
Algebraic and Adaptive MIMO Radar

Matthew W. Morency

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 21.11.2015

Thesis supervisor:

Prof. Sergiy A. Vorobyov



aalto university

school of electrical engineering

abstract of the

master’s thesis



iii

Author: Matthew W. Morency

Title: Algebraic and Adaptive MIMO Radar

Date: 21.11.2015 Language: English Number of pages: 5+50

Department of Signal Processing and Acoustics

Professorship: Digital Signal Processing

Supervisor and advisor: Prof. Sergiy A. Vorobyov

Breaking causality is the main distinction of the multiple-input multiple-output
(MIMO) paradigm as used for active sensing/radar. This is because the trans-
mitting side can be optimized in many ways to manipulate the capabilities of
the system. Adaptive beamforming is a fundamental problem in array-processing,
communications, and radar among other fields which has once again garnered
significant research interest in recent years within the MIMO paradigm. In this
work, transmit adaptive beamforming algorithms are developed. One class of
algorithms allows search free DOA estimation in 1D and 2D MIMO radar with an
arbitrary receive array geometry while allowing transmit power gain. The other
uses polynomial ideals in order to recompose the rank-constrained beamforming
problem from non-convex problem to a convex one. In the first case, modern algebra
is used to analyze target identifiability in the radar system. In the second, algebra
reshapes the problem formulation. In both cases, performance improvements are
demonstrated compared to previous methods.
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1 Introduction

Radar (RAdio Detection And Ranging) is one of the most widely used remote sensing
technologies in existence today. A radar system transmits microwave energy from
one or more antennas (called the transmitter) into the environment and collects the
reflections of these waves (echos) with one or more antennas (called the receiver)
[2], [1]. At the time of transmission, everything is known about the signal being
transmitted. When the signal echos are collected, however, they have been altered by
the environment. The manner in which the signal echos differ from the transmitted
signal contain information about the environment, and thus provides us with a tool
to learn about our environment. While radio communications and radar systems
are similar, herein lies a key difference: in a radar system, the environment itself
is the source of information, as opposed to the transmitted signal. Radar systems
can be used to detect targets at great distances [3], or through obstructions [4]. It
can also be used to estimate parameters of a target such as its position relative to a
known station, or its velocity [5]-[8]. Synthetic Aperture Radar (SAR) can be used
to provide detailed images of landbased features such as ice flows in cases where
optical imaging would not be possible (e.g. through heavy cloud cover) [9]. All this
is to say that radar is a tool which is ubiquitous in its applicability.

The most common type of radar in use today is Phased Array (PA) radar [10]. In
a PA-radar system, a single known signal is transmitted from multiple antennas with
a known phase relationship among one another. This phase relationship is used to
coherently add waveforms transmitted from different antennas in certain directions,
while incoherently adding in other directions. This is a process known as transmit
beamforming.

In the early 1990’s, a new paradigm emerged within communications systems,
known as Multiple-input-multiple-output (MIMO) [11]. In this paradigm, multiple
signals are transmitted (multiple input) and collected at multiple receivers (multiple
output). It was shown that a MIMO communication system could exploit spatial
diversity in order to drastically increase the throughput of a communication system
[12], [13]. It was some time after that the concept of MIMO radar emerged [14].
A MIMO radar system transmits several signals as opposed to a PA-radar system
which only transmits one. A MIMO radar system uses waveform diversity in order to
increase the number of detectable targets by a factor of N , where N is the number
of waveforms.

MIMO radar systems can be divided into two main groups: monostatic, and
multistatic systems. Monostatic radar systems have both the transmitter and the
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receiver in the same location, and thus view only a single aspect of the target [16].
Multistatic radar systems have transmitters and receivers in at least two different
locations, and as such, view different aspects of the target [15]. We concern ourselves
with the monostatic case in this thesis.

Within the monostatic case, there are two further dominant approaches: full
waveform diversity [16], and transmit beamspace based radar [17]-[21]. In full
waveform diversity MIMO radar (henceforth referred to simply as FWD-MIMO
radar) one waveform is transmitted per transmit antenna element. In a transmit
beamspace based MIMO radar system (henceforth referred to TB-MIMO radar)
however, fewer waveforms than transmit antenna elements are transmitted. Since we
wish to use all the antennas in a system, it implies that linear combinations of the
waveforms are formed by the system before the waveforms are transmitted. This in
turn implies transmit gain in some directions and suppression in others, much as
in Phased Array radar [18]. This property can be exploited by correctly designing
the linear combinations of waveforms to achieve desired properties, e.g., a desired
angular spectrum (“shape”) [17], [18], [22].

The transmit gain enjoyed by TB-MIMO radar systems comes at the price of
reduced virtual aperture compared to FWD-MIMO radar. That is, fewer targets are
theoretically detectable in a TB-MIMO radar system than an otherwise identical
FWD-MIMO system. This result comes from an eigenanalysis of the observed signal
cross-correlation matrix. Specifically, a system transmitting K waveforms, the echos
of which are collected at R receive antenna elements will produce a signal cross-
correlation matrix of dimension KR×KR. Given an observed signal cross-correlation
matrix Y of dimension KR×KR the eigendecomposition can be decomposed as

Y = QsΛsQH
s + QnΛnQH

n

where Qs,Qn are the signal and noise eigenvector matrices, and Λs,Λn are the
diagonal matrices containing the signal and noise eigenvectors, respectively. Since
Qs and Qn are orthogonal matrices, the above decomposition only makes sense if the
number of signals in question is at most KR− 1. However, this does not imply that
the signal parameters will be identifiable. If the noise eigenvalues are larger than any
of the signal eigenvalues, how shall we decide which eigenvalues/vectors corresponds
to a signal, and which correspond to noise [23]? The condition that the product of
waveforms and receive antennas be larger than the number of sources is therefore a
necessary condition for parameter identifiability, but far from sufficient. The signal
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eigenvalues not only dictate how well the signal parameters can be estimated, but
how many can be correctly identified.

If one assumes that the locations of the targets are randomly distributed in
angular space according to some prior distribution, then it makes sense to direct as
much energy as possible into the directions in which the targets are most likely to be
located. In the physical realm there exist several examples in which this assumption
is valid. For example, in a commercial airport, depending on the terrain, aircraft
may have to approach the airport from certain directions in order to land. In a
military context, attacks may certainly come from one direction due to operational
ranges of enemy aircraft, or simply geography. In this thesis, we consider uniform
prior distributions of U(θ1, θ2) which has a probability density function of

f(x) =


1
b−a , if a ≤ x ≤ b

0, otherwise

The sector Θ = [θ1, θ2] is referred to as the “sector of interest.” More realistic
priors can (and likely should) be investigated. However, this is left for future work.
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2 Preliminaries

2.1 Array Processing Fundamentals

Each algorithm in this thesis relies on two assumptions at the most basic level. The
first is the narrow-band approximation [24]. In radar and communications systems,
information or probing signals are not simply transmitted from an array. They
are typically modulated by another waveform called a carrier waveform in order to
improve the signal propagation. The propagation of an electromagnetic waveform is
greatly influenced by the waveform’s frequency. The modulated signal has the form

s(t) = A(t)cos(ω0t+ φ(t)) (1)

where A(t) and φ(t) are the “baseband” signal amplitude and phase as a function of
time, respectively. The narrowband approximation states that during the propagation
time across the array aperture, τ , the baseband signal amplitude and phase do not
vary significantly. More formally

A(t+ τ) ≈ A(t)

φ(t+ τ) ≈ φ(t).

The narrowband approximation simplifies analysis of waveform propagation across
the array aperture in stating that the observed phase difference between signals at
different parts of array elements is a function of propagation of the carrier waveform
in the direction of travel. This leads naturally to the plane-wave approximation.

Signals transmitted from a point source, or reflected by a point target will
propagate in a sphere in 3 dimensional space. Much as how the curvature of the earth
is difficult to discern with the naked eye in most scenarios, it would be difficult to
discern the spherical nature of a wavefront transmitted from a source at the earth’s
radius away from us. The wavefront would appear to be approximately flat. This
is the plane-wave approximation. If the array aperture is small enough relative to
the distance between the array and the source, the wavefronts appear to the array
as approximately planar. Fig. 1 shows a plane wave impinging on a uniform linear
array (ULA) with N elements, and antenna element spacing of dx.



5

n = 0 n = 1 n = 2 n = N - 1

θ

dx

n = 3

(N - 1)dx sinθ

Figure 1: 1D ULA with plane wave impinging from direction θ.

The wavefront is a line of constant phase. That is, if the array in Fig. 1 were
perfectly aligned with the wavefront, there would be no difference (ignoring noise)
in phase between them. Phase is incurred by travel along the wave-vector. The
arrows normal to the wavefront in Fig. 1 are the wavevector. With that in mind,
it is simple to derive the phase difference between signals observed at two different
antenna elements. The phase incurred by travelling along the wavevector a distance
equal to one wavelength of the carrier waveform, λc, is 2π/λc. Therefore, the phase
incurred by travelling along the wavevector by any distance is some real multiple
of this fraction. By examining Fig. 1, simple trigonometry shows that the phase
difference between a signal arriving at a reference element, and one n · dx away is
precisely 2π/λc · n · dx · sin(θ). Let s0 be the signal observed at a reference element,
and sn be the signal observed at the n-th element. Then sn = e2π/λcndxsin(θ)s0. We
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compile these phase difference in an N dimensional vector, called the “array response
vector,” as follows,

a(θ) =


1

e2π/λcdxsin(θ)

...
e2π/λc(n−1)dxsin(θ)

 . (2)

This allows us to write the vector of observed signals from L sources at time t as

x(t) = A(θ)s(t) + n(t) (3)

where A(θ) is an N × L matrix with columns a(θl), 1 ≤ l ≤ L, s(t) is an L

dimensional vector containing signals from L sources at time t, and n(t) is a random
vector taken to represent the noise present at the sensors at time t.

Based on this signal model, we can identify up to two spherical coordinates
of the source. If we transmit a signal from our array and measure its echo, the
delay between transmission and reception allows us to determine the range of the
target, assuming we roughly know the propagation speed of the carrier waveform
in transmission media. The phase difference between array elements allows us to
determine the elevation angle, depicted in Fig. 1. However, this angle lies in a plane
which contains both the ULA and the target. Clearly, a ULA cannot distinguish the
true plane from any other. This is the so-called “cone of ambiguity” [22]. It is so
called because what we know is an angular ray, but we don’t know its orientation in
the ambient space. Thus, the source could lie in any ray of angle θ with respect to
the array axis, which describes a cone aligned with the array. Note that in the case
of a single antenna element, the cone would become a sphere.

In order to resolve this ambiguity, we need a sensor which does not lie on the
array axis. A sensible choice is to consider multiple identical parallel ULAs, which
we call a uniform rectangular array (URA). Fig. 2 depicts a source at direction (θ, φ)
impinging upon a URA with antenna element spacing dx in the x direction, and dy
in the y direction.
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x

y

z

dy

dx

θ

φ

(θ, φ )

(0,0)

Figure 2: 2D URA with source impinging from direction (θ, φ).

The line connecting the source and the origin is the wave vector, and the wavefront
is the plane to which the wave vector is normal. Unless the wave vector is −z then
the signals observed at the array elements will differ by a phase which is a function of
their separation in the x and y directions. This phase difference is again incurred by
travel along the wave vector. As a matter of nomenclature, we say that the columns
of the array are parallel with the x axis, and the rows are parallel with the y axis.
Assume first that the target is located in the x− z plane, that is, (θ, φ) = (θ, 0). The
wavefronts will strike each row at the same time. Thus, the only phase difference
between elements will be between different elements in the same column. The array
response vector for each column is then exactly given by (2). Considering a target
in the y− z plane, that is (θ, φ) = (θ, π/2), yields the same steering vector, except
dx becomes dy. So, the phase difference between antenna elements in the array is
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so far ψ = 2π/λ(c)sin(θ)(f · dx + g · dy). The functions f and g must satisfy two
properties. The first is that they must be continuous functions of φ. Secondly, they
must satisfy the boundary conditions satisfy two boundary conditions.

f(0) = 1, f(π/2) = 0, (4)

g(0) = 0, g(π/2) = 1. (5)

A solution for this system of equations is f = cos(φ) and g = sin(φ). This solution
is easily verified by considering a target in the x − y plane. Thus, the phase
difference between any given element, and one n rows and m columns away is
ψ = 2π/λ(c)sin(θ)(mcos(φ) · dx + nsin(φ) · dy). Thus, the mn-th entry of the 2D
array response vector is [a(θ, φ)]mn = ej2π/λcsin(θ)((m−1)cos(φ)·dx+(n−1)sin(φ)·dy).

2.2 Algebraic Structures

This thesis makes frequent use of several algebraic structures with which the general
engineering audience may not be familiar. It is therefore important to both clearly
define these structures and their relationships.

Definition 2.1 A group G is a set of elements with an operation • called addition
with the following properties:

Property 1. a • b ∈ G, ∀a, b ∈ G

Property 2. ∃e ∈ G | a • e = e • a = a, ∀a ∈ G

Property 3. ∀a ∈ G, ∃b ∈ G|a • b = b • a = e

Property 4. (a • b) • c = a • (b • c)

A group is a set of elements with identity, and an operation • such that the group is
closed under •, there is an inverse element for every element in the set (again, with
respect to •), and the set is associative with respect to the operation •. Further,
if a group G is commutative with respect to • then G is said to be Abelian. Note,
that although we refer to the operation • as addition, the operation • need not be
the conventional notion of addition for the set of elements under consideration. For
example, the integers are a group under multiplication. In this case e = 1. The
integers under multiplication are also an Abelian group. Every vector space is an
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Abelian group under vector addition, which is a property which will be used in
this section. Building on this definition, we must next introduce the concept of a
subgroup.

Definition 2.2 A subgroup H in G is a subset of G for which all of the group
properties hold with respect to •.

Thus, every subgroup is a group unto itself which is also contained in G. A subgroup
of G which does not contain every element of G is said to be a proper subgroup of
G. Abelian groups have the property that all of its subgroups are Abelian.

Definition 2.3 A ring R is an Abelian group under an operation • (called addition),
and a second operation � (called multiplication) with the following properties:

Property 1. ∃1 ∈ R | 1 � r = r � 1 = r, ∀r ∈ R

Property 2. (a � b) � c = a � (b � c),∀a, b, c ∈ R

Property 3. a � (b • c) = (a � b) • (a � c),∀a, b, c ∈ R

Property 4. (a • b) � c = (a � c) • (b � c),∀a, b, c ∈ R

Properties 1 and 2 of Definition 2.3 taken together say that a ring R is a monoid
under �. This would be true even if the ring were not an Abelian group. A monoid is
simply a set of elements closed under an associative operation � (called multiplication)
with a multiplicative identity element. Properties 3 and 4 of Definition 2.3 simply
state that in a ring, multiplication (�) is left and right distributive over addition
(•). We will only consider commutative rings which have the addition property that
a � b = b � a,∀a, b ∈ R.

Definition 2.4 An ideal I in a commutative ring R is a subgroup of R with the
following property:

Property 1. ∀a ∈ I, r ∈ R, a � r ∈ I, r � a ∈ I

A relevant example of a commutative ring is the ring of univariate polynomials over
a field K, which will we denote as K[x] (read as “K adjoin x”). To show that this is
a commutative ring we need to show the relevant properties of Definition 2.1 and
Definition 2.3 hold. That the polynomials are a ring is obvious since P (x) +Q(x) =
Q(x) + P (x) = R(x), and A(x)B(x) = B(x)A(x) = C(x) for any polynomials
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A,B,C and P,Q,R with coefficients in K. Polynomial multiplication is distributive
over polynomial addition since A(x)(B(x) + C(x)) = A(x)B(x) + A(x)C(x), and
(A(x) +B(x))C(x) = A(x)C(x) +B(x)C(x). The additive inverse of any polynomial
P (x) is trivially −P (x). The additive and multiplicative identities of K[x] are 0
and 1. Lastly, K[x] is associative with respect to both multiplication and addition.
The univariate polynomials K[x] with a root at x1 form an ideal. To see this,
consider a polynomial with a single root at x1. By euclid’s division algorithm, a
univariate polynomial has a root at a point x1 if and only if it can be written as
P (x) = Q(x)(x− x1). Consider Definition 2.4 and let P (x) = Q(x)(x− x1). Then
P (x)R(x) = Q(x)R(x)(x−x1) = S(x)(x−x1). This shows that the set of polynomials
with a root at a given point are an ideal in the ring of univariate polynomials. If we
consider K = C, then this ideal is also an infinite dimensional vector space over C.
Let A(x) = P (x)(x− x1) and B(x) = Q(x)(x− x1).

α(A(x) +B(x)) = αA(x) + αB(x), α ∈ C, A(x), B(x) ∈ I

= α(P (x) +Q(x))(x− x1)

= αR(x)(x− x1), R(x) = P (x) +Q(x)

This vector space has a basis of (x − x1){xi, 0 ≤ i ≤ ∞}. A finite dimensional
vector space of polynomials with roots at a certain point can be constructed by
restricting the degree of the polynomials to a finite number N . This vector space
has a basis of (x − x1){xi, 0 ≤ i ≤ N − 1}. We denote this space by CN−1[x]Q(x)
where Q(x) = x − x1, and Cm[x] is the space of polynomials with degree strictly
less than m. By induction, it is clear that the set of polynomials with roots at
points x1, . . . , xm also forms an ideal in C[x], and a vector space over C. In this case,

Q(x) ,
m∏
i=1

(x− xi).

2.3 Problem Formulation

In Section 1 the notion of energy concentration within a sector of interest in which
targets are most likely to be located has been introduced. Given a target prior
distribution of U(θ1, θ2), it is obvious that the ideal beampattern with which to
illuminate these targets is one in which all the energy is concentrated in the sector
of interest Θ, with no energy radiated anywhere else. Let this ideal beampattern be
Gd(θ). As was said in Section 1, TB-MIMO transmits linear combinations of basis
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waveforms in order to concentrate energy. Thus the transmitted signal at time t, and
direction θ is

s(t, θ) = aH(θ)Wψ(t) (6)

where (·)H is the Hermitian transpose operator, and W ∈ CN×K is the transmit
beamforming matrix to be designed.

Using (6), the magnitude of the beampattern in direction θ is given by the
innerproduct of s(t, θ) with itself

G(θ) =
∫
T

s(t, θ)sH(t, θ)dt

= aH(θ)W
(∫

T
ψ(t)ψ∗(t)dt

)
WHa(θ)

= aH(θ)WWHa(θ) = ‖WHa(θ, φ)‖2 (7)

where
∫
T ψ(t)ψ∗(t)dt = Ik as ψ(t) are chosen to be orthogonal, and T is the pulse

length, (·)∗ is the complex conjugate, and ‖ · ‖ denotes the Euclidean norm. The
dominant approach to designing the transmit beampattern since [22] has been through
convex programming, utilizing a paradigm called Semidefinite Relaxation (SDR),
which we describe in this section. Given a desired beampattern Gd(θ), and an
achievable one G(θ), a sensible objective function is given by

min
X
‖Gd(θ)−G(θ)‖∗ = min

X
‖Gd(θ)− aH(θ)Xa(θ)‖∗

where ‖ ·‖∗ is some norm. Let us consider the Chebyshev norm whereby the objective
function becomes

min
X

max
θ
‖Gd(θ)− aH(θ)Xa(θ)‖

where −π/2 ≤ θ ≤ π/2. This, on its own, is an unconstrained minimization problem.
However, the solution is likely to violate constraints of the physical system for which
the beamforming matrix is being designed. For example, every physical system must
have some limit on the total amount of energy used. Moreover, it may be important
to constrain the amount of energy used by certain antenna elements, or constrain the
amount of energy used by all antenna elements to be equal. Since X ,WWH , the

i-th diagonal element of X is clearly
K∑
k=1

[wk]2i . If the transmitted signals are chosen
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to have constant modulus 1, the i-th diagonal element of X is the amount of energy
used by all signals at antenna element i. Let Bi be an N ×N matrix of all zeros,
except for in the i-th diagonal position. Then Xi,i = tr(BiX), where tr(·) is the
matrix trace operator, which allows us to express constraints on the energy used by
a specific antenna element as

tr(BiX) = δ, δ ∈ R (8)

where delta is the desired desired amount of energy. Constraints of this form are
linear in X and thus convex. Depending on the requirements of the physical system,
Bi can take a variety of forms, as can the constant δ. For example, let the total
amount of energy available to the system be E. If we want to constrain the total
amount of energy used by the radar system, then B = IN and (8) becomes

tr(X) = E.

A uniform power distribution among all antenna elements, where δ = E/N can be
written as

tr(BiX) = E/N 1 ≤ i ≤ N.

Lastly, given that we want to use fewer waveforms than transmit antennas, the
rank of X must be constrained. Taken together, the rank-constrained beamforming
problem, with uniform power constraint is written as

min
X

max
θ
|Gd(θ)− tr{CX}| (9)

s.t. rk{X} = K (10)

tr{BiX} = E

N
, i ∈ 1, · · · , N (11)

X � 0 (12)

where rk(·) returns the rank of a matrix, and constraint (12) is required given that
energy is always a positive quantity, by definition. Unfortunately, problem (9)-(12)
is non-convex, and therefore, difficult to solve. This is entirely due to constraint (10),
as the set of matrices of a given rank is non-convex. To wit, the sum of two matrices
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of rank K is not necessarily rank K. Following the approach in [25], [22] adopted the
SDR approach. That is, constraint (10) is ignored, and the resulting convex problem
is solved. Once the problem is solved, the issue of extracting W from X remains.
To do this, the authors in [19] adopted the approach of randomization. Random
collections of K vectors are drawn from the columnspace of X?, and among these
the best is chosen according to overall fit to the beampattern corresponding to X?.
If the candidate solution chosen is not a feasible point of the original optimization
problem, then it is mapped to a nearby feasible point.

3
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Figure 3: Beampattern designed using method of [22] for a sector of [−15o, 15o].

Fig. 3 demonstrates the performance of the method proposed in [22] with a sector
of width 30o, centered at θ = 0.

There are two key problems with the relaxation based approach. The first is
that there are no guarantees on the optimality of the solution with respect to the
solution of (9)-(12). In [25], statistical bounds on the optimality of the solution of
the relaxed problem were given, however, these bounds were only shown to hold
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for the rank-1 case. There is no reason to assume that the relaxation bound in the
rank-K case should remain unchanged from the rank-1 case. The second problem
is that the relaxation based approach disregards any and all underlying algebraic
structures which could be used to solve, or more deeply understand the problem.
In subsection 3.2, a new algorithm will be proposed which exploits the underlying
algebraic structure of the rank constrained beamforming problem.
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3 Algebraic Rank-Constrained Beamforming

3.1 System Model

With the rank constrained beamforming problem now formulated, consider a ULA
consisting of N antenna elements with an inter-element spacing of λc/2 where λc is
the wavelength of the associated carrier waveform. Thus,the elements of the array
response vector become [a(θ)]n , ej2π/λc(n−1)dx sin(θ), θ ∈ [−π/2, π/2], n ∈ 1, · · · , N .
A linear combination ofK orthogonal baseband waveforms ψ(t) , [ψ1(t), . . . , ψK(t)]T

is transmitted, where K < N , in order to concentrate energy over a desired sector
Θ = [θ1, θ2]. Our challenge is to circumvent constraint (10) in order to efficiently
solve the transmit beamforming problem. However, we wish to avoid having to rely
on randomization methods, as guarantees on the optimality of the solution provided
by them have not been shown to hold. Further, as we show in the next section, they
may not even be necessary, and perhaps obfuscate the true nature of the problem.

3.2 Restriction

Consider a matrix A ∈ VN×L, where VN×L is the set of N×L vandermonde matrices,
whose columns are the powers from 0 to N−1 of L complex generators αl, and L < N .
Let αl = ej2π/λcdx sin(θl). This matrix can be used to implicitly enforce constraints on
the beampattern at locations θl, l ∈ 1, · · · , L. For example, the equations

aH(θl)WWHa(θl) = 0, l ∈ 1, · · · , L. (13)

can be written as

diag
(

AHWWHA
)

= 0 (14)

where 0 is the zero vector, and diag(·) is an operator which takes the elements of
the diagonal of a matrix and puts them into a vector. Constraints of this type can
be used to control the location of nulls in the beampattern. The equations in (13)
are sum of squares polynomials by construction.

For some θl, let y , aH(θl)W, then each of the equations in (13) can be rewritten
as
∑K
k=1 |yk|2 = 0, which has only the obvious solution that yk = 0 where yk =

aH(θl)wk,∀k ∈ 1, · · · , K. Equations (13) are therefore satisfied if and only if C(W) ⊂
N (AH), where C(·) and N (·) denote the column and nullspace of a matrix.

Since we want W to be tall and full rank, the equations (13) constrain K to be
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less than or equal to the dimension of the nullspace of AH . Thus, a concise expression
for N (AH) becomes important. Using the definition of the nullspace

N (AH) , {w ∈ CN |AHw = 0} (15)

it is easy to show that every vector inN (AH) describes the coefficients of a polynomial
of degree N − 1 with roots at α∗1, · · · , α∗l , that is,

AHw = 0 ⇐⇒
N−1∑
i=0

(α∗l )iwi = 0, ∀l ∈ 1, · · · , L. (16)

A polynomial P (x) has a root at some point α if and only if (x− α) is a factor of
P (x) [26]. By induction, it can be seen that a polynomial P (x) has roots at points
α∗1, · · · , α∗l if and only if P (x) = Q(x)B(x) where

Q(x) ,
L∏
l=1

(x− α∗l ). (17)

From (16) and (17), N (AH) can be expressed as

N (AH) = Q(x)CN−L[x]. (18)

As was discussed in the previous section, every member of this vector space is
also a member of the polynomial ideal generated by points V = {α∗1, · · · , α

}
l ∗.

Let q , [(−1)L−1sL−1, (−1)L−2sL−2, · · · , (−1)s1, 1]T , where s1, · · · , sL−1 are the
elementary symmetric functions of α∗1, · · · , α∗l . The k-th elementary symmetric
function in L variables (in this case, α∗1, · · · , α∗l ) is the sum of the products of the k
subsets of those L variables. For example, if L = 3 then

s3 = α∗1 + α∗2 + α∗3

s2 = (α1α2)∗ + (α2α3)∗

s1 = (α1α2α3)∗

Let q′ , [q, 0, · · · , 0]T ∈ CN . Then a basis of N (AH) has the matrix representation

Q = [q′,q′1, · · · ,q′N−L−1] (19)

where q′i is the i-th cyclical shift of q′. For a polynomial Q(x) = a0 +a1x+ · · ·+aLxL,
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with roots α∗1, · · · , α∗l , Viète’s formulas yield the coefficiens a0, · · · , aL−1 as

s1(α∗1, · · · , α∗l ) = −aL−1

aL

s2(α∗1, · · · , α∗l ) = aL−2

aL
...

sL(α∗1, · · · , α∗l ) = (−1)L a0

aL
.

Thus, the elements of the vector q are the coefficients of Q(x), which are given as
a function of the roots of Q(x) by Viète’s formulas, with aL = 1. Armed now with
both the structure of N (AH) and a basis for this vector space in the columns of Q,
the following lemma becomes clear.

Lemma 1 The columns of any matrix of the form QR, where R is some matrix
conformable to Q, will both remain in N (AH) and the associated polynomial ideal
I(V ).

That is, the polynomials described by the columns of QR will continue to have roots
at V . Therefore, now that we have an exact procedure for constructing Q, we can
use this property to manipulate the beampattern by choosing the set V . Using the
cyclic property of the matrix trace operator, an optimization problem whose feasible
set is a polynomial ideal generated by the set V is realized by rewriting (9)–(12) as

min
X

max
θ

∣∣∣Gd(θ)− tr{aH(θ)QXQHa(θ)}
∣∣∣ (20)

tr{BiQXQH} = E

N
, i ∈ 1, · · · , N (21)

X � 0 (22)

By letting D , QHa(θ)aH(θ)Q and Hi , QHBiQ, and using the cyclical property
of the matrix trace operator again, (20)–(22) becomes the following problem in X

min
X

max
θ
|Gd(θ)− tr{DX}| (23)

tr{HiX} = E

N
, i ∈ 1, · · · , N (24)

X− γIN−L � 0 (25)

where γ is a real-valued tuning parameter, which serves to constrain the minimum
eigenvalue of X. Constraint (10) has been replaced by (25). Since this problem is
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convex in X, it can be solved optimally in polynomial time by using, for example,
interior point methods [27]. Note that instead of looking for rank K solutions for X
in the cone of PSD matrices, we search for full-rank solutions in a space of dimension
K parameterized by V . However, as will be examined in the next section, a judicious
selection of K will ensure that X? will be positive definite and well-conditioned
enough to use, for example, the Cholesky decomposition to recover W as

W = QR (26)

X? = RRH . (27)

Lastly, the formulation of Q allows for exact control over the nulls in the beampattern.
The set V can be chosen arbitrarily. For example, V can contain multiple-roots
which would correspond to a particularly deep null, or roots placed in a uniform, but
tightly packed spread, which would correspond to a deep and wide null. The only
thing that must be changed in either situation is a recalculation of the symmetric
functions.

The proposed algorithm relies on the algebraic structure imposed on the rank-
constrained beamforming problem by the structure of the transmit array. The
polynomial structure extends directly from the definition of the steering vector
[a(θ)]i = αi−1 which, with α as defined in this section, corresponds to a ULA with
array spacing λc/2. However, other array structures also enforce this polynomial
structure. For example, consider an array with elements occupying points along a
1-D lattice, and assume the lattice points have the form q · λc, q ∈ Q. If this array is
fully populated, then clearly, the steering vector is a polynomial since

[a(θ)]i = ej2π/λcq·λc(i−1) sin(θ)

= ej2πq(i−1) sin(θ) = γi−1

γ = ej2πq sin(θ).

Further, if the i-th position of the array is not occupied by an antenna element, the
steering vector still describes a polynomial, only with a coefficient of zero for the
i− 1-th power of γ. Therefore, any array whose elements occupy arbitrary positions
on a lattice with vertices of the form q · λc, q ∈ Q will have a steering vector with a
polynomial structure. This is significant since the only points in space any linear
array can occupy are of the form r · λc, r ∈ R, and Q is dense in R. That is, for any
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two numbers x, y ∈ R there is a rational number q between them. It is clear that the
steering vector of an arbitrary linear array can thus be approximated by one with a
polynomial structure, thus enabling the method proposed in this section.

3.3 Selection of Optimal Number of Waveforms

The rank constraint in previous section raises a further question: what should K
be? Depending on the problem, the selection of K can either be obvious, or require
careful consideration. In the case where we wish to design a single null, K can
be chosen in an iterative fashion. That is, the problem can be executed several
times (if required) with one more multiple root added each time to reach the desired
level of null depth/precision, and overall beampattern fit. The algorithm would be
started with K = N − 1 and proceed until some criterion is violated (e.g. overall
beampattern fit). With each addition root, Ki+1 = Ki − 1, and thus the number
of degrees of freedom will decrease by one in each iteration. As a consequence, the
overall beampattern fit will worsen. Once the desired tradeoff between null depth and
beampattern fit is reached, the algorithm terminates. However, in the case where we
are designing a main lobe, the scenario becomes more complicated. This is because
we are no longer setting multiple roots at the same point, but rather setting many
nulls in several different locations. Moreover, the location, and number of the roots
affect the condition number of the designed signal cross-correlation matrix X?, which
can prohibit the use of the Cholesky decomposition to recover W. Some general
findings are useful in selecting K. A wider sector requires the use of more waveforms
and hence, fewer nulls. This fact is demonstrated by the following two figures.
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Figure 4: Distribution of energy among eigenvalues of signal cross-correlation matrix
for sector width of 30 degrees.
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Figure 5: Distribution of energy among eigenvalues of signal cross-correlation matrix
for sector width of 60 degrees.

It can be seen by the distribution of the eigenvalues of the two signal cross-
correlation matrices that they could both be approximated with matrices of lower
rank. However, while the cross-correlation matrix designed for a sector of width 30
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degrees has 6 dominant eigenvalues, the cross-correlation matrix designed fora sector
of width 60 degrees has 10 dominant eigenvalues. Both matrices were designed for
use with the same ULA consisting of 20 elements. The first matrix was designed to
transmit 12 waveforms, while the second was designed to transmit 14 waveforms. In
both cases, it’s clear that both matrices were designed for more waveforms than was
entirely necessary.

It would be better, therefore, to understand before designing the matrix how many
waveforms should be used in the design. One sensible criteria in beamforming would
be to maximize the ratio of energy within the desired sector, to the total amount of
energy radiated in the whole angular space. This figure has been considered in [17].
To wit, the ratio

Γk =
∫
T

∫
Θ |wH

k a(θ)|2dθdt∫
T

∫ π/2
−π/2 |wH

k a(θ)|2dθdt
(28)

should be maximized for each wk. Neither the numerator or denominator in (28)
are functions of time, so the outside integral can be ignored. Noting the fact that
wk is not a function of θ allows us to represent (28) as

Γk = wH
k Awk

wH
k Dwk

(29)

where A ,
∫
Θ a(θ)aH(θ)dθ, and D ,

∫ π/2
−π/2 a(θ)aH(θ)dθ. In the case of a van-

dermonde structure for a(θ) (which is presumed by the algorithm in this section)
D = πIN . To simply analysis, let ‖wk‖ = 1, and wi 6= wj, i 6= j, i, j ∈ 1, . . . , K.
Thus, maximizing (28) is equivalent to maximizing the numerator in (29). With
the preceeding assumptions, the numerator will achieve its maximum when wk are
aligned with the eigenvectors of A. Further, if A has dominant eigenvalues, then
most of the energy represented by the numerator of (28) will be the product of wk
which are aligned with the corresponding eigenvectors.
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Figure 6: Distribution of energy among eigenvalues of A matrix for sector width of
30 degrees.
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Figure 7: Distribution of energy among eigenvalues of A matrix for sector width of
60 degrees.

As we see from Fig. 6 and 7, the first 6 and 10 eigenvalues account for close to
100% of the total energy in the numerator of (29) for sectors of 30 and 60 degrees
respectively. This corresponds exactly with what we know of the distribution of
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eigenvalues of QX?QH . However, we know our sector of interest a-priori, and thus,
the number of dominant eigenvalues of A gives us a useful proxy to determine K.
Indeed, from the preceeding analysis, it is obvious that only as many wk as there are
dominant eigenvalues of A can make any significant contribution to the distribution
of energy in the desired sector, as the columns of W are linearly independent by
construction, and in order to maximize energy within the sector, they will, at least
somewhat, align themselves with the eigenvectors of A. This fact is borne out by
the norm of the individual columns of W. In both cases there are exactly 6 and
10 beamforming vectors in W with ‖wk‖ ≥ 1, and the columns of W are close to
orthogonal.

3.4 Generalized Sidelobe Canceller (GSC)

In [28], Griffiths and Jim proposed an algorithm that has become the standard
approach to linearly constrained adaptive beamforming. Their approach, referred to
within [28] as the generalized sidelobe canceller (GSC), uses a two step procedure
in order to produce a beampattern with a fixed mainlobe and suppressed sidelobes.
In the first step, a beampattern with a fixed response in the “look” direction is
produced by convolving a vector of constraints with a normalized beamforming vector
with the desired mainlobe response. In the second step, the signals in the “look”
direction are blocked out, while the output power is minimized. If yw(k) is the signal
corresponding to the first part of the algorithm, and yn(k) is the signal corresponding
to the second, then the overall beamformed signal is y(k) = yw(k)− yn(k), where k
in this case is some discrete time index. In order to block the signal in the “look”
direction, the authors use the assumption of ideal steering. To wit, they assume
that the signal impinges on the broadside of the array. If we assume a ULA of M
antennas, the signal at the m-th antenna is xm(k) = s(k) + nm(k). The assumption
of ideal steering allows us to state that the desired signal s(k) will be identical at
each antenna (differing only by noise), and thus a sufficient condition for blocking of
the desired signal is wT

i 1 = 0, where wi is the blocking beamforming vector.
Using the definition of (6), it is clear that a(0) = 1, and thus, any beamforming

vector satisfying wT1 = 0 will have a null at θ = 0. Equivalently, w contains the
coefficients of a polynomial with at least one root at α(0) = ej2π/λcdx sin(0) = 1. The
M − 1 vectors wm are compiled into an (M − 1) ×M matrix WB with rows wT

m.
It is clear that all wm ∈ (x− 1)CM−1[x], and thus, lie in the polynomial ideal I(1).
The underlying algebraic structure allows several generalizing statements to be made.
Instead of requiring the assumption of ideal steering, instead require wTa(θ0) = 0.
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That w ∈ (x− α(θ0))CM−1[x] is a necessary and sufficient condition for s(k) to be
blocked. Requiring that wi be linearly independent for all 1 ≤ i ≤ M − 1 implies
that the polynomials all of the polynomials only share a single root at α(θ0). If
multiple signals impinge upon the array from directions θl, 1 ≤ l ≤ L, and we wish
to simultaneously block each of them in order to implement the GSC, the row-space
of WB ⊂ Q(x)CM−2[x] where Q(x) = ∏L

l=1(x− α(θl)). In this case, we can have as
many as M −L vectors wm. In [28], the authors give an example of the matrix WB,
for M = 4.

WB =


1 −1 0 0
0 1 −1 0
0 0 1 −1

 (30)

The rows of (30) are in fact a basis for (x− 1)CM−1[x], the entries of which are
predicted exactly by Viète’s formulas. It is exactly QT for the case of M = 4, L = 1,
and θl = 0. However, as we’ve seen, the GSC can be interpreted as a special case of
the method presented in this section.

3.5 Simulation Results

Throughout the simulations, we assume a ULA of 20 elements acting as a transmitter.
As the focus of this paper is transmit beamforming, noise has not yet entered the
model. We assume that our transmitter has elements spaced at exactly λc/2. The
SDR approach to the rank-constrained beamforming problem will be adopted as a
comparison to the proposed method in all examples.

3.5.1 Example 1: Mainlobe

In this example, the sector of interest is Θ = [−15o, 15o]. We choose K = 4,
and thus must set N − K = 16 roots. The only question is what set V will lead
to the best beampattern. It makes sense to select α∗l such that they correspond
to nulls which are uniformly distributed outside of the passband and transition
regions. In order to suppress the sidelobes, we set 8 roots per side of the mainlobe at
V = {±75o,±60o,±50o,±43o,±34o,±33o,±26o,±22o}. A transition region of 5o is
allowed on either side of the mainlobe in order to allow a smooth transition from the
mainlobe, to the stop-band.



25

3

-80 -60 -40 -20 0 20 40 60 80

S
ig

na
l E

ne
rg

y 
(d

B
)

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Solution of Problem
(18)-(20)
Average Sidelobe Level

Figure 8: Solution of problem (23)-(25). A clear agreement between algebraic
structure and result is observed.

Fig. 8 depicts the result of solving the optimization problem (23)-(25) using a
total power constraint, i.e. B = I. A clear agreement between the vanishing set V
and the nulls of the beampattern is shown by the vertical lines. The average sidelobe
level (ASL) of the beampattern is -24.53 dB.
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Figure 9: Comparison between proposed and SDR methods. A gap in ASL of 20dB
is observed.

A comparison between the proposed method and the solution obtained by the
SDR approach to problem (9)–(12) is shown in Fig. 9. The problem relaxed via SDR
was designed with the exact same system specification, passband, and transition
regions as the proposed method. The ASL corresponding to the solution of the
problem relaxed via SDR is -4.73 dB. A gap of 19.8 dB in terms of ASL while a
very close agreement between the passbands is observed. Indeed, the peak sidelobe
level of the proposed method is 10dB below the ASL of the SDR result, while the
mean-squared error (MSE) between the solution of the proposed method and the
desired beampattern is 229, compared to 247 with the SDR method.

3.5.2 Example: Single Null

In this example, the goal is to transmit as much energy in all directions as possible,
while transmitting no energy in the direction θ = −13o. To do so, the vanishing set
V only takes one value, however, the cardinality of the set can be any integer less
than N . We allow a transition region of 5 degrees on either side of the null.
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Figure 10: Distribution of energy among eigenvalues of A matrix for sector width of
170 degrees.
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Figure 11: Solution of (23)-(25) with a single root placed at θ = −13.
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As we can see from figure 10, the eigenvalues of A =
∫

Θ a(θ)aH(θ)dθ are all
relatively equal. There are no dominant eigenvalues which would guide our choice of
K. Each additional null that we set should worsen the fit of the beampattern to Gd.

Fig. 11 demonstrates the performance of the proposed algorithm with a single null
placed at θ = −13. Again, we see an exact agreement between the proposed algebraic
structure and the solution of problem (23)-(25). To investigate the performance of
the algorithm when multiple roots are placed in the same location we set |V | = 3
and V = {−13− 13− 13}.
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Figure 12: Solution of (23)-(25) with a triple root placed at θ = −13.

Comparing Fig. 12 to 11, we observe that the passband ripple has increased
slightly from approximately 0.5dB to approximately 1dB. However, the null depth
at θ = −13 has gone from −28.13dB to −53.6dB: a difference of more than two
orders of magnitude. Since there is little point to pushing a null lower than −53.6dB
and 1dB passband ripple is tolerable, we settle at placing a triple root at θ = −13
for the purposes of comparison with the SDR method.
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Figure 13: Comparison between proposed and SDR methods.

As we can see, the proposed method greatly outperforms the SDR method in
terms of null depth, while closely matching it in terms of pass-band performance.



30

4 Partially Adaptive 2D Beamforming

4.1 System Model

Consider a monostatic MIMO radar system consisting of a uniform rectangular array
(URA) with M ×N antenna elements acting as a transmitter, and a planar receive
array with R antenna elements in an arbitrary configuration. Pursuant to the findings
in 2.1, we write the MN × 1 transmit array response vector is defined as

a(θ, φ) = vec
(
u(θ, φ)vT (θ, φ)

)
(31)

where

[u(θ, φ)]m = ej2πm·dx sin θ cosφ,m ∈ {0, 1, · · · ,M − 1}

[v(θ, φ)]n = ej2πn·dy sin θ sinφ, n ∈ {0, 1, · · · , N − 1}

correspond to the antenna response coefficients for displacementsm·dx and n·dy from
a reference element respectively. A linear combination of K orthogonal baseband
waveforms ψ(t) = [ψ1(t), . . . , ψK(t)]T is transmitted, where K �MN , which permits
energy focussing over a desired sector Θ = [θ1 θ2] in the elevation domain and
Φ = [φ1 φ2] in the azimuthal domain. This corresponds to a prior distribution of
Ur(Θ,Φ) for the target locations.

The signal at the transmitter within a single slow-time pulse, for a given angular
direction (θ, φ), θ ∈ [−π

2 ,
π
2 ] and φ ∈ [0, 2π], at time t is expressed as

s(t) = a(θ, φ)HWψ(t) (32)

where W is a MN × K complex valued beamforming weight matrix with wp,k

corresponding to the weighting coefficient of waveform k at antenna element p =
mn(that is the element in the m-th row and n-th column).

The magnitude of the beampattern in the direction (θ, φ) is given by

G(θ, φ) =
∫
T

s(t)sH(t)dt

= aH(θ, φ)W
(∫

T
ψ(t)ψ∗(t)dt

)
WHa(θ, φ)

= aH(θ, φ)WWHa(θ, φ) = ‖WHa(θ, φ)‖2 (33)

where
∫
T ψ(t)ψ∗(t)dt = Ik, as ψ(t) are chosen to be orthogonal, Ts is the period of a
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slow-time pulse, ‖ · ‖ is the Euclidean norm, and (·)∗ is the complex conjugate.
The presence of L targets in a Doppler-range bin following a Swerling II model

results in a noisy R × 1 receive array observation vector at a time t and pulse τ
which can be expressed as

x(t, τ) = BΣ(τ)AHWψ(t) + z(t, τ) (34)

where B , [b(θ1, φ1), . . . ,b(θL, φL)], A , [a(θ1, φ1), · · · , a(θL, φL)],
Σ(τ) , diag([β1(τ), . . . , βL(τ)]), z(t, τ) is an R × 1 zero mean Gaussian random
vector with covariance Q = σ2IR, and βl(τ) is the complex radar reflection coefficient
corresponding to the l-th target. The operator diag(·) creates a diagonal matrix with
entries equal to the elements of a vector. The receive array response vectors are
b(θl, φl) , [ej2πξ[γl,ζl]T ] where ξ is an R×2 matrix containing the x and y coordinates
of a receiver element r, γl , sin θl cosφl, and ζl , sin θl sinφl. The receive antenna
element coordinates in ξ are defined relative to a reference element in terms of the
carrier wavelength λc, but are otherwise arbitrary. Therefore, the first row of ξ is the
zero row vector. The columns of the matrices A and B are the array response vectors
for a target located at direction (θl, φl) for the transmitter and receiver respectively.

Defining the K ×N matrix Ψ , [ψ(1), . . . ,ψ(Tf)], where Tf is the number of
fast-time samples of the K orthogonal waveforms, the result of the matched filter
operation at the receiver over a slow-time pulse τ is expressed as

y(τ) = vec
 1
N

BΣ(τ)AHWΨΨH + 1
Tf

z(t, τ)ΨH


= vec

(
BΣ(τ)AHW + V(τ)

)
(35)

=
(

(WHA)�B
)

c(Σ(τ)) + v(τ) (36)

where vec(·) is the vectorization operator (which stacks the columns of a matrix
on top of one another into a vector), � is the column-wise Khatri-Rao product,
c(Σ(τ)) is a column vector consisting of the diagonal entries of Σ(τ), and v(τ),
T−1
f vec(z(t, τ)ΨH).
The noisy virtual data vectors (35) have dimension of KR×1 and form a KR× I

matrix

Y, [y(1), . . . ,y(I)] =
(

(WHA)�B
)

C(Σ) + Z (37)
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where I is the number of slow-time pulses in a scan, C(Σ) has columns c(Σ(τ)), and
V has columns v(τ).

Figure 14: Visual representation of the 2D TB-MIMO radar system considered in
this section. The receiver is in an arbitrary configuration. The green patch represents
the sector of interest.

In order to enable search-free direction finding methods, it is necessary to enforce
a structure on (35). This is normally done by controlling the geometry of the receive
array. By requiring the receiver to be translationally symmetric, datasets which
are identical in all but a phase rotation. This phase rotation will depend on the
location of the target, and hence, can be used for direction finding. However, the
structure of (35) can be controlled from the transmitter as well as was shown in
[19], [20], [21]. In order to unamibuously determine the direction of arrival (DOA)
of a target in two dimensions we need to generate a data set which has multiple
invariances (at least two, one to resolve each angle). We enforce these by requiring
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that the waveforms ψ(t) are transmitted in groups, each radiated in an identical
beampattern. A sufficient condition for two groups of waveforms to be radiated with
identical beampatterns is that each waveform in one group be radiated with the
exact same beampattern as a waveform in the other group, which we will now prove.

Consider two beamforming matrices W ∈ CN×K and V ∈ CN×K . The beam-
patterns associated to these matrices can be written as aH(θ, φ)WWHa(θ, φ), and
aH(θ, φ)VVHa(θ, φ). We are interested in the conditions for when

aH(θ, φ)WWHa(θ, φ) = aH(θ, φ)VVHa(θ, φ), ∀ θ, φ (38)

which can be rewritten as

trace
(

aH(θ, φ)WWHa(θ, φ)
)

= trace
(

aH(θ, φ)VVHa(θ, φ)
)
. (39)

Then, using the cyclical property of the matrix trace operator, (39) is easily rewritten
as

trace
(

WHD(θ, φ)W
)

= trace
(

VHD(θ, φ)V
)

(40)

where D(θ, φ) , a(θ, φ)aH(θ, φ). By expanding (40) it is easily shown that the
diagonal elements of WHD(θ, φ)W are exactly the beampatterns corresponding to
the individual vectors of W.

trace
(

wH
1 D(θ, φ)

...
wH
k D(θ, φ)

W
)

= trace
(

vH1 D(θ, φ)
...

vHk D(θ, φ)

V
)

= trace
(

vH1 D(θ, φ)v1 · · · vH1 D(θ, φ)vk
... . . . ...

vHk D(θ, φ)v1 · · · vHk D(θ, φ)vk


)

K∑
k=1

wH
k D(θ, φ)wk =

K∑
k=1

vHk D(θ, φ)vk. (41)

Equation (41) completes the proof. It is perhaps possible that this condition is not
necessary, given that there are an infinite collection of K non-negative real numbers
which sum up to any given real number, however, we do not investigate this further
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here.
Now, consider a beamforming matrix W , [U0 · · ·UQ−1] where Q is the number

of invariant waveform groups. Then equation (35) can be rewritten as

(
Π� (UH

0 A)�B
)

c(Σ(τ)) + v(τ) (42)

where Π is a Q × K matrix of unity modulo phase arguments which relate the
waveform groups to one another. So, Πq, k is the complex exponential relating
the waveform group p-th waveform group to waveform group 1 for the k-th target.
The first row is then, obviously, all ones. Equation (42) clearly shows the enforced
multiple invariances as a result of proper beamspace matrix design which is also
completely independent of the receive array geometry. Indeed, if there is only one
antenna element in the receive array, we will still have the Q invariant data sets
required to unambiguously locate targets in 2 dimensions. What changes, then, is
the number of detectable targets, and the variance of the estimator. The next section
explains exactly how the multiple data invariances are enforced at the transmitter
such that the phase information is useable for DOA estimation.

4.2 Beamspace Matrix Design

The design of W is performed in two stages. First, a beamspace matrix U0 =
[u1, . . . ,uk], with full column rank K, is designed over a spatial sector Θ = [θ1 θ2]
and Φ = [φ1 φ2] using only the first (M−1) rows and (N−1) columns of the transmit
array. Then, a simple transformation is performed on U0 to produce beamforming
matrices with identical beampatterns, but which correspond to different subarrays.
The number of orthogonal waveforms K is selected in line with the findings of 3.3.
In 2D, however, we have a two dimensional sector of interest, and thus the number
of waveforms is selected to be the number of dominant eigenvalues of the matrix

D(θ, φ),
∫

Θ

∫
Φ

a(θ, φ)aH(θ, φ)dθdφ. (43)

As we saw in 3.3, K depends heavily on the area of the given sector {Θ,Φ}. In
the case where we have no prior information about the location of the targets, the
prior distribution is Ur([−π/2, π/2], [0, π]). The eigenvalues corresponding to matrix
D(θ, φ) will be equal. As the sector shrinks, however, fewer and fewer waveforms are
necessary to concentrate energy within the desired sector.
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The initial design of U0 can be stated as the following optimization problem

min
u1,...,uK

max
θ,φ

∣∣∣∣∣Gd(θ, φ)−
K∑
k=1

uHk a(θ, φ)aH(θ, φ)uk
∣∣∣∣∣ (44)

s.t.
K∑
k=1

∣∣∣U[jk]
∣∣∣2 = E

4KMN
, j ∈ {1, · · · , (P − 1)(Q− 1)} (45)

where Gd(θ, φ) is an ideal beampattern over the desired sector {Θ,Φ}. (44) is a non-
convex quadratically-constrained quadratic optimization problem. It can be solved
via a semi-definite programming relaxation approach, [21]–[20] by first introducing
the new variables Xk , ukuHk , k = 1, . . . , K, and relaxing the rank constraint
by requiring only that Xk be positive semidefinite. Then, using the technique of
randomization a rank 1 solution can be extracted from the signal cross-correlation
matrix Xk. This will yield a beamforming matrix of dimension (M − 1)(N − 1)×K.

Figure 15: Visual representation of the initial beamforming process in section 4.2. The
transmitter elements highlighted in blue show the elements used in the beamforming
problem (44)-(45).
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It is trivial to show that a matrix U′0 of dimension MN ×K, with an identical
beampattern to that of U0, can be constructed by placing zeros in the spots cor-
responding to the antenna elements which were omitted from the original design
of U0. The matrix U′0 then denotes a beamforming matrix where K beams are
transmitted from the first M − 1 rows and N − 1 columns of a transmit array of
dimension M ×N . Given the shape of the transmit array, it is simple to show that
by shifting the positions of the zeros in U′0, the exact same beampattern can be
achieved by subarrays containing the first M − 1 rows and last N − 1 columns, the
lastM−1 rows and the first N−1 columns, and finally the lastM−1 and last N−1
columns of the transmit array. These three matrices are denoted as U′1, U′2, and U′3,
respectively. With these matrices defined, it is easy to show that the following is true

aH(θ, φ)U′0= ej2πdx sin θ cosφ
(
aH(θ, φ)U′1

)
(46)

= ej2πdy sin θ sinφ
(
aH(θ, φ)U′2

)
= ej2π(dx sin θ cosφ+dy sin θ sinφ)

(
aH(θ, φ)U′3

)
.

The beamforming matrix W is then defined as W , [U′0,U′1,U′2,U′3] with an
overall dimension of MN × 4K. Clearly, in the original design problem, K must
be no larger than MN/4. It should be stated that the partially adaptive approach
described in this section implies that only (M − 1)(N − 1) elements operate at full
power. This power loss, however, is a strictly decreasing function of transmit array
size. With the assumption of constant modulo 1 signals, the total radiated energy is
tr(WWH). Now we assume, without loss of generality that the amount of power
available to a transmitter is 1 unit of power. The total amount of power available to
a MIMO system will be the number of antennas MN . In the case of the proposed
algorithm, we will have ((M − 1)(N − 1)/4) · 4 = (M − 1)(N − 1). The fraction
of power used by an array of dimension P × Q by the proposed method is then
F = MN/((M − 1)(N − 1)). Let E = MN , then so long as EF · 1/4K ≥ 1, this
method will yield superior resolution and DOA estimation performance relative to
FWD-MIMO provided the targets exist within our sector of interest. This is because
we will transmit more power per unit waveform, thereby increasing the SNR of the
received signal.



37

Figure 16: Visual representation of the 2D TB-MIMO radar system after the
beamspace transformation. Only the center 4 elements are operating at full power
while the corner elements are operating at 1/4 power. The elements on the sides are
operating at half power.

4.3 DOA Estimation

Given the structure (46) imposed on the beamspace matrix W, let us turn our
attention to (35). Rewriting the noiseless matrix before vectorization allows a
clear illustration of the effect of the proposed structure of W on DOA estimation.
Specifically, we can write that

BΣ(τ)AHW = BΓ (47)

where Γ , Σ(τ)AHW. The matrix Γ is the source signal matrix, and has dimension
L× 4K. In the following, Γ0 = Σ(τ)AHU′0 is the source signal matrix corresponding
to K beams emanated from the first (M−1) rows and (N−1) columns of the transmit
array. Using the relations (46) we define matrices Ωi, i ∈ {0, 1, 2, 3} as the L × L
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diagonal matrices with the l-th diagonal entry of Ωi being the complex exponential in
(46) which relates aH(θ, φ)U′0 to aH(θ, φ)U′i. The matrix Ω0 is obviously the identity
matrix. Then (47) can be expressed as the following block partitioned matrix

BΓ = B
[

Ω0Γ0 Ω1Γ0 Ω2Γ0 Ω3Γ0

]
(48)

=
[

BΩ0 BΩ1 · · · BΩ3

]
bdiag4(Γ0) (49)

where bdiagm(·) takes a single matrix as an argument, and creates a block diagonal
matrix whose m blocks are equal to its argument. The matrix BΩ0 is simply the
receiver response matrix to L targets. The virtual receiver response matrices BΩ1,
BΩ2, and BΩ3 are exactly the receiver response matrices to L targets, for identical
receive arrays that are linearly displaced from our actual receiver by [dx, 0], [0, dy],
and [dx, dy], respectively. The source signal matrix Γ0 is a common factor for each.
From (48) it is visible that the proposed structure for W enforces an algebraic
structure on Y which can be exploited by search-free algorithms for DOA estimation,
including, but not limited to, ESPRIT (Estimation of Signal Parameters through
Rotational Invariance Techniques) [29], [30]. Further, it should be noted from (37)
that the matrix Y has rank L, with probability 1, if the targets are incoherent. The
proof of this statement can be found in 4.4.

Matrix Y has dimension 4RK × I. After defining the matrix selection operator
Fj(·) which selects the (jM/4 + 1)–M/4(j + 1) rows from an arbitrary matrix with
M rows, where j ∈ {0, 1, 2, 3}, Y and a new matrix Y′ can be expressed as

Y =


F0(Y)
F1(Y)
F2(Y)
F3(Y)

 ,Y
′ =


F0(Y)
F2(Y)
F1(Y)
F3(Y)

 . (50)

Forming the cross correlation matrices RY = I−1YYH and RY′ = I−1Y′Y′H ,
and performing ESPRIT on both will yield a vector of L phase arguments which are
directly proportional to ζl and γl. Defining a complex number zl = γl + jζl the angle
estimates are given by φl = arctan(ζl/γl), and θl = |zl|.
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4.4 Identifiability Results

In this section, we prove a few key results relating to the identifiability of targets
using this method, as well as others. The DOA estimation methods described in
Section 4.3 rely on the use of an eigendecomposition on the cross-correlation matrix

X = VPVH + U (51)

where V =
(

Π� (UH
1 A)�B

)
, P = (1/Ts)C(Σ)C(Σ)H , and U contains all noise

and cross-terms from the product YYH . With sufficent SNR, up to L targets can
be identified with these methods if the matrix V has rank L. Because of the matrix
product WHA, the matrix V is not obviously tall and full rank. Identifiability with
these methods therefore requires an indepth analysis, which follows. First, it will
be proven that the Khatri-Rao product of an injective matrix with a conformable
non-zero matrix is injective. Second, it will be proven that, with probability 1, the
beamforming matrix will not cause the rank of the signal-only matrix to drop. And
finally, these two results put together will show that, under moderate conditions,
4KR targets will be identifiable with probability 1.

Lemma 2 The Khatri-Rao product of an injective matrix with any other conformable
matrix which has at least one non-zero entry in every column is injective.

The Khatri-Rao product A�B with A ∈ CN×L, B ∈ CM×L is injective if one of A
or B is injective. A matrix of dimension M ×N is injective if and only if M ≥ N

and the matrix is full rank. The fact that this is true if both matrices are injective is
yielded directly by the definition of the tensor product on vector spaces. Let matrix
A define a linear transformation S : CL → R(A), while the matrix B defines a linear
transformation T : CL → R(B). Then, the Kronecker product A⊗B is the tensor
product of the linear maps S and T defined as S ⊗ T : V ⊗W → R(A) ⊗R(B).
The tensor product of vector spaces R(A)⊗R(B) has a few interesting properties.
One is that the pairwise kronecker products of the bases of R(A) and R(B) form a
basis represented by R(A)⊗R(B). Therefore, rk(A⊗B) = rk(A) · rk(B). Clearly
C(A � B) ⊂ C(A ⊗ B). Let both A and B be injective. Because R(A � B) ⊂
R(A⊗B), then the basic properties of the tensor product of vector spaces tells us
that dim(R(A)⊗R(B)) = L2, and clearly, the Khatri-Rao product must have full
rank.



40

Now, allow one of the matrices A or B to no longer be injective. Assume the
case where

∑L
l=1 αlal = 0⇒ αl = 0, l = 1, · · · , L and

∑L
l=1 βlbl = 0 for some βl 6= 0,

where al, and bl are the columns of A and B, and αl, βl ∈ C. M ≥ L, and N ≥ 1.
Expanding the definition of the columnwise Khatri-Rao product B�A yields

B�A = [b1 ⊗ a1,b2 ⊗ a2, · · · ,bl ⊗ al]

=


[b1]1a1 [b2]1a2 · · · [bl]1al
[b1]2a1 [b2]2a2 · · · [bl]2al

...
... . . . ...

[b1]Ma1 [b2]Ma2 · · · [bl]Mal

 . (52)

Clearly MN ≥ L in this case, so, if the matrix B �A is full rank, it will also be
injective. Let the columns of B�A be denoted as cl, l = 1, · · · , L. Then, B�A will
drop rank if and only if

∑L
l=1 γlcl = 0 with at least one non-zero γl ∈ C. Using (52),

and defining ζm,l = γl[bl]m, an equivalent condition is
∑L
l=1 ζm,lal = 0,∀m = 1, · · · ,M .

However, by assumption, these equations being satisfied implies that ζm,l = 0, ∀m, l,
while we assumed that at least one γl 6= 0, and for each l = 1, · · · , L there is some
[bl]m 6= 0. Therefore, at least one ζl must be non-zero. This is a contradiction, and
thus proves that B�A is injective. To show that A�B is injective, we observe that
A�B = P(B�A) where P is a permutation matrix. As permutation matrices are
bijective, multiplication by a permutation matrix preserves rank. �

Lemma 3 Let A , [a(θ1, φ1), · · · , a(θL, φL)] for some fixed set of distinct target
locations, where a(θL, φL) is defined in (31). Then, if W ∈ CMN×K is selected
randomly from any continuous distribution in that space, (AHW)T will be injective
with probability 1.

It is necessary to introduce the concept of an algebraic variety in order to prove this
Lemma. An algebraic variety is here defined as the set of solutions to a system of
polynomial equations. The polynomial equations in this case are the L minors of
the matrix AHW. The matrix AHW will drop rank if and only if each L minor is
0. The set of solutions to these equations is called a determinantal variety. For a
fixed A as defined above, each equation will be a multivariate polynomial of degree
L with the individual entries of W as variables. Polynomials are analytic functions,
and as such their roots occupy a set of measure zero within the MNK dimensional
ambient affine space of complex matrices. Therefore, the probability of drawing a
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matrix W from any continuous distribution on the ambient space which would result
in a full-rank matrix product AHW is 1. �

Combining these two statements results in the following strong result for identifi-
ability. Consider a system with only a single receive antenna element. Then, with
probability 1, it is possible to identify up to 4K targets.

To illustrate the argument, we consider a system with a uniform linear array
consisting of N = 4 antenna elements, K = 3 waveforms, and L = 2 targets with
distinct locations. In this case [a(θ)]n = ej2π/λcdx(m−1)sin(θ) which corresponds to the
definition in (31) where the targets are coplanar with the antenna array, and the
number of rows M = 1. Then, the determinantal variety is given by the L-minors of
AHW, of which there are 3. Defining αl = e−j2π/λcdxsin(θl), l = 0, 1, the minors can
be expressed as

w2,1w3,0(α3
0α

2
1 − α3

1α
2
0)− w2,0w3,1(α3

0α
2
1 − α3

1α
2
0)− w1,1w3,0(α0α

3
1 − α1α

3
0)−

w1,0w3,1(α3
0α1 − α3

1α0)− w1,1w2,0(α0α
2
1 − α1α

2
0)− w1,0w2,1(α2

0α1 − α2
1α0)−

w0,1w3,0(α3
1 − α3

0)− w0,0w3,1(α3
0 − α3

1)− w0,1w2,0(α2
1 − α2

0)−

w0,0w2,1(α2
0 − α2

1)− w0,1w1,0(α1 − α0)− w0,0w1,1(α0 − α1) = 0 (53)

w2,2w3,0(α3
0α

2
1 − α3

1α
2
0)− w2,0w3,2(α3

0α
2
1 − α3

1α
2
0)− w1,2w3,0(α0α

3
1 − α1α

3
0)−

w1,0w3,2(α3
0α1 − α3

1α0)− w1,2w2,0(α0α
2
1 − α1α

2
0)− w1,0w2,2(α2

0α1 − α2
1α0)−

w0,2w3,0(α3
1 − α3

0)− w0,0w3,2(α3
0 − α3

1)− w0,2w2,0(α2
1 − α2

0)−

w0,0w2,2(α2
0 − α2

1)− w0,2w1,0(α1 − α0)− w0,0w1,2(α0 − α1) = 0 (54)

w2,2w3,1(α3
0α

2
1 − α3

1α
2
0)− w2,1w3,2(α3

0α
2
1 − α3

1α
2
0)− w1,2w3,1(α0α

3
1 − α1α

3
0)−

w1,1w3,2(α3
0α1 − α3

1α0)− w1,2w2,1(α0α
2
1 − α1α

2
0)− w1,1w2,2(α2

0α1 − α2
1α0)−

w0,2w3,1(α3
1 − α3

0)− w0,1w3,2(α3
0 − α3

1)− w0,2w2,1(α2
1 − α2

0)−

w0,0w2,2(α2
0 − α2

1)− w0,2w1,1(α1 − α0)− w0,0w1,2(α0 − α1) = 0 (55)

There is a high degree of symmetry among the minors. In fact, each is the exact
same polynomial, just in different variables wi,j. For example, comparing (53) and
(54) we observe that they are the exact same polynomial, except for the fact that
wi,1 7→ wi,2. Similarly, comparing (54) and (55), we observe that wi,0 7→ wi,1. This is,
of course, not true in general. It is a direct consequence of the vandermonde structure
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of A. It is likely that there is an underlying symmetric group action relating each of
these polynomials to one another, which would allow for a more indepth analysis of
the algebraic variety. However, that is beyond the scope of this thesis. The point
which equations (53)–(55) illustrate is that these are indeed polynomials of degree 2
in the entries of W, thus exemplifying Lemma 3.

However, the argument raised in support of Lemma 3 does not stop there. The two
lemmas in this section prove that up to 4K targets are identifiable with probability 1,
even with only a single receive element. However, additional receive elements should
enable the detection of more targets. Further, if the number of targets L supercedes
4K, the previous results no longer hold, since (WHA)T can no longer be injective,
by definition (the product is no longer tall). Now consider a receiver of R antenna
elements such that the position of each antenna element from a reference element in
the array is some integer multiple of the smallest antenna element spacing in the x
direction dxr, and the smallest antenna element spacing in the y direction dyr. The
R antenna elements can otherwise occupy arbitrary positions on this perpendicular
lattice. Similar to the array response vectors of the transmitter, the response of every
element to a signal impinging on the array from (θl, φl) can be expressed by products
of the powers of µ = e−j2π·dxr sin θ cosφ and ξ = e−j2π·dyr sin θ sinφ. Therefore the L

minors of the matrix
(

(WHA)�B
)
will be polynomials of degree L in the variables

α, β, µ, and ξ. Using Lemma 3 then proves that 4KR targets will be identifiable
with probability 1 using such an aribtarily populated lattice array. This is a practical
result as such a receiver could be a URA which has one or more broken or repurposed
elements, or one which is purposely sparsely populated in order to reduce effects of
mutual coupling.

4.5 Simulation Results

The simulations in this section test two separate functionalities of the algorithm
proposed in this section. In the first the beamforming algorithm is tested, and the
capability of generating multiple invariant beampatterns is demonstrated. In the
second, the performance of the beamforming algorithm is tested with respect to two
figures of merit. The first is root mean square error as a function of SNR. The second
is the probability of resolving two closely located targets as a function of SNR.
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4.5.1 Beampattern and RIP

In this example we assume a fully populated URA consisting of 11 rows and 11
columns, with interelement spacing λc/2. K is chosen to be 8 in line with the findings
of Section 3.3. Therefore, the number of waveforms actually transmitted is 4K = 32.
The desired sector for this example is Θ = [30, 50] and Φ = [100, 120]. A transition
region of 10 degrees was allowed on either side of the passband.

Figure 17: Normalized beampattern corresponding to 11×11 URA and 32 waveforms.

Fig. 17 shows the normalized beampattern over the entire 2D angular space. As
we can see, there is a close correspondence between the desired beampattern and
the achieved one. Energy is concentrated tightly within the desired sector, and the
average transmit energy is approximately 10dB higher within the passband than in
stopband.

To investigate the capability to enforce the RIP at the transmitter, we plot the
normalized beampatterns of the 4 beamspace groups corresponding to U′0,U′1,U′2, and
U′3, viewed from the elevation aspect. As we can see from Fig. 18, the beampatterns
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are identical, and thus the rotational invariance property is enforced by the proposed
structure.
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Figure 18: Elevation aspect of beampatterns corresponding to U′0 through U′3.

4.5.2 Parameter Estimation

In this example we assume the same system parameters as the previous example. To
test the performance of the DOA estimation algorithm proposed in Section 4.3, we
first consider RMSE performance. RMSE is calculated as

RMSE=

√√√√ 1
M

M∑
m=1

(
1
L

L∑
l=1
‖ρ̂l − ρl‖2

)
(56)

where ρl , [θl, φl]T . Thus, the figure of merit is actually the root mean square
of the total euclidean error in 2D angular space. Fig. 19 shows the RMSE when
estimating the location of a single target at θ = 47, φ = 106.
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Figure 19: RMSE as a function of SNR. Single target located at θ = 47, φ = 106.

As we can see from the figure, the proposed method recovers from threshold
behaviour due to eigenvalue swap at a much lower SNR than FWD-MIMO. At
0dB SNR the proposed method exhibits an RMSE of approximately 0.25o. As SNR
increases, the performance of FWD-MIMO approaches that of the proposed method.
This performance characteristic is predictable as the benefits of the increased virtual
aperture of FWD-MIMO are most noticeable at in the high SNR region. The reason
for this was discussed in Section 1.

Fig. 20 compares the ability of the proposed method to FWD-MIMO with respect
to the ability to resolve two closely located targets. Two targets were placed at
θ1 = 47o,θ2 = 48o and φ1 = 106,φ2 = 107. An approximately 10dB gap in SNR is
observed between the proposed method and FWD-MIMO.



46

SNR (dB)
-30 -20 -10 0 10 20 30

P
ro

ba
bi

lit
y 

of
 S

ou
rc

e 
R

es
ol

ut
io

n

0

0.5

1

1.5

Proposed Method
FWD-MIMO

Figure 20: Probability of resolving two closely located targets as a function of SNR.
Targets are located at θ1 = 47o,θ2 = 48o, and φ1 = 106,φ2 = 107.

It should be noted that even in the scenarios in which the performance of FWD-
MIMO is close to that of the proposed method, the proposed method still benefits
from a significantly lower computational complexity. The calculations required per
iteration for the conventional MIMO radar are O((MNR)3) while the calculations
required for the proposed method are O((4KR)3). With the configuration used in
this example, FWD-MIMO radar requires approximately 50 times the calculations
of the proposed method.
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5 Conclusions

MIMO radar is an emerging remote sensing technology, ubiquitous in its potential
applications. Within the paradigm of MIMO radar, a fundamental problem is that
of transmit beamforming, in which energy is concentrated within a desired sector by
means of forming linear combinations of basis signals. In this thesis, the problem
of transmit beamforming for MIMO radar has been investigated in both 1 and 2
dimensions. Two novel algorithms have been presented which enhance both the
capability and understanding of TB-MIMO radar.

The first algorithm exploits algebraic structure inherent in the TB-MIMO setting,
as a consequence of array geometry. A wide class of array geometries are shown to
enforce a polynomial structure on the transmitted signal. This polynomial structure
is exploited by restricting the resulting beamforming problem to a polynomial ideal.
This affords the designer complete control over the location of nulls in the beampattern.
The performance of the algorithm was verified in comparison with the SDR method
of [22] in several different scenarios. The proposed algorithm exhibited a significant
advantage over the SDR in several respects. A gap of 19.8 dB in ASL was observed
between the proposed and SDR methods. Also, an exact correspondence between
the proposed algebraic structure and the simulation results is verified.

The second algorithm enforces the rotational invariance property (RIP) in the
transmitted signal. This enables search free DOA estimation at the receive array
without any constraint on the receive array structure. This is accomplished by
designing a beampattern using only a subset of transmit array elements. Then,
a novel beamspace transformation has been introduced which yields three other
beamspace matrices with identical associated beampatterns. The algorithm has been
verified by two sets of simulations. The first verified that the RIP is enforced by
the proposed transformation. The second demonstrated a significant performance
advantage in DOA estimation performance, and probability of source resolution
over FWD-MIMO. Additionally, novel and strong results regarding parameter
identifiability in the TB-MIMO regime have been shown.

The avenues for further work on this subject are numerous, and as promising as
they are challenging. Modern algebraic techniques may hold the key which unlocks
several yet unanswered questions about transmit beamforming. Further work must
include an extension of the restriction method to 2D and 3D arrays. The extension
will draw on the field of Algebraic Geometry, as the polynomials in question will no
longer be univariate, but multivariate. Further, the wide range of array geometries
which imply a polynomial structure raise the spectre of underlying group structure.
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