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Abstract

In modern wireless communication, rising traffic, tighter latency bud-
gets, and increasing network complexity place additional demands on the
scalability and responsiveness of resource allocation and control across
distributed networks. These demands motivate attention-based deep learn-
ing for wireless resource optimization. This thesis explores the use of a
transformer-based neural network for power control in cell-free massive
MIMO (CFmMIMO) systems as a case demonstration of how attention-
based models can be used in wireless system optimization. In this setting,
self-attention efficiently captures global dependencies among users by con-
ditioning on large-scale fading to access points and on pilot-allocation
information. The model is trained in an unsupervised manner on a high-
performance computing cluster. The training data consist of simulated
network snapshots represented by the large-scale fading matrix and the
pilot-allocation matrix. Experiments indicate per-user spectral efficiency
comparable to established optimization methods, while guaranteeing a sig-
nificantly lower inference time. Results are consistent across the evaluated
configurations. These findings support attention-based models as a practical

and scalable solution for real-time resource optimization in CFmMIMO.

Keywords Machine Learning, Wireless Communications, Self-Attention,
Transformer Neural Networks, Cell-Free Massive MIMO,
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Symbols and abbreviations

Symbols
R Set of real numbers
X Input feature vector
y Target output
b Predicted output of the model
0 Vector of all trainable model parameters
N Number of training examples
Dirain Training dataset
PDya  Validation dataset
Diest  Test dataset
L(#) Loss function
1 Learning rate at optimization step ¢
B, Index set of samples
Q Matrix of query vectors
K Matrix of key vectors
A\ Matrix of value vectors
dmodel Model width (embedding dimension)
dy Dimension of query and key vectors
H Number of attention Heads in multi-head attention
Head; ith attention Head in multi-head attention
() Pilot-allocation matrix
M Number of APs
K Number of users
Mk Power-control coefficient from AP m to user k
n Vector collecting all power-control coefficients
Pd Maximum downlink transmit power per AP



T Pilot length (number of pilot symbols)
Te Coherence interval length

vk ()  Effective downlink SINR of user k
SEx(n) Spectral efficiency of user k



Abbreviations

Al
ML
ANN
DNN
CNN
RNN
MIMO
CFmMIMO
AP
CPU
GPU
HPC
TDD
SINR
SE
MSE
SGD
MHA
ReLLU
EPA
APG

Artificial Intelligence

Machine Learning

Artificial Neural Network

Deep Neural Network

Convolutional Neural Network
Recurrent Neural Network
Multiple-Input Multiple-Output
Cell-Free Massive Multiple-Input Multiple-Output
Access Point

Central Processing Unit

Graphics Processing Unit
High-Performance Computing
Time-Division Duplex
Signal-to-Interference-plus-Noise Ratio
Spectral Efficiency

Mean Squared Error

Stochastic Gradient Descent
Multi-Head Attention

Rectified Linear Unit

Equal Power Allocation

Accelerated Projected Gradient



1 Introduction

Development of sixth-generation (6G) telecommunication networks in-
troduces a wide range of technical challenges across all levels of the
infrastructure [1]. More efficient solutions are required at every level of net-
work infrastructure, from low-level energy-saving techniques to high-level
architectures capable of serving hundreds of thousands of users in real time.
To solve these efficiency challenges, classical algorithmic and statistical
methods have been widely used in communication systems. These methods
often rely on simplified models and assumptions to make the calculations
easier [2]. However, as the system becomes more complex, such approaches
tend to show their limitations in flexibility and do not scale well to real-world
conditions [3, 4]. In many cases, these methods ignore important details to

maintain computational efficiency.

One potential solution to addressing these challenges is the application
of Machine Learning (ML) [5]. Today, ML methods have been applied in
many areas of communication systems as these methods can achieve high
accuracy in representing complex behavior without manually defining each

rule.

One of the most important developments was the introduction of the
attention mechanism [6]. The mechanism’s ability to focus on the most
relevant parts of the input data has led to the development of more efficient
learning strategies and models. The attention mechanism can be applied
in cell-free massive multiple-input multiple-output (CFmMIMO) systems.
CFmMIMO is a wireless system where many distributed access points

(APs) work together to serve all users in the area instead of splitting the



network into cells [7]. One of the key components in such systems is
power control [8]. One simple strategy for power control involves allocating
power equally across users or APs, but this strategy cannot flexibly adapt to
changing network conditions. Better performance can be achieved with more
advanced optimization-based algorithms, but they often require significantly

more computational time, which is limited in modern real-time systems.

One promising direction for efficient power control is the use of
transformer-based neural networks. These networks use the attention
mechanism and may offer efficient power control strategies directly from
data [9]. This thesis explores the use of a transformer-based neural net-
work for power control in CFmMIMO systems as a case demonstration
for attention-based models in wireless system optimization. In particular,
it targets problems that would otherwise become bottlenecks in terms of
computational complexity. Indeed, scalability is the main challenge in
CFmMIMO. The work focuses on training models on simulated data
and evaluating their performance. Results are compared with traditional
methods to understand the advantages and limitations of this approach. All

experiments are run using the Triton computing cluster at Aalto University.

This thesis is structured as follows. Chapter 2 introduces the fundamental
concepts of ML. Chapter 3 presents the transformer architecture and the
attention mechanism as its key component of a proposed design. Chapter 4
gives an overview of CFmMIMO systems, describing the system model,
main challenges, and motivation for applying ML-based solutions. Chapter
5 discusses the use of attention-based models in CFmMIMO, presenting the
transformer implementation and training setup, and explaining the obtained
results. Finally, Chapter 6 concludes the thesis and suggests directions for

future work.
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2 Machine Learning

ML is a subfield of artificial intelligence that focuses on building systems
capable of learning from data and making predictions or decisions without
being manually programmed for an exact task. Instead of following explicit
algorithmic rules, an ML model improves its performance by training on ex-
ample data. Over the past decades, ML techniques have achieved significant
success in different fields ranging from image and speech recognition to
medical diagnosis and financial forecasting [10]. The core idea is that if we
provide the model with enough well-prepared data, it can infer underlying
relationships and generalize them to new, unseen examples to make accurate

predictions.
There are different approaches to training in ML, the most common are:

Supervised learning is when a model is trained on labeled examples,
where the correct answers are already labeled. The goal is to learn a mapping
from inputs to outputs that also works for data that were not seen by the

model.

Unsupervised learning deals with data that has no labels. The model
tries to discover hidden structures, patterns, or groupings in the data without

being told the right answers.

Reinforcement learning works in a different way. The model interacts
with an environment and after every action it gets some reward or penalty.

With time it learns what actions bring higher rewards and builds a strategy.

These approaches can be implemented using many different models,
ranging from simple statistical methods to more complex ones. Among

them, neural networks have emerged as a models family that is among the
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most frequently used, forming the basis of modern deep learning.

2.1 Artificial Neural Networks

As of today, artificial neural networks (ANNs) are arguably the most
popular ML models [10]. ANN is built from simple computational units
called neurons. Each neuron receives one or more inputs, multiplies them
with trainable weights, adds a bias term, and then applies a nonlinear

transformation.

When many neurons are combined in parallel, they form a layer. A
typical network consists of an input layer that receives the data, a hidden
layers that transform the data into more abstract representations, and an

output layer that produces the final prediction as shown in Figure 1.

Output Layer

Input Layer = Hidden Layer

Figure 1: A simple feedforward neural network with one hidden layer.

Mathematically, the output of a single neuron can be expressed as

y =¢(Zw,-xi+b), (1)
i=1

where x; is the ith input, w; is the ith trainable weight, b is the bias term,

and ¢(-) is a nonlinear activation function.
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A full layer of neurons can be expressed in vector form as
h = ¢(Wx +Db),

where x is the input vector, W is the weight matrix, b is the bias vector, and

¢(-) acts elementwise, so h is the output vector of the layer.

The power of ANNs comes from stacking multiple layers on top of each
other. With sufficient depth and parameters, even simple architectures can

approximate a wide variety of functions.

2.2 Deep Neural Networks

Deep learning refers to training ANNs with multiple hidden layers. A deep
model maps an input vector to an output by repeatedly applying an affine
transform followed by an elementwise nonlinearity. The depth L is the

number of hidden layers.

Mathematically, we compose multiple layers in sequence. Let h(®) =

x € R%. For the Ith hidden layer,
h® = gb(l)(W(l)h(l_l) + b(l)), w® e Ré*di-1 b ¢ R,
for/ =1,..., L. The network output is

37 - g(W(LH)h(L) + b(LH)), WD ¢ RdLHXdL, bLtD ¢ RdL+1

All trainable parameters can be collected in the set @ = {W), b }IL:*ll.

Without nonlinear activation functions ¢ and g, the composition of
these affine transformations would reduce to a single linear map, so depth
alone would not increase the expressive power of the model. With sufficient
depth and number of parameters, deep models can yield compact repre-

sentations for certain function families compared to shallow architectures
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providing similar accuracy [11].

2.2.1 Activation Functions

In the previous subsections, the neuron output was written in the form (1),
where ¢ is a nonlinear function. The activation function ¢ is applied to
each pre-activation value in the layer and is the main source of nonlinearity
in standard feedforward networks. Its choice influences the range of unit
outputs. It also defines how easily information and gradients can flow

through many layers.

An activation function ¢ maps a scalar pre-activation z € R to a scalar
output ¢(z). Three widely used choices are

Z_e—Z

e
tanh(z) = ——
@) et +e?

o(z) = , ReLU(z) = max(0, z).

1 +e2

The sigmoid function o(z) maps real-valued inputs to the open interval
(0, 1). The hyperbolic tangent tanh(z) maps inputs to the interval (-1, 1)
and is zero centered. The rectified linear unit ReLLU(z) returns zero for
negative inputs and grows linearly for positive inputs. These different shapes

and saturation properties are illustrated in Figure 2.

—_ReLU 31y
— Sigmoid
—— Tanh 21
1 1
/ <
-3 S | 1 2 3
1|

Figure 2: Common activation functions.

From an optimization point of view, these functions have different

properties. For sigmoid and tanh, the derivative becomes small in the

15



saturation regions, which can lead to vanishing gradients in deep networks
and slow learning. ReLLU avoids saturation for positive inputs and keeps a
constant gradient in that region, but its derivative is zero for negative inputs,

S0 some units can become inactive if their pre-activations remain negative.

In practice, ReLU is a common default choice for hidden layers in deep
feedforward and convolutional networks because it is simple, computa-
tionally cheap, and tends to train reliably. Sigmoid activations are mainly
used when an output is interpreted as a probability from the interval (0, 1),
for example, in binary classification. The tanh function is useful when
a symmetric bounded range is desired, for example, for some latent or
recurrent states. Hovewer, deep networks that rely only on tanh activations

can be harder to train without additional techniques.

2.2.2 Output Layers and Loss Functions

A neural network with parameters 6 defines a mapping from an input vector
X to an output y = f(x; ). The role of the output layer is to transform the
last hidden representation into a quantity that is suitable for the task, for
example, a real-valued vector, a probability distribution over classes, or a

set of scores.

Training is formulated as the minimization of a scalar objective (or loss)
function. Given a collection of inputs {X,’}l].\i , and corresponding signals
{si}f\; | that define the learning objective, the empirical loss function on the

dataset can be written as
| &
L£(6) = ;“ L(f(x:;0), s;).
Where £, denotes is a loss function evaluated for a single example and s;

denotes the supervision signal for that example. In supervised learning, s;

1s an explicit target y;.
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The specific form of the loss depends on the problem. For continuous
targets, it is common to use a linear output layer together with a squared error
loss. For regression with vector targets y; and predictions y; = f(x;; 0), a

common choice is the mean squared error (MSE)

1 & _
Lyvse(09) = N ZHYi - yl'||§-
i=1

where || - ||2 denotes the Euclidean norm of a vector argument.

For multi-class classification, the output layer typically produces class
scores that are converted to probabilities by a softmax transform, and the

model is trained with a cross-entropy loss.

In unsupervised and self-supervised learning, the loss is defined as a
differentiable objective of the model outputs and inputs. It does not rely on
explicit target labels and often includes reconstruction terms, consistency
terms, or penalties that encode known properties of the data or of the

underlying system.

2.2.3 Training Neural Networks

Once the model f(x;0) and loss L(8) are defined, training is posed as
numerical minimization with respect to 6. In deep learning, this optimization

is carried out by gradient-based methods.

The dataset is split into a training set Dy4in, a validation set Dy,p, and
a test set Dyesr. The training set is used to update the model parameters.
The validation set is used to tune hyperparameters, that is, configuration
parameters of the model and the training procedure (such as the learning rate,
batch size, or the number of layers) that are chosen before training instead of
being learned from data. The test set is kept aside for the final performance
evaluation. Input features are typically standardized featurewise using

statistics computed on Dy,in. Examples are shuffled at the beginning of
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each epoch, where one epoch is a single pass through all training examples

1N Diain.

For large datasets, exact gradients over all data are hard to compute,
therefore, gradients are estimated on batches of data. At iteration ¢ a subset

B; c {1,...,N} is sampled, then the batch loss

1

-£batch(0t) = m
t

Z L(f(x:50,), s:)

i€B;

is formed, and parameters are updated as

0:1=0,—1,Vy Lbatch(0:),

where 77, > 0 is the learning rate. This procedure is referred to as stochastic
gradient descent (SGD). Gradients are computed efficiently by backpropa-

gation, which applies the chain rule through the computation graph.

In practice, the learning rate is commonly controlled by a schedule
that varies with the iteration index, which helps stabilize and accelerate
training. Besides plain SGD, momentum methods and adaptive optimizers
such as Adam [12] are widely used to improve convergence by adjusting

the effective step size per parameter.

To improve generalization, common practice includes weight decay
and early stopping based on a held-out validation set. After each epoch,
the current parameters are evaluated on P,,. Training stops when the
validation loss does not improve for a fixed patience window, and the iterate
with the lowest validation loss is kept for final reporting on Dy without

further tuning.
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3 Transformer

Early sequence models were based on Markov chains. In a Markov chains,
the next element depends only on the previous element and not on the
full history of the sequence. Such models were simple and efficient, but
they could not capture long-range dependencies or complex relations in
the data [13]. ANNs extended sequence modelling beyond this limitation.
Convolutional networks detect local patterns, but their receptive field grows
slowly with depth [14]. Recurrent neural networks (RNNs) can in principle
model longer dependencies, but their sequential nature makes training slow
and prevents efficient parallelization. Each step depends on the previous
one, creating a bottleneck that limits throughput even on modern hardware.
Moreover, information must be propagated through many time steps, which

often leads to vanishing or exploding gradients and unstable training [15].

The attention mechanism was first introduced to help RNNs focus on
the most relevant parts of the input. Although this improved results, the
processing remained sequential. The key breakthrough came with the
Transformer [6], which removed both recurrence and convolution entirely.
This new architecture replaced the step-by-step processing with a fully
parallel encoder—decoder design. The encoder processes all input elements
(called tokens) in parallel and outputs contextual representations. The
decoder generates the output sequence while attending to both the encoder
output and the previously generated tokens through a causal mask. Since
the model has no inherent notion of order, positional information is added

to token embeddings before entering the encoder.

In short term, transformers became the foundation for most state-of-
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the-art scalable models, including BERT [16] and GPT [17] in language
processing and Vision Transformer [18] in image analysis, showing that the
same architecture can be successfully applied across very different domains.
Recent studies also report promising results in wireless communications, for

example in channel estimation [19], detection [20], and resource allocation
[9, 21]

A comprehensive survey of transformer models [22] describes the main
architectural features that make the model applicable to many different types
of data. The self-attention mechanism captures relationships between all
elements of the input, allowing the model to represent global dependencies.
Parallel processing makes training faster and more efficient compared
to recurrent architectures. In addition, the modular layer structure with
attention, feed-forward, normalization, and residual connections can be
reused with only small adjustments for new kinds of data. These properties
together make the transformer a flexible and general architecture, which

explains its rapid adoption across different domains.

3.1 Attention Mechanism

Attention provides a flexible way for a model to relate different elements of
a sequence directly to each other. Instead of processing inputs in a fixed
order, the model dynamically determines which parts of the input are most
relevant to each output position, and different parts of the input sequence
are assigned different weights depending on their relevance. As a result,
the resulting representation becomes a weighted combination of all inputs,
where the most informative tokens contribute more strongly to the output

representation.

To illustrate internal behaviour of the attention mechanism, we visualize
how each token attends to other tokens within a sentence. Figure 3 shows

such example of self-attention for the token “it” in the sentence “The signal
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was distorted after the channel changed because it was noisy.”

Here, the model assigns the strongest attention weight to channel, indi-
cating that “it” refers to the channel as the source of noise. The mechanism
considers the entire sequence when forming contextual representations, and
each token assigns different weights to all other tokens depending on their
relevance in the given context. As a result, the model captures contextual
dependencies within the sequence and forms representations that reflect the

actual meaning of the sentence.

The The
signal signal
was was
distorted distorted
after after
the the
channel channel
changed changed
because because
it it
was was
noisy noisy

Figure 3: Self-attention for the token “it”.

Figure 4 shows another example with a similar sentence structure but
a different meaning. In the sentence “The signal was distorted after the
channel changed because it was weak,” the attention weight shifts from
channel to signal. This means that the model now interprets “it” as referring

to the signal itself. Although both sentences share the same syntactic

21



structure, the distribution of attention differs, showing that the mechanism

adapts to the semantic context rather than relying on fixed positional patterns.

The The
signal signal
was was
distorted distorted
after after
the the
channel channel
changed changed
because because
it it
was was
weak weak

Figure 4: Self-attention for the token “it”.

Mathematically, attention can be described as a process that computes
how much each element of a sequence should contribute to the representation
of every other element. Each input vector x; is first projected into three

separate representations: a query q;, a key k;, and a value v;.

These are obtained using learned projection matrices:
Q=XWZ, K=XWK V=xw,

where X is the matrix of input embeddings and W€, WX and WV are

trainable matrices.

The attention mechanism measures the similarity between each query

22



and all keys using the dot product, producing a matrix of attention scores.

To prevent large values from dominating, the softmax operation is
performed, that is, the scores are scaled by the key dimension dj; and

normalized:

KT
A= softmax(Q ) .
Vdy

The resulting attention weights determine how much information each token
should take from the others. The output representations are then computed

as a weighted sum of the value vectors:
Attention(Q, K, V) = AV.

Through this operation, each token becomes a context-aware combination

of all other tokens, where the weights reflect their relative importance.

3.1.1 Multi-Head Attention

In practice, the model employs several attention mechanisms, called Heads,
that operate in parallel. Each Head has its own set of parameters and can
focus on different dependencies in the sequence. Formally, for each Head
i=1,...,h:

Head; = Attention(QW2, KWK, VW),
and the outputs of all Heads are concatenated and linearly transformed:
MHA(Q, K, V) = Concat(Head;, . .., Head;,) W°.

This multi-Head structure allows the model to capture diverse relationships
simultaneously. While one Head may focus on local details, others can

attend to long-range dependencies or global patterns in the data.
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3.1.2 Positional Information

Because attention treats all tokens as a set, it does not remember their position
information. To introduce positional awareness, each input embedding is
combined with a positional encoding vector. A common formulation uses

fixed sinusoidal encodings defined as

pos

[PE] 05,2 = sm(m

oS
), [PE] o5, 2i41 = COS( P )

IOOOOZi/dmodel

These encodings provide a continuous and generalizable way for the model
to distinguish the position of each token and to infer relative distances within

the sequence.
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3.2 Transformer Architecture

The transformer architecture is built by stacking layers that combine the
attention mechanism with additional components designed to improve
learning stability and model capacity. It includes two main elements: the
encoder and the decoder. The encoder processes the input sequence and
produces contextual representations of the input. The decoder generates the
output sequence by attending to these encoder representations and to the
tokens produced so far. The overall block-scheme of the model is shown
in Figure 5, which illustrates how information flows from the input to the

output through the encoder—decoder structure.

Input

|

Encoder

Decoder

|

Output

Figure 5: General encoder—decoder structure of the Transformer.

Many variants of the transformer have been developed for different types

of data and learning tasks. Some models, such as BERT [16], use only the
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encoder, while others, like the original Transformer for translation, combine
both the encoder and the decoder. There are also decoder-only models, such

as GPT [17], which rely entirely on self-attention within the decoder.

As shown in Figure 6, each encoder block consists of two main com-

ponents: a multi-head attention module and a position-wise feed-forward

network.
?
[ Feed Forward ]
, ! ‘
Feed Forward >[Encoder—Deooder Attention]
Self-Attention [ Self-Attention ]

f f

Figure 6: Overview of the Transformer encoder and decoder structure.

The encoder receives the input sequence and processes it through a
stack of layers, each containing a self-attention mechanism followed by
a feed-forward network. Self-attention allows the encoder to consider
relationships between different positions of the input, enabling it to capture
context when representing each token. The feed-forward network then

refines these representations for further processing.

The decoder follows a similar structure but includes an additional
encoder—decoder attention layer between its self-attention and feed-forward
sublayers. This layer allows the decoder to selectively focus on the most
relevant parts of the encoded input when generating the output sequence.
Together, these components form the core of the Transformer architecture,
where attention mechanisms ensure that both encoder and decoder operate

contextually rather than positionally.

26



3.2.1 Encoder

The encoder is responsible for converting the input sequence into contextual
representations that capture relationships between all tokens. Its key property
is that all input tokens are processed in parallel, which allows the model to

efficiently learn dependencies across the entire sequence.

Outputs

A

—{ Add & Norm

Feed
Forward

A

Nx

—{ Add & Norm

Multi-Head

Attention
A_ A A

Positional S ::
+
Encoding T
Input
Embedding

|

Inputs

Figure 7: Structure of the Transformer encoder block.

As it can be seen from the encoder structure shown in Figure 7, the

process starts with the input tokens, which are mapped into continuous
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vector representations by the embedding layer.

Let us assume that we are given X = [xy,...,Xy] € RVXdmoel which

denote the matrix of token embeddings.

The next step is positional encoding. The encoder processes tokens in
parallel and does not know their order by itself, so we add positional vectors

P € RV*dmodel glementwise:
Z=X+P.

This addition produces position-aware representations that preserve both

the semantic meaning of tokens and their order in the input.

Next comes the multi-head attention layer, whose detailed mechanism
is discussed in Section 3.1.1. It allows each token to attend to all other
tokens in the input sequence, enabling the model to capture contextual
dependencies regardless of their distance. The output of this sublayer is

wrapped with a residual connection and layer normalization:
Z' = LayerNorm(Z + MHA(Z)),

which helps preserve information and improve gradient flow during train-
ing. After that, layer normalization is applied to each token embedding
independently, stabilizing the learning process and preventing issues such as
exploding or vanishing gradients. It behaves the same during both training
and inference, which makes it more robust than batch normalization for

sequence models.

Finally, the position-wise feed-forward network applies two linear
transformations with a nonlinearity between them, processing each token
independently:

FFN(x) = ¢(xW; + b;) W3 + by,

where ¢ is typically a ReLU activation. Its output is again followed by an
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Add & Norm operation:
Z" = LayerNorm(Z' + FFN(Z')),

completing one encoder block. In the full encoder, this block is repeated N
times, allowing the model to gradually refine token representations across

multiple layers.

An important property of the encoder design is that the input and
output of each sublayer have the same dimensionality. Each layer takes
a sequence of N embeddings of size dpoge] and returns a sequence of
the same shape. Because of this, encoder blocks can be stacked without
any intermediate reshaping, forming a deep architecture that refines token
representations layer by layer. Furthermore, all sublayers except attention
layer operate independently on each token, and even attention itself is highly
parallelizable. As a result, the encoder can process sequences of almost any
length efficiently and in parallel. This high degree of parallelism makes
the Transformer architecture significantly faster and more scalable than

previously used recurrent approaches.

3.2.2 Decoder

The decoder has a structure similar to the encoder and consists of three main
sublayers: masked multi-head self-attention, encoder—decoder attention, and
a feed-forward network. Each sublayer is followed by residual connection
and layer normalization. While the encoder reads and encodes the entire
input sequence, the decoder generates the output sequence step by step,
relying on both its previous outputs and the representations produced by the

encoder.
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Encoder

Outputs

Figure 8: Structure of the Transformer decoder block.

As we can see in Figure 8, the decoder receives as input the shifted
output sequence, where each token embedding is combined with positional

encoding in the same way as in the encoder. The sequence is shifted so

Outputs

A

—{ Add & Norm |

A

Feed
Forward

A

—{ Add & Norm |

A

[ Multi-Head ]

l Cross-Attention
A4 4

(.

—{ Add & Norm |

Masked Multi-Head
Self-Attention

A A &

Positional

Encoding

>

Output
Embedding

|

Outputs (shifted)

30

Nx



that each position can only depend on the preceding tokens, ensuring that
the model predicts the next token step by step. The resulting vectors are
then processed by a masked multi-head self-attention layer. The mask
allows each token to attend only to earlier tokens in the output sequence,
which preserves the autoregressive property of the model and avoids using

information from future positions.

Mathematically, this is achieved by applying a mask M to the attention

scores before the softmax operation:

A= softmaX(Q + M) ,

where M is a masking matrix defined as

—00, J >I.

This matrix restricts attention to the current and previous positions, assigning
large negative values to all future positions so that their corresponding

probabilities after the softmax become zero.

In the next layer, the cross-attention mechanism is the key connection
between the encoder and decoder, where the queries Q are obtained from
the decoder representations, while the keys K and values V are taken from
the encoder outputs. This allows the decoder to selectively focus on relevant
parts of the encoded input sequence when generating each token in the

output.

Formally, it can be written as

QK™
CrossAttn(Q, K, V) = softmax V,
Vdy

where Q = YW?, K = HWX, and V = HWV, with Y denoting decoder

31



embeddings and H denoting encoder outputs.

Each of the attention layers is followed by a residual connection and
layer normalization, as in the encoder. Finally, a position-wise feed-forward

network refines the decoder’s internal representations:

FFEN(x) = ¢(xW| + b;) W3 + by,

and its output is again wrapped with residual and normalization layers.
Stacking N such decoder blocks enables the model to progressively integrate

information from both past outputs and encoder representations.

Despite having no recurrent connections, the decoder still generates
sequences in an autoregressive manner due to masking. During training,
all tokens can be processed in parallel by applying the mask matrix, while
during inference, the model generates tokens one by one, feeding previously

produced outputs back into the decoder.

3.2.3 Transformer structure

The full Transformer architecture can be viewed as an encoder—decoder
system that maps an input sequence to an output sequence through stacked

attention and feed-forward layers. Its overall structure is shown in Figure 9.
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On the encoder side, the model receives a sequence of input tokens,
such as words or generic symbols. Each token is first mapped to a dense
vector through an embedding layer, and the resulting matrix X collects
these token embeddings for a sequence of length N. Since the attention
mechanism itself is permutation invariant with respect to the token order,

RNXd

positional encodings P € model gre added to the embeddings to provide

information about token positions,
HY =X +P.

This position-aware representation is then processed by a stack of Nepc
identical encoder layers. Each encoder layer applies multi-Head self-attention
followed by a position-wise feed-forward network, with residual connections
and layer normalization around both sublayers [6]. Conceptually, the encoder
stack refines the same sequence representation layer by layer and produces
the final encoder output

HEe = JVene)

which serves as a set of context-dependent features for the decoder.

The decoder operates on the output side. During training, it receives the
ground-truth target sequence shifted by one position, so that the token at time
step ¢ is predicted based on all target tokens up to step t — 1. These tokens are
embedded and combined with positional encodings in the same way as in the
encoder, which yields an initial decoder state Y(©) € R7*“mocel for a sequence
oflength T. Each decoder layer then performs three operations. First, masked
self-attention allows each position to attend only to previous positions in
the output sequence, which enforces the autoregressive property and avoids
access to future targets. Second, cross-attention uses the current decoder
representation as queries and the encoder output H* as keys and values.
This mechanism allows the decoder to focus on those parts of the encoded
input that are most relevant for generating the next output token. Third,

a position-wise feed-forward network refines the decoder representation,
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again wrapped with residual connections and layer normalization.

After Nge. decoder layers, the final decoder representation Y Naee) g
mapped to output logits by a linear projection and converted into probabilities

by a softmax function,
y, = softmax(YENd“)Wout + bout)»

where ¥, is the predicted distribution for position ¢. During training, all
positions in the encoder and the decoder can be processed in parallel since
attention and feed-forward layers act on all tokens in a sequence at the
same time, while masking in the decoder guarantees the correct causal
structure. During inference, the decoder generates tokens one by one and

feeds previously generated outputs back as its own input.

Overall, the Transformer can be viewed as an encoder that builds a
contextual representation of the input sequence and a decoder that gener-
ates the output sequence by combining its own history with this encoder

representation through attention.
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4 Cell-Free MIMO

In modern wireless communications, rising traffic, tighter latency bud-
gets, and increasing network complexity place additional demands on the
scalability and responsiveness of resource allocation and control across
distributed networks. Classical cellular architectures partition the service
area into disjoint cells, each served by a base station that mainly processes
the signals of users located within its own cell. This cell-centric design
simplifies resource allocation and frequency planning, but it also introduces
hard cell boundaries and strong inter-cell interference, especially for users
located near the cell edges. As the network becomes more dense and
heterogeneous, these effects make it difficult to guarantee uniform quality

of service across all users [1].

Massive MIMO has been proposed as a key technology to address some
of these limitations [23]. In a classical massive MIMO deployment, each
base station is equipped with a large number of co-located antennas and
serves many users simultaneously on the same time—frequency resources
by spatial multiplexing. This architecture improves spectral and energy
efficiency by exploiting array gain and spatial diversity. However, it still
relies on the concept of cells and therefore inherits the basic drawbacks of
cellular networks, such as cell-edge interference and performance variations

between users in favorable and unfavorable locations [7].

CFmMIMO has been introduced as an alternative network architecture
that removes the notion of cells [7, 24]. In CFmMIMO, a large number
of geographically distributed APs are connected to a central processing

unit (CPU) and jointly serve all users in the coverage area on the same
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time-frequency resources. Under the canonical CFmMIMO model, each AP
can participate in the transmission to every user, so the whole deployment
acts as a single large cooperative antenna array. From the user perspective,
the network appears as one cooperative entity rather than a set of competing
cells. For large deployments, a common variant is user-centric CFmMIMO
[25], where each user is served only by a small set of nearby APs with
strong large-scale fading. This reduces fronthaul and processing load while
keeping most of the macro diversity and near-uniform service quality of the

canonical cell-free model.

This distributed architecture provides several important benefits. First,
the large number of APs and their distributed placement create a high degree
of macro diversity. Even if some APs experience deep fading or shadowing,
other nearby APs can still provide strong links, which improve the reliability
of the received signal. Second, by allowing coherent joint transmission
from multiple APs, CFmMIMO can reduce inter-user interference and
provide more uniform spectral efficiency across the coverage area, including
locations that correspond to cell edges in a traditional network. Third,
CFmMIMO can improve energy efficiency by enabling flexible power
allocation. An illustrative comparison between a classical cellular layout

and a CFmMIMO deployment is shown in Fig. 10.
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Figure 10: Conventional cellular network and cell-free massive MIMO
network [26].

To fully use these advantages, CFmMIMO systems are usually operated
in time-division duplexing (TDD) mode [7]. Users send uplink pilot signals,
APs estimate the channels, and the same channel estimates are reused
for downlink precoding and power control. Depending on the available
fronthaul capacity and processing capabilities, these operations can be
implemented in a fully centralized manner at the CPU or partly distributed

manner across the APs.

The cell-free architecture also introduces several challenges [24]. The
first challenge is scalability. As the number of APs and users grows,
the requirements on fronthaul and backhaul capacity, synchronization, and
computational resources at the CPU become significant. Efficient algorithms
are needed for channel estimation, scheduling, and power control that can
operate with limited signaling overhead and processing time. A second
challenge is pilot contamination. The number of orthogonal pilot sequences
is limited by the coherence interval, so pilots must be reused across users.
In CFmMIMO, pilot reuse creates coherent interference across the entire
distributed network, which directly affects channel estimation quality and

the effectiveness of downlink beamforming. A third challenge is the design
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of robust and efficient power control.

Because of these benefits and despite the challenges, which hopefully
can be resolved, CFmMIMO is considered a strong candidate for beyond-
5G and 6G deployments [1]. At the same time, the increasing network
complexity and strict performance requirements motivate attention-based
deep learning for wireless resource optimization. In this thesis, power
control in CFmMIMO is studied as a representative resource allocation

problem.

4.1 Power Control in Cell-Free Massive MIMO

Downlink power control is one of the central design problems in CFmMIMO
networks [7, 8]. The power control coefficients determine how the available
transmit power at the APs is distributed across users. This distribution
affects both the strength of the desired signal and the level of interference
for each user and therefore has a direct impact on spectral efficiency and

fairness.

Let n,,x = 0 denote the power control coefficient used by AP m when
transmitting to user k. These coefficients are chosen under per-AP power
constraints. If p; denotes the maximum downlink power at each AP, the

constraints can be written as

K

ank <pg, m=1,...,M.

k=1
The collection of all coefficients can be represented by a vector n € RMK
that describes how the total downlink power is allocated across all AP and
user pairs. In practical CFmMIMO designs, 7 is typically optimized based
on large-scale fading, pilot allocation, and noise variance, while small-scale

fading is averaged out in the performance expressions [7].

Under standard CFmMIMO assumptions with TDD operation and uplink
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pilots, the effective downlink signal-to-interference-plus-noise ratio (SINR)
of each user can be expressed in closed form as a function of 5 and the
large-scale fading parameters. The corresponding spectral efficiency of user

k can be written as

SEi () = (1 - :—p) log, (1 + v« (1)),

c

where 7, is the pilot length, 7. is the coherence interval, and yi(n) is the
effective SINR that captures the useful signal, interference from other users,
pilot contamination, and noise. The exact form of y; () depends on the
adopted CFmMIMO system model, but it only involves statistical channel

information [7].

Different performance metrics (objective functions) can be defined based
on the collection {SEk(q)}le. A common design target in CFmMIMO
is max-min fairness, where the goal is to maximize the minimum user
spectral efficiency in order to provide a more uniform quality of service.

The corresponding optimization problem can be written as

max min SE;(7)
n k

K
SUbjeCttO ank Spd9 m = 1,---aMa
k=1
nmeOa mzl,,M, kzl,,K

This problem is non-convex and large scale. The power control coefficients
for all AP and user pairs are coupled through the interference terms in

v (1), which makes it difficult to optimize each user independently.

Classical solutions rely on iterative optimization algorithms. Equal
power allocation (EPA) can be considered as a simple baseline that distributes
the available transmit power equally across the served users and satisfies
the per-AP power constraints. EPA has negligible computational cost.

Accelerated projected gradient (APG) methods, in contrast, iteratively
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update i along gradient directions of a smooth objective and project the
updates onto the feasible set defined by the power constraints [8, 27].
APG-based solvers can achieve high-quality max-min solutions, but their
runtime grows with the number of APs, the number of users, and the required
accuracy, which makes APG unacceptably expensive for large CFmMIMO

networks.

An alternative view is to interpret power control as a high-dimensional
mapping from network parameters to power coeflicients. Each CFmMIMO
snapshot is described by quantities such as the large-scale fading matrix,
the pilot allocation, and the noise and power parameters. The power control
problem then consists of mapping this snapshot to a vector of coefficients n
that yields high and balanced SEs. This perspective motivates deep learning
models that learn such a mapping from generated CFmMIMO snapshots

and approximate near-optimal power control with low inference time.
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5 Attention in Cell-Free MIMO

ML methods have recently been explored for several design problems in
CFmMIMO, such as user association, pilot allocation, channel estimation,
and power control [1]. Among these tasks, downlink power control is
one of the most critical and computationally demanding. The goal is to
determine power control coefficients i that depend on the global interference
structure in the network and on per-AP power constraints. In practice, these
coefficients must be recomputed many times as users move, channels change,
and pilot allocations are updated. This repeated optimization can become a

bottleneck when latency and energy constraints are tight [8].

A single CFmMIMO snapshot already contains rich structure. The
large-scale fading between APs and users describes which links are strong
or weak. The pilot allocation pattern determines which users create coherent
interference through pilot reuse. Together, these quantities define a global
interference structure where a change in the power of one user can affect
many others through shared APs and shared pilots. A data-driven model
for power control should therefore be able to represent such non-local

dependencies and generalize across different numbers of users and APs.

Self-attention-based architectures are well suited for this type of struc-
tured data [21]. They operate on a set of input feature vectors and, for
each element in the set, form a new representation as a learned weighted
combination of all other elements. In the CFmMIMO setting, each user can
be represented by a feature vector that summarizes its large-scale fading to
the APs, its pilot assignment, and possibly other scenario parameters. The

attention mechanism then learns which other users are most relevant for the
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power control decision of a given user. Since the same attention module is
applied to all users, the model is naturally invariant to permutations of user
indices and can be scaled to different network sizes with moderate changes

in architecture.

5.1 Data

The model is trained and evaluated on data generated by Monte Carlo
simulation [28] of a TDD CFmMIMO system [21]. Each training sample

RM*K and a pilot-allocation

consists of the large-scale fading matrix B €
mask ® that identifies users sharing the same pilot. The learning setup is
unsupervised, so no target power coefficients are stored, and the objective
function is computed directly from the analytical system model during
training. Both the training and test snapshots are obtained from the same
Monte Carlo simulator, but the test set is generated independently and is

used only for reporting the resulting performance.

To test the scalability and adaptability of the transformer across different
dataset sizes and problem dimensions, three configurations are considered.
These configurations range from a small, contamination-free setting to
larger ones where pilot reuse is required. They cover cases with few users
and APs, as well as cases with about a hundred APs and several tens of

Uusers.

Here, M denotes the number of APs and K denotes the number of users.
* CO (small, no pilot reuse). A simple scenario with M=10 and K=4.
Pilots are orthogonal, so pilot contamination does not appear.

* C1 (medium, no pilot reuse). M =100, K=20. Pilots remain orthog-

onal. Included as a main training configuration.

* C2 (large, with pilot reuse). =100, K=40. Since K exceeds the pilot

pool, pilots are reused, which induces pilot contamination. Included
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in training to evaluate robustness under pilot contamination.

For each configuration, AP positions are fixed and user locations are
drawn uniformly. Large-scale fading for all pairs of APs and users is
computed from geometry using a standard path-loss model with log-normal
shadowing. Pilots are drawn from an orthogonal pool. When K exceeds the
pool size, pilots are reused, which induces pilot contamination. The inputs
to the network are the large-scale fading matrix B and the pilot-allocation

matrix ®@.

In training, the order of millions of independent samples per training
configuration is used, while evaluation relies on a fresh set of a few thousand

samples. All samples are generated offline and used during training.

5.2 Training Setup

Training is carried out on the Aalto Triton high-performance computing
cluster [29]. Triton uses the Slurm scheduler [30] to allocate CPUs, memory,
GPUs, and wall time to batch jobs. The experiments are run on GPU nodes
with research-grade NVIDIA accelerators, and a high-throughput parallel

scratch filesystem is used for temporary data, checkpoints, and logs [31].

Jobs are launched with Slurm batch scripts [32]. Each script activates a
fixed software environment and executes the training driver with explicit
flags for the chosen configuration. Data for each configuration are prepared
offline and stored on shared storage, then read during training. Checkpoints
and logs are written to scratch to enable recovery and inspection. If
maintenance or node draining interrupts a job, training resumes from the

latest checkpoint.

In practice, the training code runs on a single GPU per job. Slurm
allocations use one CPU core with 16 GB of memory per task. Parameter

sweeps are organized as Slurm job arrays when independent runs are
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available.

5.3 Training

The training process is based on the dataset and unsupervised setup defined
in Subsection 5.1, where the optimization objective is derived directly
from the system model rather than from labeled data. Each mini-batch
consists of a pair (B, ®@) that contains one large-scale fading snapshot
and the corresponding pilot allocation. The first step after setting up the
Triton training environment is to run Configuration CO on a small subset
of snapshots in order to verify data loading, objective evaluation, gradient

backpropagation, and model checkpoint saving.

Once these initial test runs confirm that the training setup is functioning
correctly, a series of longer training runs is carried out to identify a stable
region of hyperparameters. In these runs, the following hyperparameters

are varied:

the number of Transformer layers between one and six,

the hidden width parameter M,, for example between 8 and 60 times

the number of attention heads,

the learning rate and its stepwise scheduling,

the number of epochs on datasets of 4 - 10* to 4 - 10° snapshots.

The corresponding performance curves show that three layers are
sufficient. Deeper models do not provide consistent gains compared to the
three-layer architecture, and changing the learning rate mainly affects the
speed of convergence rather than the final value of the objective. Increasing
the number of epochs beyond the default does not produce clear benefits.

These observations indicate that the dominant factors are the model width
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M, and the amount of training data rather than the learning rate schedule or

the depth beyond three layers.

Based on these observations, the search focuses on the combination of
M, and the number of independent snapshots. Several configurations with
M, between 20 and 60 times the number of heads and with training set sizes
between 4 - 10° and 3.2 - 10° snapshots are evaluated across configurations
CO0, C1, and C2. Increasing the training set size consistently improves the
distribution of the per-user spectral efficiency, while wider models yield
smaller but still visible gains once M, reaches the range of 40 to 60 times

the number of heads.

After extensive experimentation with different hyperparameter settings,
a single configuration that consistently performs best among the tested
options is selected. The model uses three Transformer layers and a width
parameter M, = 50H, where H is the number of attention heads. It is
trained on 3.2 - 10° snapshots with a batch size of 256. The optimizer uses a
fixed learning rate with the parameter VARYING_STEP_SIZE set to false.
On Triton, a single training run of this configuration requires a Slurm time

allocation of about 45 hours.

The behaviour of the loss curves during training is illustrated in Fig-
ures 11 and 12. For Configuration CO (small, no pilot reuse), the step-wise
training loss is noisy at the level of individual optimization steps, whereas
the epoch-averaged loss is smooth and consistently decreasing. This in-
dicates that the unsupervised objective and the gradient computation are

numerically stable.
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train_loss_step

(a) Stepwise training loss.

train_loss_epoch

(b) Epoch averaged training loss.

Figure 11: Training loss for Configuration CO (small, no pilot reuse).

For the final configuration used in the experiments, Figure 12 shows
the epoch-averaged training and validation losses. Both losses decrease
during training and then gradually level off. They remain close to each other
over the entire run. This suggests that overfitting is limited for the chosen

training length.
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(a) Epoch averaged training loss.

(b) Epoch averaged validation loss.

Figure 12: Training and validation losses for the final configuration.

After these design choices are fixed, Configuration C1 is trained on the
main CFmMIMO setup without pilot reuse, followed by Configuration C2,
which uses the same architecture and hyperparameters but includes pilot
reuse and stronger interference. For each configuration, the model is trained
once and evaluated on an independent validation split and on the large test

set used to compute the per-user SEs.

5.4 Results

To compare the obtained results with established optimization methods,
the Transformer model is evaluated against EPA and APG. The evaluation
focuses on the per-user SE achieved on the test sets for Configurations C1
and C2, while Configuration CO is used mainly for debugging and hyperpa-

rameter selection, and therefore, CO is not included in the final figures.

For each configuration and method, per-user SEs are computed on

independent test snapshots and summarized in the form of quantile curves
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as a function of the user percentile. Low percentiles (towards the left of the
curves) correspond to the weakest users in the network, such as those with
poor channel conditions or strong interference, whereas high percentiles

correspond to users with favourable propagation conditions.

Figure 13 shows the quantile curves for Configuration C1, which
represents a medium-size CFmMIMO setup without pilot reuse. The
Transformer model achieves per-user SEs that are very close to those of

APG across almost all percentiles, while both methods clearly outperform
the EPA baseline.

— C1 Transformer

—Cl1 APG
1 —C1EPA .

0 10 20 30 40 50 60 70 8 90 100
Percentile [%0]

Per-user spectral efficiency [bit/s/Hz]

Figure 13: Quantile curves by percentile, Configuration C1.

Figure 14 shows the corresponding curves of per-user SEs for Config-
uration C2 with pilot reuse and stronger interference. As expected, pilot
contamination reduces the absolute per-user SEs for all methods tested
compared to SEs for Configuration C1, but the relative ordering remains
the same. The Transformer and APG curves stay close over the entire range

of percentiles and both provide a clear improvement over EPA.
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Figure 14: Quantile curves by percentile, Configuration C2.

Overall, the results for Configurations C1 and C2 show that the Trans-
former model achieves per-user SEs that are comparable to those of APG
over a wide range of user percentiles, while both methods significantly
outperform EPA. At the same time, the Transformer computes power-control
coeflicients in a single forward pass, so its computational cost per snapshot

i1s much lower than that of iterative optimization with APG.
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6 Conclusions

This thesis has investigated a transformer-based self-attention model for
downlink power control in CFmMIMO systems. The model was trained in
an unsupervised manner on a generated dataset that consists of CFmMIMO
network snapshots. Experimental results show that the model is able to
achieve per-user SE that is comparable to established optimization-based

methods, while providing a significantly lower inference time.

The transformer architecture is capable of exploiting large-scale fading
information and pilot allocation patterns through self-attention, which allows
it to capture the global interference structure in each snapshot. Even though
training the model and tuning its hyperparameters require many iterations
and a noticeable amount of computation time on a GPU cluster, this cost is
incurred only offline. Once training is completed, the controller maps each
new snapshot to power control coefficients with a single forward pass and
with predictable latency. These findings support attention-based models
as a practical and scalable solution for real-time resource optimization in

CFmMIMO systems.

6.1 Future research directions

The present work focuses on power control in a limited set of simulated
CFmMIMO scenarios and relies on a standard analytical CFmMIMO model
based on large-scale fading and pilot-based channel estimation, without
explicit hardware impairments. Since the transformer architecture is flexible
with respect to the input representation, a natural next step is to extend the

same attention-based modelling approach to a broader set of CFmMIMO
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tasks. In particular, similar architectures could be adapted to pilot allocation,
user association, and channel estimation, or to joint designs where power

control is learned together with one of these tasks.

Another direction is to explore alternative model designs, training
objectives, and data generation strategies. Variants of the transformer with
modified input preprocessing, different depth or width, or hybrid architectures
that combine attention with other neural network modules could be evaluated.
On the data side, the current work relies entirely on synthetic snapshots
with a fixed set of assumptions. Future work could investigate more diverse
synthetic scenarios that better cover realistic propagation conditions and
network configurations. It is also relevant to combine such synthetic data

with a limited amount of real-world measurements.
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