterministic by setting fixed random seeds.

As explained in the previous section, two neural networks, which share the same
neural network architecture, but use different optimization strategies, are developed
for this thesis. One is throughput optimized channel smoothing neural network based
on predicted LLRs and true coded bits. The other one is optimized by minimizing
the distance between channel estimate and ideal channel conditions. The latter is
most common strategy [57]. Both neural networks are integrated into the 5G receiver
algorithms provided by the Sionna library, leveraging TensorFlow as the backend.

For both neural networks, the input is the raw channel estimate from the LS channel
estimator without interpolation, which will be illustrated in detail in section 5.2.2.
Specifically, the raw channel estimate is preprocessed by removing pilot signals
corresponding to masked indices. The complex-valued channel tensor is separated into
its real and imaginary components, which are concatenated to form a real-valued input.
This preprocessed raw channel estimate is then passed to the respective CNN-based
ResNet neural network.

4.4.2 Throughput Optimized Neural Network Training

The first neural network is reffered to the throughput optimized neural network which
is trained to maximize decoding throughput. In this throughput optimized neural
network, the channel smoothing, equalizer and soft demodulation are integrated
together, resulting in the generation of LLRs. The CNN-based ResNet neural network
architecture in channel smoothing has been illustrated in detail in Section 4.3.1.

During training, binary information bits are generated and encoded using a 5G
LDPC encoder. The encoded bits are modulated using 64-QAM and mapped to an
OFDM RG. The modulated signals are transmitted through a randoAly selected CDL
fading channel model from CDL A, CDL B and CDL D, and noise is added according
to the SNR specified by E;,/Ny. The raw channel estimate is calculated by LS and
sent to this throughput optimized neural network to generate LLRs.

The loss function used is the bitwise BCE, computed between the predicted LLRs
and the transmitted codeword bits. Gradients are backpropagated through the entire
throughput optimized neural network, including the soft demodulation and equalizer,
to update the CNN-based ResNet neural network’s parameters. This enables the neural
network to implicitly learn channel features that contribute most to correct decoding,
thus enhancing throughput.

4.4.3 ldeal Channel Based Neural Network Training

The second neural network is the ideal channel based neural network which has
similar CNN-based ResNet architecture, but does not include the equalizer or soft
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demodulation modules. Its objective is to reconstruct the ideal frequency-domain
channel conditions from the discrete and noisy raw channel estimate.

The training procedure is similar to that of the throughput optimized neural network,
but its output is channel estimate which is sent to the equalizer followed by channel
smoothing.

The loss function employed for this neural network is the MSE between the predicted
and ideal channel conditions. Unlike the throughput optimized neural network, the
optimization here is focused on improving the fidelity of channel estimation rather
than the decoding performance.

4.4.4 Testing Procedure

The evaluation of the proposed throughput optimized neural network and ideal channel
based neural network is conducted using the Sionna link-level simulator, employing
an OFDM system under standardized 3GPP channel models CDL C and CDL E. The
performance metrics used are the BLER and BER.

The test receiver is evaluated using four different configurations: Ideal, LS
Estimation, LLR-based Al CE, and Ideal Channel-based AI CE. Ideal serves as
the ideal benchmark. In this configuration, the receiver is provided with the ideal
channel conditions, and it gives an upper bound for performance. LS Estimation is
the baseline configuration. It employs a LS channel estimator without interpolation,
representing a simple yet widely used technique. LLR-based Al CE corresponds to
the throughput optimized neural network. It visualizes the neural network trained to
maximize throughput using LLRs as outputs. Ideal Channel-based AI CE corresponds
to the ideal channel-based neural network. It shows the neural network trained using
ideal channel conditions, which is a popular approach in Al-based methods.

The simulations are performed across a wide range of Ej; /Ny, specifically from
—5dB to 15dB, with each point averaging results over up to 100 block errors or a
maximum of 100 iterations. The batch size remains consistent across tests to ensure
comparability. For each configuration, the BER and BLER curves are recorded and
used to evaluate the robustness and decoding accuracy of the system under varying
channel and noise conditions.

Furthermore, the generalization capability of the trained neural networks is analyzed
using channel model CDL C and CDL E with multiple SNR points. This allows a
comparative visualization of channel estimates after Al-based channel smoothing
against ideal channel conditions and raw channel estimate, highlighting the performance
advantage of Al-based channel smoothing in both high and low SNR scenarios.
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5 Data and Experiments

5.1 Data

The simulation is based on a 1 X 2 system, with one transmitter antenna and two
receiver antennas, representative of a simple 5G uplink configuration. This setup
consists of a single UE equipped with one transmit antenna and a BS with two receive
antennas. To reflect realistic transmission conditions, the input bit stream is randomly
generated prior to modulation and transmission.

Within the OFDM RG, both signals carrying data and DMRS are mapped onto
PRBs comprising 96 subcarriers. These reference signals serve as the basis for channel
estimation at the receiver. Due to their sparse distribution in time and frequency,
interpolation is required to estimate the channel conditions over the full grid.

To emulate realistic propagation environments, the simulator applies 3GPP CDL
channel models to the transmitted signals. Each simulated CDL channel model also
incorporates AWGN, where noise power is sampled from a Gaussian distribution to
vary signal quality across runs.

At the receiver, the transmitted and received DMRS are extracted for raw channel
estimation. The transmitted DMRS denotes the known reference signal sent by the UE,
unaffected by channel or noise, while the received DMRS represents the corresponding
observation after propagation, subject to distortion from multipath fading and AWGN.

To estimate the channel conditions, the LS is employed given as

His = X,'Y,, (27)

This raw channel estimate Hy g serves as input to both neural networks. Additionally,
H, which represents the ideal channel conditions, is recorded from the simulator
after the channel propagation. It serves as the reference target in the loss function to
optimize the ideal channel based neural network.

5.1.1 Scenario Parameters

Table 2 outlines the detailed configuration of the simulation environment. This
simulation focuses on the PUSCH in the FR1 frequency band using time division
duplexing (TDD) at a carrier frequency of 3.5 GHz. A total bandwidth of 100 MHz is
allocated, and the subcarrier spacing is set to 30 kHz, resulting in 14 OFDM symbols
per slot, consistent with 3GPP numerology.

One CDM group without data is used, and the DMRS is transmitted on antenna ports
0 and 2. The modulation is set to 256-QAM, and the Modulation and Coding Scheme
(MCS) index is selected as 15 to maximize throughput and enhance transmission
accuracy through high-order modulation. Sounding Reference Signals (SRS) and
Phase Tracking Reference Signals (PTRS) are both disabled to focus on the core
smoothing mechanism.

Two neural networks are trained using UE motion at a speed of 10 m/s, but
evaluation is carried out across four different mobility scenarios to test generalizability.
Scenario 1 involves walking at a minimum speed of 1.4 meters per second. Scenario 2
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Parameter Values
Data Source Sionna
TX Antennas ITX
Frequency band FR1, TDD
Simulation length 1 slot
Physical channel PUSCH
# of UEs 1

PRBs 8

PRB offset 8

RX Antennas 2RX
Carrier frequency 3.5 GHz
# of layers 1

Band Width 100 MHz
Subcarrier Spacing 30 kHz
DMRS type 1

# of OFDM Symbols per slot 14

# of DMRS Symbols/position 172
DMRS Length 1

DMRS index [2]

# of CDM Groups w/o data (value) 1

DMRS port allocation (0,2), pilot pattern
Modulation Table 256QAM
MCS Index / Modulation scheme (15)

SRS SRS off
PTRS PTRS off
Delay spread (nano sec) 100
Time Offset 0 ns
Frequency Offset 0 Hz

Table 2: Simulation Parameters.
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consists of biking at a minimum speed of 5 meters per second. Scenario 3 includes
traveling by tram at a minimum speed of 8 meters per second. Scenario 4 involves
metro travel at a minimum speed of 11 meters per second.

The primary goal of the evaluation scenarios is to check how well the throughput-
oriented optimization strategies generalize to various channel dynamics introduced by
different user velocities, compared with the traditional LS estimation method and the
ideal channel conditions based neural network.

5.1.2 Dataset Parameters

Dataset Parameters Values
Training Channel models CDL A, CDL B, CDL D
Velocity 36 km/h
SNR 16 dB
Testing Channel models CDL C,CDLE
(Evaluation) Velocity 5.04, 18, 28.8, 39.6 km/h
SNR [-5, 15] dB

Table 3: Parameter ranges used for dataset generation

Table 3 summarizes the key parameters used during the signal generation process,
including the channel models, user velocities, and SNR settings.

For training, the dataset is constructed using three distinct CDL channel models:
CDL A, CDL B, and CDL D. These channel models are selected to capture a mix
of LoS and NLoS propagation effects, which are essential for learning generalized
channel conditions. The UE velocity during training is fixed at 36 km/h, corresponding
to a moderate mobility condition. A single SNR value of 16 dB is chosen to provide a
balance between noise robustness and signal clarity, thereby enabling stable learning
across diverse channel realizations.

The testing dataset is designed to rigorously evaluate the generalization ability of
the trained neural networks. It employs two unseen channel models, CDL C and CDL
E, to ensure the neural networks are not overfitted. The evaluation covers a wide range
of mobility scenarios with UE velocities set at 5.04 km/h (walking), 18 km/h (biking),
28.8 km/h (tram), and 39.6 km/h (metro). This setup allows for performance analysis
under different Doppler and fading conditions. The SNR for testing spans from —5
dB to 15 dB, to test the robustness of the neural networks under both noisy and clear
transmission conditions.

Each input sample provided to the neural networks consists of the real and imaginary
components of the raw channel estimate. These components are concatenated along
the layer dimension, preserving the spatial and temporal structure of the input while
maintaining compatibility with the neural network architecture. This representation
enables the neural networks to learn complex-valued channel patterns while maintaining
a real-valued computational framework suitable for deep learning.
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5.2 Exploratory Data Analysis
5.2.1 DeModulation Reference Signals

In this thesis, single-symbol DMRS is employed with Type 1 configuration, conforming
to the 3GPP specification. Figure 18 illustrates the specific allocation of DMRS in a
RG, where the pilot signals are interleaved across the subcarriers and positioned in the
third OFDM symbol of each slot.
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Figure 18: Allocation of single-symbol DMRS in a RG for Type 1 configuration. The
DMRS is interleaved across subcarriers and positioned in the third OFDM symbol of
each slot, optimizing channel estimation by providing representative channel conditions
across the bandwidth while maintaining spectral efficiency.

In the frequency domain, DMRS is placed on every alternate subcarrier index within
each RB to maximize throughput and support channel estimation. This structured
pattern makes channel estimation more efficient by applying interpolation between
each two pilot signals. The interleaving of DMRS provides representative channel
conditions across the full bandwidth while maintaining a sparse overhead.

Temporally, DMRS is positioned in the front OFDM symbol of each slot within the
14-symbol frame. This supports early channel estimation in the transmission timeline,
which could enhance the receiver’s ability to adapt to rapid channel fluctuations,
particularly in high-mobility scenarios.
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The placement of DMRS in the thesis represents a deliberate design trade-off
between estimation accuracy and spectral efficiency. While the sparse pilot allocation
may impose challenges for traditional channel estimation, it can effectively increase
throughput and is feasible to be solved by using Al to enhance or replace traditional
channel estimation methods. In this context, the sparsity of DMRS compels the Al to
infer robust representations of the channel model, thereby aligning the dataset design
with the operational realities of 5G systems.

5.2.2 Channel Plots
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Figure 19: Channel estimates H; s under varying SNR conditions compared to ideal
channel conditions. This figure demonstrates the impact of SNR on the channel
estimation across different CDL models (A to E), highlighting the transition from
noise-dominated estimates at low SNR to more accurate multipath representations
at higher SNR levels. The H;s in CDL D/E remain more concentrated around 1,
compared to the H; s in CDL A/B/C

To further understand the characteristics of the wireless channel models in the thesis,
visual analyses are conducted on both the channel conditions and their corresponding
statistical distributions. These analyses, presented in Figures 19 and 20, encompass
multiple SNR levels and channel models as defined by the 3GPP from CDL A to
CDLE.

Figure 19 illustrates channel estimate A} s across frequency for a range of SNR
values, beginning from severely degraded conditions (-20 dB) and extending to
high-quality transmissions (30 dB), and the ideal channel conditions. At low SNR
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Figure 20: Distribution of LS channel estimates under different SNR conditions
compared with ideal channel conditions. This figure presents histograms illustrating
how the quality of channel estimates evolves with SNR, showing broader distributions
at low SNR due to noise and more peaked distributions at higher SNR, especially in
CDL D and E which have a direct path.

levels, particularly in CDL D and CDL E, the magnitude plots are dominated by
noise, masking the underlying channel structure. As the SNR increases, the noise
influence diminishes, progressively unveiling the channel’s multipath characteristics.
For example, in CDL A, the effect of frequency selective fading becomes apparent
with increasing SNR, approximating the ideal channel conditions in the high-SNR
plot. In contrast, the HLS in CDL D and CDL E remain more concentrated around 1,
attributable to the direct path of channel models.

Complementing the magnitude plots, Figure 20 displays histograms of the LS
channel estimate across different SNR values and ideal channel conditions. These
distributions reveal how the channel estimation quality evolves with SNR. Under low
SNR, the distributions resemble broadened Rayleigh-like profiles, consistent with the
dominance of noise and random fading effects. As the SNR improves, the distributions
narrow and become more peaked, indicating increased fidelity in the channel estimates.
Notably, channels modeled by CDL D and CDL E demonstrate tighter and more
symmetric distributions at higher SNRs, reflecting simpler propagation conditions.
Conversely, CDL A, CDL B and CDL C exhibit broader distributions even under
favorable SNR, underscoring their representation of more challenging propagation
scenarios.
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5.3 Experiments Setting

The experiments are designed to evaluate the performance of throughput-optimized
neural network, compared with the ideal channel conditions based neural network
and the conventional LS estimation method in various scenarios. The core objective
is to assess whether throughput-oriented optimization strategy is feasible for neural
networks to improve the accuracy of signal transmission and ultimately maximize
throughput to replace the optimization strategy based on ideal channel conditions,
which is hard to apply in real life.

5.3.1 Evaluation Scenarios

To ensure robust generalization, both neural networks are evaluated exclusively on
channel conditions not seen during training. Specifically, the Clustered Delay Line
models CDL C and CDL E are selected as test-only channel models. CDL C simulates
challenging NLoS conditions, while CDL E represents environments with a dominant
LoS component.

The evaluation is conducted across four distinct mobility scenarios, each rep-
resenting a different user velocity and thus different levels of Doppler spread and
channel time-variation. Using CDL C and CDL E channel models together in every
test scenario ensures diversity in channel complexity, irrespective of user speed.

Scenario 1 Walking (1.4 m/s) This scenario simulates low-mobility conditions,
such as pedestrian usage in urban or suburban environments. The slow user movement
leads to minimal Doppler effects, resulting in a relatively time-invariant channel. This
case provides a baseline to examine how well the neural networks perform when the
channel varies only gradually over time.

Scenario 2 Biking (5 m/s) In this scenario, the user velocity represents moderate
mobility, typical of scenarios such as cycling in urban areas or moderate-speed
movement of small vehicles. The Doppler spread increases compared to the walking
case, introducing more rapid changes in the channel. This tests the neural network’s
ability to track moderately time-varying channel conditions.

Scenario 3 Tram (8 m/s) This higher mobility case corresponds to a user inside
a tram or light rail transit. The channel varies significantly over time due to both
mobility and more complex urban propagation, including reflections and diffraction.
This scenario challenges the neural network’s robustness against faster fading.

Scenario 4 Metro (11 m/s) This scenario captures high-mobility conditions, such
as metro or train movement in densely built-up areas or tunnels. The Doppler shift is
pronounced, and the channel coherence time is short. This represents one of the most
challenging environments for channel estimation and is used to assess the upper limits
of the smoothing neural networks’ adaptability.
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5.3.2 Performance Visualization

To isolate the contribution of the channel smoothing, all other receiver components
are held constant across experiments. Performance is evaluated in terms of BER and
BLER across a range of SNR values from —5 dB to 15 dB. Each data point is averaged
over a maximum of 100 iterations.

The proposed throughput-optimized neural network and the ideal channel conditions
based neural network are compared against the Ideal and conventional LS channel
estimator. These channel estimation methods are described in detail in section 4,
with the Ideal as comparative references to highlight their respective trade-offs and
strengths.

By encompassing a broad spectrum of realistic mobility scenarios and propagation
dynamics, this experimental setup provides a robust framework for assessing the
real-world applicability and effectiveness of Al-based channel smoothing techniques
in 5G communication systems.
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6 Analysis of the Results

The traditional and Al-based channel estimators provide various visualizations of
evaluation results. Specifically, the evaluation focuses on two different optimization
techniques for the same neural network architecture. One is trained to minimize error
relative to ideal channel conditions, and the other is trained end-to-end to optimize
decoding reliability using LLRs. The conventional LS channel estimator serves as
the baseline for these two Al channel estimators. The visualizations exhibit channel
estimate, BER, and BLER values for various scenarios which include Walking (1.4
m/s), Biking (5 m/s), Tram (8 m/s), and Metro (11 m/s), tested over CDL C and CDL
E channel models.

6.1 Channel Estimate Visualization

Figure 21 provides a qualitative comparison of the channel estimates generated by each
channel estimator in two channel models. Although it displays only one representative
example, it shows essential differences in performance between each estimator in the
frequency domain.
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Figure 21: Comparison of channel estimates from different estimators across two
channel models in the frequency domain. The LS channel estimator exhibits significant
noise and irregularity, while the ideal channel-based Al estimator closely tracks the
true channel with effective noise suppression. The throughput-optimized Al estimator
produces smoother estimates that emphasize decoding performance over precise
channel reconstruction.

The LS channel estimator produces a visibly noisy and uneven profile, making it
difficult to discern the true underlying channel conditions. This jaggedness is a hallmark
of estimation errors in noisy environments, where LS fails to adequately suppress
noise. In contrast, the ideal channel conditions based Al estimator closely follows
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Figure 22: BER performance across different mobility scenarios using the 3GPP
CDL C channel model. The figure compares the performance of LS estimation, ideal
channel-based Al estimation, and LLR-based Al estimation, highlighting the superior
performance of Al methods, particularly in low-mobility scenarios such as walking
and biking, where they achieve lower BER at lower Ej /Ny values.

the ideal channel trace. It demonstrates excellent noise suppression capability while
retaining the fine structure of the channel conditions. It achieves this by minimizing
the squared error between the channel estimate and ideal channel conditions, making
it particularly well suited for producing visually accurate estimates.

The throughput-optimized Al estimator shows a similar but different channel
estimate against the ideal channel conditions based Al estimator. Its estimate is
slightly less precise, especially around rapid variations in the channel. However, this
is because the neural network in this channel estimator is trained using LLRs from the
MAP, shaping its estimate to maximize end-to-end performance rather than estimation
accuracy. As a result, it intentionally smooths out high-frequency fluctuations that
may confuse the decoder, even if those fluctuations are present in the ideal channel.
Thus, it captures the general channel shape while filtering out noise that could impair

decoding.
6.2 Performance across CDL C and CDL E

The BER curves in Figures 22 and 23 show consistent trends. In low-mobility scenarios
like walking and biking, the throughput-optimized estimator outperforms both the
LS and ideal channel-based estimators. Both Al methods achieve slightly lower BER
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Figure 23: BER performance across different mobility scenarios using the 3GPP
CDL E channel model. The figure demonstrates the performance shift favouring the
ideal channel-based Al estimator in high-mobility scenarios, such as tram and metro,
where it maintains lower BER across a range of Ej /Ny values.

when the E;, /Ny is in the 5 — 7.5 dB range, while the LS curve shows a much more
gradual decline, only achieving acceptable BER values at higher E;, /Ny (> 8 dB). For
example, in CDL C for the biking scenario, the LLR-based method achieves a BER of
around 1073 at roughly 7 dB, while LS remains above 1072 until 8 dB.

As the UE speed increases, in the tram and metro scenarios, the ideal channel-based
neural network gradually surpasses the throughput-optimized one. In CDL E under
the metro condition, the LLR-based estimator plateaus around 103 in the 8.75 to
9.5 dB range, while the ideal neural network continues to decline faster, reaching 1073
by about 8.5 dB. LS estimation struggles to go to 1072 even at 10 dB, underlining its
inability to cope with high Doppler and fast fading.

The performance shift from the LLLR-based to the ideal channel-based neural
network at higher UE velocities indicates that the structural fidelity of the channel
estimate becomes increasingly important. The ideal neural network better captures
the time-frequency correlations across subcarriers and symbols, which is especially
beneficial in scenarios with rapidly varying channels.

Interestingly, in CDL E which includes a strong LoS path, the LLR-based estimator
appears to hold its ground longer than in CDL C. It benefits from the predictable
component in the channel, allowing its smoothed representation to remain effective
for decoding. This suggests that the throughput-optimized estimator generalizes well
in structured fading environments, despite being trained on different CDL models.

The BLER results in Figures 24 and 25 offer deeper insight into decoding stability
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Figure 24: BLER performance across different mobility scenarios using the 3GPP
CDL C channel model. This figure illustrates the effectiveness of Al-based estimators in
achieving lower BLER at reduced E, /Ny levels compared to LS estimation, especially
in low-mobility conditions.

across mobility levels. In the walking scenario, both Al-based estimators quickly reach
BLER values below 107! at E, /Ny as low as 6.5 dB, while the LS method requires
8-9 dB. In the biking scenario, the LLR-based estimator achieves BLER values close
to 1073 around 7 dB.

In high-mobility cases like tram and metro, differences become clearer. In CDL C
tram conditions, the LS channel estimator fails to reach BLER < 10~! until beyond
8.5 dB, while both neural networks achieve this threshold around 6.5-7.5 dB. Under
metro conditions in CDL E, the ideal channel-based neural network maintains lower
BLER across all E, /Ny values, particularly excelling between 7.5 and 10 dB. The
LLR-based estimator still tracks well and remains usable, though its curve begins to
flatten, suggesting slightly reduced reliability as channel dynamics intensify.

Across all conditions, the Al-based estimators outperform the LS method consis-
tently. The throughput-optimized neural network converges faster in low-mobility and
lightly faded channels, while the ideal channel-based neural network retains an edge
under severe fading. In real-world terms, this means that LLR-based smoothing offers
quicker convergence and more robustness at moderate speeds, while the ideal neural
network offers greater performance stability at the edge of receiver sensitivity.
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Figure 25: BLER performance across different mobility scenarios using the 3GPP
CDL E channel model. The figure highlights the robust performance of Al-based
estimators, particularly the ideal channel-based Al estimator, in achieving lower BLER
in high-mobility scenarios, outperforming LS estimation across all E;, /Ny values.
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7 Conclusions and Future Work

7.1 Conclusions

According to the thesis objective, the performance of throughput-optimized channel
smoothing has been investigated, and compared to that of the ideal channel conditions
based channel smoothing and the traditional LS channel estimator.

The results demonstrate that the Al-based channel estimator improves substantially
over the traditional LS channel estimator. Across all tested scenarios, the estimators
with Al channel smoothing outperformed LS channel estimator, often by a wide margin
in both BER and BLER. This confirms that Al channel smoothing has real potential
to enhance the robustness and reliability of 5G receivers.

The differences between these two Al channel smoothing methods lead to a more
nuanced conclusion. The throughput-optimized Al method, trained on LLRs, has
showed its strengths especially at lower UE speed. In walking and biking scenarios, it
consistently delivers the lowest BER and often meets the target BLER threshold of
10~ with lower required E; /Ny value than the other methods.

However, when the UE speed increased beyond 5 m/s, the performance shifts. In
higher-mobility scenarios like tram or metro conditions, the neural network trained
on ideal channels becomes more effective. Its focus on preserving the fine structure
of the channel allows it to better adapt to the rapid variations in the signal, helping
it outperform the LLR-based neural network. This suggests that while throughput-
optimized channel smoothing is more suitable for general purpose, ideal channel based
method still has value when channel dynamics become more extreme.

Channel type also has an impact. The LLR-based neural network shows stronger
relative performance in CDL E than in CDL C, which is because CDL E includes a
strong LoS path that the neural network can rely on to anchor its smoothing, helping
it maintain decoding performance even when the channel is highly scattered. Still,
in CDL E at high mobility, the ideal channel-based neural network ultimately shown
more resilient.

Given that the data required by the throughput-optimized neural network is
readily available in real-world scenarios, it stands as a strong candidate for practical
deployment in typical mobility environments. This neural network offers decoding
performance comparable to that of the ideal neural network while being trained without
access to ideal channel conditions. It performs particularly well at the 10-! BLER
threshold, which makes it suitable for real-world systems where that metric often
defines acceptable quality.

7.2 Future Work

A natural next step is to transmit the proposed throughput-oriented optimization strategy
for neural network in channel smoothing from simulation to real world deployment. In
practice, this could involve collecting received channel estimates and transmitted bits
from a live system to train the model and evaluate its impact on throughput. While this
thesis relies on the Sionna simulator, which provides a controlled environment with
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simplified channel models, the real wireless medium is considerably more complex
due to factors such as interference, mobility, and multi-antenna processing [58].

Deploying the proposed optimization strategy in channel estimation in a real
5G system raises several challenges. The training process is a bit slower than with
ideal channels, since the equalization is computationally expensive. Additionally, the
practical receiver chain must accounts for interference from neighboring UEs and BSs,
which significantly affects channel estimation and decoding performance. Addressing
these challenges is essential for bringing throughput-oriented optimization strategy to
practical use in next-generation wireless networks.
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