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ABSTRACT

Among all methods that have tackled the multi-focus image fusion problem, where a set
of multi-focus input images are fused into a single all-in-focus image, the sparse
representation based fusion methods are proved to be the most effective. Majority of these
methods approximate the input images over a single dictionary representing only the
focused feature space. However, ignoring the blurred features sets limits on the sparsity
of the obtained sparse representations and decreases the precision of the fusion.

This work proposes a novel sparsity based fusion method that utilizes a joint pair of
dictionaries, representing the focused and blurred features, for the sparse approximation
of source images. In our method, more compact sparse representations (obtained by using
both features in the sparse approximation), and classification tools (provided by using the
two known subspaces (focused and blurred)) are exploited to improve the performance
of the existing state of the art fusion methods. In order to achieve the benefits of using a
joint pair of dictionaries, a coupled dictionary learning algorithm is developed. It enforces
a common sparse representation during the simultaneous learning of two dictionaries,
fulfils the correlation between them, and improves the fusion performance. The detailed
comparison with the state of the art fusion methods shows the higher efficiency and
effectiveness of the proposed method.
______________________________________________________________________
KEY WORDS: Dictionary learning, sparse representations, multi-focus image fusion.
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1. INTRODUCTION

Conventional photography cameras can capture focused images only from objects that

are close to their plane of focus, with a limited depth of field (DOF). In order to have an

all-in-focus image from multiple objects at different distances from the camera, multiple

images with different focal settings should be taken from the scene. Then comparing all

images, the sharpest representation of each object or area should be recognized, and

finally the focused parts should be fused into one single image. This problem is called

multi-focus image fusion problem and has various applications in medical imaging,

remote sensing, computer vision, etc. (Nencini, Garzelli, Baronti, & Alparone, 2007;

Calhou & Adali, 2009; Pajares & Cruz, 2004).

To capture a sharp image from an object, the focus plane of camera should be set so that

the target is located inside the focused area, due to the camera's focal settings, including

the focal distance and DOF. In this way, the image of each point from the object is

approximately a point on the image plane (see Figure 1). Since the plane of focus can be

set at one certain distance at a time, the image of objects at different distances than the

target will be captured blurred.

Figure 1. Image of a point near the plane of focus (inside DOF).
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As it can be seen in Figure 2, the image of each point from every object which is not close

enough to the camera's plane of focus is formed as a circle on the image plane. This is the

main reason of blurredness in out of focus images.

Figure 2. Image of a point away from camera's plane of focus.

In Figure 3, it is shown that in order to produce an all-in-focus image, the focused regions

in multi-focus source images, taken by different focal settings, should be detected and

fused. It should be mentioned that all source images are assumed to be taken from the

same scene and be completely registered.

In recent decades, various methods have been developed to address the multi-focus image

fusion problem. Majority of these methods can be divided into two general categories:

transform domain and spatial domain fusion methods.

The transform domain fusion methods decompose the multi-focus source images into

their transform coefficients, perform the fusion, and then invert the transform to

reconstruct the all-in-focus image. Methods such as discrete wavelet transform (DWT)

(Tian & Chen, 2012) and stationary wavelet transform (SWT) (Pradnya P. & Ruikar,

2013) are examples of the transform domain fusion methods.
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Figure 3. Multi-focus image fusion procedure.

On the other hand, the spatial domain fusion methods calculate the local features of source

images' pixels as focus measures. Then by comparing the focus measures of all

corresponding pixels (from a set of multi-focus images) they form a decision map and

finally they fuse the source images by masking them according to the obtained decision

map. Spatial frequency (SF) (Li & Yang, 2008), multi-scale weighted gradient (MWG)

(Zhou, Li, & Wang, 2014) and dense SIFT (DSIFT) (Liu, Liu, & Zengfu, 2015) are some

examples of using local features in spatial domain fusion methods.

Another approach that has been attracting significant attention in the field of image

processing, similar to many other research areas of signal processing, is the approach that

exploits the concepts of sparsity and over-completeness (Wan, Canagarajah, & Achim,

2008; Yang & Li, 2010; Wan, Qin, Zhu, & Liao, 2013). The conventional sparsity based

multi-focus image fusion approaches obtain the sparse representations of source images

over a single over-complete dictionary, learned on a training dataset of focused image

patches, then fuse the sparse representations using a fusion rule, mostly based on max-l1-

norm which relates the focus level of sparse vectors to their activity level (Yang et al.
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2010), and finally reconstruct the image from the fused sparse representation. Here, l1-

norm of a vector is given as ݔ ଵ‖ݔ‖ = ∑ ௜|∀௜ݔ| , and max-l1-norm is defined as ிݔ =

argmax‖ݔ௞‖ଵ, where ி is the most focused vector from the set ofݔ multi-focus vectors ܭ

௞ୀଵ{௞ݔ}
௄ .

Figure 4. Diagram of multi-focus image fusion using sparse representations (Credit to
(Zhang, Liu, Blum, Han, & Tao, 2018)).

The diagram in Figurej4 illustrates the general procedure of multi-focus image fusion

using the sparse representations of source images.

Using a single dictionary that is only trained on focused features limits the accuracy of

sparse coding. In other words, ignoring the blurred features in the sparse approximation

of sets of image patches limits the ways of exploiting sparsity. This leads to a higher error

in fusion performance as the selection of the most focused image patches is based on the

sparsity of their sparse representation.

In this work, a fusion method based on the sparse representations of multi-focus source

images over a couple of dictionaries that are learned over a pair of focused and blurred

datasets is proposed. The term "supervised" in the title refers to the fact that the focused

and blurred training datasets are produced manually. It is shown that providing both
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focused and blurred features improves the accuracy of the sparse coding. The accurate

sparse representations and available information on the distribution of the sparse vectors

of coefficients over the two dictionaries provides tools that help to recognize which sparse

vector is built from the focused features. Comparing the results of this work to the state

of the art fusion methods shows that the proposed method has a superior performance

both visually and quantitatively. A coupled dictionary learning method is also developed.

By correlating the corresponding atoms of the two dictionaries, the fusion results are

significantly improved, while the training time is dramatically reduced.

In the next chapter, all the basic concepts that are related to multi-focus image fusion

based on sparse image representation are explained in details. In the third chapter, the

development of proposed fusion and coupled dictionary learning methods are detailed in

two separate subsections. Our simulation results are presented in Chapter 4, and finally

the last chapter concludes what has been done in this master's thesis.
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2. BACKGROUND

In this work, a multi-focus image fusion method based on sparse representation and

coupled dictionary learning is proposed. Hence, this chapter is devoted to a review of

essential concepts of this research field. The main concepts are the general theory of

sparse image representation including sparse approximation and dictionary learning

techniques, sparse representations based fusion methods and fusion quality measuring

indexes that are used for the quantitative evaluation of the proposed method.

2.1. Sparse image representation

The concept of sparse representation is based on the fact that signals can be modeled as a

weighted sum of a small number of elements taken from a large and "good" enough set1

of atoms (basis functions (here vectors)), without losing much information. Thus, signals

are modeled as vectors of coefficients representing the weights of their building elements.

The term "sparse" stands for the fact that only few coefficients are nonzero (Wan et al.,

2008; Yang et al., 2010; Wan et al., 2013).

Figure 5. Image vectorization procedure.

1 "Good" set of atoms are discussed in details in Subsection 2.3.
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For example, in the Fourier transform, signals are decomposed to a finite number of basis

sinusoidal signals (frequencies). Considering the fact that the sinusoidal signals can have

infinite number of frequencies, the Fourier transform of a signal is a sparse representation

of that signal.

In the image processing applications, the signals are vectorized small pieces (image

patches, e.g. 8 × 8), taken from the source images as the computational cost for

processing the whole image is too high. In Figure 5, the diagram of image vectorization

procedure is represented.

Figure 6. Sparse coding procedure.

The aim of sparse coding is to approximate each vectorized patch using only a few

weighted samples from a set of predefined basis vectors. The predefined basis vectors are

called atoms and a set of atoms is a dictionary. For instance, in joint photographic expert

groups (JPEG) method, the discrete cosine transform (DCT) matrix is used as the

dictionary, where the atoms are spectrums of cosine function.
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The diagram in Figure 6 shows the procedure of sparse coding of a vectorized image

patch over an over-complete dictionary. The term "over-complete" comes from the fact

that the number of atoms in such dictionaries is greater than the number of dimensions of

the atoms. Here it means that N is greater than ݀ଶ. As it is illustrated, the image patch x

can be approximated by a linear combination of few atoms from the dictionary D. The

required atoms for the best representation then can be found by solving the following

optimization problem (Elad, 2007).

min
ఈ

଴‖ߙ‖ .ݏ      ݔ   .ݐ ≈ .ߙܦ (1)

where ‖∙‖଴ denotes the operator that counts the number of non-zero entries in a vector.

The problem (1) is known to be NP-hard and takes an unacceptable time to be computed

using conventional computers. Alternatively, relaxation, greedy methods and adaptive

dictionary learning can be used to address the sparse coding problem. In the next two

subsections, the widely used sparse approximation, and dictionary learning algorithms

are introduced.

2.2. Sparse approximation algorithms

Different approaches have been adopted to solve the sparse approximation problem.

Majority of existing methods can be categorized into two general groups: convex

relaxation and greedy methods (Tropp, 2006a; Tropp, Gilbert, & Strauss, 2006b). Some

of the most popular methods of each group are introduced next.

Relaxation methods

As it is mentioned before, one approach to solve the problem (1) is to replace the operator

‖∙‖଴ by the l1-norm. This is called convex relaxation and it is the basis of methods such

as basis pursuit (BP) in signal processing (Chen, Donoho, & Saunders, 2001) and least

absolute shrinkage and selection operator (LASSO) in statistics (Tibshirani, 2011). In

both methods the problem of sparse approximation is changed to
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݉݅݊ 
ఈ

1
2

ݔ‖ − ଶ‖ߙܦ
ଶ + ଵ (2)‖ߙ‖

where the first term is the total square error and the second term is the l1-norm of the

coefficient vector ,.Thus, the accuracy and sparsity are compromised in (2) (Chen et al .ݔ

2001).

Another widely used method based on convex minimization is the method of iteratively

reweighted least squares (IRLS). In this method the operator ‖∙‖଴ is replaced by a lp-

norm in the minimization problem for ݌ < 1, and the corresponding problem is addressed

by an iterative weighted least square (WLS) method (Chartrand & Yin, 2008).

Greedy methods

Majority of greedy sparse approximation algorithms use heuristic methods that in each

iteration look for the best matching atom from the dictionary for approximating a target

vector. The target vector ݎ) is initialized by vectorized image patches ݎ = (ݔ and then it

is updated to the residue vector ݎ ≔ ݎ − at the end of each iteration. That is why such ߙܦ

methods are also called matching pursuit (MP). The iterations are continued until either

the total error ݔ‖ − ଶ‖ߙܦ
ଶ becomes smaller than maximum tolerance error ߳ or the number

of entries of α reaches the maximum allowed number ଴ܶ (Mallat & Zhang, 1993). Thus,

instead of finding global optimum, MP approximates the solution of (1) in terms of

solving:

min 
ఈ

ݔ‖ − ଶ‖ߙܦ
ଶ .ݏ  ଴‖ߙ‖  .ݐ < ଴ܶ . (3)

The method of orthogonal matching pursuit (OMP), which is an improved version of MP,

is another commonly used sparse approximation method in signal processing. It

significantly improved the performance of MP by adding an orthogonalization step, so

that the coefficient of each selected atom (all non-zero entries) are found by least squares

method. Thus, the residue vector is always orthogonal to all atoms that are already chosen,

which means that each atom can be selected only one time. This reduces the computation
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time and guarantees the convergence of the algorithm (Pati, Rezaiifar, & Krishnaprasad,

1993).

Different variants of MP have been developed to address specific problems in different

research areas. Another variant with applications in image processing is the method of

randomized orthogonal matching pursuit (Rand-OMP). This method is based on the fact

that the average of multiple sparse representations of a signal is more accurate than the

sparsest one alone.

Obtaining multiple sparse representations from one signal is realized by selecting the

atoms based on a probability distribution that gives each atom a probability of being

selected proportional to how much it matches the residue vector. In this way, by adding

randomness, different representations are obtained in consecutive executions of algorithm

(Elad & Yavneh, 2009).

2.3. Dictionary learning algorithms

The dictionary that is required for sparse approximation can be taken from a fixed basis,

for instance DCT basis or Wavelet basis, which is of course simpler and faster. However,

using dictionaries that are customized for the specific types of data in use leads to a more

compact and accurate sparse representations.

The customization of dictionary can be realized through "learning" the dictionary over a

training data of the same type of data that the dictionary is customized for. Three of most

popular dictionary learning methods, namely K-SVD, method of optimal directions

(MOD), and online dictionary learning (OLD) are introduced next.

K-SVD

K-SVD finds a suitable dictionary for the training data by alternating between two phases:

sparse approximation and dictionary update. For the sparse approximation phase any
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pursuit algorithm can be exploited, however, OMP is the most common. The dictionary

update phase is a generalization of K-mean algorithm, modified for updating the

dictionary atom using singular value decomposition (SVD) method (Aharon, Elad, &

Bruckstein, 2006).

The problem of learning a dictionary can be formulated as:

݉݅݊
஽, ஺

‖ܺ − ଶ‖ܣܦ
ଶ .ݏ .ݐ ௜‖଴ߙ‖ < ଴ܶ , ∀݅ (4)

where ܣ = ,ଵߙ] … , [௉ߙ is the matrix of sparse representations and ௜ߙ is the i-th column of

.ܣ

In sparse approximation phase, K-SVD finds the best A (using for example OMP) over

D. Then in the dictionary update phase, having A, it updates the dictionary atoms one by

one so that the total square error ‖ܺ − ଶ‖ܣܦ
ଶ is minimized (Aharon et al.,2006).

To be more precise, after finding A, for each atom in the dictionary at time t ௞ܦ)
௧ , ݇ =

1: ܰ), the subset of vectorized patches that are using that atom ܺ௞  and their sparse

representation ௞ܣ are found. Then the residue vector set ܴ௞  is formed as

ܴ௞ = ܺ௞ − (௡ୀଵ:ே,௡ஷ௞)ܦ
௧ ௞ܣ (5)

where (௡ୀଵ:ே,௡ஷ௞)ܦ
௧  is the dictionary excluding ܦ ௞ܦ

௧  at time ௞ܦ) ݐ
௧  is replaced by a zero

vector of the same size). Then, in order to find ௞ܦ
௧ାଵ, which is the updated ௞ܦ

௧ , K-SVD

solves the following minimization problem.

௞ܦ
௧ାଵ = argmin

஽ೖ
೟

ฮ ܴ௞ − ௞ܦ
௧ ௞ܣ

௞ ฮ
ଶ
ଶ (6)

where ௞ܣ
௞  is the k-th row of ௞ܣ (the coefficients of ௞ܦ

௧ in ,௞). Thusܣ ௞ܦ
௧  is updated to

minimize the error in approximation of the residue vectors. Problem (6) is solved here

using SVD. The two phases are repeated for a predefined number of iterations (Aharon

et al., 2006).
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Method of Optimal Directions

The method of optimal directions (MOD) is similar to K-SVD in iterating between sparse

approximation and dictionary update phases. Also, it solves the same problem (4). The

only difference is that in the dictionary update phase, instead of updating the atoms one

by one using SVD, the MOD updates the dictionary by solving the equation ܺ = ܣܦ

analytically. The updated dictionary is found as ܦ = ା whereܣܺ ା is the pseudoinverseܣ

of ܣ (Engan, Aase, & Husoy, 1999).

Online dictionary learning

The online dictionary learning (OLD) method, similar to online machine learning, is

developed to address the problems where the training data is received sequentially in time,

and not at once. Thus, it is suitable in the cases when the processing data is very large, or

the dictionary is needed to be updated constantly.

The OLD solves the problem, again, using an iterative two-phase approach. First, the

sparse approximation phase solves (4) over ܣ, keeping unchanged. This is performed ܦ

based on a linear regression method, suitable for high dimensional data, which is called

least-angle regression (LARS) (Mairal, Bach, Ponce, & Sapiro, 2010).

Then, by solving the same problem (4), using the iterative method of coordinate-descent

this time over and keeping ܦ .unchanged, the dictionary is updated (Mairal et al., 2010) ܣ

2.4. Multi-focus image fusion using sparse representations

During the last decade, numerous multi-focus image fusion methods based on sparse

representations have been proposed and the results have shown that their performance is

better than those of other methods in this field (Wan et al., 2008; Yang et al., 2010; Wan

et al., 2013; Nejati, Samavi, & Shirani, 2015).



21

In general, main approaches used in the aforementioned methods can be divided into two

categories

· Fusion via sparse representations,

· Fusion via classification of sparse representations.

 An example for each categories is given below.

Fusion via sparse representations

In the methods that are based on the fusion of sparse representations, first, the sparse

representations of multi-focus source images are obtained. Next, using a selection rule,

the most focused sparse vector, among sparse representations of all corresponding

(spatially) source image patches, is found. Going across all sets of corresponding multi-

focus vectors, the fused sparse matrix is formed. At the end, using the same dictionary

that is used for sparse coding of the source images, the all-in-focus image can be

reconstructed from the fused sparse matrix. The diagram of this procedure is given in

Figure 4.

In the work of Yang et al. (2010, 884-892), a similar approach using DCT dictionary has

been proposed. However, in later experiments, it has been shown that the use of an

adaptively learned dictionary can lead to better fusion results. The improvement is

obtained in two phases of the fusion method. At first, the use of adaptively learned

dictionary improves the accuracy of fusion by yielding more compact (sparser)

representations. This helps the selection rule to be more effective in the formation of a

decision map with higher accuracy.

The second contribution of the adaptively learned dictionary is in the reconstruction

phase, where the sparse approximations are then much more accurate in comparison to

the cases where fixed basis dictionaries are used (Zhang et al. 2018). In addition, the use

of sparser representations reduces the computational cost of fusion, simply because less

nonzero entries needs to be computed.
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A popular fusion rule, that is also common in many other fields of signal processing and

statistics, is the max-l1-norm rule. This rule suggests that sparse vectors that show higher

activity level from the atoms of dictionary, in the approximations of their corresponding

data, contain higher amount of information. Here it means that they are the most focused

image patches. The measurement of the so called activity level is realized by calculating

the l1-norm of the sparse vectors (Zhang et al. 2018).

A disadvantage of the local information measuring based fusion methods, such as the

Laplacian energy, spatial Frequency and entropy in spatial domain, and l1-norm methods,

is that when a flat region in the source images is being processed, the most noisy image

patches are highly likely to be mistaken as the most focused. It is because their texture is

more complicated than the completely uniform image patches. A similar mistake is also

probable near the edges, where in the blurred images, the spread of colors or pixel

intensities form an object into a uniform region increases the local variance. A remedy

for this problem is to process images using bigger sliding windows, however, this will

dramatically increase the computational costs. A comparison between quality of fusion

and the size of sliding window is given in Figure 7.

                   (a)                    (b)                     (c)

Figure 7. Comparison of fusion results using different sizes of sliding window: (a) 22,
(b) 42, and (c) 82.

All fused images in Figure 7 are produced using the same method proposed by Yang et

al. (2010, 884-892), and the only parameter that is changed is the size of sliding window.

Looking at the shadowing effect on the horizontal edge of the bigger clock, which is
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magnified at the right bottom corner, we can see the direct impact of the window size on

the fusion quality. However, this improvement in quality is very expensive

computationally as the fusion running time (including sparse approximation) using

sliding window sizes of 22, 42 and 82 turned out to be 3.3, 18.8 and 317.4 seconds,

respectively.

Fusion via classification of sparse representations

Another approach to address the multi-focus image fusion problem is to exploit the data

classification techniques that are based on sparse representation (Wright, Ganesh, Sastry,

& Ma, 2009; Zhang, Li, & Huang, 2014; Yuan, Liu, & Yan, 2012).

As an example, a fusion method that works based on the classification using correlation

of sparse representations is as follows (Nejati et al., 2015).

The method finds the most focused image patches by comparing the correlations between

the sparse representations of local focus measures of multi-focus image patches and two

pooled feature vectors (focused or blurred).

This process requires two phases: training, and fusion. In the training phase, the two

pooled feature vectors vF and vB, and the dictionary D are obtained. Then, using D, vF and

vB, the fusion can be performed. The block-diagram of the training phase is illustrated in

Figurel8. As it can be seen, in the first step, going across the multi-focus images S1 and

S2, using a sliding window (of size, e.g., d2), the local focus measures of all pixels are

calculated and the focus information maps F1 and F2 are formed (pixel values of F1 and

F2 are the local focus measures of pixels in S1 and S2, respectively).

Next, by applying the patch extraction process to F1 and F2, the matrices X1 and X2 are

formed, which are used as the training data for adaptively learning the dictionary D. Then,

all the patches in X1 and X2 are manually labeled as focused or blurred, so two patch

groups XF and XB (the focused and blurred datasets, respectively) are produced. By sparse

approximation of the grouped patches, the sparse matrices AF and AB are obtained, and
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finally by raw-wise aggregation of AF and AB, using maximum or average pooling

methods, two pooled feature vectors vF and vB are obtained (Nejati et al., 2015).

Figure 8. Multi-focus image fusion based on classification of sparse representations of
focus measures, training phase.

In fusion phase (see Figure 9), first the focus information maps (F1 and F2) are extracted

from the input multi-focus source images (S1 and S2), and then their sparse representations

(A1 and A2) are found over the dictionary D. It should be noted that similar focus measures

are used in the training and fusion phases.

Next, by comparing the correlations between the corresponding sparse vectors in sparse

representation matrices (A1 and A2) and the pooled feature vectors vF and vB, the focused

pixels are found and the decision map is formed. The correlation values are calculated

using dot product of the vectors. Finally, by masking the multi-focus source images using

the decision map, the all-in-focus fuse image is obtained (Nejati et al., 2015).
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Figure 9. Multi-focus image fusion based on classification of sparse representations of
focus measures, fusion phase.

2.5. Fusion quality measures

The importance of image fusion applications in unmanned systems (e.g., satellite imaging

(Nichol & Wong, 2005)) and the ever increasing customer demand for convenience in all

commercial sectors that utilize image fusion techniques (e.g., medical imagery, mobile

phone industry, etc.) lead to recognition that the quantitative measurement of

performance in image processing is an important problem. Moreover, a precise method

for measuring the quality of fusion can be a part of the solution of the multi-focus image

fusion problem itself, because it can be used as an objective function for designing a

fusion method. Therefore, the problem of finding effective methods for the objective

evaluation of image fusion quality remains an important topic in the image fusion research

field.

In this work, the fusion quality is evaluated using four quality measurement indexes: the

objective image fusion measure (ܳ஺஻/ி ) (Xydeas & Petrovic, 2000), normalized mutual

information (NMI) (Hossny, Nahavandi, & Creighton, 2008), structural similarity index

(SSIM) (Wang & Bovik, 2004), and mean squared error (MSE). The first two indexes
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are non-reference-based, meaning that they compare the fused image only to the source

images, and the second two indexes are reference-based, which means they compare the

produced all-in-focus image to a reference image known as the ideal perfect fusion of the

source images.

Petrovic's index

The objective image fusion measure ܳ஺஻/ி, also known as Petrovic's index, evaluates

how the important visual information of source images are transferred into the fused

image. Here the important information in images is the edge information.

In this method, using the edge strength and edge orientation information of source

images, obtained by applying the Sobel edge operator2, the indexes ܳఈ
஺ி  and ܳ௚

஺ி , which

respectively show how well the edge and strength information of the pixels of source

image A are persisted in the fused image F, are computed. Then ܳ஺ி  is calculated as

ܳ஺ி = ܳఈ
஺ி . ܳ௚

஺ி . (7)

For example, for the case with two source images (A and B) of size ܯ × ܰ, ܳ஺஻/ி  is

calculated as

ܳ஺஻/ி =
∑ ∑ ܳ஺ிெ

௠ୀଵ (݊, ஺ேݓ(݉
௡ୀଵ (݊, ݉) + ܳ஻ி(݊, ,݊)஻ிݓ(݉ ݉)

∑ ∑ ஺ிݓ (݊, ݉) + ,݊)஻ிݓ ݉)ெ
௠ୀଵ

ெ
௡ୀଵ

(8)

where (n, m) is the pixel location in the image and ,݊)஺ிݓ ݉) and ,݊)஻ிݓ ݉) are the

weights of ܳ஺ி (݊, ݉) and ܳ஻ி(݊, ݉). The formula (8) can be expanded for more than

two source images by finding the weighted average of more ܳ௑ி  indexes, where X can

be from any number of images (Xydeas et al., 2000).

2   "The Sobel operator performs a 2-D spatial gradient measurement on an image and so emphasizes regions
of high spatial frequency that correspond to edges" (Fisher,   Perkins,   Walker, &   Wolfart, 2003).
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Normalized mutual information

The normalized mutual information (NMI) is a modified version of the mutual

information measuring index (MI) that is widely used in information processing field.

The MI calculates the mutual information using the marginal entropies of source images,

H(X) and H(Y), and their joint entropy, H(X, Y), as (Hossny et al., 2008)

,ܺ)ܫܯ ܻ) = (ܺ)ܪ + (ܻ)ܪ − ,ܺ)ܪ ܻ) . (9)

For the case of image fusion, MI is found as

,ܣ)ܫܯ ,ܤ (ܨ = ,ܣ)ܫܯ (ܨ + ,ܤ)ܫܯ (ܨ (10)

where A and B are the source images and F is the fused image. The NMI is then the

normalized version of (10), and it is found as

,ܣ)ܫܯܰ ,ܤ (ܨ = 2 ቈ 
,ܣ)ܫܯ (ܨ

(ܣ)ܪ + (ܨ)ܪ +
,ܤ)ܫܯ (ܨ

(ܤ)ܪ + .቉(ܨ)ܪ
(11)

The NMI measures how precise the pixel information (intensities) from the source images

is transferred to the fused image (Hossny et al., 2008).

Structural similarity

The structural similarity (SSIM) index compares the input signals (here the reference and

fused images) through three features: luminance, contrast and structure. All three features

are calculated locally using a sliding window, then the global measurement is obtained

by averaging all local measures (Wang et al. , 2004).

The luminance is estimated using local mean intensity as
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݈௜,௝ = ௜,௝ߤ =
1

݀ଶ ෍ ௡ݔ

ௗమ

௡ୀଵ

(12)

where ݈௜,௝ is the luminance of the sliding window with size d2 and the right top corner at

location (݅, ݆), and is the vectorized form of the patch that corresponds to the sliding ݔ

window.

To calculate the local contrast ܿ, first the mean intensities are removed from the signal

ݔ) = ݔ − ݈), so both the reference and fused images have same local mean intensities.

Then the contrast is calculated using standard deviation as

ܿ௜,௝ = ௜,௝ߪ = ቌ
1

݀ଶ − 1 ෍(ݔ௡ − ௜,௝)ଶߤ
ௗమ

௡ୀଵ

ቍ

ଵ/ଶ (13)

where ௜,௝ is the mean intensity ofߤ ௜,௝. The structure components of signals are obtainedݔ

by removing their mean intensities and dividing them by their standard deviation as

(Wang et al., 2004)

௜,௝ݏ =
௜,௝ݔ − ݈௜,௝

ܿ௜,௝
=

௜,௝ݔ − ௜,௝ߤ

௜,௝ߪ
.

(14)

Thus, structure components have zero mean and unit standard deviation (the normalized

reference and fused image patches).

The simplified formula for calculating local ௜,௝ is given asܯܫܵܵ

௜,௝ܯܫܵܵ =
௥௘௙ߤ௙ߤ2) + ௫௬ߪଵ)(2ܥ + (ଶܥ

௙ߤ)
ଶ + ௥௘௙ߤ

ଶ + ௫ߪ)(ଵܥ
ଶ + ௬ߪ

ଶ + (ଶܥ
(15)

Where the sub-scripts f and ref stand for the patches from the fused and reference images,

respectively, with top right corner at location (݅, ݆), and C1 and C2 are constants that
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stabilize the function in the cases that ௙ߤ)
ଶ + ௥௘௙ߤ

ଶ ) and (ߪ௫
ଶ + ௬ߪ

ଶ) are close to zero. The

global value of SSIM is calculated by averaging all the local ௜,௝ܯܫܵܵ  values for all (݅, ݆)

(Wang et al. , 2004).

Mean square error

The mean square error (MSE) is a simple statistical measure for calculation of the

average squared difference between two signals, which here are the fused (F) and

reference (Ref) images. For two dimensional (gray scale) images of size ܰ × the MSE ,ܯ

is calculated as

ܧܵܯ =
1

ܰ × ܯ ෍ ෍(ܨ௜,௝ − ܴ݁ ௜݂,௝)ଶ
ெ

௝ୀଵ

ே

௜ୀଵ

.
(16)
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3. PROPOSED METHOD

This work proposes a fusion method based on the sparse representations of multi-focus

source images over a couple of dictionaries, representing the focused and blurred feature

spaces. The dictionaries are learned using two separate training datasets, one taken from

all-in-focus and the other from all-out-of-focus images.

3.1. Problem formulation

The problem of finding a smooth all-in-focus image ி by fusing all focused regions of aܫ

set of K multi-focus source images ௞ୀଵ{௞ܫ}
௄ can be formulated as

ிܫ = ℱ{ܫ௞}௞ୀଵ
௄ + ܸ (17)

where ℱ{∙} is the fusion operator and ܸ represents the noise. The problem of finding an

optimal ℱ{ܫ௞}௞ୀଵ
௄ is an ill-posed3 problem. Thus, ி can be found as aܫ maximum a-

posteriori probability (MAP) estimation

ிܫ = argmax
ூಷ

௞ୀଵ{௞ܫ})݌
௄ .(ிܫ| (ிܫ)݌ (18)

where the first term (likelihood) admits the similarity between ிܫ and the source images,

and the prior guarantees the smoothness and sharpness of the fused image. Considering

the fact that fusion is performed using image patches, the fusion problem can be rewritten

as the following optimization problem

min
௜ಷ

‖݅ி − ℱ{ ிܦ] , ,[஻ܦ {݅௞}௞ୀଵ
௄ } ‖ி

ଶ + (ிܫ)݌ߟ (18)

3 See Appendix 1
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where {݅௞}௞ୀଵ
௄  are K sets of patches extracted from multi-focus images {ܫ௞}௞ୀଵ

௄ , ݅ி is the

locally found focused patches, and is the penalty function enforcing the global (ிܫ)݌ߟ

smoothness and sharpness of the reconstructed image ி, withܫ being the regularization ߟ

parameter. The notation ‖∙‖ி
ଶ  stands for the Frobenios norm of a matrix.

The notation ிܦ] , ஻] represents the fact that fusion is performed over a coupledܦ

dictionary, consisting ,஻ representing blurred and focused dictionariesܦ ிandܦ

respectively. The first term in the optimization problem (18) concerns the local fusion,

while the second term concerns the global reconstruction of ܫி.

Figure 10. Diagram of the proposed fusion method.

In the block-diagram shown in Figure 10, the proposed fusion method is illustrated. First,

according to the block patch extraction, the input image patches {݅௞}௞ୀଵ
௄  are extracted

from {ܫ௞}௞ୀଵ
௄  using the same method that has been explained in Chapter 2, Subsection 2.1.

In the block coupled dictionary learning, ஻are learned using the focus andܦ ிandܦ

blurred training data, respectively, which are denoted here by ܺிand ܺ஻ .
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The proposed fusion operator is divided into three sub-blocks. After the sparse

representations of K sets of image patches, {ߙ௞}௞ୀଵ
௄  are obtained, and then the most

focused vectors are found using the proposed fusion rule and the mask ℳ is formed.

Finally, using ℳ and {݅௞}௞ୀଵ
௄ , the all-in-focus image is reconstructed.

To avoid blocking artifacts and uneven edges in the procedure of reconstruction of the

all-in-focus image, overlapping patches are extracted from the source images. This helps

to obtain a smoother image by averaging multiple patches at each pixel location, so the

unwanted sudden changes of intensity in neighbor pixels are avoided.

Figure 11. Extracting overlapping patches from images.

In Figure 11, a visual example of extracting overlapping patches from an image is shown.

The point P appears in multiple patches. Thus, the reconstruction of this point is an

average of all points at the same location from all patches that include this point. A bigger

sliding window increases the number of these patches, while bigger sliding step decreases

it.

In reconstruction phase, the image is obtained by, first, adding all patches at their

corresponding positions, and then element-wise dividing the resulted matrix by a weight
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matrix, where the entries of the weight matrix are the number of patches that include the

entries.

3.2. Proposed fusion method

The proposed fusing operator can be formulated as

݅ி ≜ ℱ൛{݅௞}௞ୀଵ
௄ ൟ

= ℳ ቄℛ൛ℒ{ߙ௞; ݅௞ , ௞ୀଵ{ܦ
௄ ൟ ቅ . {݅௞}௞ୀଵ

௄  .

(19)

Equation (19) shows that the local fusion operation is performed by applying the mask

operator ℳ to the K sets of source image patches, {݅௞}௞ୀଵ
௄ , where the mask operator is

obtained using the selection operator ℛ{∙}.

The operator ℒ{∙} yields the sparse coefficient vectors ௞ୀଵ{௞ߙ}
௄  by sparse approximation

of image patches {݅௞}௞ୀଵ
௄  over the coupled dictionary ܦ = ிܦ] , ஻]. This operator isܦ

found by solving the following problem

ℒ{ߙ௞; ݅௞, {ܦ = argmin
ఈೖ

௞‖ଵߙ‖ .ݏ .ݐ .ܦ‖ ௞ߙ − ݅௞‖ଶ
ଶ ≤ ߳ (20)

where ߳ is the maximum tolerance parameter. Here problem (20) is solved using the OMP

(Aharon et al., 2006). To reduce the computational cost and ignore the effect of luminance

in the selection operator the mean values of extracted source image patches are

removed ൫݅௞ = ݅௞ − ݉݁ܽ݊(݅௞)൯ before sparse approximation. The zero mean image

patches are only used for the sparse approximation, not in the reconstruction phase.

According to second line of (19), after obtaining {ߙ௞}௞ୀଵ
௄ , the selection operator ℛ{∙} is

applied to find the sparse coefficient vectors that represent the most focused image

patch ݅ி, and their corresponding index ݇ி.
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Based on the max-l1-norm rule, the sparse vectors with larger l1-norm are approximated

with higher activity level and represent the image patches with the most focus level (Yang

et al., 2010). The proposed selection operator calculates the weighted l1-norm. The weight

for the entries that corresponds to atoms from the focused subspace is greater than the

weight that corresponds to the entries that are related to the blurred subspace. It leads to

a significantly more accurate decision map. The formulation of such a selection operator

is as follows

݇ி = ℛ൛ ௞ୀଵ{௞ߙ}
௄ ൟ

= argmax
௞

ቄ(1 − .(ߛ ฮƤఈೖ
ฮ(ிܦ)

ଵ
+ .ߛ ฮƤఈೖ

ฮ(஻ܦ)
ଵ
ቅ

(21)

where (1 − (ߛ and ߛ are the weights corresponding to the blurred and focused subspaces,

respectively, 0 ≤ ߛ ≤ 0.5, and Ƥఈೖ
and (ிܦ) Ƥఈೖ

are the projection of the vector (஻ܦ) ௞ߙ

onto the subspaces ிandܦ ஻, respectively. Thus, this operator, in addition to theܦ l1-norm,

also utilizes the information about the distribution of sparse vectors entries over the two

subspaces as a comparison tool. In this way, the sparse vectors with higher activity levels

and larger coefficient in the focused subspace are found as the most focused vectors.

Then, the local all-in-focus image patches are found by applying the mask operator ग

given as

݅ி = ℳ൛݉, {݅௞}௞ୀଵ
௄ ൟ = ෍ ݉௞. ݅௞

௄

௜ୀଵ

(22)

where ݉ = [݉ଵ, … , ݉௞]் is the mask vector with elements defined as

݉௞ = ൜1, ݂݅ ݇ = ݇ி

0, .݁ݏ݅ݓݎℎ݁ݐ݋
(23)
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Repeating the same procedure for all sets of K corresponding source image patches,

across the whole source images, all local all-in-focus patches are obtained. Then, the all-

in-focus image .ிcan be formed by patch-wise reconstruction of themܫ

3.3. Coupled Dictionary Learning

The dictionaries ிandܦ ஻ can be learned separately using a dictionary learning methodܦ

such as K-SVD (Aharon et al., 2006). The separately learned dictionaries, as it is shown

in Figure 12, contain either repeated or uncorrelated atoms. Thus, the proposed dictionary

learning method aims to produce a couple of dictionaries, so that by providing the

correlation between their atoms, each atom in ஻ represents a blurred version of itsܦ

corresponding atom in ிܦ .

(a) (b)

Figure 12. Separately learned dictionaries: (a) blurred dictionary DB and (b) focused
dictionary DF.

In the next chapter, it is practically shown that the coupled dictionary learned by the

proposed method significantly improves the fusion results while reducing the

computational cost.
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The correlation between atoms is ensured by enforcing a similar sparse representations

of both training datasets (focused and blurred) during dictionary learning. The

corresponding optimization problem can be formulated as

min 
஽ಷ,஽ಳ,௰

‖ܺி − ி‖߁ிܦ
ଶ + ‖ܺ஻ − ி‖߁஻ܦ

ଶ .ݏ    ௜߁‖   .ݐ ‖଴ < ଴ܶ , ∀݅  (24)

where Γ is the sparse coding matrix (the same for both dictionaries) and ଴ܶ is the sparsity

constraint. Thus, updates of the dictionaries can be performed separately using the same

sparse coding matrix. In this work, K-SVD is used for the dictionary update phase. The

diagram of the proposed coupled dictionary learning method is given in Figure 13.

Figure 13. The diagram of the proposed coupled dictionary learning method. The
algorithm is initialized using DCT dictionary.

The joint sparse coding problem is addressed by modifying the OMP method to solve

min 
௰

‖ܺி − ி‖߁ிܦ
ଶ + ‖ܺ஻ − ி‖߁஻ܦ

ଶ .ݏ    ௜߁‖   .ݐ ‖଴ < ଴ܶ , ∀݅  (25)

that can be rewritten as

min 
 ௰

‖ܺ − ி‖߁ܦ
ଶ .ݏ   ௜‖଴߁‖   .ݐ < ଴ܶ , ∀݅  (26)
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where

ܺ = ቈ
ܺி

ܺ஻቉ and ܦ = ቈ
ிܦ

.஻቉ܦ
(27)

The modified OMP, in each iteration, finds the atom ݀௠ from D that matches the best the

residue vector ௜ݔ = ቂݔ௜
ி் , ௜ݔ

஻்ቃ
்
, where ௜ݔ

ி and ௜ݔ
஻ are first initialized by ௜ܺ

ி and ௜ܺ
஻ . It is

performed by solving the following optimization problem

݀௠ = argmax
ௗ೘

‖݀௠
் . ௜‖ிݔ

ଶ , ∀݉ (28)

where ݀௠
்  stands for the transpose of vector ݀௠. After each iteration (adding a coefficient

to ,(௜߁ ௜ is updated usingݔ

௜ݔ = ௜ܺ − ௜߁ܦ . (29)

When ݀௠ is selected, the coefficient is found by solving

min
௰೔

೘
ฮݔ௜

ி − ݀௠
ி ௜߁

௠ฮ
ி
ଶ

+ ฮݔ௜
஻ − ݀௠

஻ ௜߁
௠ฮ

ி
ଶ (30)

which is equivalent to solving

min
௰೔

೘
௜ݔ‖ − ݀௠߁௜

௠‖ி
ଶ (31)

where ݀௠ = [݀௠
ி , ݀௠

஻ ]் and ௜߁
௠ is the m-th entry of ௜߁ . Problem (30) can be solved using

SVD. The algorithm iterates and adds new coefficients until either the number of

coefficients reaches its maximum number ଴ܶ or the error becomes less than ߳. The error

is computed here as

݁ = ௜‖ிݔ‖
ଶ  . (32)
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Alternating between K-SVD and the proposed modified OMP, the correlated coupled

dictionary is found. The overall algorithm is summarized in Algorithm 1.

Algorithm 1. Joint Sparse Coding

Input: Focused and blurred training data set ௜ܺ
ி and ௜ܺ

஻, and ܦ = ிܦ] ்[஻ܦ

ி andܦ)  .(஻ are initialized by DCT dictionaryܦ

1: for ݅ = 1 … number of patches in ܺ (Equation. (27))

2:     Set ௜ݔ = ௜ܺ;

3:     while ݁ > ߳ and ௜‖଴߁‖ < ଴ܶ

4:         Find ݀௠ using Equation. (28);

5:         Find ௜߁
௠ solving Equation. (31);

6:         Update ௜ݔ using Equation. (29) and the error using Equation. (32);

7:     end while

8: end for

Output: The common sparse representation matrix ߁

An example of dictionaries learned by the proposed method is shown in Figure 14, where

the correlation between corresponding atoms can be clearly seen. Each two corresponding

atoms represent the two (focused and blurred) versions of the same spectrum.

(a) (b)

Figure 14. Dictionaries learned by proposed method: (a) blurred dictionary DB

and (b) focused dictionary DF.
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4. SIMULATION RESULTS

In this chapter, the performance of the proposed fusion method is shown both visually

and quantitatively, and compared to that of the state-of-the-art fusion methods. Also, the

effects of the parameters such as the maximum tolerance error ߳, weighting parameter

ߛ in the proposed fusion rule (21), and patch size d on the fusion performance are

assessed.

For quantitative evaluation, the four fusion quality measuring indexes that have been

introduced in Subsection 2.5, namely QAB/F, NMI, SSIM and MSE, are used.

The results are compared to the following five well-known fusion methods.

· Discrete wavelet transform based image fusion (DWT) (Tian et al., 2012).

· Multi-focus image fusion using principal component analysis (PCA) (Raol &

Naidu, 2008).

· Sparse representation choose-max based image fusion (SR-CM) (Yang et al.,

2010).

· Sparse representation choose-max based image fusion via learned over-complete

dictionary using K-SVD (SR-KSVD) (Aharon et al., 2006).

· Image fusion using sparse representation of focus measures (SR-FM) (Nejati et

al., 2015).

4.1. Experimental setup

The implementation parameters of the mentioned fusion methods are as follows. In DWT

method, the decomposition level of source images is 3 and the wavelet basis "db1" is

used.
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In all of the sparse representation based methods, the patch size is 82 and the dictionary

size is 64 × 256 (64 × 512 for coupled dictionary), also the sliding step of 1 is used. The

dictionaries are learned over 10 cycles.

For the proposed method, the weighting parameter is set between 0.4 and 0.45, and the ߛ

maximum tolerance is ߳ = 4. For the other methods ߳ is 0.1. In the SR-FM, the Laplacian

energy (as focus measure) and max-pooling (for aggregation of sparse representations)

are used. Also, for clearness of the presentation of the algorithms´ performances based on

fair comparison, in the SR-FM, the reconstruction is performed using the same method

as in the other sparsity based methods, as the segmentation is off the focus of this master's

thesis.

All implemented algorithms are run on a PC using Inter(R) Xenon(R) 3.40GHz CPU.

For the performance comparison of the methods, six pairs of multi-focus images from the

standard gray-scale dataset (Nejati et al., 2015) are used. The focused and blurred training

data are produced by randomly selecting 20,000 image patches from all-in-focus and all-

out-of-focus reference images that are manually found using the images from the same

dataset. The dataset is shown in Figure 15.

The sizes of the source images Clocks, Doll and Pepsi are of the size 2562. The source

images Lab and Disk are of the size 480 × 640 and Jug has the size 256 × 384.

In Figure 15, the images in the first column (from the right) are the front focused images.

In the second column, the images are back focused. In the third column, they are manually

classified as all-in-focus, and in the fourth column, they are manually classified as all-

out-of-focus. The images in the third and fourth columns are used as the focused and

blurred training data. The manually found all-in-focus images are also used as reference

for computing the reference-based fusion quality measurements.



41

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15. Source images: (a) Clocks, (b) Doll, (c) Disk, (d) Jug, (e) Lab, (f) Pepsi

4.2. Visual comparison

In Figures 16, 17 and 18, the visual fusion results for three pairs of images, respectively,

Clocks, Doll and Pepsi are given.
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                                   (a)                                   (b)

                                  (c)                                   (d)

                                  (e)                                  (f)

Figure 16. Fusion results for the source images "Clocks". (a) DWT, (b) PCA, (c) SR-
CM, (d) SR-KSVD, (e) SR-FM, and (f) proposed
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                                   (a)                                   (b)

                                  (c)                                   (d)

                                  (e)                                  (f)

Figure 17. Fusion results for the source images "Doll", in the same order as Figure 16.
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                                   (a)                                   (b)

                                  (c)                                   (d)

                                  (e)                                  (f)

Figure 18. Fusion results for the source images "Pepsi", in the same order as Figure 16.
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Looking at the representative fusion results that are shown above, especially the details

that are magnified at the bottom corners, it can be seen that the fused images obtained

using the DWT contain blocking artifacts and are of a very low quality in terms of

sharpness. The results produced by the PCA are also excessively blurred, although they

are relatively smooth. Comparatively, these two methods have the weakest performances.

By carefully inspecting the results of the methods, the SR-CM, SR-KSVD, SR-FM and

the proposed method, and considering the sharpness of edges, visibility of details and

smoothness of the fused images, it can be concluded that the results obtained using the

proposed method have the highest quality, while they are produced with less

computational cost and require shorter running time compared to the rest of the

competitive methods (see Table 1).

Table 1. Comparison of the running times of all methods tested for fusion of "Clocks",
using parameters given in Subsection 4.1.

Methods
 Feature
Extraction
      (s)

  Sparse
  Coding
      (s)

  Fusion
     (s)

  Total
    (s)

   DWT       -       -   0.7219  0.7219

   PCA       -       -   0.2571  0.2571

 SR-FM    31.50    14.44   1.8798 47.8198

 SR-CM       - 354.4512   1.4312 355.8824

SR-KSVD       - 324.9160   1.2708 326.1868

Proposed       - 12.8243   1.4859  14.3102

4.3. Quantitative comparison

To ensure that the proposed method yields the best results, a quantitative comparison

among all methods tested over all six pair of source images is given in Table 2. The results

show that regarding the index QAB/F, the proposed method has the best performance in all

cases, which means that the edge information from the source images is nicely transferred
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into the fused image. The best NMI results for the proposed method also show the high

fidelity of the fusion process in terms of pixel by pixel intensities, which is admitted by

the best MSE results in five out of six cases.

The PCA shows the best SSIM results in three cases, which admits the smoothness of its

results, despite of having low performances in other measures because of the blurred

outputs.

In addition, as mentioned before, to show the efficiency of the proposed method in terms

of its computational cost, the run times of all methods tested for fusion of the source

images "Clocks" are compared in Tablei1.

Finally , to show the effectiveness of using a coupled dictionary instead of separate

dictionaries learned over focused and blurred training data, the indexes QAB/F and NMI

for the two cases are compared in Figure 19, noting that the runtimes of dictionary

learning in the coupled and separately cases are 775 and 1129 seconds, respectively. It

can be seen that a coupled dictionary learning leads to a better results in terms of both

QAB/F and NMI.

4.4. Effects of parameters

In this subsection, the effects of three main parameters, the weighting parameter the ,ߛ

maximum tolerance error ߳, and the patch size d, on the fusion performance are

investigated. For this purpose, the proposed algorithm is run over all source images and

the results are averaged for finding the quality measures NMI and QAB/F.

In Figure 20, the average results obtained over different values of are presented. As the ߛ

figure shows, the best results are achieved for .between 0.4 and 0.45 ߛ
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Table 2. Objective evaluation of fusion results. Results are ranked by colors: Red: Best,
blue: Second best, and green: third best.

Methods Measures  Clocks    Lab   Pepsi   Disk     Jug    Doll

 DWT

   NMI 0.9847 1.0027 1.0079 0.8129 0.8497 0.8553

   QAB/F 0.6600 0.5487 0.6587 0.5102 0.5048 0.6184

   SSIM 0.9403 0.9372 0.9362 0.9068 0.8871 0.9211

   MSE 32.2172 60.1514 43.2703 94.3113 51.6737 46.3669

    PCA

   NMI 1.0276 1.0270 1.0610 0.8372 0.8854 0.8965

   QAB/F 0.6939 0.5651 0.6752 0.5352 0.5083 0.6335

   SSIM 0.9572 0.9468 0.9351 0.9226 0.9048 0.9418

   MSE 24.8221 54.4139 29.4576 80.9688 45.1700 36.2968

  SR-FM

   NMI 1.1100 1.0573 1.1764 0.8878 0.9490 1.0935

   QAB/F 0.7462 0.6900 0.7577 0.6380 0.7174 0.7380

   SSIM 0.9451 0.8153 0.9296 0.8325 0.9490 0.9862

   MSE 5.5989 12.0835 5.8016 30.7394 19.3786 7.4314

  SR-CM

   NMI 1.1118 1.1079 1.1063 0.9460 1.0630 1.0547

   QAB/F 0.7301 0.7058 0.7290 0.7653 0.7656 0.7402

   SSIM 0.8813 0.7843 0.8229 0.8367 0.9609 0.9817

   MSE 1.8879 7.4700 3.9962 11.0090 3.3700 5.3617

SR-KSVD

   NMI 1.1658 1.1235 1.1685 0.9821 1.1417 1.0517

   QAB/F 0.7557 0.7295 0.7613 0.7206 0.7766 0.7454

   SSIM 0.9527 0.8400 0.9258 0.8667 0.9925 0.9888

   MSE 1.6457 7.7026 3.6903 11.0777 3.2798 3.4843

 Proposed

   NMI 1.1742 1.1652 1.1802 1.0067 1.1653 1.1496

   QAB/F 0.7604 0.7334 0.7651 0.7229 0.7811 0.7498

   SSIM 0.9340 0.8337 0.9413 0.8773 0.9965 0.9942

   MSE 2.1808 5.1499 3.0203 7.1657 1.0052 2.5981
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Figure 19. Comparison of fusion results using proposed method over a coupled
dictionary and separately learned dictionaries.

Figure 20. Effect of weighting parameter (γ) on fusion performance

The effect of maximum tolerance error ߳ on the fusion performance is shown in

Figurea21. It can be seen that the optimal performance is obtained for values of ߳ between
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4 and 5. These values of ߳ lead to the best compromise between the sparsity and accuracy

of the sparse approximations, which is essential in order to perform precise fusion.

Figure 21. Effect of tolerance error (߳) on fusion performance.

The third studied parameter is the patch size d. The results are presented in Figure 22 and

show that by increasing the patch size, the performance of the proposed method is

improved. However, as it has been discussed before, processing large patches needs

extremely high computational power and time. Thus, our earlier experiments have been

run using d=8.

Figure 22. Effect of patch size (݀) on fusion performance.
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Another observation that can be made based on Figures 21 and 22 is that the NMI

increases for larger ߳ values and smaller patch sizes, while QAB/F is decreasing. It is

because of the failure in the selection operation and as a consequence returning a fused

image consisting mostly of only one of the source images.
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5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this master's thesis, a fusion method to fuse multiple multi-focus images into one

smooth all-in-focus image has been developed. The proposed method works based on the

sparse representations of multi-focus inputs using a pair of over-complete dictionaries,

representing the focused and blurred feature spaces.

In addition, a coupled dictionary learning algorithm has been developed that improves

the fusion performance significantly by ensuring correlation between atoms of two

dictionaries. It also improves the performance of the fusion process in terms of

computational requirements.

It has been shown that the proposed fusion method using a couple of dictionaries (focused

and blurred) learned by the proposed coupled dictionary learning algorithm produces

smooth images that contain the highest amount of focused information from the source

multi-focus images, as compared to the state of the art fusion methods including the sparse

representation based methods that use a single over-complete dictionary learned to

represent only the focused features.

In addition to the algorithm development and results comparison, the concept of focus in

lens optics has been briefly explained and the most well-known multi-focus image fusion

methods have been introduced. Also, the essential key topics in the research field of image

sparse representation have been reviewed.

5.2. Future work

The most important information in an image is around the edges, where different objects

need to be distinguished from each other. Thus, using the edge information of the source
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images, a fusion method can improve its efficiency by exploiting more accurate schemes

near edges (e.g. larger window size) and using less computationally costly techniques for

the other areas in that image.

The idea to overcome the constraint of the patch size is to extract the focus information

using the inter-patch information in a neighborhood (of size, e.g., 3 × 3). In other words,

instead of only using pixel intensities, some more measures (e.g. the Laplacian energy of

the patches or the l1-norm of their sparse representations) from all patches in a

neighborhood can be used for calculating the focus measure of that neighborhood. Thus,

the outliers (the scattered error in the decision map) can be diminished and the blurredness

and shadowing effects (around focus borders) can be avoided. Alternatively, using a down

sized version of the source images can help to address the same problem. However, in

both cases the precision of the fusion needs to be at the pixel level around the edges. This

can be addressed by refining the obtained mask so that its borders are consistent with the

edges of source images.
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APPENDIX 1. WELL/ILL POSED PROBLEM

The mathematical term well-posed, defined by Jacques Hadamard, is applied to a linear

problem whose solution has three characteristics:

a) Existence: the problem should have a solution.

b) Uniqueness: the solution should be unique.

c) Continuity: the small changes in input should be continuously followed by

changes in the solution.

A problem that does not fulfil requirements above is known as ill-posed (Bertero, Poggio,

& Torre, 1988).


