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Abstract

During the last decade, GNSS Reflectometry (GNSS-R) together with its ground
application, GNSS Interferometric Reflectometry (GNSS-IR), have been gaining
momentum with satellite missions and ground campaigns. These passive remote
sensing technique lies within the microwave remote sensing technology and makes
use of satellite navigation signals for Earth Observation (EO) purposes.

Another passive EO technology is multispectral satellite imagery from missions
such as Landsat-8. Multispectral imagery is an optical remote sensing technology and
covers various wavelengths of the optical spectrum, allowing to analyze the spectral
response of the surface materials.

This work focuses on GNSS Interferometric Reflectometry processing for soil
moisture estimation, followed by a GNSS-IR aided multispectral model using Landsat-
8 satellite data, with the aim of providing an accurate, cost-effective solution with
wide-area coverage. In this research, a GNSS-IR processing chain is developed
to estimate volumetric soil moisture surrounding static geodetic receivers. Results
from this technique are used to fit a linear model with Landsat-8 data combining
several optical indexes that have high correlation with soil moisture. Finally, the
proof-of-concept of a multispectral imagery model, aided by local GNSS-IR results, is
demonstrated and verified against data from the Soil Moisture Active Passive (SMAP)
satellite mission for a wide-area coverage.

Keywords microwave remote sensing, GNSS-IR, volumetric soil moisture,
multispectral satellite imagery, reflectometry, optical remote sensing
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1 Introduction

1.1 Background

Estimating soil moisture is important for many purposes, including monitoring regions
susceptible to natural hazards, planning the planting of crops, and optimizing irrigation
in agriculture. Currently, in addition to ground-based and aerial methods, soil moisture
has been globally estimated using Earth Observation (EO) satellites. EO satellites use
remote sensing instruments to receive signals that are either explicitly designed and
transmitted (active remote sensing) or can be leveraged as a secondary application
from already existing sources (passive remote sensing).

Soil moisture has been estimated using either local (e.g., ground probes) or
global (satellite observation) solutions. Ground probes can be inserted into the
soil to estimate land water content. However, installing ground probes is not cost
effective for monitoring relatively large areas. On the other hand, satellite observation
such as NASA’s Soil Moisture Active Passive (SMAP) mission records global daily
measurements about soil moisture from the top 5-cm layer of soil. Despite its global
coverage, the estimates provided by SMAP are limited to only km? resolution.

Over the last decade, GNSS Interferometric Reflectometry (GNSS-IR) has been
introduced as a passive remote sensing method. GNSS-IR utilizes satellite navigation
signals (GNSS) by exploiting multipath ground reflections captured by the GNSS
receiver antenna. The GNSS-IR method has been widely used for soil moisture
estimation [1, 2, 3]. Furthermore, since GNSS-IR is based on GNSS signals, it uses
microwave remote sensing, thus enabling soil moisture top-layer estimates similar to
SMAP but with m? resolution. GNSS-IR analyzes signal power anomalies influenced
by characteristics of the ground, thus making it possible to infer parameters such as
soil moisture. Therefore, GNSS-IR offers a valid alternative for providing accurate,
meter-level and minimum-deployment solution.

1.2 Research Problem and Thesis Aim

Despite its benefits, GNSS-IR is still a local solution. To cover larger areas, GNSS-IR
requires the installation of more antennas, which would prove to be impractical and
expensive. Moreover, the electronic circuitry of its setup must be protected from
environmental conditions.

Therefore, this thesis explores the feasibility of a global, high-resolution solution
that combines accurate local GNSS-IR soil moisture estimates with meter-level
multispectral satellite imagery. The outcome of this work is a GNSS-IR aided
multispectral model utilizing NASA’s Landsat-8 satellite data for providing an accurate,
cost-effective, and mete-level global solution.

To achieve this goal, a GNSS-IR processing chain is developed to estimate soil
moisture content in the surroundings of a static geodetic receiver. Results from
this method are used to fit a linear model from Landsat data by combining several
optical indexes that have a high correlation with soil moisture [4, 5]. Finally, the
proof-of-concept of a multispectral satellite model aided with local GNSS-IR outputs
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is demonstrated and verified against SMAP satellite data over extensive areas.

1.3 Structure of the Thesis

This thesis is structured as follows. Chapter 2 reviews state-of-the-art solutions for
estimating soil moisture from satellite and ground sensors. Chapter 3 describes GNSS
characteristics and its usage in passive remote sensing. Chapter 4 presents GNSS-IR
covering both electromagnetic principles as well as the main parameters of interest.
Chapter 5 introduces multispectral satellite imagery and the response of Landsat-8
optical bands to soil moisture. Chapter 6 presents the data and scenario characteristics.
Chapter 7 describes the implementation of the GNSS-IR processing chain and its
application for soil moisture estimation. Chapter 8 combines GNSS-IR outputs with
multispectral data in the linear model to provide accurate coverage over wider areas.
Chapter 9 presents the results from GNSS-IR standalone and the proposed multispectral
model, and compares them to SMAP satellite data for verification. Finally, Chapter
10 concludes the thesis by evaluating the accuracy and scalability of the proposed
solution and suggesting directions for future work.
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2 Soil Moisture Estimation

Soil moisture has been the subject of numerous climate studies and it plays a cru-
cial role in the energy exchange between the Earth’s surface and the atmosphere,
influencing vegetation growth, weather patterns, and hydrological cycles [6]. Soil
moisture monitoring enables efficient management and use of water resources, having
determinant importance for purposes including agricultural monitoring and planning,
optimization of irrigation mechanisms and delimitation of risk areas susceptible
to landslides. Multiple methods exist for estimating soil moisture either locally or
remotely, varying from ground to space platforms.

In the gravimetric method, soil moisture content is directly determined by weighing
a soil sample collected from the field before and after it is dried in the laboratory
[7]. This method is considered the most accurate and is the only direct technique for
measuring soil moisture. Despite its precision, the gravimetric method has significant
limitations. It is not suitable for continuous monitoring because it is a destructive
process, necessitating the collection of soil samples. Additionally, this method is
not practical for assessing large areas because each measurement only represents the
specific location from which the sample was taken, making it challenging to obtain a
comprehensive view of soil moisture distribution across a broader region.

Other methods estimate soil moisture indirectly by assessing the physical properties
of the soil, either through in situ or remote sensing techniques. In situ soil moisture
probes facilitate extensive data collection and continuous monitoring. These probes
work by measuring the soil’s electric permittivity [8], which increases with higher
moisture content. The electric permittivity is measured through the time delay in
signal propagation or the frequency shift of an electromagnetic pulse. Despite the
advantages this approach, it is limited in range since it only measures moisture content
within a few centimeters of the sensor, restricting its ability to provide soil moisture
estimations over larger areas.

Remote sensing technologies such as space-based sensors offer the advantage of
global coverage, enabling the monitoring of soil moisture across wider areas. However,
this broad coverage comes at the cost of lower spatial resolution. Active sensors
typically have a spatial resolution of around 100 meters, while passive sensors have a
much coarser resolution of approximately 10 kilometers [9]. This resolution refers to
the spatial resolution of the data collected by the satellite’s instruments, which is the
scale at which the soil moisture measurements are represented on the Earth’s surface.

Another limitation of satellite-based soil moisture measurement is the relatively
low revisit time, which refers to the duration between consecutive passages of the
satellite over the same ground location. This revisit time is considerably longer
compared to the continuous data provided by dedicated local soil moisture monitoring
networks. Despite not having the resolution and continuous monitoring capabilities of
local sensors, their ability to cover large areas and provide consistent data over time
makes them an essential tool in the study of Earth’s hydrological processes. Therefore,
space-based sensors are therefore considered reference soil moisture information
sources on a large scale. Satellite missions such as NASA’s Soil Moisture Active
Passive (SMAP) [6, 10] and the ESA’s Soil Moisture and Ocean Salinity (SMOS) [11]
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utilize remote sensing technology to measure global soil moisture levels from space.

2.1 Soil Moisture Concepts

Several concepts exist for quantifying and interpreting soil moisture content. The
concepts involved in this thesis are:

* Volumetric Soil Moisture (VSM): is defined as the ratio between the volume
of water contained in a given volume of a soil sample [2, 12]. It has units of
cm? /cm? although can also be understood as a percentage.

» Vegetation Water Content (VWC): refers to the amount of water stored within
the tissues of vegetation, measuring how much water vegetation can hold. It has
units of kg/m? [13, 14].
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3 GNSS as Microwave Remote Sensing

Satellite navigation constellations are widely deployed, their civilian service is free to
use, and provide worldwide coverage with all four global (GPS, GLONASS, Galileo,
BeiDou) and two regional (QZSS, IRNSS) systems. Despite being aimed to navigation
purposes, GNSS presents highlightable features which make the system stand out as a
prominent technology for remote sensing.

GNSS operating frequency band, known as L-band (around 1.2-1.5GHz) lies in the
microwave spectrum, to which atmosphere is transparent. Furthermore, GNSS signals
penetrates deeper into the ground than than other systems using higher frequencies
[1, 9]. This classifies GNSS EO applications within the so called microwave remote
sensing technologies. For these reasons, GNSS is an attractive candidate for Earth
Observation due to availability, coverage, cost and propagation properties.

In contrast to instruments which actively sense the environment, GNSS is used
as a passive remote sensing system. We talk about passive mode when an external
system 1is leveraged as an input to the main application, in this case as an input
signal-of-opportunity. GNSS has been widely used for secondary applications such
as passive remote sensing, thus leading to less expensive solutions than tailor-made
active systems.

The following subsection will present briefly the GNSS signals and the main
characteristics that make them of special interest for remote sensing, and continuing
subsection introduces the GNSS-Reflectometry technology.

3.1 Signal Characteristics

GNSS (Global Navigation Satellite Systems) signals are transmitted from Medium
Earth Orbit (MEO) satellite constellations. In this thesis, only GPS system is used,
and therefore this system and its signal characteristics will be briefly described.

GPS signals are modulated with Direct Sequence Spread Spectrum (DSSS) through
pseudorandom (PRN) code sequences [15], since shall behave quasi-randomly to
ensure white noise-like power spectral density (i.e. flat). This modulation behaves as
an extension of Binary Phase Shift Key (BPSK) modulations, and it is common to
treat GPS signals as BPSK-modulated.

GPS utilizes multiple frequencies, namely the bands L1, L2, and LS5 frequencies.
Signal characteristics and frequencies are described below [16, 17].
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L1 Signal:

— Carrier Frequency: 1575.42 MHz.
— Wavelength: 19.05 cm.

— PRN Code Frequency: 1.023 MHz.
— Modulation: BPSK at 1.023 kHz.

— Characteristics:

# Used for civilian GPS applications. It is the first and most common
used signal.

* Consists of two components: L.1 C/A (Coarse/Acquisition) and L1
P (Precise) codes. L1 C/A code is of public usage, while L1 P is
restricted to military usage. Therefore it is encrypted and provides
higher accuracy than L1.

» L2 Signal:

Carrier Frequency: 1227.60 MHz.
Wavelength: 24.45 cm.

PRN Code Frequency: 511.5 kHz.
Modulation: BPSK at 1.023 kHz.
— Characteristics:

* Includes L2 C/A and L2 P codes, similar to L1.

+ Used for dual-frequency receivers. Similar precision as GPS L1
but main usage in combination with L1 to completely remove the
ionospheric errors.

% To PRNSs both at 511.5kHz: short (Civil Moderate, "CM") and long
(Civil Long "CL"). PRNs are multiplexed in time, leading to similar
overall appearance and modulation as L1

* LS5 Signal:

Frequency: 1176.45 MHz.
Wavelength: 25.48 cm.

PRN Code Frequency: 10.23 kHz.
Modulation: BPSK at 10.23 kHz.

Characteristics:

# Intended primarily for civil aviation and safety-of-life applications.
Also provides improved accuracy, integrity, and reliability compared
to L1 and L2.

# Supports modernized GPS capabilities, including robust signal track-
ing in challenging environments.
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3.2 GNSS Reflectometry

In GNSS Reflectometry (GNSS-R), as other microwave remote sensing technologies,
the signal is reflected from the Earth’s surface. The aim is to exploit this reflection
to infer the characteristics in the reflected area, also known as specular point in the
case of a specular reflection (when the incidence and reflection angle match). Such
reflections are captured by a receiver which can be located either in a space, aerial or
land platform. In particular for soil moisture, microwave technologies can measure the
soil’s top 5 cm. Its accuracy is related to the large differences in dielectric properties
between water and dry soil, with more moistened soils resulting in higher dielectric
constants [18].

GNSS-R technology has been an active R&D field during the last decade, with
distinguished mission and network campaigns such as NASA’s CYGNSS in space, and
NOAA’s PBO H20 Network in land. Even though research in GNSS-R accounts for
nearly 1% of published articles in Remote Sensing until 2023 [19], its performance
has been demonstrated to provide trustful results to carry out space, aerial and land
applications.

3.2.1 Ground Based

In GNSS Remote Sensing, an application of ground-based reflectometry is GNSS Inter-
ferometric Reflectometry, which exploits the satellites” signal reflections surrounding
the receiver, therefore providing the lowest coverage area but sharpest resolution of
few tenths of m?.

GNSS-IR has been extensively demonstrated and validated for various applications,
including the measurement of vegetation water content [20], detection of vegetation
presence [13], surface soil moisture estimation [21, 1], and snow depth assessment
[22]. GNSS-IR is currently integrated into the majority of GNSS stations within the
National Science Foundation’s (NSF) EarthScope Plate Boundary Observatory (PBO)
network [23]. This integration serves to estimate changes in snow depth and surface
soil moisture levels, both of which are available to download from the UNAVCO
online dataset.
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4 GNSS-IR Fundamentals

Different to space and aerial applications where the receiver is installed on a platform
in movement, ground-based GNSS reflectometry requires the receiver installation to
be on a few-meter tall static platform. This configuration is ideal for applications such
as continuous real-time monitoring of a specific geographical area of interest.

GNSS-IR makes use of static receivers, which come in geodetic or commercial
variants, to estimate Essential Climate Variables (ECVs) within areas of approximately
50-meter radius for a typical 2-meter tall antenna [12]. A notable advantage of
this technique is the independence from specifically-designed GNSS equipment
for capturing signal reflections, such as methodologies that rely on the Left-Hand
Circularly Polarized (LHCP) component, necessitating specialized LHCP compatible
antennas [3]. This flexibility not only simplifies equipment requirements but also
extends the applicability of already-deployed GNSS stations to be used in parallel for
both navigation and environmental sensing purposes.

In order to sense the surrounding area, GNSS-IR processes the outputs of the
receiver station, in particular the carrier-to-noise-density ratio (C/NO) or Signal-
to-Noise ratio SNR. It is important to clarify that C/NO and SNR are different
concepts.

. Pg C
SNR[linear] = — = —— — SNR[dB] =C/NO-B (1)
Py NoB

where Ps = C and Py = NyB are the signal and noise powers, respectively. Ny
stands for the noise spectral density and B for the signal bandwidth. Therefore, due to
the C/NO and SNR relation, the bandwidth just acts as a scaling factor. For this reason
it is common in GNSS-IR, also known as GNSS SNR multipath reflectometry [24], to
use the terms C/NO and SNR interchangeably, as is the case in this thesis.

A benefit from the use of SNR is that it is invariable to effects such as satellite
orbit and ephemerides errors, clock errors and atmospheric delays which affect other
GNSS observables and need to be taken into account for navigation applications [12].
In Remote Sensing, the SNR in GNSS can be used directly since the multipath effect
of interest, the interferograms from direct-reflected waves, is already embedded on it.

C/NO is calculated by satellite navigation receivers and used to monitor the signal
quality and compute multiple metrics, such as pseudorange weighting for position
fix, or detection of signal anomalies and interference [15]. In ground-based GNSS
reflectometry, the C/NO is a key parameter whose variability is studied to detect and
analyze multipath, consequently post-processing it to estimate soil characteristics. It
has been demonstrated that observations from GNSS multipath signals show strong
correlations with environmental characteristics [3].

Nevertheless, although C/NO measurements are collected throughout the passage
of each satellite in the sky, GNSS-IR only makes use of certain time period. More
specifically, since GNSS-IR is focused on ground reflections, it shall process the C/NO
values which are more influenced by ground multipath.

For this reason, the C/NO values to analyze correspond to the time in which the
satellite is rising or setting in the sky, limiting the observation period to the time in
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Figure 1: C/NO variation with time and low-elevation angles of interest from [25].

which the satellites are at low elevation angles as shown in figure 1. Furthermore,
GNSS-IR strictly depends on the geometry driving the satellite reflection on the ground
surrounding the receiver as shown in figure 2. The details on antenna characteristics
and multipath geometry driving this criteria will be explained in the coming subsections
4.1 and 4.3.

4.1 Propagation effects

GNSS signals have predominantly Right-Hand-Circular-Polarized (RHCP) polariza-
tion, since LHCP component is limited to 20% of RHCP [3]. The propagation path
of the received signal can be divided into two parts: the direct link between satellite
and receiver for the Line-of-Sight (LoS) component, and the link between the ground
reflections and receiver for the multipath components. Both components are combined
in the received input, since the antenna captures the overall signal, containing both
LoS and reflections.

Ground reflections from microwave signals, such as other electromagnetic waves,
can change their polarization when reflecting on a material. For instance, depending
on the incidence angle and the dielectric properties of the surface material, RHCP
signal will split between RHCP and LHCP components [3, 12].

From antenna design, the gain pattern of GNSS antennas has contributions from
both right and left polarizations. An illustration of reflection surface is, as well
as RHCP and LHCP radiation patterns is shown in figure 2. Notice that RHCP is
maximum in boresight direction, which is the direction in which the antenna mainlobe
is oriented, typically zenith direction.

In the receiver antenna, the RHCP gain pattern is omnidirectional in azimuth,
meaning that all azimuth angles receive the same gain, and quasi-hemispherical with
elevation angle, which means that gain increases for higher elevations (closer to the
boresight direction). The LHCP gain pattern is not well defined but shall remain lower
than RHCP gain in boresight direction, being less restrictive in anti-boresight [3].
Notice that the aforementioned restriction for LHCP magnitude to be less than 20% of
RHCP applies for the GNSS transmitter on the satellite, not to the receiver. The exact
LHCP-RHCP proportions on the receiver antenna design are specific for each product.
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Figure 2: Left: illustration of RHCP (blue) and LHCP (red) patterns in antenna
design. Right: example of direct (blue) and reflection (red) components. Particular
reflection surface shown in green, although signal reflects all around the antenna [13].
Hj and E are the antenna height and satellite elevation angle, respectively.

Due to the negligible LHCP power in LoS, the RHCP component predominates.
Nevertheless, this is not the case when the signal reflects over a surface. In this case,
part of the signal polarization will change to LHCP, thus making this component not
negligible anymore. However, this behavior and the magnitude of the derived LHCP
and RHCP components depends on the elevation angle and surface material. Satellites
with higher elevation angles tend to have LHCP reflections, while low elevation
satellites tend to have RHCP reflections [12]. This means that for a same geodetic or
commercial receiver, whose radiation pattern follows principally RHCP polarization,
it is best to analyze the low-elevation angles looking for multipath. This justifies why
low elevation angles are preferred for GNSS-IR, because the same RHCP polarization
predominates and therefore these components will cause clear interferograms with the
direct signal in the C/NO.

4.2 Frequency Band

As previously mentioned, one of the benefits that microwave remote sensing has from
the L-band in which GNSS operates is the transparency of atmosphere, propagation
through vegetation and penetration in the top Scm of soil. Nevertheless, not all GNSS
bands behave similarly concerning multipath ground reflections. Therefore, it cannot
be expected that the ECV to estimate is equally well embedded in signals from different
frequencies.

Considering GPS system as an example, modern signals in L2 and L5 bands
follow better theoretical models than legacy and oldest band L1. Details on GPS
characteristics can be found in Data section 6. Figure 3 illustrates the ground multipath
signature in low elevation angles from L1, L2 and L5 bands. Civilian signals L1 C/A,
L2C and L5Q are public, while L2 P(Y) is a restricted for military usage. Multipath
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oscillations should be evaluated only from civil signals, which are the ones that can
be publicly used. Therefore, modern civil signals from L2 and L5 are excellent
for GNSS-IR applications [26] and preferred over L1. Following the GNSS-IR soil
moisture literature, this thesis uses L2 frequency band.

| ——L1{-C/A ——2-CL —+—L2-P(Y) ——L5Q

10 Il 1 i i 1 [l [l | i I [l
5 10 15 20 30

Elevation angle (degrees)

Figure 3: Ground multipath signature from different GPS bands from [12].

4.3 Multipath modelling

The composite signal resulting from the addition of the ground-reflected and the
direct components leads to the interferometric pattern. Such pattern results in
constructive/destructive additions due to the superposition of direct and reflected
waves [3].

The composite signal is modelled with a two-ray model resulting from the reflected-
direct geometry, as shown in figure 2. The interactions between reflected and direct
waves produce oscillations in power, driven by three main characteristics:

* Interferometric power: it is defined as the ration between reflected and direct
components, P; = 1%’ where P, and P, are the reflected and direct powers,
respectively.
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* Interferometric delay: defined as the excess delay between the reflected and
direct propagation, 7; = 2Hsin(6#). A clearer illustration for this formulation
can be obtained following the reasoning on figure 4, where same as in figure 2
Hj (here called just H) and E (here called 6) are the antenna height and satellite
elevation angle, respectively.

* Interferometric phase: corresponds to the excess phase from the reflected (®,)
with respect to the direct component (D), defined as ®; = ©, — D,.

In terms of received power, or more generally SNR if noise power P,, is accounted for,
the interaction between reflected and direct signals can be modeled as [3, 27]

SNR = (Pa+ P, + 2PaPrcos(®)) P!

(2)
=Py (1 L P+ 2\/EP,-)cos(<I>,-)) P!

real ant.

Figure 4: Illustration for construction of interferometric delay 7; following [27]
adjusting colors to same as in figure 2 for better understanding.

Focusing on interferometric phase, from [3, 28] ®; can be expanded to account for
the interferometric delay 7; and reflection-induced phase shift @,

2 4rH
q),'ZTﬂITl‘+(DX: 70

sin(0) + ®, (3)

where H, A and 6 account for the antenna height, signal wavelength and elevation
angle, respectively. The term @, is a phase shift which strongly depends on the
reflection surface characteristics, and is influenced by factors such as vegetation, soil
moisture or snow accumulation. Therefore [3]:
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* 7; is another phase shift and is commonly called interferometric geometric delay.
» @, is called compositional phase shift.

Combining equations (2) and (3), we obtain an expression for the interferometric
SNR where the multipath influence is principally driven by the satellite elevation angle
in the 2nd term.

AnH,
SNR = Py (1 + P;) + 2Pg/Picos | =22

sin(0) + @, (4)

Result from equation (4) is the detailed explanation of what we observe in figure 1.
Therefore, SNR varies based on factors such as constructive or destructive additions,
satellite elevation angle, receiver height, and receiver antenna gain pattern.

The interferograms exhibit oscillations in SNR at low satellite elevation angles,
where the 2nd term of equation (4) dominates. These oscillations serve as a distinct
marker of ground multipath interference, gradually becoming smoother as satellite
elevation angle increases, thus making the 1st term of equation (4) the dominant. This
smoothing effect occurs as the power of the reflected signal diminishes relative to the
direct signal, until its influence on the interferogram becomes negligible.For a typical
geodetic-quality GNSS antenna gain pattern, this transition occurs at ~ 30 degrees.

It is worth mentioning that unlike navigation applications, which typically mask
out satellites at elevations below 20 or 30 degrees, in reflectometry the region of
interest lies precisely below 30 degrees. This emphasis on lower elevation angles
stems from the higher influence that reflected components have in this region, that is
where SNR oscillations are clearer, which is essential for accurate environmental data
retrieval using reflectometry techniques.

On figure 5 we can see the effects of the interferometric characteristics such as
power and phase with respect to the elevation angles. In the figure we can see how

* Direct and reflected components, P; and P,, respectively increase and decrease
with elevation angle, consequently reducing the interferometric power P; to
zero.

* Composite power component P. = P4 + P, converges to the direct component
as reflected power tends to zero with increasing elevation angle.

» Consequently, error component P, = P./P 4, tends to unity.

* Interferometric geometric delay 7; varies from +180 degrees, while the compo-
sitional phase shift @, varies smoother. This makes sense since @, is driven
by the material of the reflecting surface, typically uniform or quasi-uniform
surrounding the receiver antenna.

* Finally, we can see how the error phase with respect to a reflection-free case (i.e.
direct-only) reduces to zero as the reflected component vanishes with increasing
elevation angle.
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Figure 5: Responses with respect to elevation angle of: power (direct and reflected),
signal combinations (interferometric and composite), as well as interferometric and
compositional phases form [3]

As a final observation on the importance of elevation angle, from a geometrical
perspective it is expected that at higher angles the reflection point on the surface on
figure 2 (right image) will approach the antenna basement. As a result, the reflected
component will be received closer to the anti-boresight direction of the antenna, where
the gain pattern is minimum, consequently nulling the reflected wave. This explains
why at higher elevation angles the reflected signal vanishes. Figure 6 illustrates how the
reflection point on the ground approaches the antenna as the elevation angle increases,
consequently being received at anti-boresight direction in figure 2 (right image).

4.3.1 Fresnel Zones

Ground reflections take place all around the antenna. Recall that GNSS antennas
are omnidirectional in azimuth, thus they are capable of receiving signal from all
azimuth directions at fairly equal gain. Figure 7 illustrates reflections surrounding the
GNSS antenna. There is an empty region on the North which is the result from the
satellite orbit inclinations and the North hemisphere where the antenna is located.
This empty region would be on the South direction if the antenna was located in the
South hemisphere [26].

Multipath reflections surrounding the antenna and their dependency on satellite
elevation angle have been defined. Now the concept of Fresnel Zones can be introduced.
Fresnel Zones are ellipses that denote the ray thickness, and the 1st Fresnel zone is
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Figure 6: Reflection surface on the ground with respect to satellite elevation angle.
Antenna illustrated as big cyan dot.

Figure 7: Illustration of ground reflections in the surroundings of the receiver antenna.

the region in which the signal is delayed up to half a wavelength [24]. Fresnel Zones
can be thought as the sensing regions near the Earth’s surface on which a particular
satellite signal reflects off the ground to be later on received by the antenna. This is
exemplified on figure 8 a).

Fresnel zones get smaller and closer to the antenna as the satellite elevation angle
increases, and their size and orientation depends on the antenna height, satellite
elevation angle, signal frequency and satellite azimuth angle [26]. This is exemplified

25



on figure 8 b).
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Figure 8: a) Illustration of ground Fresnel zones in 1D from [27]. b) [llustration of
2D Fresnel zones surrounding the antenna from [26]. On b), antenna height is 10m,
and elevation angles (in degrees) are green (5), cyan (10), blue (15), magenta (20),
and red (25).

4.3.2 SNR region of interest

Low elevation angles, also known as grazing angles, are the main regions of interest
for estimating environmental characteristics whose effects are embedded in the signal
power.We have seen that these angles are typically below 30 degrees. This region
corresponds to the oscillations in figure 1, and whose behavior is described by equation
(4). As was previously mentioned, the Ist term is principally driven by the direct
component, while the 2nd term is mainly driven by the ground reflection. In low
elevation angles, the 2nd term predominates, and therefore it is of our interest to
extract this region on the SNR for post-processing to infer ECVs such as snow depth,
vegetation presence or soil moisture.

In equation (4), the direct component acts as a trend, increasing the function when
the satellite is rising, and decreasing it when the satellite is setting. It is essential to
detrend this sequence, i.e. remove the effect of the direct component, to keep only the
oscillations with zero-mean. This can be done with a low-order polynomial [26]. The
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detrended SNR, representing ground reflection only, becomes

4rH
SNRy :2Pd\/F,~c0s (ﬂTsin(Q) + CD,C)
&)

ArH
=A(0)cos ( 7; sin(0) + d)x)
where SNR; denotes detrended SNR. Notice that the amplitude is now a function
of the elevation angle (since interferometric power P; is as well). The result of this
deterend process is illustrated in figure 9.
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Figure 9: Selection of region < 30 degrees and detrending by removing the influence
of the direct component. Illustration from [29]. Notice that the x-axis on the left image
is the elevation angle in degrees, while on the left image is the sine of elevation angle,
which is the domain variable on equation (5)

In order to keep coherency with literature on GNSS-IR soil moisture estimations
[26, 1, 12], the cosine in equation (5) will be changed by a sine, which basically means
a 180 degree shift, or sign inversion, to the result. This has no effects in the shape of
C/NO oscillations for ECV retrieval. For this reason, from now on the detrended SNR
will be interpreted as follows

SNR; =A(0)cos (MTHsin(Q) + CD,C)
4drH ©
= A(0) cos (T sin(0) + qb)

where the environmental-influenced phase was renamed as ¢ = @, for notation
simplicity.

After presenting the C/NO shape (or equivalently SNR), the antenna pattern and
multipath modelling influencing it, and introducing its mathematical expression and
simplifications, we have arrived to equation (6), which is the starting point for GNSS
Interferometric Reflectometry processing.

4.4 Multipath SNR parameters

GNSS-IR processes the C/NO measurements following the model in equation (6),
which resembles a signal modulated in amplitude, frequency and phase by the
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parameters A(6), H and ¢. These parameters are strongly influenced by environmental
characteristics and therefore they are the main attributes of interest to infer ECVs.

4.4.1 Antenna Height

The signal in equation (6) will slightly vary its frequency due to the sin(6) multiplying
as the domain variable. For this reason, the peaks in figure 9 are not equidistantly
separated from each other, instead their separation increases slightly with the elevation
angle.

However, the the sinusoidal argument can be rewritten as 27r27Hsin(9). This allows
to define the so called multipath frequency [28], which is unique for the arc 0 < 6§ < 30
degrees.

2H

f mp = 7 (7

Since the antenna height is related to the frequency, we can expect faster oscillations

on measurements captured from higher antennas. This is particularly useful in snow

estimation [22]. Although the antenna height remains constant throughout all seasons,

the snow accumulation will approach the apparent ground towards the antenna, thus

changing the oscillation frequency since the receiver senses a lower antenna height.

On figure 10 we can see different oscillations on equation (6) with varying antenna
heights.

o 5 10 15 20 30 45 80 90
Elevation angle (degrees)

Figure 10: Different frequencies from equation (6) by varying antenna heights [3].

4.4.2 Amplitude

Amplitude is a good indicator on vegetation presence. Literature on GNSS-IR shows
that although all three parameters are correlated with vegetation growth, amplitude
presents good sensitivity for estimating vegetation cover, although this depends on
how much moistened vegetation is [2].

On the other hand, SNR oscillations tend to vanish rapidly depending on the
roughness of the reflecting surface. This is mainly a consequence of microwave signal
propagation, since objects with similar size as the signal’s wavelength will act as
obstacles to the signal. The vanishing speed is increased with elevation angle, therefore
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the already limited range of elevation angles below 30 degrees can be easily reduced
to half depending on the surface roughness standard deviation [3]. This is illustrated
on figure 11.

——10cm
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Figure 11: Vanishing amplitude with different surface roughness standard deviations
from [3]. Recall that wavelengths from GPS bands L1, L2 and L5 are 19.05cm,
24.45cm and 25.48cm, respectively.

4.4.3 Phase

Literature shows the strong influence from vegetation on the phase ¢ [2, 13], but it is
most widely used as an indicator for soil moisture [13, 1, 12]. Phase shifts caused by
soil types and moisture levels are illustrated in figure 12.
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Figure 12: SNR phase from different reflecting materials and moisture levels [3].

Research done in phase estimation from equation (6) show a linear relationship
between in-situ measurements collected with soil moisture probes and post-processed
SNR phase, with R? of 0.91 measured in the average top Scm of soil, and 0.997
measured on the soil surface [1]. Correlation between phase and in-situ soil moisture
estimates are based on the top Scm. This is relevant because other microwave-based
remote sensing technologies, such as SMAP mission, also sense top Scm, although in
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Figure 13: Relationship between phase and soil moisture [1]. Left) Low vegetation
site. Right) Medium vegetation site.

a km-resolution scale. Linear relationship between soil moisture and phase values is
shown in figure 13.

Phase post-processing will be detailed in section 7.2.6, but as illustrated on figure
13, a linear model can be constructed for translating phase values into soil moisture

quantities. In [1, 2] this relationship is established with a scalar factor of 1.48 C”‘l";ieg.

Despite providing high correlation with phase, soil moisture also presents good
correlation with amplitude. Considering surface soil moisture, it has an R? of 0.997
and 0.86 with phase and amplitude, respectively [1]. On the other hand, vegetation
presence also has high correlation in both phase and amplitude, with R? of 0.84 and
0.79, respectively [13]. Being the phase very sensitive to soil moisture variations, its
utility for estimating vegetation presence is limited and amplitude is preferred. Figure

14 shows the vegetation effect on SNR in bare and vegetated soil scenarios.
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Figure 14: Bare vs vegetated soil and its effect in SNR at low elevation angles [13].
The strong correlation between SNR phase with soil moisture and vegetation

indicate that there will be phase variations that are not only related to soil moisture, but
also to vegetation cover. This is an important factor to take into account on phase-based
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soil moisture retrieval algorithms, and for this reason phase values are corrected from
vegetation [2, 13].

Section 7.2.5 describes how vegetation corrections are computed from amplitude
values. Metrics based on amplitude estimations are used due to their high correlation
with vegetation cover. With these metrics, a vegetation correction model is constructed
to compensate for vegetation-induced phase variations, thus isolating moisture-specific
phase values for a proper soil moisture retrieval algorithm [14].
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5 Multispectral Satellite Imagery

The other technology used in this thesis is multispectral satellite imagery, which is a
technology used for collecting data across various wavelengths of the optical electro-
magnetic spectrum. Unlike traditional photography, which captures images in visible
light, multispectral imaging operates in both visible and non-visible wavelengths.
This capability allows satellites to gather information about environmental features
and processes whose perception is beyond the visible spectrum. Therefore, one of the
key advantages of multispectral satellite imagery is its ability to extend our vision to
different parts of the electromagnetic spectrum [18].

The use of multispectral imagery enables more accurate and comprehensive envi-
ronmental assessments, providing crucial data for decision-making across numerous
fields, including agriculture, forestry, environmental monitoring, and urban planning.
In agriculture, for example, multispectral images can help farmers monitor crop health
and optimize irrigation practices. In forestry, satellite data helps to track deforestation
and forest health. Environmental monitoring benefits from the ability to detect changes
in land use, water bodies, and pollution levels. Urban planners use this technology to
map and manage urban sprawl, infrastructure development, diversification of green
spaces and the so called urban heat islands. The coverage, continuity and data ac-
cessibility of multispectral imaging make it an invaluable tool in managing natural
resources and planning sustainable development.

5.1 Landsat-8 Characteristics

Landsat 8 mission was launched in February 2013 and continues the Landsat program
of Earth observation. The satellite the sensors Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). Landsat-8 captures data in the visible, near-infrared,
shortwave infrared, and thermal infrared wavelengths.

The main characteristics of Landsat-8 are shown below [30].

* Spectral Bands: Landsat 8 collects data across 11 spectral bands, including
visible, near-infrared, shortwave infrared, and thermal infrared.

* Spatial Resolution: The OLI sensor provides 30-meter resolution for visible,
near-infrared, and shortwave infrared bands, and 15-meter resolution for the
panchromatic band. TIRS offers 100-meter resolution for thermal infrared
bands. Images are taken along approximately 185km by 180km.

* Temporal Resolution: 16 days revisit time.

Corresponding band names and spectrum range is presented in table 1.

In the visible range, the region is generalized to red, green and blue color bands,
which conform the visible spectrum to the human eye. Beyond the visible range,
the optical spectrum also includes near-infrared and shortwave-infrared wavelengths,
which are not visible to the human eye but can be detected by specialized sensors.

Top of Atmosphere (TOA) and Surface Reflectance products are described below:
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Band Number | Band Name Wavelength (um) | Resolution (m)
1 Coastal/Aerosol 0.43-0.45 30
2 Blue 0.45-0.51 30
3 Green 0.53-0.59 30
4 Red 0.64 - 0.67 30
5 Near Infrared (NIR) 0.85-0.88 30
6 Shortwave Infrared (SWIR) 1 1.57-1.65 30
7 Shortwave Infrared (SWIR) 2 2.11-2.29 30
8 Panchromatic 0.50-0.68 15
9 Cirrus 1.36 - 1.38 30
10 Thermal Infrared (TIRS) 1 10.60 - 11.19 100
11 Thermal Infrared (TIRS) 2 11.50 - 12.51 100

Table 1: Landsat-8 Bands, wavelengths, and resolutions [30].

* Top of Atmosphere (TOA) Reflectance: This product represents the reflectance
measured at the satellite sensor, including atmospheric influences. TOA is useful
for applications on the clouds and initial data assessments before atmospheric
corrections.

* Surface Reflectance (SR): This product corrects for atmospheric effects to
estimate the reflectance of the Earth’s surface. Therefore, it provides more
accurate data for vegetation, soil, and water bodies. The atmospheric corrections
accounts for aerosols, water vapor, and ozone, which are crucial for applications
requiring precise reflectance measurements.

In this implementation, the Surface Reflectance (SR) data is used, since the
multispectral metrics are based on atmospherically-corrected data.

5.2 Spectrum bands

The optical spectrum refers to the range of electromagnetic wavelengths that are
captured by sensors to produce images. This spectrum includes visible light as well as
portions of the infrared and short-wave infrared spectra. Figure 15 illustrates spectrum
regions for: ultraviolet (UV), visible (VIS), near-infrared (NIR), middle-infrared
(MIR) and thermal-infrared (TIR). Although as described in 5.1, Landsat-8 has
specific bands for SWIR, conceptually the combination of bands UV, VIS, NIR and
MIR form the so called showrtave radiation, while TIR band forms the longwave
radiation [18].

When illuminating an object light can be absorbed, transmitted, or reflected
depending on the material’s properties [18]:

ptra+t=1 (8)

where p is the albedo or surface reflectance (ratio between input and output light
radiance), a is the absorptance (absorbed energy) and 7 is the transmittance (transmitted
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energy). In spite of this, it is common in optical remote sensing literature to also only
account for absorption and reflection.

Characteristics of the optical spectrum are crucial for understanding how light
interacts with different materials. By capturing data in different regions of the spectrum,
this technology can reveal subtle differences in surface materials and conditions. For
instance, chlorophyll in plants absorbs most of the blue and red light for photosynthesis
but reflects green light, which is why plants appear green [18]. In general, different
materials, either natural or artificial, have unique spectral responses that can be used
to identify them optical sensors with band combinations or spectral indexes.

Spectral indexes are metrics used to quantify features of interest. An example of
this is the quantification of vegetation with the Normalized Differential Vegetation
Index (NDVI), whose expression is presented on equation (9). NDVI which quantifies
the amount of vegetation or greenness over a region and exploits the spectral signature
of vegetation over red and NIR bands, since red band is highly absorbing while NIR
reflects most of the incoming radiation.

The ability to distinguish between different materials and conditions based on their
spectral characteristics makes multispectral imagery a powerful tool in remote sensing
and environmental monitoring. Figure 15 illustrates the spectrum curves for different
materials throughout the multispectral sensor range.
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Figure 15: Typical multispectral reflectance spectrum response. Adapted from [33].
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5.3 Quantities of Interest for Soil Moisture

In multispectral imagery, soil moisture can be detected and analyzed using specific
spectral bands and indexes. Soil moisture affects the reflectance properties of soil
in different spectral bands. Wet soils generally exhibit lower reflected energy in the
visible (VIS) and near-infrared (NIR) regions compared to dry soils due to the higher
absorption of water. This makes soils appear darker when moistened. The shortwave
infrared (SWIR) bands in Landsat-8 is particularly sensitive to soil moisture content
because water absorbs significantly in these wavelengths, especially in the water
absorption bands centered at 1450 and 1900 nm [18].

Research in [4] shows that Land Surface Temperature (LST) and Normalized
Differential Vegetation Index (NDVI) are highly correlated with soil moisture. LST
is defined as the effective temperature of Earth’s surface [31]. These quantities
can be used to build models to quantify soil moisture such as the Thermal Optical
Trapezoid Model (TOTRAM) [32], which estimates soil moisture based on the pixel
distribution in the LST-NDVI domain. Alternatively to TOTRAM which uses LST,
the Optical Trapezoid Model (OPTRAM) [32] uses the SWIR bands to compute a
measure analogous to LST to be used in the optical domain.

An extensive comparison among several indexes which are indicators for soil
moisture is done in [5]. This study concludes that OPTRAM and Visible and Shortwave
infrared Drought Index (VSDI) present higher correlation with reference soil moisture
values. These two measures reportedly outperform other indexes, and a reason is the
spectrum characteristics towards soil and vegetation.

Expressions for NDVI and VSDI are given in (9) and LST is based on the Landsat-8
TIR band. OPTRAM and TOTRAM models defined in [32] are not utilized in this
work. However, their inputs will be used used, NDVI and LST, as will be detailed in

section 8.
NIR - RED
NDVI =

" NIR+RED 9)
VSDI =1 — (SWIR, — BLUE) + (RED — BLUE)
where bands BLUE,RED, NIR and SWIR, are defined in 5.1.
Spectral response on different extents of dry and moistened soil and vegetation is
shown in figure 16. The relationship between soil moisture and LST, NDVI and VSDI
is related to the temperature, vegetation and water cycles as described below:

* Land Surface Temperature (LST): quantifies the thermal properties of the soil.
Moist soils have higher thermal capacity and lower surface emissivity, resulting
in lower surface temperatures compared to dry soils. Surface emissivity is a
measure of how effectively a surface converts kinetic into radiant energy above
the surface [31].

* Normalized Differential Vegetation Index (NDVI): since NDVI measures
vegetation health and greenness, high values on NDVI typically indicate,
indirectly, highly moistened soils.

* Visible and Shortwave infrared Drought Index (VSDI): combines visible and
SWIR regions. In [5] that the spectral response due to soil moisture changes is
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Reflectance

found to be relatively small in visible spectrum, but high in longer wavelengths,
such as SWIR.

08 Dry vegetation Oven dried

7 Wet vegetation Dry soil
T s N s Moist soil

----- Wet soil

lllllllllllll .

R = ',f_'_\\ o,
V2 L =
A} , \_"‘

Water absorption
SWIR

16 1.8 20 22 24

12 14
Wavelength(um)

Figure 16: Spectral response of different moistened soils and vegetation [5].
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6 Data

The data processed on GNSS-IR and multispectral model consist on GNSS and
Landsat-8 Surface Reflectance data. This section explains each data source and its
characteristics.

6.1 GNSS

GNSS data consists on public domain data recorded from reference stations with
geodetic GNSS receivers. Data characteristics are shown in table 2.

Attribute Description
Data Type GNSS
Format RINEX
Periodicity Daily every 30 seconds
Data Source UNAVCO
System GPS
Used Frequency L2
Collection Instrument GNSS Geodetic Antenna
Coverage Area Approximately radius of 50m [12]
Processing Tool MATLAB

Table 2: GNSS Data Attributes

The stations belong to the UNAVCO network and the PBO H2O program [23].
Data processed in this work and whose results will be presented in section 9 correspond
to the stations MFLE in Colorado and P267 in California. Table 3 shows the stations’
coordinates and soil type, and figure 17 shows the GNSS stations, antennas and
surrounding environment.

Station Soil Type Latitude | Longitude
MFLE | Arid, low vegetation | 39.947640 | -105.194439
P267 | Medium vegetation | 38.380335 | -121.823234

Table 3: GNSS stations and sites

6.2 Landsat-8

Multispectral imagery used in this work corresponds to data from Landsat-8 satellite
mission. In particular, Surface Reflectance dataset is used since that is already
corrected for atmospheric effects, such as atmospheric particles or cirrus that could
distort the captured radiance. Data characteristics are shown in table 4.
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Figure 17: Stations MFLE (top) and P267 (bottom)

Attribute Description
Data Type Multispectral
Format Google Earth Engine’s Image Collection
Periodicity Daily every 16 days
Data Source USGS
System Landsat-8
Used Frequency VIS, NIR, SWIR and TIR bands.
Collection Instrument GNSS Geodetic Antenna
Coverage Area 30 meter/pixel (TIR has 100 meter/pixel).
Processing Tool Google Earth Engine

Table 4: GNSS Data Attributes
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7 GNSS-IR Processing Chain

On section 4 the fundamentals of GNSS-IR were presented, covering aspects from
the signal propagation and multipath perspectives, to the SNR influenced by ground
multipath in low elevation satellites leading to the model in equation (6).

This section is focused on the GNSS-IR processing taking equation (6) as a starting
point. The processing chain is responsible for selecting the SNR region of interest (i.e.
low elevation angles), detrend it, estimate the SNR parameters described in section
4.4, and finally compute the vegetation-corrected soil moisture estimation from phase
measurements. The processing to estimate a soil moisture product from GNSS-IR is
divided in the following two steps and the block diagram is shown in figure 18.

1. Daily Processing: refers to the GNSS-IR processing from the daily RINEX
inputs to estimate the parameters described in 4.4.

2. Post-Processing: where the daily estimated SNR parameters are gathered to
compute the vegetation-corrected soil moisture.

7.1 Daily Processing
7.1.1 Arc Selection and Detrending

The information on the environmental characteristics from the reflecting surface is on
the SNR oscillation. This is visible in the region of low elevation angles, predominantly
below 30 degrees. Therefore, this region has to be extracted for further processing.
This step corresponds to the arc selection and detrending and the aim is to extract the
observations that follow the model in equation (6).

This can be done by just selecting the SNR observations that correspond to the
elevation angles below 30 degrees. The resulting sequence follows an increasing
trend. This is due to the presence of the 1st term in equation (4). Recall that the SNR
has contributions from two terms: one term mainly driven by the direct component,
and another driven by the ground multipath which causes oscillations. As previously
explained, the term responsible of oscillations will vanish with increasing elevation
angles, which occurs typically after 30 degrees.

For this reason, after extracting the region below 30 degrees, the influence of the
direct component which causes the increasing trend has to be removed. This can be
done by fitting and subtracting a low-order polynomial, typically with an order n = 4
[26]. After this operation, the 1st term in model (4) is removed, leading to the so-called
detrended SNR that was presented in equation (6), illustrated in figure 9 (right image).

7.1.2 Reflector Height Estimation

Once SNR data is detrended, we can interpret the resulting sequence as a sinusoid
signal modulated in amplitude, frequency and phase with the parameters of interest
A(0), Hy and ¢.
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Since soil moisture is highly correlated with the phase ¢, this is the target parameter
to estimate. However, the detrended SNR depends non-linearly on the phase, and any
direct trial to estimate it would lead to inaccuracies in the final soil moisture product
since the measurements also depend on amplitude and frequency (equivalently to the
height). For this reason, the order of estimation matters, and the first parameter to
estimate is the antenna height. After estimating the antenna height, we can proceed
with the amplitude decaying factor estimation, compensate for it, and fit a least-squares
model to calculate the phase.

As explained in section 4.4, the antenna height forms the multipath frequency of
the detrended measurements which follow model in (6). Such frequency has the form
detailed in equation (7), and it can be estimated as the sample index in the frequency
domain with highest power. Following subsections will explain the reasoning for
deriving the spectrum and estimate the antenna height.

7.1.2.1 Frequency Domain Representation

The frequency domain representation of a signal, also called spectrum, can be
calculated with the Fourier transform. An infinite sinusoidal discrete signal with
frequency wo and amplitude Ag

x[n] = Ag cos(won) (10)

has a Discrete Time Fourier Transform (DTFT) that follows a Dirac delta function
centered in the signal’s frequency wy. Dirac delta is defined as

0 ifz+#0,
oo ifz=0,

0(z) = { (11)
The spectrum of signal x[n] is defined as the Fourier transform in discrete domain
(DTFT). DTFT maps discrete-time sequences into 2 periodic continuous functions
and is defined as follows for infinite sequences [34]

o0
X(e") = Z x[n]e " (12)
n=—co
Since real signals are time-limited, such as the detrended SNR, the direct application
of DTFT to understand the spectrum is not theoretically correct. However, we can
interpret x[n] as non-zero subset of length N part of an infinite set which is zero
elsewhere

_ | x[n] fO<n<N,
Xeo[n] = { 0 if elsewhere, (13)
Thus, the spectrum of x[n] following DTFT is
: 1
X(e!") = 5 (6(w —wp) +5(w +wp)) (14)

where 6 (w £ wy) is the Dirac delta function defined in equation (11) with z = w + wy.
Therefore, the spectrum consists of two Dirac deltas centered at frequencies w = +wy,.
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If the signal is limited in a time window, then the power concentrated in the Dirac
spectral line centered around wg will be spread throughout a wider set of frequencies,
leading to a sinc-shape rather than a Dirac delta. Thus, the spectrum of a time domain
sinusoidal signal with a support of T seconds will be a sinc centered in wq in the
frequency domain [34]. This is the result of the time-frequency property stating that
shorter sequences in time domain result in wider spectrum in frequency domain. The
sinc function is defined as

sinc(z) = 5072 (15)
Tz
Thus, the spectrum defined in (14) turns into
T .
X(e!") = > (sinc(w — wq) + sinc(w + wo)) (16)

where due to the spectrum symmetry around zero for being a R signal [34], we can
focus on the positive frequency term only, that is, the 2nd term.

It should be mentioned that regardless of the modelling in (13), which allows to
write the DTFT result X (e/"), the Discrete Fourier Transform (DFT) is employed for
finite sequences

DTFT applies over infinite sets and has a continuous spectrum. On the other hand,
DFT defined in (17), can be applied to finite sets and has a discrete spectrum since w
is sampled based on the length N as w = %, where N is the discrete signal length,
and k is the discrete frequency sample index (i.e. equivalent to n in time domain)
[34]. Despite of this difference, DTFT and DFT share similarities regarding spectrum
properties, although DTFT references to a frequency value, and DFT references to a
frequency sample index.

N
X[k] = Zx[n]e—f% (17)

n=0
7.1.2.2 Spectrum Estimation

Now that the frequency domain representation of a sinusoidal was introduced and
exemplified with DFT and DTFT, the explanation can be extrapolated to the GNSS-IR
case. The detrended SNR which follows model in (6) could be thought as a time-
limited sinusoidal with decaying amplitude centered at frequency wy,, = 27 f,,,. Such
frequency has to be estimated to obtain the height estimation for H.

Spectrum estimation techniques based on DFT such as the classical periodogram
can be utilized to estimate the frequency on which the maximum peak is located.
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Classical periodogram is defined as [35]:

1
Sclassic[k] :N

1 = j 2k
+[3g

n=

0
1| (E drnk = (27nk
=— x COS + )C SlIl
N n=0 n=0

In our case, the sampling variable of the detrended SNR in (6) is the nonlinear an
unevenly distributed term sin(6), not an integer sample index n. Therefore, notation
in expression (18) will be slightly modified for two generalizations:

(18)

* frequency variable in terms of w.
* time domain sampling variable n replaced with z,,.

The expression of the classic periodogram in (18) with generalized frequency and
sampling variable is defined in (19) (notice the replacement of brackets from "[]" to
"()" to generalize the definition beyond discrete domain sequences):

= 2 (N-1 2
Setassic(W) = ~ (Zxan)cos (wm) +(Zx<rn> sin(wm) (19)
n=0 n=0

However, there is one important observation to be done: classic periodogram is
based on DFT, which is a function based on evenly sampled data, such as a signal
sampled at a sampling frequency Fj, that is, one sample every Ty = +, known as
the sampling interval. In the GNSS-IR case, the domain variable sm(H) is unevenly
distributed.

The application of DFT, and consequently DFT-based spectrum estimators like the
classical periodogram defined in (19) over unevenly sampled data lead to inaccurate
spectrum estimations because irregular sampling affects the power spectrum [36].
The result shows increased noise and signs of aliasing (i.e. sampling frequencies
smaller than the minimum acceptable Nyquist limit) due to the non-uniformity of
the frequency during the signal snapshot [35]. Figure 19 exemplifies the spectrum
distortion of an evenly and unevenly sampled Gaussian pulse.

For this reason, the signal’s frequency cannot be estimated with classical peri-
odogram, and an alternative method suitable for unevenly sampled data should be used
to estimate f,,, and consequently the parameter . A common spectrum estimator
used for unevenly sampled datasets is the Lomb-Scargle Periodogram.
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Figure 19: a) DFT over evenly sampled Gaussian pulse. b) DFT over unevenly
sampled Gaussian pulse. [35].

7.1.2.3 Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram (LSP) is a method used for efficiently comput-
ing the power spectrum of signals with unevenly sampled data. Unlike the classical
periodogram, which assumes uniformly sampled data, the LSP adapts the Fourier
transform to handle irregular sampling by fitting sine and cosine functions to the data
through least-squares minimization [35].

Named after Nicholas Lomb and Jeftrey Scargle, the Lomb-Scargle Periodogram
improves the sensitivity and accuracy of period detection, allowing for more robust
identification of periodicity in datasets with gaps or uneven sampling intervals. LSP
is particularly useful in astronomical time series analysis, where observations often
have irregular time intervals. In the GNSS-IR case, LSP will be used to estimate the
spectrum of the detrended SNR signal, and identify the height H as the index in x-axis
that corresponds to the maximum peak.

To introduce the LSP expression, the same generalization is followed in terms of w
and ¢, as was done for the classical periodogram in equation (19). The LSP expression
is defined in (20):

A2 N-1 2 B2 N-1 2
Stsp(w) = 5 | 3 x(t) cos(w(iy —r))) + (Zxan) sin(w(t, = 7)) | (20)
n=0 n=0

where 7 ensures the time-shift invariance of the result. Parameters A, B and 7 are
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functions of the frequency and observed sampling variables as

2 1
eV cos?(w(t, - 1))
2 1
CyM s (w(t, - 1) @h

B . ZnN:_Ol sin(2wty,)
T =—tan N1
2w Yo Cos(2wty)

These parameters allow the statistics of the periodogram to be analytically computable,
and make the LSP converge to the classical periodogram in the case of evenly sampled
data [35]. For instance, notice that if the data is evenly sampled, then 7 = 0 and
parameters A> = B% = % This makes the LSP expression in (20) to equal the classical
periodogram in (19). Therefore, LSP can be utilized in both evenly and unevenly
sampled sequences.

Figure 20 illustrates the application of LSP for the non-uniformly sampled SNR
data in model (6). The LSP outputs are the estimated antenna height Hgp and the
estimated spectrum peak magnitude P; gp. The next processing stages for phase and
soil moisture estimations.

Lomb Scargle Periodogram
T

T T
—LSP
————————————————————————

7\ HEST: 2.84m
1\
16— AR - — ‘PEST:1693 ||

LSP Peak

Antenna Height (meters)

Figure 20: LSP computation for detrended SNR arc.

7.1.3 Amplitude Compensation and Phase Estimation

Once the antenna height is estimated, the decaying factor can be estimated and
compensated prior to estimating the phase. Thus, the first steps in this stage are the
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estimation of the initial amplitude and decaying factor. To do this, the attenuation in
A(6) has to be modelled. The model in (6) can be rewritten as

- 4rH,
SNRy = Age™ " cos (% sin(6) + ¢) (22)
where Ag and m are the initial amplitude and decaying factor, respectively. These
parameters, together with the phase ¢ will be estimated this stage. To properly estimate

the decaying factor, the sinusoidal signal is sampled at the peaks as illustrated in figure
21, and a least-square fit is applied.

40
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Sine(Elevation angle)

Figure 21: Sampling of positive peaks following detrended SNR in figure 9.

However, the data is noisy and therefore subsequent peaks are not strictly smaller
than the previous, as one would expect in a noise-free sequence with decaying
amplitude. For this reason, a signal smoothing is applied prior to the sampling process.
The estimation of decaying factor 7z, amplitude compensation and posterior phase
estimation ¢ is divided in three steps:

1. Data Smoothing: to smooth the noisy data before sampling the peaks. This is
done to avoid wrong peak detection due to noise.

2. Decaying Factor Estimation: this samples the peaks and fits the decaying
amplitude to estimate the factor /7. After doing so, amplitude can be compensated
before estimating the phase.

3. Phase Calculation: this is the final step to estimate the phase from the smoothed
and amplitude-compensated data.
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7.1.3.1 Data smoothing

In general, a filtering process is needed to reduce the high variation due to noise. One
could simply build a Finite Impulse Response (FIR) filter, but for this the sampling
frequency and consequently signal’s maximum frequency have to be taken into account.
As stated in section 4.4, the detrended SNR will slightly increase the frequency as
elevation angle increases. Due to the varying frequency, and to keep the processing
simple, a different approach for smoothing is implemented. The applied smoothing
follows an L, norm minimization of the data subject to minimizing the energy of the
2nd derivative [37]:

min [|y - x|3 + A[|Dx]13 (23)

where
* yis the noisy SNR data as an Nx1 vector.

* x is the smoothed data as an Nx1 vector. It is the unknown to calculate and upon
which the peak sampling will be based to estimate the decaying factor.

* D NxN Toeplitz matrix of 2nd order derivative faps, such that Dx is a discrete
form of the 2nd order derivative.

* A is aregularization parameter which controls how smooth the solution will be.
For this reason, A > 0. Therefore, 4 = 0 means no smoothing at all, and the
solution x becomes smoother as A increases.

Calculating the 1st derivative of (23) and equaling to O results in the expression for x:

x = (I+AD'D)"y (24)
7.1.3.2 Decaying factor estimation

After smoothing the data, the peaks can be sampled to estimate a least-square
fit for the decaying factor m. Peak sampling is illustrated in figure 21.

Amplitude A(6) is modeled in equation (22) as A(0) = Age™*"?) This model
is utilized to build a least-squares fitting to estimate decaying factor /1 and initial
amplitude Ag. When applying the natural logarithm to the model we obtain:

In(A(6)) = In(Ag) + m sin(8) (25)

which in matrix form can be written as

In(A(6p)) 1  msin(6,)
In(A(64)) _ 1 msin(6,) [ln(nz?o)} (26)
In(A(6y)) 1 msin(Oy)

Let us now denote s as the vector of In(A(6;)). For simplicity and with no impact
on the performance, we can interpret it as the natural logarithm of the estimated
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smoothed vector in equation (24), that is s = In(x). Denoting H as the matrix in the
right-hand-side, and z' = [In(Ag) m], the initial amplitude and decaying factor can
be estimated with a least-squares fit as:

so that (27)
m =z
A() =

where zg and z; are the 1st and 2nd items of z respectively.

7.1.3.3 Phase calculation

Now that the only unknown parameter on (22) is the phase ¢, we can apply the
sinusoidal trigonometric identity in (28) and rewrite the expression (22). The smoothed
x is used rather than the original noisy data, as a design choice to work with a less
noisy sequence:

acos(A + B) = acos(A) cos(B) — asin(A) sin(B) = x (28)
we can identify @ = Age™S"¥), A = 4”7190 sin(6) and B = ¢.

To estimate B, the terms sin(B) and cos(B) will be treated as unknowns to be
estimated from a least-square fit. After that, the inverse tangent can be applied to
find the actual value of B = ¢. Notice that this isolation of ¢ is possible because the
phase has a constant behavior [3], since is driven by the environmental conditions in a
relatively small surface area. Modelling in matrix form:

N AAOerhsin(eo) cos (471/{'70 sin(@o)) —AAgeﬁ’ sin(6o) gip (47;1‘70 sin(@o))
0 . .
{ risin(6) 4rnHy : L msin(6)) o [ 47Ho
X1 Ape cos ( 51n(91)) Age sin ( 51n(01)) cos(¢)
_ Pl 1 . (29)
. . sin(¢)
N Age™sn(ON) cog (@ sin(HN)) —Age™sin(0n) gin (4”;?” sin(ON))

So being x the smoothed data vector in the left-hand-side, H the matrix in the
right-hand-side, and z = [cos(¢) sin(¢)], we can estimate the phase ¢ as:

z=(H'H)'H'x

2" =[cos(¢) sin(¢)]
so that (30)

(Aﬁ =tan™! (Z—l)
<0
where zg = cos(¢) and z; = sin(¢) are the 1st and 2nd items of z respectively.

Figure 22 shows a snapshot with real data illustrating the process for smoothing,
and the estimations of decaying factor and phase. The raw SNR data is shown in blue.
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Smoother data in orange, and sampled peaks in black. The estimated decaying factor
is shown in green.

After the phase is estimated, a synthetic sinusoidal is generated which should
match the noisy and smoothed data. Synthetic sinusoidal is shown in violet when the
phase is calculated with A sp from this specific satellite track, that is, the LSP output.
Synthetic sinusoidal shown in yellow corresponds to a signal with a phase estimated
using a common reference Hrgpr # Hisp.

Signal and attenuation modeling.
Fx Helght: REF = 2.71, EST = 2.62 [m]. Phase: RH REF = 475, RH EST = §7.15 [degrees]. Decaying factor: -8.28.

Figure 22: Illustration of raw data, smoothing, peak sampling and posterior decaying
factor and phase estimation.

7.2 Post-Processing
7.2.1 Outlier Filtering

The phase estimations on which the soil moisture model is based can contain outliers.
Apart from vegetation, whose effect can be corrected, events such as snow or heavy
rainfall can also affect the phase, what results in wrong soil moisture estimates. To
account for this, a two-step filtering is applied to remove outliers:

1. First, we can assume that LSP peak should meet certain peak-to-noise ratio,
considering as noise any other secondary peak in the LSP. Therefore, a threshold
peak-to-noise ratio p2n is set such that days with lower p2n values are discarded.

2. Second, a filtering based on the A sp is applied. This will discard any day
whose estimated antenna height lies outside of the ko~ region from the median
value, with O > k > 3 to account for the desired k-sigma region around the
median.

Given that the antenna height does not change throughout the entire data period,
monitoring the Hsp variation helps to detect possible snow accumulation or heavy

49



rainfall. Similarly, days whose measurements are extremely weak judging by the p2n
are discarded as well. The p2n threshold and height’s k-sigma regions are design
parameters, and different configurations will be shown in section 9. Figure 23 shows
the rclasult of such filtering for a single satellite on one year of data with p2n = 1 and
k = bR

Metric with and witheut filtering
~ Raw mewc
After st ik (g2n|
T AN e 1, gy difls)

%'%i%?'ﬁ u,-u-..-l!r ’E‘-_. “5 - . S'?
T T fw@wf ?@#‘V?’Mw

Figure 23: Outlier filtering based peak-to-noise ratio and variation of antenna height
estimation. Blue denotes the raw data points, pink corresponds to after the 1st filtering,
and black corresponds to after the 2nd filtering.

7.2.2 Filter High Vegetation Effects

Although vegetation effects will be corrected, as described in literature has shown
that there is a limit in the vegetation density up to which the correction can be applied
[2, 14]. For this reason, it is important to identify the days on which vegetation is high
and discard them so that the correction algorithm can compensate for low and medium
vegetation effects.

High corrupted values are identified with the stored LSP peak Py sp, normalized
to the maximum value throughout a period portion as

Prsp
PZDS"}’m = PXtopN%,T (31)
LSP
where PX10PN%T is the median (X o f th N% of LSP peaks d
TP perator) of the top N% o peaks during a

period T, where T can be, for instance, a year. The median of the top N% is used
instead of the maximum to be more robust against sporadic outliers.
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With normalization, P7" is forced to range between O and 1. Values closer to

I indicate little vegetation, and values closer to O indicate higher vegetation, since
the LSP peak decreases with vegetation density. Therefore, periods in which the
normalized LSP peak drops below certain threshold are considered highly vegetated
days [2]. Following the literature, this threshold is set to approximately 0.7 — 0.8,
since the vegetation algorithm to be described in 7.2.5 was not originally designed
for P7%" under those thresholds [14]. Further details on vegetation effects will be

LSP
described in 7.2.5.

7.2.3 Phase Baseline Removal

Phase ¢ was estimated with equation (30) for each day and satellite. After all daily
phases are calculated, each estimated phase is post-processed. In this step phases
are uniformized by removing the baseline values. Baseline is considered as the
median value calculated over the low-vegetation season [2, 14]. Thus, the baseline is
calculated from the days on which P7%)" is higher than 0.9. This gives place to the

LSP
baseline-removed phase also known as phase zeroed ¢.:

¢z = ¢ — Xprorm 5 0.9(¢) (32)

where X operator represents the median X, which corresponds to the baseline phase
value to be removed. This is done to focus only on the phase variations, which is
where information on soil moisture is.

From this point onwards in the processing chain, the terms phase-zeroed and phase
are used interchangeably as is also done in the literature. However, it is important to
keep in mind that the phase-zeroed from this current section 7.2.3, is nothing but the
estimated phase in 7.1.3.3 with the baseline removed. This way, only phase variations
are kept, from which soil moisture estimates will be calculated.

Figure 24 shows, in a four quadrant division, the baseline-removed phase values
in blue. Furthermore, the corresponding normalized LSP peak values are shown in
orange. Data processed for these results corresponds to the Northern hemisphere
where summer season is in July.

Notice how the LSP peak values follow a trend which decreases towards the
Summer season. This is because the vegetation grows during Spring. Some days
contain sporadic P Lsp values which drift considerably from the rest, such as in Winter.
These are remaining outliers due to snow or heavy rainfall which could not be filtered
out with A, p. However, in section 9 it will be shown how increasing the number of
daily satellites to average can reduce the influence of outliers.

7.2.4 Satellite Averaging

Since multiple satellites are visible each day, many measurements for the parameters
defined in 4.4 are available. If M satellite tracks are present, this leads to M
measurements of phi; and P;¢)". This stage computes one single daily quantity for the
phase and normalized LSP peak by averaging all M daily measurements. Previously
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Figure 24: Baseline removal and normalized LSP peak monitoring.

it was shown how measurements can contain remaining outliers which might not be
completely filtered out with A gp in 7.2.1, and averaging can help to reduce them.

Outliers can occur on any of the four quadrants where the signal reflects, such
as snow accumulation or water puddles after a heavy rainfall. Nevertheless, not
necessarily all measurements are contaminated by outliers, but just a few. For this
reason, a weighting average is performed. Instead of weighting quadrants, this approach
weights the measurements to avoid highly deviating values from the median. This is
done following a Gaussian weighting function as:

[on

((y—X<y>>2)

w =e

with

¥ =¢- and Py &)
X =median operator

o =6 * o(y) = d-tuned standard deviation,

where 0 < ¢ < 1 is used to widen or shrink the range of acceptable values around the
median (either ¢, or P7%7"). By doing this, highly uncommon values that correspond
to outliers or bad measurements are downweighted as illustrated on figure 25.
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Figure 25: Weighted average for phase-zeroed values for 6 = 1 (top) and 6 = %
(bottom). Phase-zeroed values ¢, are shown on the left y-axis in blue, and the
corresponding weighting value is shown on the right y-axis in red.

7.2.5 Vegetation Correction

Parameters on detrended SNR are strongly influenced by vegetation. As mentioned in
section 4.4, vegetation affects phase similarly as soil moisture does and this effect has
to be compensated. On figure 14 it was illustrated how vegetation affects the SNR
shape.

The following two subsections explain the effects on amplitude and height estima-
tion, and the influence on phase followed by the correction algorithm description.
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7.2.5.1 Influence on Amplitude and Height estimation

At this point, after having explained the vegetation effects on the SNR and pre-
senting the LSP, the effects of vegetation on spectrum can be detailed. Vegetation
cover affects the shape of the LSP as shown in figure 26, where the antenna height
decreases and shifts with respect to the bare soil. This makes sense because:

* Amplitude decreases with vegetation cover, also visible in the power spectrum
peak due to the amplitude-power relation. This affects the estimation Pgp

* Phase also changes with vegetation cover, and following the Fourier transform
properties, a phase change in time-domain is translated into a frequency-shift in
the spectrum [34]. This affects the estimation Hysp.
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O

.‘__::_‘, &
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1.5 2 2.5 3 3.5
Reflector Height (m)

Figure 26: Effect on vegetation in detrended SNR spectrum from LSP [13].

7.2.5.2 Influence on Phase estimation

The vegetation correction algorithm from [14] is followed, which is based on model
simulations of GNSS reflections on uniform vegetation canopies. This algorithm
reportedly compensates for vegetation presence in VWC up to 1 kg/m?. The method
utilizes the normalized Py gp measurements, estimates the amplitude-only VWC, and
extrapolates the corresponding phase shift A¢,., to be used for correcting ¢, in (34).
The phase correction is applied as:

¢* =¢; - A¢veg (34)

where ¢* represents the vegetation-corrected phase zeroed, and A¢, ., is the computed
phase correction.

54



Using the amplitude, in particular, the LSP peak P sp for the vegetation correction
is a valid approach due to the direct relationship between spectrum power and time-
domain amplitude. Therefore, the high correlation of amplitude with vegetation cover
can be seen in both A(8), the detrended SNR amplitude, and in Py gp, the LSP peak
(consequently also in the normalized peak P"¢)"

LSP
The vegetation correction calculation is described below:

1. Smooth the LSP peak by applying an N-day filtering of the daily P7¢,", where
N = 30 days. Filtering is needed to remove the soil-moisture effects on

amplitude.

2. Estimate amplitude-based VWC with 4th order polynomial:

4
VWC = )" ax (P (35)
k=0

3. Predict phase change due to vegetation with 4th order polynomial:

4
Adyeg = Z a VWCk (36)
k=0

The coeflicients a; depend on the vegetation parameters, such as canopy height, and
the default parameters in [14] are used since they provide good results for this soil
moisture application. Notice that for £ = 0, the coefficient «y is just an offset for each
model. Coeflicients a; for both equations (35) and (36) can be found in table 5.

ao ai (0% as y
Equation (35) | 5.24 | -22.6 | 41.8 | -349 | 10.6
Equation (36) | -2.37 | 20.4 | -101 | 439 | -5.65

Table 5: a; coeflicients for vegetation correction algorithm from [14].

7.2.6 Soil Moisture Estimation

The vegetation corrected phase values from equation (34) have to be converted into
VSM [2, 14] following equation (37):

VSM = s(¢* — ¢,) + VSM, (37)

where s = 1.48 Cr;’;’;eg is a slope factor accounting for the linear relationship between
phase and in-situ soil moisture measurements as described in 4.4, ¢+ is the vegetation-
corrected phase values from equation (34), ¢, is a soil moisture residual which accounts
as the median for the lowest N%, and VSM, is a soil moisture residual which accounts
for the soil texture. In this implementation, N = 10% is chosen. Regarding VSM,,
although it is location-specific, it can be found for multiple soil types surrounding
PBO H20 network stations in UNAVCO databases [38, 23]. Results from (37) are

shown in section 9.
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8 GNSS-IR aided Multispectral Model

GNSS-IR is a reliable approach for estimating soil moisture both in terms of accuracy
and meter-level resolution but it is still a local solution. Global alternatives for soil
moisture estimation include SMAP satellite mission, which is a global reference for
soil moisture monitoring, also based in microwave L-band similar to GNSS. However,
SMAP provides km-level resolution, only suitable for large-scale monitoring.

An alternative for global but still meter-level coverage is needed. A solution for
this is to use multispectral satellite imagery such as Landsat-8. Multispectral satellite
data does not provide a direct moisture product, therefore it can be combined with
local GNSS-IR results and extrapolate accordingly to larger areas. This approach
provides accurate, high resolution (meter-level), economic and global soil moisture
estimations, which can be used for applications including agriculture and landslide
monitoring.

TECHNOLOGY COVERAGE RESOLUTION DIRECT SM PRODUCT
GNss#R [ local - [VISEERI IS
swap  [GIGBINN km VSN
tanosat  [GIobEINI EVISESRINN | Ne

Figure 27: Comparison among GNSS-IR, SMAP and Landsat. Positive characteristics
for high-resolution soil moisture estimations are highlighted in green, and undesired
characteristics in orange. "SM" stands for "Soil Moisture".

The comparison among GNSS-IR, SMAP and Landsat-8 is shown in figure 27 in
terms of coverage, resolution and their direct applicability for soil moisture. Ideally
it is desired to have a global coverage and meter level solution, but these cannot be
obtained from SMAP or GNSS-IR. However, multispectral imagery such as Landsat
provides these two, but requires to build a model for estimating soil moisture, which is
done in this implementation using GNSS-IR as a local aiding source.

As we have seen in section 5, certain bands are more sensitive to soil moisture,
allowing to construct indexes to quantify it. The aim is to develop a model capable
of combining several indexes that are known to be fair indicators of soil moisture.
Following literature findings described in 5.3 about VSM estimations from multispectral
data, the measures of LST, NDVI and VSDI are of particular interest since they are
highly correlated with soil moisture.

The implemented model is based on LST, NDVI, and VSDI. These parameters
form the input observations to the multispectral soil moisture estimation algorithm.
Besides these metrics, the difference between Red and Blue bands is also used to
combined with LST, since it has been observed that this provides better correlation
with VSM than LST standalone. Behavior of Red and Blue bands on wet soils can be
seen in figure 16. Since Blue band presents more absorption than Red band, positive
differences can indicate presence of moistened content in the reflected source. The
difference between Red and Blue bands is named "REBL".
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8.1 Processing Chain

The multispectral metrics (LST, REBL, NDVI and VSDI) are used to fit the coefficients
of a linear regression model taking GNSS-IR estimated VSM as reference outputs.
Figure 28 shows the Landsat-8 data acquisition and processing chain to fit the model
and calculate a multispectral-based soil moisture estimate on larger land areas.

The utilized GNSS-IR data corresponds to stations MFLE and P267 described in
section 6. Multispectral satellite images were clipped to an area of similar size than the
covered by GNSS-IR. Since GNSS-IR coverage area radius is of approximately ~ 50m
for the ~ 2m-tall antenna, the Landsat-8 images were clipped to areas of approximately
100-by-100 meters.

Processing blocks in figure 28 corresponding to Google Earth Engine module:

1. Masking of pixels with clouds, cloud shadow, water and snow: given that
surface reflectance values contain information on the surface properties, it is
important to only gather the reflected light from such surface. For this reason,
clouds and snow can lead to excessive reflectance values. Analogously, if there
are shadows due to the clouds, reflections will present lower values and this can
be mistakenly associated with surface absorption properties, while in fact there
is less incoming energy due to the cloud shadow. Furthermore, we do not want
to calculate a moisture level of a water body. Thus, pixels containing clouds,
cloud shadow, water and snow have to be masked out.

2. Clipping to desired area size: as previously mentioned, Landsat-8 images
cover sizes of 185km x 180km. For this reason, images are clipped to the area
of interest. In this application, such area corresponds to an approximation of the
GNSS-IR coverage area, so the images are clipped to 100m x 100m.

3. Convert Digital Number (uint16) to physical quantity: images on each band
are coded on unsigned 16. This is a measure to quantify the values on the image,
but is not a physical quantity. In order to link the surface reflectance to physical
quantities, the digital number (also known as pixels in raw uint16 format) have
to be converted following a linear model such as s - px + b, where px is the pixel
and s and b represent a scale factor and a bias, respectively. This conversion is
done for all bands.

4. Calculate parameters and average over area: this represents the overall
parameter and spectral index calculation to be post-processed and verify their
relationship with GNSS-IR VSM. After calculating the parameters for each
pixel, this is reduced to calculate an area average for each parameter, e.g.
averaged NDVI over the 100m x 100m area.

5. Multispectral VSM: this calculates the multispectral-based VSM from the
model with the obtained coefficients on a 100m x 100m area, extrapolating it to

a larger area of similar terrain characteristics. The coefficients are calculated on
the MATLAB module explained below.
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Processing blocks in figure 28 corresponding to MATLAB module:

1. Filtering & Monthly averaging: data from multiple years is collected and
N-day filtered. N is chosen to cover one month of measurements, so it can
vary between GNSS and Landsat data since GNSS measurements are daily,
but Landsat-8 measurements are computed every 16 days. After filtering, an
inter-annual median is computed for each month to reduce the multiple-year
time series to a 12-month behavior. Median is chosen instead of the mean
to avoid being affected by highly deviated values, such as remaining outliers.
Figure 29 shows an example of this 12-month reduction for LST and NDVI for
station P267.

2. Correlations: this block performs the correlations between Landsat-8 computed
metrics and reference VSMgnss—rg. This is done to identify what are the most
convenient multispectral metrics to be used for inputs to the algorithm.

3. Model this blocks performs the coefficient fit as:
VSMypticat = a1 LST - REBL + aoNDVI + a3VSDI (38)

GNSS-IR soil moisture estimation used as a reference VSMgyss_ir 1S also
filtered and 12-month reduced. The result allows to calculate the multispectral
VSM,piicar through the estimated coeflicients a1, @ and a3.

An offset parameter @ could be applied, but if other parameters (LST, REBL,
NDVI and VSI) were zero, having an offset @g # 0 means that there is a fixed
"default" soil moisture, which has not physical meaning if the aim is to quantify
the VSM. Therefore, the model is strictly limited to depend on multispectral
parameters and coefficients calculated by fitting with GNSS-IR.

That the model in (38) written in matrix form is
VSMoptical = Ha (39)

and the coeflicients @; in model are estimated with a least-squares fitting using
GNSS-IR results as
@ = (H'H)"'H' VSMgnss-ir (40)

The vectors VSM,, pricat, VSMgnss-1r and a are of size Lx1, and H represents the
LxK matrix of multispectral measurements. In this implementation, L = 12 since the
monthly averages of spectral indexes and GNSS-IR VSM are used, and K = 3 since
multispectral inputs are LST - REBL, NDVI and VSDI. The components of each
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vector and measurement matrix is detailed below:

J. J
- VSMGNss_1r VSM, i cal
a1 VSMEeb VSMFeb
I
@ =|a2|, VSMgnss-ir = ONSS=IR | VSMypricar = optica
as3 . ..
- VSMD“ VSMPec
GNSS—IR optical]  (41)

[ LSTjun - REBLjuy NDVIa, VSDIjan
LSTgep - REBLposy NDViIpey, VSDIpes
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Figure 29: Example of yearly raw, filtered and monthly averaged LST and NDVI for
P267 station.

8.2 Terrain-Specific Behavior

From figure 17 we can see that the environmental characteristics of both station sites is
quite different from each other. MFLE is located in an arid region with little vegetation,
while P267 is located in a medium-vegetated environment surrounded by crops. Table
6 shows the monthly averaged correlation values between GNSS-IR soil moisture and
the multispectral data metrics on which the algorithm is based.

Notice that from table 6, station P267 has higher correlation values than MFLE,
especially in NDVI and VSDI. The reason for this is that these indexes quantify
vegetation density and drought, quantities with which soil moisture is positively and
highly correlated due to the water need from vegetation to grow.
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R with VSMgnss-ir | LST | NDVI | VSDI | REBL | LST - REBL
MFLE -0.44 | 0.03 0.37 -0.49 -0.53
P267 -0.67 | 0.87 0.90 -0.81 -0.75

Table 6: Correlation values between multispectral data and GNSS-IR soil moisture
estimations on MFLE and P267 stations. For GNSS-IR, the optimal design configura-
tion parameters in table 8 are used.

P267 is a mid-vegetated area, while MFLE is an arid region. Therefore, it is
expected that NDVI and VSDI are highly correlated and have more dependency with
soil moisture in terrains such as P267, opposite to arid regions such as MFLE. This
little dependence with VSM in arid regions make the correlation become low or even
negative. On the other hand, LST is negatively correlated with soil moisture in both
terrain types. This is expected, since warmer seasons tend to have less moistened
lands. Despite the negative correlation with LST, it should not be understood that high
LST maps to low VSM.

Vegetation and drought also play an important role in VSM since without sufficient
soil moisture vegetation cannot grow. Areas close to Equator are an example of
this, where LST is not necessarily low and vegetation is high. Therefore, VSM is
expected to be high accordingly. In arid regions such as MFLE vegetation is scarce, so
among the analyzed parameters it is LST which will principally drive the soil moisture
estimation in the model. Regarding p267 station, since it is a medium-vegetated site,
all parameters will play a significant role in estimating VSM.

This suggests that the applicability of the model fitted with local estimations from
GNSS-IR VSM can be extrapolated to larger areas, as long as the terrain characteristics
remain sufficiently similar. This behavior is normal, since is equivalent to a model
using a specific dataset for training purposes, and then restrict the testing or application
to datasets sharing similar characteristics. Otherwise, the training would not be
representative of the testing scenario, and a different training stage would be needed.

Therefore, there is a terrain-specific behavior on the model application and it
cannot be extended without restrictions. Instead, different fittings are needed in order
to create a database of coeflicients applicable to different terrain types. This is also
implemented, and the in model (38) is controlled with NDVI to determine the extent
of vegetation and apply the corresponding coefficients:

a =aLowvec NDVI <y,
VSMaptical = f(a/) @ = AMED VEG  Yim < NDVI <y, 42)
@ = agiGH VEG NDVI > yyup,

where f(a) is model in (38). arow veEG, @MED VEG and agigy veg correspond to
the coeflicients estimated for low, medium and high vegetated areas, respectively.
Vegetation extent is determined with thresholds y;,, (low-medium vegetation boundary)
and vy;;,, (medium-high vegetation boundary).
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9 Results

This section presents soil moisture results obtained from GNSS-IR standalone in
section 7, as well as from the multispectral model described in 8.

9.1 GNSS-IR only estimation

The processed data corresponds to GPS L2 frequency band between the years 2015
and 2019 for the MFLE station described in 6.

A snapshot of the parameters A sp, /i1, ¢; gp and LSP peak-to-noise ratio p2n is
shown in figure 30.
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Figure 30: Estimated parameters throughout the processing period.

Figure 30 presents sporadic outliers that will cause biases to the soil moisture
estimation. These outliers are related to environmental conditions and high vegetation
which could not be corrected.

Figure 31 compares the vegetation-corrected VSM with the non-corrected version.
Notice that the difference between both results is more highlightable in Spring, the
vegetation growing season, and Summer, when vegetation is maximum. Due to the
location of the GNSS stations used in the data, the Spring and Summer seasons
corresponds to those of the North hemisphere.

Figure 31 presents spikes in the VSM estimation, for example between March
and May in 2016. These events correspond to outliers and coincide with days in
which available satellite measurements drops since less good quality measurements
are present. Spikes are caused by environmental conditions such as snow or heavy
rainfall, either from current day or previous days through snow or water accumulation
on the ground. Figure 32 shows precipitation quantification for the MFLE area during
2016, notice the high activity coinciding with the period between March and May.
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Daily SVs in use after outlier filtering
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Figure 31: Comparison of vegetation-corrected VSM vs non-corrected. Available

daily measurements (top) and VSM (bottom).
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Figure 32: Precipitation quantification during 2016 for MFLE geographical area.

If outliers come from a particular satellite, the weighting average described in
7.2.4 could help to downweight it. However, in the case of environmental conditions
all satellites are affected, which can be seen in figure 33 when comparing the weighted
average vs non-weighted. As we can see, there is not much difference between both.

Therefore, outliers on figure 33 are removed by configuring several design param-
eters in the GNSS-IR processing chain, as described in next subsection 9.1.1.

9.1.1 Design Configuration

The soil moisture estimation from phase measurements following model in (6) is
influenced by multiple design parameters. This customizable configuration allows to
discard outliers and have a cleaner final result. These parameters are:

* k-sigma region and LSP peak-to-noise ratio described in 7.2.1.
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* Number of averaged daily satellite measurements M described in section 7.2.4.

* Magnitude of A¢,., described in vegetation correction algorithm in 7.2.5.

In this subsection, an analysis is carried out for the impact that design configuration

parameters have on VSM estimation at MFLE station.

Different configuration

parameters are defined in table 7. A default configuration is defined in row 1, which
leads to the soil moisture results shown in figure 34 compared against UNAVCO
reference VSM. In the figure, estimated VSM consists on the vegetation corrected
(orange) and non-corrected (yellow), and is compared against UNAVCO reference

data (blue).

Notice that, although data spans from 2015 - 2019, the plots compare estimated
VSM with UNAVCO reference until 2018. This is done to make a fair comparison,

since UNAVCO data is present until that date.

Experiment Figure Min. p2n | k | Min. M | Max. |A¢, .l
Default 34 1 3 10 20
A 35 (left) 5 3 10 20
B 35 (right) 1 0.5 10 20
C 36 1 0.5 20 20
D 37 1 0.5 20 12
E 38 2 0.5 20 12

Table 7: Design configuration parameters

k-sigma region and LSP peak-to-noise ratio described in 7.2.1:
Increasing the peak-to-noise p2n ratio ensures that we keep with cleaner measurements

VSM (no vegetation correction)

0.1 K
Lo

I
Weighted Average
Non-weighted Average

Jan 2015 Jul 2015 Jan 2016  Jul 2016  Jan 2017  Jul2017  Jan 2018  Jul 2018  Jan 2019 Jul 2019  jan 2020

Figure 33: Comparison of VSM with weighted vs non-weighted average.
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Daily SVs in use after outlier fllterlng
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Figure 34: Default experiment with parameters defined in row 1 of table 7. Available
daily measurements (top) and VSM (bottom).

where the SNR oscillations are well defined. However, doing this will also result in
losing valuable information in days which measurements are noisier but still trustful,
i.e. weak LSP peak but still distinguishable. Recall that vegetation presence can also
reduce the peak, thus reduce the peak-to-noise. Therefore filtering too restrictively
based on the peak-to-noise ratio can discard data excessively in periods such as medium
to high vegetation seasons.

On the other hand, reducing the k-sigma region in the 4 sp filtering process helps
to discard days where the height estimation varies highly. It has been shown that
these days correspond to outliers such as snow or heavy rainfall, which can lead to
misleading soil moisture results.

Figure 35 shows the VSM result when setting higher p2n = 5 (right, experiment
A) and k = 1 (left, experiment B). Notice that these parameters have a direct impact
on the number of available daily measurements M, since the measurements that do not
meet the p2n and k-sigma region will be discarded. From figure 35, the experiment
A seems more restrictive than B since it reduces more the available measurements
that meet the desired configuration: experiment A has an average daily M between
15-20, while experiment B has 25-30. In spite of this, a minimum number of daily
measurements is guaranteed, since table 7 specifies the minimum daily M such that
days with less measurements will be discarded. M = 20 for both experiments.

Number of averaged daily measurements M as described in section 7.2.4:

Increasing the minimum number of daily measurements ensures that only days with
sufficient data will be considered. This helps to avoid being affected by outliers when
M is low. In previous experiments, p2n and k varied and M was set to 10. In this
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experiment, k was kept to 1 as in experiment B, but M is increased to 20, such that

|
Jul 2016
Time

any day with less than 20 available satellite measurements is discarded.

Figure 36 shows the results for this experiment in table 7, but no significant improve-
ments are observed when compared with experiment B. Since there are very few days
whose available measurements are below 20, only few spikes are reduced in magnitude.
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Figure 36: Experiment C defined in table 7. Available daily measurements (top) and

VSM (bottom).
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Magnitude of A¢, ., described in vegetation correction algorithm in 7.2.5:

A very high correction means that the measurement is heavily affected by vegetation.
In such case we could prefer to discard the phase estimation rather than correcting it,
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since the correction itself might be inaccurate based on the mixture of soil moisture
and vegetation in the amplitude and consequently in the LSP peak. Recall that the
amplitude is affected by both vegetation and soil moisture as described in 4.4, and that
the vegetation correction algorithm depends on Pjsp. Furthermore, it makes sense to
discard estimations corresponding to high vegetation scenarios since the vegetation
correction algorithm is capable of fairly correcting up to vegetation water contents of
1 kg/m? as described in 7.2.5.

Figure 37 shows the experiment D case in table 7. This reduces the acceptable
maximum magnitude to correct for vegetation errors, otherwise discards the estimation
since it is too affected by vegetation. In this case, same configuration as experiment C
is applied, but maximum acceptable magnitude for vegetation correction is decreased
to |[A¢,eg| = 13 degrees. This reduction is possible since the vegetation surrounding
the GNSS antenna is low. If vegetation were medium or high, it would be better
to correct for higher magnitudes. This is aligned with findings in [14], since the
experiments A - D show that selecting a right design parameter configuration can be
sufficient for a low-vegetation site, while the vegetation correction algorithm can be
applied in medium-vegetated scenarios.
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Figure 37: Experiment D defined in table 7. Available daily measurements (top) and
VSM (bottom).

Final Parameters

After evaluating the effects of design parameters on experiments A - D, the configura-
tion can be made stricter to reduce the remaining outlier spikes around January 2016.
This can be done by reducing increasing the p2n to 2 as shown in the last experiment
in table 7. Results for this experiment E are presented in figure 38. The correlation of
the VSM estimation with UNAVCO reference is also shown, resulting in R = 0.87 for
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the vegetation-corrected case, and R = 0.84 for the non-corrected.

Daily SVs in use after outlier filtering
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Figure 38: Experiment E defined in table 7. Available daily measurements (top) and
VSM (bottom).

This result, although valid for outlier removal in MFLE station, is too strict and
might not be generalized for P267 which has a different vegetation cycle. Therefore, it
is important to relax the design constraints in medium-to-high vegetated locations.

For this reason, it is better to evaluate locations case by case and derive the best
parameters accordingly. Table 8 shows the preferred design parameters for MFLE and
P267 stations. Notice that the parameters for MFLE correspond to the experiment E
in table 7, and parameters for P267 are more conservative than those in MFLE. This
is because P267 is a medium-vegetated location while MFLE is low-vegetated.

Figure | Min. p2n | k | Min. M | Max. |[A¢,gl
MFLE 2 0.5 20 12
P267 0.5 1.5 10 20

Table 8: Design configuration parameters

Figure 39 shows the VSM for MFLE and P267 for vegetation-corrected and non-
corrected. Notice how in P267 the VSM estimations follows a trend that, same as the
available satellites M, is driven by the yearly seasons. These effects are more visible
in medium vegetated (P267) than in low vegetation scenarios (MFLE). Minimums for
VSM and available daily satellite measurements are reached in the high vegetation
season. Furthermore, notice how the parameters in table 8 for MFLE considerably
reduce the outliers.
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Figure 39: VSM in MFLE (left) and P267 (right) with design parameters in table 8.

9.2 GNSS-IR aided Multispectral VSM estimation

This subsection presents the results for the GNSS-IR aided multispectral model
described in section 8. The same GNSS data processed to obtain the GNSS-IR
standalone results in previous subsection is used, and the same design parameters in
table 8 are applied. The GNSS-IR outputs are used to aid the algorithm and fit the
coefficients in model (38).

Multispectral data corresponds to Landsat-8 imagery described in section 6,
and also spans the period 2015 - 2019. In section 8.1 the processing chain for the
multispectral VSM model was described, from data collection and processing in
Google Earth Engine, to monthly averaging and model fitting in MATLAB. Below
the results for MFLE and P267 stations are presented.

Figure 40 shows the results for MFLE and P267 fitting, respectively, and table 9
shows the coefficients estimated for each station. Blank periods for GNSS-IR VSM in
figure 40 correspond to periods in which the available daily measurements were lower
than the minimum M (table 8). As previously explained, the number of available
measurements oscillates and reaches minimum in high vegetation seasons, since the
measurements are more corrupted by vegetation in that period. This was also shown
in figure 39. After calculating the coefficients to use with Landsat measurements,
the model in (38) can be applied to extend the VSM solution beyond the GNSS-IR
coverage area (approximately 100x100 meters).

Station Type ay %) a3
MFLE Low Vegetation | -0.0192 | 0.7293 | 0.0646
P267 | Medium Vegetation | -0.0078 | 0.5569 | 0.0877

Table 9: Coeflicients found for model in (38)

Recall that station P267 is surrounded by agricultural lands with similar terrain
characteristics. Therefore, it is of interest to extend the VSM estimation for larger
areas. In particular, an area of 10x10 km surrounding P267 station is analyzed and the
estimated coeflicients in table 9 are applied to estimate the VSM with Landsat-8 inputs.
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Figure 40: Monthly averaged fitting (top) and whole period data (bottom). Area
corresponds to approximately 100x100 meter for both MFLE (right) and P267 (left).

After this, SMAP satellite data is retrieved to be used as reference for comparison in a
monthly basis. SMAP has a resolution of 9km, thus the reason for choosing a grid of
approximately 10x10 km to make a fair comparison.

Figure 41 presents the result for the estimated VSM over the extended area from
Landsat-8 measurements using the model in equation (38) and compared with SMAP.
Since SMAP provides an average over the entire area, the presented curves also
correspond to the averaged VSM for the Landsat-8 estimates, although Landsat allows
for finer resolution since pixels correspond to 30m. At this stage, since the algorithm
utilizes the already estimated coeflicients a;, the calculations are done in Google Earth
Engine. The blue and cyan curves are the Landsat-8 estimated and SMAP reference
VSM, respectively, for a 10x10 km area centered in the GNSS station. On the other
hand, dark-green and light-green curves are the Landsat-8 estimated and GNSS-IR
reference VSM, respectively, for a 100x100 m area also centered in the GNSS station.

The obtained correlation for the 100x100 m area is R = 0.87, which matches the
value obtained in figure 39. The correlation between SMAP and Landsat-8 VSM
model for the 10x10 km is R = 0.917, which confirms the applicability of the model
for extending local estimations of VSM to larger areas of similar terrain type.

With this result, since Landsat-8 resolution is 30 meters, different crops can be
identified and individual lands can be processed to obtain VSM estimations, which is
not possible with SMAP. On figure 41 the 10x10 km result is also shown as a color
map image over the tested area, with color codes ranging from red to blue denoting
low to highly soil moisture, respectively.

9.2.1 Terrain-Specific Processing

In 8.2 the terrain-specific behavior was explained and a variation of the model was
described in equation (42) to account for different terrain types based on the vegetation
quantification with NDVL

The results in figure 41 do not have this feature enabled, and therefore the plain
P267 coeflicients from table 9 are applied to the entire terrain, regardless if certain
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Comparison of SMAP vs Multispectral model vs local GN5SS-IR
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Figure 41: Result of multispectral model application on 10x10 km area around P267.
Correlations with SMAP and GNSS-IR for 10x10km and 100x100m respectively.

regions are more or less vegetated. Figure 42 shows the NDVI for February (left)
and June (right). We can see that, based on the considerable NDVI difference among
different crops areas, it would worth it to vary the coefficients a accordingly.

In this experiment the understanding of "terrain type" is linked to the extent of
vegetation. Variation described in equation (42) are applied. The NDVI threshold
is set toy = 0.3 and y = 0.5 and only two alternatives are used: low and medium
vegetation. Thus, vy = vy;,,. The MFLE coeflicients are named aow veg and P267
coefficients are names amgp veg. Coefficients ayigy veg 18 not utilized.

Figure 43 presents the results for the two y thresholds used. Notice that "No y"
case corresponds to same curves shown in figure 41. Results indicate that combining «
coefficients estimated for different terrain types can represent more accurately the soil
moisture temporal behavior. The obtained correlations for VSM are R = 0.917 for "No
v" (i.e. use the estimated « for the entire area around P267), R = 0.921 for y = 0.3
and R = 0.943 for y = 0.5. This avoids subregions with low NDVT to overestimate
VSM if the same P267 coeflicients are used.

Figure 44 shows the color map images with high resolution VSM estimations for
the 10x10km area. Notice how low NDVI regions present lower VSM values when y
is applied. This helps to avoid overestimating soil moisture especially in dry periods,
like Summer months. For this reason, after applying the NDVI threshold, the VSM
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Figure 42: NDVI for 10x10 km region in February (left) and June (right).
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Figure 43: Correlations between 10x10km VSM estimations from Landsat-8 and
SMAP for different terrain types based on NDVI thresholds.

variation over the tested area is more noticeable in June than in March. See yearly
average curve on figure 29 (bottom in blue), where averaged NDVI is above 0.5 in
February and below in June. Furthermore, certain land subregions can have higher or
lower NDVI values depending on their specific terrain type.

The results confirm that the model can be used for VSM calculation over large
areas and coeflicient combinations help improving the estimation while accounting
for different terrain-types.
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F &b ik

Figure 44: Color map images of VSM estimation for varying NDVI thresholds
differentiating between low and medium vegetation subregions. VSM variations based
on vegetation are more noticeable in Summer (June) than in Winter (February).
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10 Conclusion

In this thesis, the the estimation of soil moisture from two different passive remote
sensing technologies was reviewed. Microwave and optical spectra have different
behaviors before moistened soils, and the algorithms to derive soil moisture content
from these technologies must take the physical processes into account.

The effects of wet soils in GNSS-IR was reviewed both in literature and practice
with the development of a GNSS-IR processing chain to estimate VSM. Although
all three SNR parameters described in 4.4 are correlated with soil moisture, it is the
phase which is more responsive and commonly used as an indicator for VSM due to
its high correlation R = 0.95 [1].

In GNSS-IR, it has been shown that multiple design factors allow to reduce the
outliers and refine the final VSM estimate considering their implications as described
in section 9.1.1. It has been demonstrated that k-sigma region and LSP p2n are
good candidates to customize for removing outliers, typically from snow or rainfall,
in both low and medium vegetated scenarios. Higher daily satellite measurements
M produces more robust estimates, but its effect is negligible when this number is
already high, such as in low vegetation areas. Therefore, M has a significant effect in
medium-vegetated scenarios but not in low-vegetation areas. Special attention must
be put in M in medium vegetated scenarios since daily availability of measurements
depends on the environmental conditions of each location, and this was demonstrated
for P267 station, where availability tends to decrease in highly vegetated seasons such
as Spring or Summer.

It has been shown that corrections for vegetation effects in GNSS-IR VSM are
needed, but these can be inaccurate if the vegetation is high, leading to excessive
correction factors due to the correction algorithm limitation described in 7.2.5.
Therefore, the magnitude of the vegetation correction A¢,,., can be used as a monitoring
metric to decide up to how much vegetation cover to correct confidently, and discard
value requiring higher corrections.

In multispectral imagery, the response of dry and wet soil is correlated with metrics
such as LST, VSDI, NDVI, and the difference between Red and Blue bands. LST
and REBL are negatively correlated with VSM, while VSDI and NDVT are positively
correlated. However, the correlation with VSDI and NDVI is more pronounced in
medium-to-high vegetated scenarios, such as P267. The relation of these metrics with
VSM makes them good candidates to be used in a soil moisture retrieval algorithm
from multispectral data. It has been shown that terrain type plays a role in the relation
between VSM and these quantities.

Finally, a GNSS-IR aided model using multispectral data as inputs was derived
and fitted with GNSS-IR results. This helps to extend the VSM estimation coverage to
, which is the regions bigger than ~ 50-meter radius areas, which is the approximate
coverage from GNSS-IR standalone for average 2-meter tall antennas. The model
coefficients were calculated and a use-case in a 10x10 km agricultural region was
presented.

The large area result was compared against data from Soil Moisture Active Passive
(SMAP) mission, which is commonly used as a large-area reference for soil moisture
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estimates. Obtained correlation with SMAP was R = 0.917 when the same coefficient
were used over the entire 10x10km area. Correlation can increase when NDVI
thresholds are applied to determine low and medium vegetated soils, applying MFLE
coeflicients for low vegetation and P267 coefficients for medium vegetation (table
9). After varying the coefficients within the 10x10 km area, correlations increased
to R = 0.921 and R = 0.943 with NDVI thresholds of 0.3 and 0.5 respectively.
Determining different subregions and applying coefficients accordingly is of particular
interest in large areas such as agricultural lands with wide variety of crops.

This approach allows a sustainable way to directly monitor soil moisture content
with multispectral data and requires little to no infrastructure deployment, apart from
the installation of the GNSS antenna and receiver, in case that information from a
specific site or soil type must be collected. GNSS-IR results and coefficient databases
can be calculated with public data, retrieved from sources such as UNAVCO GNSS
Network and Landsat-8 datasets. These results demonstrate that with the appropriate
parameters, it is possible to extend local accurate soil moisture estimates to larger
areas using multispectral satellite data, enabling global and accurate VSM monitoring
while keeping meter-level resolution.

10.1 Future Work

This thesis combines microwave and optical remote sensing. Currently, only GPS L2
and Landsat-8 are used. The GNSS-IR processing can also take data from L5 band,
or even other GNSS systems. On the other hand, using Sentinel-2C could provide
higher resolution since visible and NIR bands cover 10 meter per pixel. Sentinel-2c,
however, does not have a thermal band to compute LST, but other spectral indexes can
be used as inputs to the algorithm such as OPTRAM [32], where LST is not necessary.
Different inputs to the algorithm require re-estimate the coefficients a; accordingly
with (40).

The extrapolation of the local solution to bigger areas has been done by applying the
model to the entire area or combine different coeflicients based on soil characteristics.
In this implementation, the terrain type was limited to the the extent of vegetation
cover, but it can be expanded to other terrain types with bigger coefficient databases.
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