
Master’s Programme in Computer, Communication and Information Sciences

Generative multi-task learning for the

air channel via hierarchical GANs

Juho Kuikka

MASTER’S
THESIS

Aalto University

MASTER’S THESIS 2024

Generative multi-task learning for
the air channel via hierarchical GANs

Juho Kuikka

Tapiola, 29.7.2024

Supervisor: Professor Esa Ollila

Advisor: Professor Sergiy Vorobyov

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Juho Kuikka

Title
Generative multi-task learning for the air channel via hierarchical GANs

School School of Science

Degree programme Master’s Programme in Computer, Communication and Information
Sciences

Major Machine Learning, Data Science and Artificial Intelligence Code SCI3044

Supervisor Professor Esa Ollila

Advisor Professor Sergiy Vorobyov

Level Master’s thesis Date 29.7.2024 Pages 61 Language English

Abstract
In wireless communication, channel model refers to an abstraction that aims to explain
how a transmitted signal is altered in the process of wireless communication. Currently,
most of the channel models are a compromise between accuracy and computational ex-
penses. In order to achieve higher accuracy with lower computational costs, deep learning
based generative modelling has been suggested for the channel modelling problem, with
promising results. However, a major drawback within the framework of deep learning
is the amount of training data required for success. Since channel measurements are
expensive to obtain, methods for enhancing the data efficiency of generative modelling
must be investigated. Specifically, as channel models for different locations share inherent
similarities, multi-task learning from different, yet related datasets could reduce required
data volume for an individual channel model.

This thesis investigates the deep generative modelling via generative adversarial net-
works (GANs), their Bayesian generalisation, and finally proposes a novel generative
modelling scheme for multi-task generation, motivated by Bayesian hierarchical mod-
elling. Our simulations show that our proposed scheme does not only greatly enhance the
data efficiency of the channel modelling, but it also decreases instabilities usually present
in GAN training. Furthermore, as our proposed modelling scheme is of great generality, it
may be utilised in any modelling problem where multiple related, but limited datasets are
present.

Keywords GANs, Bayesian Deep Learning, stochastic gradient markov chain monte
carlo, hierarchical modelling, air channel, multi-task learning

urn https://aaltodoc.aalto.fi

ii

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Juho Kuikka

Työn nimi
Generatiivinen monitehtäväoppiminen ilmakanavalle hierarkisilla generatiivisilla
kilpailevilla neuroverkoilla

Korkeakoulu Perustieteiden korkeakoulu

Koulutusohjelma Master’s programme in Computer, Communication and Information
Sciences

Pääaine Machine Learning, Data Science and Artificial Intelligence Koodi SCI3044

Valvoja Professori Esa Ollila

Ohjaaja Professori Sergiy Vorobyov

Työn laji Diplomityö Päiväys 29.7.2024 Sivuja 61 Kieli Englanti

Tiivistelmä
Langattomassa tiedonsiirrossa kanavamallilla viitataan abstraktioon, jonka tarkoituk-

sena on selittää, kuinka lähetetty signaali muuttuu tiedonsiirron seurauksena. Tällä
hetkellä suurin osa käytetyistä kanavamalleista ovat kompromisseja laadun ja lasken-
nallisten kustannusten välillä. Paremman laadun saavuttamiseksi matalammilla lasken-
nallisilla kustannuksilla, syväoppimiseen perustuvia generatiivisia malleja on ehdotettu
kanavamallinnusongelmaan, lupaavin tuloksin. Huomattava varjopuoli syväoppimisen vii-
tekehyksessä on kuitenkin tarve suurelle määrälle dataa. Koska kanavamittaukset ovat
kalliita, metodeja datan käytön tehokkuuden parantamiseksi täytyy tutkia. Erityisesti,
koska kanavamallit eri sijainneille jakavat luontaisia samankaltaisuuksia, monitehtävä-
oppiminen (multi-task learning) erilaisista, mutta toisiinsa liittyvistä datajoukoista voisi
vähentää vaadittavaa datamäärää yksittäiselle kanavamallille.

Tämä tutkielma tutkii syvää generatiivista mallinnusta generatiivisilla kilpailevil-
la neuroverkoilla, niiden Bayesilaista yleistystä ja lopuksi ehdottaa uutta mallinnus-
järjestelmää monitehtävägeneroinnille (multi-task generation), jonka motivaationa on
Bayesilainen hierarkinen mallinnus. Simuloimamme tulokset osoittavat, että ehdotettu
mallinnusjärjestelmä ei ainoastaan suuresti paranna datan käytön tehokkuutta kana-
vamallinnukselle, vaan lisäksi vähentää koulutusprosessin epävakautta, joka on usein
läsnä generatiivisten kilpailevien neuroverkkojen koulutuksessa. Lisäksi, koska ehdot-
tamamme mallinnusjärjestelmä on hyvin yleisluontoinen, sitä voidaan käyttää missä
tahansa mallinnusongelmassa jossa esiintyy useita toisiinsa liittyviä, mutta kooltaan
rajoitettuja datajoukkoja.

Avainsanat GANs, Bayesilainen syväoppiminen, hierarkinen mallinnus, ilmakanava,
monitehtäväoppiminen

urn https://aaltodoc.aalto.fi

iii

Preface

This Master’s thesis was funded by the Academy of Finland under the

academy project AoF-ISAC, led by professor Esa Ollila at Aalto University,

Department of Information and Communications Engineering. First, I

would like to express my deepest gratitude to professor Esa Ollila for offer-

ing me the possibility to do this thesis under the aforementioned academy

project. Furthermore, I would like to thank both professors Esa Ollila

and Sergiy Vorobyov for providing me excellent guidance throughout the

process of writing this thesis, while giving me the full freedom to explore

different ideas. Additionally, special thanks to M.Sc. Eeli Susan for the

helpful comments and for providing the excellent knowledge in the practi-

calities of wireless communications.

Tapiola, July 17, 2024

iv

Contents

Abstract ii

Tiivistelmä iii

Contents v

0. Notations and abbreviations viii

1. Introduction 1

2. Deep Neural Networks 3
2.1 Layers and activation functions 3

2.2 Training a neural network 5

2.2.1 Chain rule of calculus and backpropagation . . . 6

2.2.2 Learning as an optimization problem 6

2.2.3 Stochastic optimization 8

2.2.4 Regularization . 10

3. Bayesian Machine Learning 12
3.1 Motivation for Bayesian approach 13

3.2 Maximum a posteriori approximation 14

3.3 Sampling based posterior computation 15

3.3.1 Hamiltonian dynamics 16

3.3.2 Integrating Hamilton’s equations 17

3.3.3 Canonical distributions 17

3.3.4 HMC algorithm 18

3.4 Stochastic variants of MCMC algorithms 18

3.4.1 A general framework for stochastic Markov Chain

Monte Carlo algorithms 19

3.4.2 Construction of existing SG-MCMC samplers . . 20

v

Contents

3.4.3 Adaptive SG-MCMC 21

3.5 Bayesian Deep Learning 22

3.5.1 Priors for Bayesian neural networks 22

3.5.2 Priors in function space and architectural priors 23

3.5.3 Hierarchical priors 24

3.5.4 Multitask learning via Bayesian hierarchical mod-

elling . 25

4. Deep Generative Modeling 30
4.1 Divergence metrics for training a generative model 30

4.1.1 f -divergence . 30

4.1.2 Integral probability metrics 31

4.1.3 Density ratio estimation via binary classification 32

4.2 Metrics for generative model evaluation 32

4.3 Generative Adversarial Networks 32

4.3.1 Learning by comparison 33

4.3.2 Learning via density ratio estimation 34

4.3.3 Learning via integral probability metrics 35

4.3.4 Theoretical problems with f -divergences 37

4.4 Training GANs . 37

4.4.1 Gradient based learning 37

4.5 Instabilities in GAN training 38

4.5.1 Better gradient information 39

4.5.2 Optimization . 40

4.5.3 Conditioning GANs 41

4.6 Bayesian GANs . 41

4.6.1 Bayesian formulation for GANs 42

4.6.2 Problems with the posterior inference 43

4.6.3 Bayesian GANs with hierarchical priors 44

4.6.4 Hierarchical GANs 45

5. Generative modelling for the air channel 47
5.1 Recent work . 48

5.2 Hierarchical generative modelling of the air channel . . . 49

5.2.1 Channel datasets 50

5.2.2 Hierarchical Bayesian GAN for multi-task gen-

erative modelling 51

5.3 Analytical evaluation of the produced channel 54

vi

Contents

6. Conclusions 57
6.1 Future research directions 57

References 59

vii

0. Notations and abbreviations

Notations

R Field of real numbers

R+ Field of positive real numbers

C Field of complex numbers

x Scalar x

X Matrix X

I Unit matrix

x Vector x

x
T Transpose of x

X
�1 Inverse of matrix X

D Set D

|D| Cardinality of set D

S ⇥ P Cartesian product of sets S and P

log Natural logarithm

e Euler’s constant

exp a e
a

z ⇠ p(z) Random variable z is distributed according to p(z)

p(z | x) Conditional probability of z given x

N (µ,�2)
Normal distribution with mean µ and standard

deviation �

N (µ,⌃)
Multivariate normal distribution with mean µ and

covariance matrix ⌃

Exp(�) Exponential distribution with rate �

E[z] Expected value of random variable z

E[z | x] Expected value of random variable z given x

Ep(z)[·] Expectation w.r.t. distribution p(z)

viii

Notations and abbreviations

argmax
z

f(z) Value of z that maximises f

argmin
z

f(z) Value of z that minimises f

minf Minimum of f

maxf Maximum of f

supf Supremum of f

z / x z is proportional to x

, Equal by definition

k·kn nth norm

k·kL Lipschitz norm
@f
@x Partial derivative of f w.r.t. x

rxf Gradient of f with respect to x

Re(c) Real part of c

Im(c) Imaginary part of c

ix

Notations and abbreviations

Abbreviations

ASGLD Adam SGLD

BNN Bayesian (deep) neural network

DNN Deep neural network

FID Fréchet Inception Distance

GAN Generative adversarial network

GP Gradient Penalty

HMC Hamiltonian Monte Carlo

IPM Integral probability metric

JSD Jensen-Shannon divergence

KL-divergence Kullback Leibler divergence

LOS Line-of-sight

LS-GAN Least Squares GAN

MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo

MH Metropolis-Hastings

MIMO Multiple-Input and Multiple-Output

MLE Maximum likelihood estimation

MLP Multi-layer perceptron

MSGD Momentum SGD

MSGLD Momentum SGLD

MSE Mean squared error

NLOS Non line-of-sight

ReLU Rectified linear unit

SGD Stochastic Gradient Descent

SGLD Stochastic Gradient Langevin Dynamics

SG-MCMC Stochastic Gradient MCMC

SISO Single-Input and Single-Output

SNR Signal-to-noise ratio

s.t. such that

TDL Tapped delay line

VAE Variational Autoencoder

WGAN Wasserstein GAN

w.r.t. with respect to

x

1. Introduction

Generative modelling of the air transmission channel for wireless commu-

nication is relatively novel area of research with no standardized approach.

Modelling via deep generative models have been shown to be successful in

both time- and frequency domains utilizing for example generative adver-

sarial networks (GANs) or diffusion models. Since deep learning in general

is heavily dependent on massive volumes of high-quality data, the data

volume becomes the central challenge in channel modelling as the channel

measurements are generally expensive to obtain. The problem of limited

data is noted on the open literature – which is very scarce at the time of

writing – with only few primitive solutions.

Our goal is to develop a rigorous approach for generative modelling from

multiple data distributions, inspired by Bayesian hierarchical modelling

[1]. Ability to learn from multiple related, but often limited datasets lays a

foundation for better data efficiency in the generative channel modelling;

it does not only enable structured approach for utilizing many limited

datasets, for example channel measurements from different cities, but

also the usage of simulated data from similar scenario. Our proposed

solution, based on hierarchical Bayesian GANs, is shown to be effective for

utilizing data from different data distributions in such way that enhances

the modelling of any limited source distribution.

This thesis is organized as follows: In Chapter 2, we introduce the main

deep learning concepts required for our modelling purposes. Chapter 3

discusses both Bayesian inference in general level as well as develops a

mathematical view of Bayesian neural networks (BNNs) with an illus-

trative example on hierarchical modelling for multi-task prediction. In

Chapter 4 we develop a rigorous view of deep generative modelling via

1

Introduction

both classical, as well as Bayesian GANs. Furthermore, Chapter 4 extends

the Bayesian GAN formulation to the realm of hierarchical modelling for

multi-task generative modelling. Chapter 5 illustrates how hierarchical

GAN modelling can be used for generative modelling of the air channel

from multiple, related channel datasets. In Chapter 6 we discuss about the

results of the thesis, as well as point out possible future research directions.

Mathematical Notations

First, we introduce the mathematical notations used in this thesis. Vectors

are denoted by lowercase boldface letters or symbols, e.g., ✓ and x are taken

to be vectors. Matrices are denoted by uppercase boldface letters, such as

the identity matrix I. For sets, we use uppercase calligraphic letters, e.g.,

D denotes training data for any machine learning algorithm, whence |D|

denotes the cardinality of this set. For exhaustive listing of mathematical

notations, we refer to Chapter 0.

2

2. Deep Neural Networks

In its modern usage, term neural network refers to a differentiable function

which can be expressed as a computational graph which nodes are some

primitive operations, such as matrix multiplication, and edges represent

numerical data [1]. The simplest form of such graph can be built as a

linear series of nodes, called layers of the network. The depth of the neural

network comes from the usage of many such layers, making the network

deep. Mathematically, this kind of simple network may be represented as

a composition of functions, for example, for a three-layer network we have:

fNN (x) = f3(f2(f1(x;✓1);✓2);✓3),

where {✓i}
3
i=1 are the weights of the layers. If the function fi is a linear map,

the whole network can be expressed as a simple linear mapping. For this

reason, we usually are interested in using nonlinear mappings, allowing

the composition to represent much more complex functions. Indeed, even

this kind of simple network can represent a wide variety of functions, more

formally, capable of approximating any Borel measurable function from

one finite dimensional space to another to any desired degree of accuracy

[2], given there are enough of network weights. From this result follows

that neural networks are often referred as universal approximators.

2.1 Layers and activation functions

The simplest kind of layer in neural networks is called the linear layer.

The linear layer performs an affine transformation:

fi(x;✓) = W
T
x+ b,

where ✓ = [W b]. The linear layer is often called fully connected layer,

3

Deep Neural Networks

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Fig. 2.1. Simple neural network with one hidden layer.

which is illustrated in Figure 2.1. For historical reasons, neural network

consisting only of linear layers is often called a multi-layer perceptron

(MLP). There exists a plethora of different layer classes in modern deep

learning: for example convolutional layers have had a huge success in

computer vision tasks, whereas recurrent layers can be useful for working

with data with inherently sequential nature. However for the purposes of

this thesis, a simple linear layer is useful enough to meet all of our goals.

Thus we limit the discussion of different architectural choices and instead

focus more on the probabilistic modelling aspects.

In order to learn nonlinear mappings we must use some nonlinear activa-

tion functions alongside the affine transformation of the linear layer, i.e.,

let � : Rd
! Rd be some nonlinear mapping and set

fi(x;✓) = �(WT
x+ b).

The choice of activation function has an effect on the hypothesis space of

the neural network, but generally the universal approximation theorem

holds for a broad class of commonly used activation functions, given that

there is enough weights in the network [3]. Historically, the belief was that

the activation functions should be highly nonlinear, sigmoid and hyperbolic

tangent being common choices [3], and the empirical evidence pointed that

networks with hyperbolic tangent as an activation function were faster

to converge in comparison to those with sigmoidial activation function

[4]. An intuitive explanation why a hyperbolic tangent may outperform

the sigmoidial activation function follows from the fact that the learning

problem is close to learning a linear model when the inputs are close to

zero; that is,

4

Deep Neural Networks

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
z

0

2

4

6

R
eL
U
(z
)

ReLU

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
z

0.0

0.2

0.4

0.6

0.8

1.0

S
ig
m
oi
d(
z)

Sigmoid

�7.5 �5.0 �2.5 0.0 2.5 5.0 7.5
z

�1.0

�0.5

0.0

0.5

1.0

T
an
h(
z)

Tanh

Fig. 2.2. Illustration of different activation functions.

ŷ = ✓T
3 tanh(✓T

2 (tanh(✓T
1 x̂)) ⇡ ✓T

3 ✓
T
2 ✓

T
1 x̂,

when k✓T
1 x̂k2, k✓2k2, k✓3k2  ✏, where ✏ lies sufficiently close to neighbor-

hood of zero.

However, in the modern practice it is common to use piecewise linear

activation functions due to their more informative gradients and much

reduced computational costs. For example, one of the most commonly used

activation functions is the rectified linear unit (ReLU):

ReLU(z) = max(0, z).

ReLU has favorable computational properties as its gradient is equal to 1

whenever the neuron is active and zero when its inactive. Its most common

downside is the fact that it is not differentiable everywhere in its domain,

but it is rarely a problem in any practical setting [3]. Another benefit of

ReLU is its computational efficiency, compared to sigmoid

�(z) =
1

1 + e�z

and hyperbolic tangent

tanh(z) = 2�(2z)� 1

activations, which are nontrivial to compute. The graphs of the aforemen-

tioned three activation functions are displayed in Figure 2.2.

2.2 Training a neural network

Even though the universal approximation theorem tells us that in theory

the neural networks can approximate a broad class of functions, given

enough weights, it does not tell us how can one obtain the set of weights

5

Deep Neural Networks

in order to obtain the desired function. A common paradigm for inferring

the weights of the network in order to learn arbitrary functions is called

gradient based learning, where we let the gradient of the prediction error

flow backwards through the network. This process is called the backpropa-

gation and is based on the chain rule of calculus. After the gradients have

been computed, each of the parameters may be then updated according to

some optimization rule.

2.2.1 Chain rule of calculus and backpropagation

Consider two functions f : R! R and g : R! R s.t. z = f(x) and y = g(z).

The chain rule of calculus states that

@y

@x
=

@y

@z

@z

@x
.

Since we introduced neural networks as function compositions, it is easy

to see how the chain rule can be applied in order to obtain gradients of the

parameters with respect to (w.r.t.) some predetermined loss function. The

process which automatically calculates the desired gradients is called the

backpropagation, and its customary algorithm in automatic differentiation

typically implemented in any general deep learning framework, such as

PyTorch or Tensorflow.

2.2.2 Learning as an optimization problem

As stated before, the universal approximation theorem do not tell us how

to find a set of parameters in order to approximate the desired function.

Similarly, the backpropagation itself does not tell how to use the obtained

gradient information. Since the learning problem may be stated as an

optimization one, many optimization algorithms may be used in order to

use the gradient information to update the parameters of the model. For

illustrative example, let fNN : Rd
⇥ Rp

! R be a nonlinear map such that

it maps the covariates or features x 2 Rd to real valued outcome or response

y using the model parameters ✓ 2 Rp. Furthermore let L : R ⇥ R ! R
be some loss or objective function which compares the models prediction

to the true value of the outcome. If we have a dataset D = {(xi, yi)}Ni=1 of

observations, |D| = N , the learning or optimization task is to find such

parameters ✓ that minimize the loss function:

6

Deep Neural Networks

argmin
✓

1

N

NX

i=1

L(yi, fNN (xi,✓)). (2.1)

In statistical learning theory this approach is called the empirical risk

minimization, where risk is used to denote loss or objective function. The

term empirical follows from the fact that we do not know the true data

generating distribution analytically, but only possibly noisy instances gen-

erated by the true distribution. This approach however can be prone to

overfitting, i.e., the predictor with enough capacity could memorize all of

the training samples, producing a perfect zero risk, while having a poor

generalization performance. As neural networks are in theory universal

approximators, the risk of overfitting can be significant, and must be re-

duced by some regularization techniques.

If we were to use the model negative log-likelihood as the loss function

s.t. L(y, fNN (x,✓)) = � log pmodel(y, fNN (x;✓)) the optimization problem

(2.1) would equal to maximizing the expectation of the models likelihood in

the log-space over the empirical distribution p̂data induced by the training

dataset:

argmax
✓

Ex,y⇠p̂data [log pmodel(ŷ, y)], (2.2)

where ŷ , fNN (x,✓). This approach is also called the maximum likelihood

estimation (MLE).

Since the amount of training data required for training most deep learning

models is large, it is often unfeasible to use the whole dataset – historically

called the batch – in the optimization procedure. A common way of dealing

with this problem is to use minibatches of data B ⇢ D s.t. |B|⌧ |D|. Even

though historically it was usual to call algorithms that used the whole

training dataset for the gradient evaluation as batch algorithms, in the

modern approach where datasets are large by default we are often using

terms batch and minibatch interchangeably. Minibatching introduces some

noise to the gradients w.r.t. the loss, which we may assume to be normally

distributed due to the central limit theorem, given the cardinality of the

minibatch is of magnitude of hundreds. However, as the nonlinearities

of the neural network will make the loss landscape highly nonconvex,

the noise introduced by minibatching the dataset has been empirically

shown to help the optimizer in escaping from shallow local minimas that

7

Deep Neural Networks

might not yield a good generalization. The nonconvexity of the learning

problem also comes with the expense that we will not have any guarantees

to converge to global optimum, which however can prevent overfitting in

many cases.

2.2.3 Stochastic optimization

Since our goal is to find a set of parameters ✓? that minimize some loss

function, we may clear the notation a bit and write the objective as function

of the models parameters:

J(✓) = Ex,y⇠p̂data [log pmodel(ŷ, y)],

where we again denote ŷ , fNN (x,✓). Note that we are considering the

maximum likelihood estimation here for the ease of exposure.

Since we are relying on gradient information in the optimization proce-

dure, we are interested in the gradient of J w.r.t. the models parameters

r✓J(✓). Since we are relying on minibatches of data to alleviate the cost of

evaluating the gradient w.r.t. the whole dataset, the estimate is inherently

noisy. However, the empirical and analytical results have shown that this

is hardly an issue. Since the standard error of the mean is given by
�
p
M

,

where � is the true standard deviation of the samples, and M =|B|, we

observe that the accuracy of the estimate does not scale linearly w.r.t. the

number of datapoints used, whereas the gradient evaluation does [3].

Second consideration follows from the fact that there are usually redundan-

cies in the dataset, i.e., many of the samples have an identical contribution

to the gradient estimate thus wasting computational resources. Keeping

these considerations in mind together with the fact that the noise from

minibatching the data can actually help the optimizer to escape from shal-

low local minimas, the usage of stochastic optimization algorithms is the

de-facto practice in modern deep learning. It should also be stated that for

our purposes optimization methods based on the first-order gradient infor-

mation are sufficient; if one is to use higher-order methods, the accuracy of

the gradient estimate becomes a larger concern. For further references on

accuracy considerations for higher-order gradient methods see for example

[3].

8

Deep Neural Networks

Stochastic Gradient Descent

One of the simplest stochastic optimization algorithm is the stochastic gra-

dient descent (SGD). SGD updates the parameters via the noisy gradient

information produced by the expectation over minibatch B of samples

Ĵ(✓) =
1

M

X

i2S
log p(ŷi, yi)

where S is the set of indexes of the minibatch s.t. B = {Di}i2S . Now the

unbiased estimate of gradient ĝ is given by r✓Ĵ(✓t), which is then used to

update the model parameters as:

✓t+1 = ✓t + ⌘tĝt,

where ⌘t is the learning rate at timestep t. The selection of learning rate

in context of deep learning is stated to be more art than science [3], but

sufficient theoretical conditions for the SGD to converge are met if

1X

t=1

⌘t =1 and
1X

t=1

⌘
2
t <1.

The requirement for the learning rate to decay follows from the noise

introduced by minibatching the data. Even though these conditions in

theory are sufficient, the choice of ⌘1 and the decaying schedule can play

a major part in the rate of convergence and even in the generalization

obtained [3]. A common practice in deep learning is to decay the learning

rate linearly.

Momentum SGD

Even though SGD is widely used method due to its simplicity, in highly

convex optimization problems, such as learning weights for deep neural

networks, its convergence can be slow. In order to speed up the conver-

gence, it is often useful to incorporate past gradient information to dampen

oscillations and escape shallow modes. The use of momentum in optimiza-

tion algorithms can be traced back to Polyak’s heavy ball method [5], which

introduces a velocity v for a particle moving in the optimization landscape.

The analogy is simple; when a particle with mass obtains high velocity, and

consequently high momentum, it will not stop in the face of small uphill

or oscillate much in a rough terrain. The momentum is introduced to the

plain SGD by accumulating exponentially decaying moving average of the

past gradients in the update. In the momentum SGD (MSGD) we usually

9

Deep Neural Networks

assume unit mass, so the velocity itself may be regarded the momentum of

the particle. The update rule in MSGD is given by:

vt = ↵vt�1 � ⌘tĝt

✓t+1 = ✓t + vt,

where ↵ 2 [0, 1) is a hyperparameter determining how quickly the contri-

bution of the past gradients is vanishing. The ratio of ↵ to ⌘ determines

the magnitude of effect the past gradients have on the update direction.

Similarly to the learning rate, ↵ may also be decayed over time, however,

it is of less importance compared to the shrinkage of the learning rate [3].

Adaptive optimization methods

Learning rate is one of the hardest hyperparameters to select, as it has a

significant impact on the models generalization ability [3]. Furthermore,

the objective function is often highly sensitive in some directions in the

parameter, while being relatively insensitive in others. Thus, a natural

approach would be to set independent learning rates for each parameter

and adapt these automatically throughout the learning process.

For the aforementioned reasons, optimization methods that adaptively

change the learning rate for each hyperparameter individually are widely

of great interest in deep learning. Methods such as Adam [6] and RMSProp

[7] are widely used, but for a long time they were not well understood. It

appears however, that when studied as preconditioned SGD, that the adap-

tive methods indeed outperform SGD in escaping the saddle points of the

optimization landscape and can converge faster to second-order stationary

points [8]. For us it suffices to know that the both Adam and RMSProp

have a great empirical robustness and performance, but furthermore can

be analytically studied as preconditioned SGD, where the preconditioner

is estimated in an online manner.

2.2.4 Regularization

Since neural networks are universal approximators, they can be prone

to overfitting. As mentioned in Subsection 2.2.2, to remedy the issue of

overfitting, usage of some regularization technique is usually advisable.

There exists a plethora of regularization techniques in the modern deep

learning practice, however, many of these have no clear statistical motiva-

tions. A simple regularization technique arising from classical statistics is

10

Deep Neural Networks

to penalise the model for having large weights. A common penalty term,

which is added to the loss function to minimize, is given as:

R(✓;�) =
�

2
✓T✓, (2.3)

where ✓ are the model parameters, and � is a hyperparameter controlling

the importance of the regularization term. This choice of regularizer is

called a weight decay in the machine learning literature [9]. Plugging

the regularizing term in the optimization problem given in Equation (2.2)

gives us:

argmax
✓


Ex,y⇠p̂data(log pmodel(ŷ, y))�R(✓;�)

�
. (2.4)

Note that here we are optimizing w.r.t. the model parameters, ✓, i.e., the

hyperparameter � is selected prior to the model training process. The

selection of both the regularization term and its hyperparameters requires

expertise as well as experimenting. In machine learning, a common prac-

tice is to use an additional validation set of the data in order to select the

regularization method.

11

3. Bayesian Machine Learning

In the frequentist statistics we are interested in finding a set of parameters

that maximizes some quality metric of a model, for example, a likelihood:

✓̂ = argmax
✓

p(D | ✓). In the context of Bayesian statistics our goal is to

find a posterior distribution of the parameters given the data, p(✓ | D),

which can be computed using Bayes’ theorem:

p(✓ | D) =
p(✓)p(D | ✓)

p(D)
.

Here p(✓) is called a prior distribution of the parameters, in which we can

state our beliefs about how the parameters should be distributed. The prior

term also provides a natural regularisation term for the model at hand.

Term p(D) =

Z
p(D | ✓)p(✓)d✓ is called the marginal likelihood or evidence,

and is used as normalization constant in order to obtain a proper proba-

bility distribution. Since the computation of the evidence is intractable

for more complex models, such as neural networks, we must rely on some

approximate method for approximating the posterior distribution.

Bayesian computation literature has suggested several successful strate-

gies for approximating complex posterior distributions, however, there

exists no off-the-shelf methods for approximating highly multimodal pos-

teriors [10]. Major ideas for approximating the posterior either rely on

approximate inference, e.g., fit a normal distribution that minimises some

distributional divergence between the true posterior and the approxima-

tion, or sampling. Sampling based algorithms rely usually on constructing

a Markov chain that in the limit converges to the true posterior distribu-

tion, from which posterior samples are then collected. Markov chain based

sampling algorithms are called Markov chain Monte Carlo (MCMC), and

are considered to be the gold standard of Bayesian computation since they

do not require any assumptions on the form of the posterior distribution.

12

Bayesian Machine Learning

3.1 Motivation for Bayesian approach

One of the major motivations for being Bayesian comes from the estimation

of uncertainty. For example, consider a regression model f : Rd
⇥ Rm

! R
s.t. f maps the observed covariates x 2 Rd to prediction ŷ 2 R using

parameters ✓ 2 Rm. In the case of maximum likelihood estimate, ✓̂ =

argmax
✓

log p(D | ✓), we obtain a prediction ŷ = f(x; ✓̂) with no measure of

uncertainty. When we have the posterior distribution for the parameters

p(✓ | D), we can obtain posterior predictive distribution for new datapoint

ŷ as follows:

p(ŷ | x̂,D) =

Z
p(ŷ | x̂,✓)p(✓ | D)d✓, (3.1)

where p(ŷ | x̂,✓) is the model likelihood for the new observation. The so

obtained distribution (3.1) gives us a meaningful way of estimating the

uncertainty of predictions.

In generative modeling, however, we are not necessarily interested in

the uncertainty estimation. Yet working with a posterior distribution

instead of a point estimate can be useful if the posterior is multimodal,

which usually is the case when working with Bayesian neural networks.

Other way to frame this phenomenon is to note that with highly flexible

models and complex data there usually exists multiple models that have

an equal training performance but yield different generalisations, called

underspecification [1].

✓

p(
x
|
✓)

Fig. 3.1. Maximum likelihood estimation misses a second explanation for the data.

Consider a toy example illustrated in Figure 3.1: optimal maximum like-

lihood estimate will recover a model that explains the data through the

13

Bayesian Machine Learning

set of parameters ✓ that maximizes the likelihood, while missing an al-

ternative explanation for the data. If we have the access to the whole

distribution of ✓, we can recover every possible model explaining the data.

This is of high importance in generative modeling. Indeed, if we want

to have a model that can produce samples with good variety, we must be

able to produce samples that come from the mode missed by the maximum

likelihood estimate. Note the important distinction between multimodal

data distribution and multimodal parameter distribution: the maximum

likelihood estimation does not prohibit the modelling of multimodal data

distributions – Bayesian modelling only may make it easier to model those

distributions via the introduction of posterior distribution over the model

parameters.

Another strength of the Bayesian approach comes from the idea of hierar-

chical modelling [11]. This kind of modelling scheme allows us to model

multiple related datasets in a way that captures the individual properties

of each dataset while modelling the similarities shared by the datasets.

In the following sections we will see that this kind of modelling scheme

allows us to have a mathematically sound approach for multitask learning

and Bayesian transfer learning.

3.2 Maximum a posteriori approximation

Simplest way to approximate a posterior distribution is to estimate the

posterior as a point-mass ✓̂ in the probability space, i.e.,

✓̂ = argmax
✓

p(✓ | D) = argmax
✓

[log p(✓) + log p(D | ✓)]. (3.2)

This estimate is often called the maximum a posteriori (MAP) estimate.

Note how the MAP estimate consists of log-likelihood function and the

prior density. If we were to assign an isotropic Gaussian prior to the model

parameters, ✓ ⇠ N (0,�I), the prior density to maximize in Equation (3.2)

becomes log p(✓) / ��
2✓

T✓ = R(✓;�). Note that with this particular prior

choice the MAP estimate equals to the regularized MLE problem given

in Equation (2.4), i.e., there exists a clear connection between the MAP

and regularized MLE. Even though the MAP estimate does not give us

any measure of uncertainty, it can be useful starting point for Bayesian

modelling, and furthermore it sheds a light on how the prior selection can

14

Bayesian Machine Learning

be seen as regularization technique.

3.3 Sampling based posterior computation

As mentioned in the beginning of Chapter 3, MCMC based algorithms are

considered to be the "gold standard" of Bayesian computation. MCMC

methods rely on constructing a Markov process with stationary distribution

equal to the desired posterior distribution, p(✓ | D), and running the

simulation long enough for the draws from the chain to be close to this

stationary distribution [11]. A simple algorithm for constructing such

Markov process is called the Metropolis algorithm [11], see Algorithm 1.

In Metropolis algorithm, the idea is to adapt a random walk with an

acceptance/rejection rule such that the walk converges to the desired

distribution. The algorithm starts with an initial state ✓0 for which p(✓0
|

D) > 0. Then for t = 1, 2, . . . new draws are acquired by proposing a new

state ✓? from a proposal distribution, Jt(✓?
| ✓t�1), which is required to be

symmetric, i.e., J(✓a | ✓b) = J(✓b | ✓a). The proposal is then accepted with

a probability min(1, r), where

r =
p(✓?)

p(✓t�1)
.

In layman terms, if the proposal increases posterior density, it is always

accepted, but only sometimes accepted in cases when the posterior density

would decrease. For a proof why this process converges to the specified

distribution, see for example [11]. A generalisation of Metropolis algorithm

where the jumping distribution is not required to be symmetric is called the

Metropolis-Hastings (MH) algorithm, which usually increases the speed of

the random walk in a sense that it requires fewer iterations for the process

to converge to the stationary distribution.

In order for the MH to allow for asymmetric proposal distribution the ratio

r is replaced by ratio of ratios:

r =
p(✓?)Jt(✓ | ✓?)

p(✓)Jt(✓
?
| ✓)

,

which is called the Hastings correction. Note that in both Metropolis and

MH algorithms, we need to know the target densities only up to a normal-

ization constant, i.e., we can work with unnormalized distributions, which

is particularly useful for any posterior distribution.

15

Bayesian Machine Learning

Algorithm 1 Metropolis algorithm [1]

1: Initialize ✓0

2: for t = 1, 2, . . . do
3: ✓ ✓t�1

4: Sample ✓?
⇠ Jt(✓

?
| ✓)

5: r
p(✓?)
p(✓)

6: A min(1, r)
7: Sample u ⇠ U(0, 1)
8: if u  A then
9: ✓t

 ✓?

10: else
11: ✓t

 ✓
12: end if
13: end for

There exists numerous ways of modifying the Metropolis or MH algorithms

to be more efficient. One can for example reparameterize the model to

allow for easier sampling, and even after that there is an infinite number

of ways to select the proposal distribution. Even then, the algorithm

suffers from its inherent local random-walk nature, zig-zagging in the

target distribution, which causes the samples to be serially correlated

and the algorithm to take a long time to converge, especially in high-

dimensional target distributions usually present in a deep learning setting.

Hamiltonian Monte Carlo (HMC) [12] borrows its idea from physics in order

to allow for more distant steps in the target distribution by introducing a

moment variable vi for every component ✓i in the target space.

3.3.1 Hamiltonian dynamics

As the name suggests, HMC is based on Hamiltonian dynamics [12]. Hamil-

tonian dynamics for a physical system can be understood simply by think-

ing of a frictionless body sliding on a two dimensional surface with varying

height. The state of this system consists of position of the body, x 2 R2

and its momentum, v 2 R2
, which is the mass of the body times its velocity.

Now the potential energy of the body is given by E(x) and its kinetic energy

by K(v) = kvk22/2m, where m denotes the mass of the body. The set of

possible values of (x,v) is called the phase space, and we define a Hamilto-

nian function for each point of the phase space to be the total energy of the

system:

H(x,v) , E(x) +K(v).

Intuitively, if the body is on a level surface, its momentum will be constant

16

Bayesian Machine Learning

and its potential energy invariant. If the body is sliding towards upwards

slope, its momentum will decrease while its potential energy will increase,

leaving the Hamiltonian constant. In statistical scenario, the position of

the system is the variable of interest, denoted by the model parameters

✓, while the momentum will serve as an auxiliary variable. Furthermore,

in statistical setting the potential energy E(✓) is often defined as the

(unnormalized) negative log posterior density of ✓, from which we wish to

sample, and the kinetic energy K(v) =
1

2
vT

⌃
�1v, where ⌃ is some positive

definite matrix, known as the mass matrix. Often the mass matrix is set

to be a scalar multiple of an identity matrix [12].

3.3.2 Integrating Hamilton’s equations

Since our goal is to obtain a computer program to produce samples from

a specified target distribution, the continuous time system must be dis-

cretized in order to update the position and momentum variables. A simple

yet accurate way of doing this is via the Leapfrog integrator, in which the

momentum first receives a "half" update, followed by a full position update

and finally a second half update for the momentum:

vt+1/2 = vt �
⌘

2

@E(✓t)

@✓

✓t+1 = ✓t + ⌘
@K(vt+1/2)

@v

vt+1 = vt+1/2 �
⌘

2

@E(✓t+1)

@✓
.

3.3.3 Canonical distributions

In order to sample from a desired target distribution we can relate it to

the potential energy function via the concept of a canonical distribution

originating from statistical mechanics [12]. If we have an energy function

for some state of some physical system, the canonical distribution over the

states has a density function

p(x) =
1

Z
exp(�E(x)/T),

where E(x) is the energy for state x, T is the temperature of the system

and Z is a normalization constant in order to obtain a proper density

function. Since the Hamiltonian is a joint energy function w.r.t. position

17

Bayesian Machine Learning

and momentum, we obtain a joint distribution:

p(✓,v) =
1

Z
exp(�E(✓)/T) exp(�K(v)/T).

Note that ✓ and v are independent with their own canonical distributions.

In the MCMC framework the position variables ✓ are the variables of

interest and the momentum is introduced only to obtain proper Hamilto-

nian dynamics. The posterior distribution is now expressed as a canonical

distribution with T = 1 using the potential energy function as follows:

E(✓) = �
X

x2D
log p(x | ✓)� p(✓),

where the first term is the likelihood function and the second one is prior

density.

3.3.4 HMC algorithm

We use Metropolis algorithm as a backbone in order for the Hamiltonian

dynamics to define an MCMC sampler, i.e., the Hamiltonian dynamics are

turned to a proposition for the next state of the Markov chain. In the first

step of the HMC algorithm new momenta is sampled independently of

the position from their Gaussian distribution: v ⇠ N (0,⌃). In the second

step, a Metropolis update is performed using the Hamiltonian dynamics

to propose a new state (✓?
,v?), from which only the position variable

is stored since the momenta will be resampled for each iteration of the

algorithm. The Hamiltonian dynamics is simulated for L Leapfrog steps

with a stepsize of ⌘ as explained above. The parameters L and ⌘ need to be

tuned in order to have a good performance. As in the Metropolis framework,

the proposal is then accepted with probability min(1, exp(�H(✓?
,v?) +

H(✓,v)). In the case of rejection, the new state is set to the previous state

just as in the Metropolis algorithm. The outline of the HMC algorithm is

given in Algorithm2.

3.4 Stochastic variants of MCMC algorithms

Since the HMC requires a gradient computation w.r.t. the whole dataset,

it can be computationally inefficient with large datasets, which are usually

present in modern deep learning problems, making the usage of standard

HMC questionable. Even a simple MH algorithm requires the MH correc-

18

Bayesian Machine Learning

Algorithm 2 HMC [1]

1: Initialize ✓0

2: for t = 1, 2, . . . do
3: Sample momentum vt�1

⇠ N (0,⌃)
4: (✓?

0,v
?
0) (✓t�1

,vt�1)
5: v?

1/2 v?
0 �

⌘
2rE(✓

?
0) . Half step for the momentum

6: for l = 1 : L� 1 do
7: ✓?

l ✓?
l�1 + ⌘⌃

�1v?
l�1/2

8: v?
l+1/2 v?

l�1/2 � ⌘rE(✓?
l)

9: end for
10: ✓?

L ✓?
L�1 + ⌘⌃

�1v?
L�1/2

11: v?
L v?

L�1/2 �
⌘
2rE(✓

?
L) . Half step for the momentum

12: (✓?
,v?) (✓?

L,v
?
L)

13: r exp(�H(✓?
,v?) +H(✓t�1

,vt�1))
14: A min(1, r)
15: Sample u ⇠ U(0, 1)
16: if u  A then
17: ✓t

 ✓?

18: else
19: ✓t

 ✓t�1

20: end if
21: end for

tion to be computed using the whole dataset, which scales linearly w.r.t.

the datasets size, just as the gradient computation in the HMC. In order to

alleviate this problem, we must look at stochastic variants of the MCMC

algorithms, i.e., algorithms that can produce posterior draws only via usage

of a subset of the training data.

3.4.1 A general framework for stochastic Markov Chain Monte Carlo
algorithms

A general framework for constructing any stochastic gradient MCMC (SG-

MCMC) algorithms was given in [13], where the authors give a complete

recipe for constructing any continuous Markov process with desired invari-

ant distribution. In order to achieve this, the authors define a stochastic

system parameterized by a positive semi-definite diffusion matrix D(z)

and a skew-symmetric curl matrix Q(z), where z = (✓, r) s.t. ✓ 2 Rd are

the model parameters and r is a vector of auxiliary variables. For example,

in the case of HMC, z = (✓,v). The dynamics are then written using the

target distribution and the two matrices, and by varying the choice of D(z)

and Q(z) the space of MCMC methods maintaining the correct invariant

distribution is explored. The general form of SG-MCMC update is then

given by:

19

Bayesian Machine Learning

✓t = ✓t�1
� ⌘t[D(z) +Q(z)]rzH̃(z) + �(z) +

p
2⌘tTn, (3.3)

where n ⇠ N (0,D(z)), H(z) is the energy function of the system, rzH̃(z)

is an unbiased estimate of rzH(z), ⌘t is the learning rate at step t and

�i(z) ,
Pd

j=1
@
@zj

(Dij(z)+Qij(z)). Here T is the temperature of the system

similarly as in the case with canonical distribution.

3.4.2 Construction of existing SG-MCMC samplers

One of the first innovations in the SG-MCMC methodology was the stochas-

tic gradient Langevin Dynamics (SGLD) [14], which combines Robbins-

Monro type algorithms with Langevin dynamics such that the trajectory of

parameter updates will converge to the full posterior distribution. As this

methods builds on the first-order Langevin dynamics, it does not include

the momentum term of the HMC, which we have seen to be useful in order

to make the sampler efficient. In order to combine the efficient sampling of

the HMC with stochastic updates, stochastic gradient Hamiltonian Monte

Carlo (SG-HMC) was proposed [15]. SG-HMC is based on the second-order

Langevin dynamics, where a friction term is added to the HMC momentum

update in order to retain the desired target distribution invariant. These

methods, as well as their variants, can be recovered in the framework

given by [13].

To give an illustrative example, in the SGLD, parameters are updated as

✓t = ✓t�1 � ⌘tr✓Ẽ(✓t�1) +
p
2⌘tn, (3.4)

where n ⇠ N (0, I) and E(✓) denotes the potential energy of the system,

defined identically as in the HMC algorithm, s.t. r✓Ẽ(✓) is an unbiased

estimate of the gradient of the potential energy. By setting z = ✓ s.t.

H(✓) = E(✓), D(✓t) = I and Q(✓) = 0 in (3.3) an identical update rule is

recovered. Note that the SGLD update rule does not include the tempera-

ture parameter so we may just set T = 1. In fact, the temperature plays an

important role when sampling from posteriors of deep neural networks [1].

By similar derivation, any SG-MCMC samplers may be either recovered

or discovered. The importance of the general framework is that we do

not have to give sampler specific proofs; as the framework itself is proven

to be complete, any sampler arising from it will converge to an invariant

20

Bayesian Machine Learning

distribution equal to the desired posterior distribution [13].

3.4.3 Adaptive SG-MCMC

A well known fact is that the optimization landscape of a deep neural

network exhibits often pathological curvature and saddle points, making

the usage of first-order optimization methods inefficient. The same ar-

gument can be made for the posterior distributions of a DNN, rendering

the simplest SG-MCMC methods unusable. This is likely the case for the

GANs as well: even though ProbGAN [16] and BayesGAN [17] stated to

use SG-HMC for posterior sampling, they point out that in order to achieve

success, the network is first trained with Adam optimizer in order to obtain

reasonable MAP estimate as a starting point for the stochastic sampler.

In order for the sampler to escape saddle points and speed up convergence

in difficult posterior distributions, [18] proposes the usage of past gradients.

Namely, the authors of [18] propose two adaptive SGLD methods: the

momentum SGLD (MSGLD) and the Adam SGLD (ASGLD). A general

update rule of an adaptive SGLD algorithm is given by

✓t = ✓t�1
� ⌘t(r✓Ẽ(✓) + aat) +

p
2⌘tTn, (3.5)

where n ⇠ N (0, I), at is the adaptive bias term and a is the bias factor.

The MSGLD borrows its idea from the momentum algorithm [19], which

guides the direction of new updates by incorporating a fraction of past

update directions – the so-called momentum term – to the current gradient.

As the momentum term accumulates over iterations, updates to same

direction gets increased while updates to the opposite directions gets

decreased, reducing the oscillation and accelerating the convergence. In

the same spirit MSGLD introduces the momentum term to the SGLD

which is calculated as an exponentially decaying average of past stochastic

gradients and added as a bias term to the drift of SGLD. The update rule

for the MSGLD is obtained by setting at = mt in the (3.5). The bias term

mt is updated by

mt = �1mt�1 + (1� �1)r✓Ẽ(✓t�1),

where �1 is a smoothing factor. The outline of MSGLD is given in Algorithm

3.

21

Bayesian Machine Learning

Algorithm 3 MSGLD[18]
Input: Data D, minibatch size B, smoothing factor �1 2 (0, 1), bias factor
a, temperature T and learning rate ⌘

Initialize ✓0, m0 0
for t = 1, 2, . . . do

Draw a minibatch of data B ⇢ D, |B| = B

Sample n ⇠ N (0, 2T⌘I)
✓t
 ✓t�1

� ⌘t(r✓Ẽ(✓) + amt�1) + n

mt = �1mt�1 + (1� �1)r✓Ẽ(✓t�1)
end for

As the name suggests, ASGLD derives its idea from the Adam optimization

algorithm. The key difference here is that the ASGLD is designed to con-

verge in a distribution rather than a single value. To keep the discussion

short, it is worthwhile to note that the authors of [18] experienced the

simpler MSGLD to perform on par with the ASGLD, outperforming it in

some simulations. Thus we argue that if more complex algorithm does not

have a clear performance advantage despite being more computationally

expensive, it may be useful to proceed with the simpler one.

3.5 Bayesian Deep Learning

As we have already seen, difference between maximum likelihood and

Bayesian approaches can be characterised by the inference process and the

explicit introduction of the prior distribution. Thus, Bayesian approach to

deep learning follows naturally by setting prior distributions to the models

parameters inferring the posterior distribution over the parameters via

some Bayesian inference method. Here, we consider only the SG-MCMC

methods for the posterior computation. In this section, we cover mostly the

modelling ideas behind Bayesian neural networks (BNNs), as the posterior

computation can be done via any suitable SG-MCMC method presented

earlier.

3.5.1 Priors for Bayesian neural networks

The general idea behind the prior distribution is to state our prior beliefs

about how the model parameters should be distributed. However, for

neural networks, this approach does not have an intuitive basis. A common

approach of prior selection in the context of BNNs is to use Gaussian priors.

For a BNN with L� 1 layers we set a Gaussian prior for the weights and

biases independently for each layer as follows:

22

Bayesian Machine Learning

Wl ⇠ N (0,↵2
l I), bl ⇠ N (0,�2

l I), l = 1, . . . , L. (3.6)

The selection of ↵ and � may be done for example via prior predictive

checking, but some standard choices are Xavier/Glorot initialization or

LeCun initialization, defined respectively as

↵
2 =

2

nin + nout
and ↵

2 =
1

nin
,

where nin denotes the number of weights coming into neuron at level l, and

nout the number of weights flowing out of the neuron [3].

Even though the factored Gaussian is the most common choice for prior in

the context of BNNs, it is not the only suitable choice. As we have seen,

prior distributions can be seen as Bayesian counterpart of the regular-

ization in maximum likelihood paradigm, and therefore, it is natural to

consider such prior distributions that promote sparsity in the model. A

common choice for such prior is the Laplace distribution [1]. Another way

of dealing with the difficulty of selecting the prior is to learn the prior

from the data, which can be useful mechanism for both Bayesian transfer

learning and multitask learning.

3.5.2 Priors in function space and architectural priors

In the context of neural networks, prior distributions set on the model

parameters are difficult to be understood in the parameter space. To gain

better intuition, it is often helpful to study the priors in the function space.

For example, if we would have a multilayer perceptron (MLP) for a regres-

sion problem with a structure 1� n� 1 and we were to set Gaussian prior

with zero mean and standard deviation �l independently for each l layer

we can study the effects of choosing different sets of {�l}Ll=1, L = 2, with

some fixed n. Draws from the prior for different selection of �1 ⇥ �2 can be

seen in Figure 3.2. In the example, the width of the network was set as

n = 20 and hyperbolic tangent was used as the activation function.

It is clear that the higher variance in the prior of the weights lets the

functions have more wiggly shape due to the increased sensitivity to the

change of the input value. Note that the prior draws from the network

are in a sense smooth functions, which follows directly from the activation

function used. It should be stated that the choice of prior does not set the

23

Bayesian Machine Learning

�1.0 �0.5 0.0 0.5 1.0
x

�10

�5

0

5

10

f N
N
(x
)

�1 = 1, �2 = 1

�1.0 �0.5 0.0 0.5 1.0
x

�100

�50

0

50

100

f N
N
(x
)

�1 = 1, �2 = 10

�1.0 �0.5 0.0 0.5 1.0
x

�15

�10

�5

0

5

10

15
f N

N
(x
)

�1 = 10, �2 = 1

�1.0 �0.5 0.0 0.5 1.0
x

�150

�100

�50

0

50

100

f N
N
(x
)

�1 = 10, �2 = 10

Fig. 3.2. Effects of prior distribution on the functions produced by an MLP.

hypothesis space of the neural network strictly. It merely favors hypotheses

closer to those produced by the prior, as the posterior distribution is always

a compromise between the data and the prior, converging to the MLE when

the number of datapoints goes to infinity. Thus, the choice of prior is of

more importance in applications with limited amounts of data.

In addition to the choice of prior distribution laid on the weights of the

model parameters, the choice of activation functions and structure of the

neural network has similar effect on the hypotheses the model favours.

These architectural considerations are sometimes called architectural pri-

ors [1]. It has been established in the field of computer vision that even

with random weights a neural network can be a powerful feature extractor,

given a proper architecture of the network.

3.5.3 Hierarchical priors

If we wish not to state any strong prior beliefs about the distribution of the

models weights, we can set a functional form of the prior distribution, set

hyperpriors for the prior distribution parameters and infer the posterior

distribution for the hyperparameters from the data. Consider for example

a prior ✓ ⇠ N (↵,�
2
I). In order to learn the hyperparameters ↵ 2 Rp and

� 2 R from the data, we may set weakly informative hyperpriors for those

parameters and infer their posterior distribution. We may for example set

24

Bayesian Machine Learning

↵p ⇠ N (0, 102), � ⇠ Exp(0.5),

and infer the posterior distribution of the hyperparameters. Even though

at glance counterintuitive approach, as we should state prior beliefs be-

fore seeing the data, it becomes evidently useful when we can learn the

prior distribution from different, but similar datasets. This approach is

sometimes called a Bayesian transfer learning [1]. Another perspective for

hierarchical modelling arises from the approach of sharing information

between multiple models with common hyperparameters: via hierarchical

structure the hyperparameters may be inferred from multiple related, but

usually limited datasets, allowing to learn a stronger prior which then

guides the learning process of the individual models. This may be seen as

a Bayesian approach for multitask learning.

3.5.4 Multitask learning via Bayesian hierarchical modelling

In multitask learning the goal is to learn a model from multiple datasets

so that the model learns the similarities between different data distribu-

tions while allowing the model to excel in the individual tasks. This is

usually realized by sharing some of the model parameters while leaving

some other parameters to be task-specific [1]. Our approach to realize

such model is through hierarchical Bayesian modelling. For an illus-

trative example, consider a simple regression problem with M = 3 re-

lated datasets {Di}
M
i=1, each having relatively small number of datapoints,

|Di|= Ni = 32, i 2 {1, . . . ,M}. The data (xi, yi) are generated as y = f(x)

where f(x) = x
3, and xi are covariates between �1 and 1. To obtain three

related datasets, the generated observations are consequently rotated by

15 and 30 degrees, so that the first dataset contains the original obser-

vations, second contains original observations rotated by 15 degrees and

third one contains the original observations rotated by 30 degrees. Finally,

observation noise ✏ ⇠ N (0, 0.12) is injected to each of the three datasets.

The generated data are illustrated in Figure 3.3.

Our goal is to learn a function that performs regression task well on all

three datasets. Since the data is limited in volume, training a neural

network individually for each of the datasets will be prone to overfitting.

Pooling the data could help to increase the training data volume, but yield

25

Bayesian Machine Learning

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00
Data from three di↵erent datasets

D1

D2

D3

Fig. 3.3. The datasets share a similar shape but are coming from different distributions.

a model that is not suited for any of the regression tasks. Instead, we are

applying the idea of Bayesian hierarchical model to learn the similarities

shared between the datasets while having individual parameters for each

of the tasks.

The model of choice for this multitask learning problem will be hierar-

chical Bayesian neural network, which we denote as fNN (x,✓i), where

i denotes for which task we are mapping the covariates x. We assume

that the underlying target variable yi = fNN (x,✓i) + ✏, where ✏ ⇠ N (0,�2),

i.e., yi ⇠ N (fNN (x, ✓i),�2). For the sake of simplicity, we assume that we

know the variance of the underlying noise process, � = 0.1. Since we are

using a simple neural network as the model, for notational convenience

we divide the parameters for each layer separately, so that ✓(l)
i denotes the

parameters of the models’ l-th layer. For each of the model layer weights,

we place a Gaussian prior: ✓(l)
i ⇠ N (µ(l)

, s
2(l)I), and for the priors hyperpa-

rameters, we place weakly informative priors: µ(l)
⇠ N (0, I), s(l) ⇠ Exp(1).

Note that it becomes hard for the sampler to sample from N (µ,�2) when

the standard deviation � becomes small. This problem is known as the

Neals funnel. For this reason, we use the non-centered parameterization

for the model weights ✓ = µ + ✓̂s s.t. ✓̂ ⇠ N (0, I) and s ⇠ Exp(1). The

26

Bayesian Machine Learning

xnm

z
(1)
nm

z
(2)
nm

ynm

✓(1)
m

✓(2)
m

✓(3)
m

✓̂
(1)

m

✓̂
(2)

m

✓̂
(3)

m

µ(1)

µ(2)

µ(3)

s
(1)

s
(2)

s
(3)

n = 1 : NM

m = 1 : M

Fig. 3.4. Graphical illustration of the structure of hierarchical Bayesian neural network
for M different tasks.

reparameterization scheme is illustrated in Figure 3.4, where we have

used triangular boxes to underline the fact that with this parameterization

scheme the model weights are indeed deterministic product of their parents.

Since we have now defined the model likelihood function and the prior

densities, the posterior is obtained via Bayes’ formula:

p(✓̂
1:L
1:M ,µ(1:L)

, s
(1:L)) | D1:M) / p(D1:M | ✓)p(✓ | ✓̂,µ, s)p(✓̂)p(s)p(µ). (3.7)

Even with this very limited amount of data we can easily perform the

posterior computation with the HMC. However, it has been stated that the

HMC may not be the best option with hierarchical models [12]. Thus, to

make the most of this illustration, we use the MSGLD for the posterior

computation. For the MSGLD, we set hyperparameters �1 = 0.99, T = 1,

a = 10 and ⌘ = 10�4. For each minibatch, we randomly select half of

the training data, |B|= 16. We sample from the posterior distribution

for 10,000 iterations and discard the first half of the draws. Since the

neural networks are unidentifiable, using any statistics for the raw pos-

terior draws of the parameters is not sensible [20]. Instead, we use the

27

Bayesian Machine Learning

posteriors draws for predictions and take the 50th percentile to measure

the location of the prediction and illustrate the uncertainty with 5th and

95th percentiles of the predictions, i.e., 90% of the predictions lay in the

range of illustrated uncertainty as shown in Figure 3.5.

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Task1

Uncertainty

Median prediction

Observations

Data generating function

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Task2

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Task3

Fig. 3.5. Hierarchical structure helps the model to learn the similar shape of the regression
problem without overfitting even when only small number of datapoints are
available.

From Figure 3.5 we can see that the hierarchical BNN gives reasonable

generalization w.r.t. the very limited number of datapoints. The model

does not overfit the noisy data and generally learns the shape of the regres-

sion tasks well. Note that Figure 3.5 illustrates only the uncertainty w.r.t.

the model parameters, and it does not reflect on the observation noise,

which we assumed to be normally distributed with standard deviation of

0.1. For any practical scenario the observation noise should be learned

and reflected in the posterior predictions. In the hierarchical modelling

paradigm the learnable noise could be coming from common prior for all

datasets, but if we are unsure if the assumption is correct, we could easily

learn the observation noise for each task as an independent parameter.

This would make sense if we would have measurements generated by simi-

lar measure instruments from different manufacturers, or with different

physical conditions.

For this example, we used three limited datasets with equal number

of datapoints. However, the hierarchical modelling can be used with

great imbalance of datapoints per task without any modifications to the

modelling or inference processes. In practical setting imbalances between

datasets are present often, making the hierarchical modelling a great tool

for learning strong prior knowledge about some data generating process,

which can then easily be utilised in similar task with only small number of

28

Bayesian Machine Learning

available data.

29

4. Deep Generative Modeling

The objective in generative modelling is to model the data distribution, p(x)

for x 2 X . Furthermore, for our use case, the model must be able to produce

new, high fidelity samples x ⇠ p(x) relatively fast. Autoregressive models,

normalizing flows, diffusion models and energy based models do take

relatively large amount of time to produce new samples, and are therefore

not considered. Both variational autoencoders (VAEs) and generative

adversarial networks (GANs) can produce samples rapidly, however VAEs

often produce inferior quality samples in terms of fidelity. Furthermore,

GANs have been used succesfully in the channel modeling literature and

thus we limit the scope of this thesis to the usage of GANs.

4.1 Divergence metrics for training a generative model

As our goal is to generate samples from data distribution P, we need

to define some measures for divergences between two distributions. For

our case, we need a measure between the true data distribution P and

the generated data distribution Q, both defined in the same space. Two

commonly used ways of comparing two distributions are their ratio,
P

Q
,

and their difference P �Q [1]. Ideally, we would have a divergence metric

D : Rd
⇥ Rd

! R+ that is computationally efficient and can be evaluated

only through the samples from the respective distributions, for reasons

that will become clear when we define our generative modelling procedure.

Note that we are not limiting our interest only to distances; i.e., we do not

require D to be symmetric.

4.1.1 f -divergence

f -divergence provides us a way of quantifying the similarity between two

distributions in terms of their ratio:

30

Deep Generative Modeling

Df (p||q) =

Z
q(x)f

✓
p(x)

q(x)

◆
dx,

where f : R+
! R is a convex function satisfying f(1) = 0 [1]. It follows

from Jensen’s inequality that Df (p||q) � 0. Obviously, it also holds that

Df (p||p) = 0 and thus Df is a valid divergence. The choice of f plays

an important role for the properties of the divergence. In fact, if we set

f(r) , r log r, we obtain Kullback Leibler (KL) divergence [21], which plays

a major part in variational Bayesian methods. For our purposes the KL

divergence has a downside: it requires analytical distributions in order to

be evaluated. In addition, if our objective is to learn a generative procedure

that minimizes the KL divergence between the true data distribution and

the generated one, then cases where q has zero density in the support of p

will lead to KL divergence equal to zero, giving us no gradient information

for the learning procedure. Fortunately, we will see both of these downsides

vanish when using neural approximation of the KL divergence. With

different definitions of f we can recover for example alpha divergences,

Hellinger distance and �
2 distance.

4.1.2 Integral probability metrics

As stated before, another way of measuring similarity between distribu-

tions is via their difference, P � Q, which can be computed by integral

probability metrics (IPMs), defined as follows [1]:

DF (P,Q) , sup
f2F

|Ep(x)[f(x)]� Eq(y)[f(y)]|. (4.1)

The set F is some class of smooth functions, and the function f maximizing

the difference between the expectations is called a witness function. We

can, for example, define F to be a set of functions that have bounded

Lipschitz constant, F = {k f kL 1}, where k · kL is the Lipschitz norm,

defined as follows:

k f kL= sup
x 6=x0

|f(x)� f(x0)|

kx� x0k2
.

This formulation yields an IPM (4.1) to be equivalent to Wasserstein-1

distance:

W1(P,Q) , sup
kfkL1

|Ep(x)[f(x)]� Eq(y)[f(y)]|. (4.2)

In the following sections we will see that this metric has favorable proper-

31

Deep Generative Modeling

ties for GAN training.

4.1.3 Density ratio estimation via binary classification

Consider a binary classification problem with a classifier f : Rd
! {0, 1}

s.t. x 2 Rd
⇠ P) f(x) = 1 and x 2 Rd

⇠ Q) f(x) = 0. Now P (x) = p(x |

f(x) = 1) and Q(x) = p(x | f(x) = 0). Further, we define the class priors

as ⇡1 = p(f(x) = 1) and ⇡0 = p(f(x) = 0). Via the Bayes’ rule, we obtain

the density ratio r(x) =
P (x)

Q(x)
as:

r(x) =
p(x | f(x) = 1)

p(x | f(x) = 0)
=

p(f(x) = 1 | x)

p(f(x) = 0 | x)

⇡0

⇡1
.

If we let the class prior ⇡1 = 0.5) ⇡0 = 1 � ⇡1, which is a reasonable

assumption when there does not exist a class imbalance, we can estimate

the ratio r(x) with a binary classifier f(x) and compute r = f/(1�f), which

is called the density ratio estimation trick [1]. If we optimize the classifier

f by minimizing the empirical risk, depending on the loss function used,

we can recover any f -divergence. Furthermore, there exists a connection

between the binary classification and IPMs.

4.2 Metrics for generative model evaluation

The literature on measuring performance of generative modelling revolves

around the most common use cases for generative modelling, i.e., image

and text generation. For images, a commonly used metric is the Fréchet

Inception Distance (FID) [22], computation of which is based on high-

dimensional features extracted from the generated images using some

pretrained image classification neural network. However, for the channel

modelling there does not exist any commonly used classifier to extract

high-dimensional features from generated channel instances. Thus, to

compare the generated channel instances, we resort to manual labour

in inspecting the quality of the generated channel instances, and first-

and second order statistics on checking the distributional coverage of the

generative model.

4.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are implicit generative models,

i.e., they lack an explicit likelihood function [1]. In contrast to prescribed

32

Deep Generative Modeling

generative models, which provide an explicit parametric likelihood func-

tion p(x | ✓) for observed random variable x, implicit generative models

define stochastic procedure to directly generate data. In mathematical

terms, implicit generative models define a deterministic parametric map-

ping from latent space to the data space G✓ : Rm
! Rd. In the case of

GANs, the function G✓ is a nonlinear mapping with d > m specified by

deep neural network. Furthermore, the latent space of the generator is

usually taken to be defined by isotropic standard normal distribution. To

retain generality, we denote the samples of the latent space with z ⇠ q(z).

Since the GANs lack the likelihood term, the learning problem is called

likelihood-free inference, and its solution relies on a comparing real and

simulated data. For our mathematical treatment of GANs we will mostly

rely on the presentation given in [1].

4.3.1 Learning by comparison

In order to generate realistic data, we must learn a generative model

q✓ that minimizes the KL-divergence between the unknown true data

distribution, p?, which effectively corresponds to maximizing the likelihood

under seen true data. Since GANs are implicit models, we do not have

the likelihood term, and thus have to learn by comparing the true and

generated data. Therefore, we are looking for an objective D(p?, q✓) that

can be computationally effectively evaluated using only samples of data,

and provides guarantees about learning the true data distribution. The

problem then becomes:

argmin
q✓

D(p?, q✓) = p
?
.

Since many of the distributional distances and divergences are either com-

putationally intractable or cannot be evaluated by using samples, we will

learn a model D that will act as critic or discriminator s.t. D(p?, q✓) =

argmax
D

F(D, q✓, p
?), where F is a functional that depends on the p

? and q✓

only through samples. Similarly to the generator G✓, the discriminator

is a nonlinear mapping D� : Rd
! [0, 1], or, in some cases D� : Rd

! R,

realized by a deep neural network.

Intuitively, we can view GANs as two neural networks where the generator

tries to fool the discriminator thinking that the generated data is coming

33

Deep Generative Modeling

G✓(z)z

D�(x)
x

o

Fig. 4.1. Structure of the GAN. The generator G✓ aims map samples from its latent space to
data similar to the true data generating distribution, whereas the discriminator
D� tries to distinguish between the samples produced by the generator and
samples coming from the true data generating distribution.

from the true data distribution, and the discriminator tries to learn to

classify data presented to it as real or fake. The general structure of

GAN is illustrated in Figure 4.1. Next, we will establish more analytical

view on how the data are actually compared using the divergence metrics

presented in Section 4.1.

4.3.2 Learning via density ratio estimation

As we stated earlier, we can convert the density ratio estimation into a

binary classification problem. In the case of classifier realized by a neural

network D, using the density estimation trick presented in Subsection

4.1.3, the density ratio estimation becomes:

p
?(x)

q✓(x)
=

D�(x)

1�D�(x)
.

We learn the discriminator D� parameters � by minimizing some loss

function. If we use for example Bernoulli log-loss, the objective function

becomes:

V�(q✓, p
?) =

1

2
Ep?(x) logD�(x) +

1

2
Eq✓(x) log(1�D�(x)). (4.3)

From the definition of density ratio estimation using binary classification,

we obtain the optimal classifier as:

p
?(x)

q✓(x)
=

D
?(x)

1�D?(x)
, D

?(x) =
p
?(x)

p?(x) + q✓(x)
.

If we plug the optimal classifier into (4.3), the objective boils down to

34

Deep Generative Modeling

minimization of Jensen-Shannon divergence (JSD):

V
?(q✓, p

?) =
1

2
Ep?(x) log

p
?(x)

p?(x) + q✓(x)
+

1

2
Eq✓(x) log(1�

p
?(x)

p?(x) + q✓(x)
)

=
1

2
DKL

✓
p
?

����

����
p
? + q✓

2

◆
+

1

2
DKL

✓
q✓

����

����
p
? + q✓

2

◆
� log 2

= JSD(p?, q✓)� log 2

(4.4)

Recall that our goal is to learn a generator G✓ that minimizes the density

ratio between true and generated data distributions when we do not have

access to the optimal classifier, but we are learning a neural approximation

D� of it. All of this combined results in a min-max optimization problem:

min
✓

max
�

1

2
Ep?(x)[logD�(x)] +

1

2
Eq(z)[log(1�D�(G✓(z)))]. (4.5)

The resulting objective (4.5) is equivalent to the definition given by Good-

fellow et al. in [23]. Note that the resulting objective is obtained when we

use Bernoulli loss for the discriminative model that tries to approximate

the density ratio between the true and generated data distribution. If we

use for example Brier loss we are minimizing Pearson �
2 divergence, which

leads to Least Squares GAN (LS-GAN) [1]. Via different loss functions for

the discriminator, we may obtain a wide variety of different GAN objec-

tives, under the assumption of optimal classifier, which is rarely accurate

in practical scenarios since it would require that the discriminator capacity

is infinite.

4.3.3 Learning via integral probability metrics

Instead of comparing the ratio of distributions, we may also compare their

difference. The general class of IPMs, introduced in subsection 4.1.2 are

given as:

IF (p
?(x), q✓(x)) = sup

f2F
|Ep?(x)f(x)� Eq✓(x)f(x)|.

If we let F to be set of 1-Lipschitz functions, the obtained IPM corresponds

to the Wasserstein distance:

W1(p
?(x), q✓(x)) = sup

f :kfkLip1

Ep?(x)f(x)� Eq✓(x)f(x).

Since the supremum over the set of 1-Lipschitz functions is usually in-

tractable, we again have to approximate the divergence with a neural

network, D�:

35

Deep Generative Modeling

W1(p?(x), q✓(x)) = sup
f :kfkLip1

Ep?(x)f(x)� Eq✓(x)f(x)

� max
�:kD�kLip1

Ep?(x)D�(x)� Eq✓(x)D�(x).
(4.6)

Note that equation (4.6) assumes that the weights � of the discriminator

are such that the Lipschitz constraint is satisfied, i.e., we have to make

sure to regularize D� to be 1-Lipschitz. Now to train the generative model,

we must learn a generator G✓ that minimizes the learned divergence:

min
✓

W1(p?(x), q✓(x)) � min
✓

max
�:kD�kLip1

Ep?(x)D�(x)� Eq✓(x)D�(x)

= min
✓

max
�:kD�kLip1

Ep?(x)D�(x)� Eq(z)D�(G✓(z)).

(4.7)

This formulation recovers the widely used Wasserstein GAN (WGAN) [24].

The authors of [24] did not touch upon any specialized techniques for enforc-

ing the 1-Lipschitz constraint; instead they only forced the discriminator

networks parameters to lie in a compact space by clipping the weights

– which they stated to be a terrible practice, but good enough to provide

reasonable performance.

In [25] it was further stated that clipping the weights in order to enforce

the 1-Lipschitz constraint can indeed lead to undesirable performance:

low quality samples produced by the generator or even complete failure to

converge. They provided a new way of enforcing the Lipschitz constraint

by introducing a gradient penalty (GP) term, which they stated helped

to avoid the problems in the GAN training. The GP term is added to the

original WGAN objective and weighted by hyperparameter � :

min
✓

max
�:kD�kLip1

Eq(z)D�(G✓(z))� Ep?(x)D�(x) + �Ep̂(x̂)[(krx̂D�(x̂)k2�1)
2],

(4.8)

where the samples x̂ are generated by a distribution that is a random linear

combination of the true data distribution and the distribution implicitly

prescribed by the generative model:

p̂ = ↵p
? + (1� ↵)q✓

↵ ⇠ U(0, 1).

In a practical scenario, x̂ is a randomly weighted linear combination of x

36

Deep Generative Modeling

and G✓(z).

4.3.4 Theoretical problems with f -divergences

As we have already seen, f -divergences are problematic for training gen-

erative models when the distribution induced by the generative model

has zero density under the support of the true data distribution, i.e., KL

divergence between the distributions equals to infinity or log 2 for the JSD,

providing no useful gradient for training the generative model. However,

we are not using analytical form of any of the f -divergences but only a neu-

ral approximation. This will remedy the problem since the approximation

will usually be smoother than the analytical form of f -divergence.

4.4 Training GANs

We have now shown how GANs arise from likelihood-free inference with

neural discriminator trained to estimate divergence between real and

generated distributions. We have formulated the minimization problem,

but not touched upon how to train the networks in order to find a solution

for the optimization problem at hand. First of all, we have formulated

the GANs with zero-sum objective, however, that needs not to be the case.

More generally, we may write the objectives for the discriminator and

generator, respectively, as:

max
�

LD(�,✓); max
✓

LG(�,✓). (4.9)

The majority of typical GAN objectives can now be written as

LD(�,✓) = Ep?(x)g(D�(x)) + Eq(z)h(D�(G✓(z)))

LG(�, ✓) = Eq(z)l(D�(G✓(z))),
(4.10)

with g, h, l : R ! R. With certain choices of g, h and l we can recover a

wide variety of different GAN formulations [1].

4.4.1 Gradient based learning

In order to learn both discriminator and generator, which are deep neu-

ral networks, the usual convention is to calculate the gradients of the

loss functions and backpropagate the loss through the networks. For the

discriminator we have:

37

Deep Generative Modeling

r�LD(�,✓) = r�[Ep?(x)g(D�(x)) + Eq✓(x)h(D�(x)))]

= Ep?(x)r�g(D�(x)) + Eq✓(x)r�h(D�(x)))

⇡
1

M

MX

m=1

[r�g(D�(xm)) +r�h(D�(G✓(zm))],

(4.11)

wherer�g(D�(x)) andr�h(D�(x))) can be computed via backpropagation

and the expectation itself is approximated via Monte Carlo integration. As

for the generator, the gradient of the loss is obtained as:

r✓LG(�,✓) = r✓Eq✓(x)l(D�(x))

= Eq(z)r✓l(D�(G✓(z)))

⇡
1

M

MX

m=1

r✓l(D�(G✓(zm))).

(4.12)

Here we again used the reparameterization trick introduced in subsection

4.1.3. Specifically, since q✓(x | z) is deterministically induced by our gen-

erative model, we can draw samples from it by first sampling from q(z)

and then transforming them via our generative model. This allows us to

change the order of integration, since q✓(x) depends on the differentiation

parameter ✓, and q(z) does not.

We have defined a general framework for updating both discriminator and

generator, however, we have not discussed on how the training should

precisely be done. Recall that the theoretical viewpoint of learning the

true generating distribution relies on optimal discriminator. However,

fully solving the optimization problem min
�

LD(�,✓) is not computationally

feasible. The general way of approximating this in practice is to perform

first K updates for the discriminator and then update the generator once.

4.5 Instabilities in GAN training

GANs are notoriously difficult to train due to their adversarial nature;

most notably they suffer from both mode collapse and mode hopping [1].

Mode collapse refers to a behavior when the generator stops producing data

from one of the modes of the data distribution, or even worse, starts only

producing variants of handful of training examples. Mode hopping exhibits

38

Deep Generative Modeling

similar kind of behaviour; at some point of training the generator produces

data from one of the modes of the data distribution and later moves to

another mode. Note that these behaviours have been a problem since

the invention of GANs and there exists now a plethora of work focusing

on overcoming these problems, which include different loss functions,

such as the usage of Wasserstein-1 distance, network level regularization,

i.e., using dropout layers, different optimization algorithms and other

modifications, which we shall discuss more in detail later.

4.5.1 Better gradient information

Before diving deeper in the refinements for GANs proposed in the litera-

ture, we first take a look to a simple improvement proposed in the original

GAN paper. Usage of Bernoulli log-loss leads to the JSD, as discussed, and

can be interpreted so that the generator tries to minimize the probability

that the discriminator labels the sample that it produces as fake. Albeit

theoretically sound objective, it may not provide good gradient informa-

tion for the generator to learn. Instead, Goodfellow et al. [23] propose

to use nonsaturating loss, in which the generator aims to maximize the

probability for the discriminator to label the sample it produces as real:

min
✓

Eq✓(x) � log(D�(x)). (4.13)

Figure 4.2 illustrates the difference between the original and nonsaturat-

ing objectives: the original objective offers no gradient information when

the generator is performing poorly, whereas the nonsaturating loss will

help the generator to actually learn in such cases.

Wasserstein GAN

Even though the nonsaturating loss offers favorable properties for training

GANs, in practice it still suffers from unstable training [26]. The already

discussed Wasserstein GAN (WGAN) is shown to be generally much more

stable to train, which is mainly due to the better gradient properties of the

loss function. However, even though the original authors of WGAN [24]

stated that none of their experiments encountered the mode collapse prob-

lem, further investigation done in [25] showed that WGAN implemented

via the discriminator weights clipping can perform poorly when the depth

of the networks are increased. This is due to the fact that the weight clip-

ping in practice will cause the weights to tend towards either maximum

of their clipping range, wasting the representative power of the network.

39

Deep Generative Modeling

0.0 0.2 0.4 0.6 0.8 1.0
D�(G✓(z))

�4

�2

0

2

4

G
en
er
at
or

lo
ss

log(1�D�(G✓(z)))

� log(D�(G✓(z)))

0.0 0.2 0.4 0.6 0.8 1.0
D�(G✓(z))

�100

�75

�50

�25

0

25

50

75

100

G
ra
di
en
t
of

th
e
ge
ne
ra
to
r
lo
ss

w
.r
.t
.
D

�
(G

✓
(z
)) rD�(G✓(z))) log(1�D�(G✓(z)))

rD�(G✓(z))) � log(D�(G✓(z)))

Fig. 4.2. Nonsaturating loss offers meaningful gradient information when the generator is
performing poorly.

When implemented with the gradient penalty term, the weights tend to be

distributed more evenly, even when the networks depth is increased.

4.5.2 Optimization

Since have laid the general ideas of neural network training in Subsection

2.2, we will now discuss the special considerations of optimization for

GANs. Since GANs can be unstable to train, the choice of optimization

algorithm and its hyperparameters plays even greater part on achieving

stable training. Generally, momentum-based optimization with high mo-

mentum values is the typical choice on supervised learning, but in order to

achieve stability on GAN training lower momentum values are preferred

[1]. The authors of WGAN found out that for their WGAN implementation

momentum-based optimizers, such as Adam [6] do not work very well,

and used the RMSProp [7] instead. However, when implemented with

the GP term, WGANs have shown to be stable to train with Adam [25].

Even though more complex optimization methods may have edge in GAN

40

Deep Generative Modeling

training, their scalability for bigger datasets and network sizes can be

questionable [1].

4.5.3 Conditioning GANs

Conditioning generative models has attractive properties from the practical

viewpoint. Consider for example GAN trained on images of different ani-

mal species; now the generator will yield different animal species with no

way of specifying the species. If we however add conditioning information

about the species in the training part for both generator and discriminator,

we can generate pictures of the desired animal on command. In mathemati-

cal terms, we are learning conditional distribution p
?(x | y) instead of p?(x).

This requires the access to the conditioning information, i.e., class label of

the data sample. In addition, conditioning forces the networks to use more

of their representative power since the weights are shared for different

generation tasks. For our use case, we might like to add information about

the channel samples, e.g., signal-to-noise ratio (SNR) of the channel or

type of the channel. Further, conditioning GANs may be useful for the

regularization purposes, since the parameters of the network’s have to be

shared between different generation tasks.

4.6 Bayesian GANs

Since we have shown some general strengths of Bayesian modelling and

inference, and also introduced GANs from the maximum likelihood per-

spective, developing Bayesian GANs follows naturally. At the moment, the

literature on Bayesian GANs is scarce. Yet, it has been investigated to a de-

gree with promising results. Authors of BayesGAN [17] showed that their

formulation of Bayesian GAN is stable to train without any interventions

to the GAN training and can produce diverse results with good fidelity.

They proved their approach to be efficient to produce good training data to

complement limited real-world data in semi-supervised learning scenario,

which is a huge interest for us since real-world channel measurements are

expensive and often only limited data can be obtained. ProbGAN proposed

in [16] is shown to be theoretically sufficient in learning highly multimodal

distributions and succeed in scenarios where the BayesGAN fails.

We should note that even though Bayesian treatment of GANs mitigate the

41

Deep Generative Modeling

training instabilities without much of intervention techniques discussed

already, the Bayesian framework does not prohibit the usage of those; i.e.,

we can train Bayesian GAN with the Wasserstein critic if desired. In this

section we will have a deeper look at the already existing literature of

Bayesian GANs, discuss some of the challenges arising from the Bayesian

inference process as well as extend the current Bayesian formulations for

GANs to allow for generative modelling of multiple related datasets via

Bayesian hierarchical modelling.

4.6.1 Bayesian formulation for GANs

The goal of a Bayesian GAN is to model the data generating distribution

pdata(x) via modelling the distribution over generators qgen(✓) and discrimi-

nators qdisc(�). We denote the data density induced by the generator G✓(z)

as pG(x;✓). It follows that the total data distribution induced by the model

is a mixture of distributions induced by the distribution over generators:

pmodel(x, qgen) = E✓⇠qgen [pG(x;✓)]. Thus, our goal is to find a distribution

q
?
gen s.t. pmodel(x, q

?
gen) = pdata(x).

In order to perform Bayesian inference for the model, we first must state

our prior beliefs about the distributions over the discriminator and gen-

erator. In one of the first contributions for the Bayesian GANs weakly

informative Gaussian priors were assigned on both the discriminator and

the generator [17]. A follow-up work assigned an evolving prior on the

generator, while using improper uniform prior on the discriminator, in

order to achieve theoretical guarantees for the generator to converge to

arbitrary data generating distribution [16]. Since our aim is to learn a gen-

erative model using multiple target distributions, we are restricted to use

some fixed parametric prior distributions in order to allow the hierarchical

structure of the model.

To formulate the posterior distribution, we must set the likelihood function

over the models parameters. Here we follow the formulation presented in

[16] and use the exponentiated GAN objective function as the likelihood

function, i.e., the discriminators and generators likelihoods are obtained

via taking an exponential w.r.t. (4.10). Note that since we are now working

with distributions over both discriminators and generators, we must revise

the GAN objectives given in (4.10) slightly. Essentially for the discrimina-

42

Deep Generative Modeling

tors objective we set

LD(�, pmodel), (4.14)

emphasizing the fact that the loss is evaluated over the distribution of

generators. For the generators, we set

LG(D,✓), (4.15)

where D(·) = E�⇠qdisc [D(·;�)], i.e., the discriminating score function is an

average over the distribution of discriminators. In practice, the distribu-

tions over both the discriminators and the generators are achieved via

running multiple chains of both models, which is a typical way of dealing

with multimodal posteriors given in [10].

As for the posterior computation, SG-HMC algorithm was used in [17],

but the authors noted that in order to have reasonable success with the

convergence, Adam optimizer should be used for the first few thousand of

iterations before switching to the SG-HMC. This strengthens the motiva-

tion given for the usage of MSGLD as well as the ASGLD for Bayesian deep

learning; it might be desirable to rely only on the sampling based inference

in order to justify the claims of covering broad, multimodal distribution

via Bayesian methods. However, most of the claims will be fulfilled with

the usage of multiple generators covering different modes of the posterior

distribution, as it is nontrivial to use the posterior draws of one chain in

generative modelling.

4.6.2 Problems with the posterior inference

As we already mentioned, it is nontrivial to use posterior draws from

individual chains for the data generation with deep generative models.

This is due the fact that in posterior computation the general goal of any

sampler is to converge in some local mode of the posterior, thus requiring

us to use multiple chains in order to approximate the multimodal pos-

terior. One should note that these considerations do not arise similarly

with predictive modelling, as we can use the samples even from individual

chains for multiple predictions, which can then be taken as a measure of

uncertainty. However, since the uncertainty in generative modelling does

not have similarly well defined purpose as it does in predictive modelling,

it is questionable to refer the posterior computation as sampling since we

are essentially running multiple chains of inference which are then used

43

Deep Generative Modeling

to represent individual point-masses in the parameter space.

To conclude, for the most part, Bayesian GANs seems to be mathematically

well defined ensemble of generators. However, even in such case the

empirical evidence is that the Bayesian formulation of GANs leads to easier

training process, and the ensemble it produces can cover well even highly

multimodal data distributions. Furthermore, the Bayesian formulation

allows for the hierarchical modelling, which we show to be useful for

learning a generative model from multiple target data distributions.

4.6.3 Bayesian GANs with hierarchical priors

As our goal is to learn a generative model from multiple M � 2 distribu-

tions, a feasible approach is to extend the current Bayesian GAN formula-

tions to the realm of hierarchical modelling. To our best knowledge there

exists no literature on hierarchical GANs at the time of writing, and thus,

our contribution is to establish a simple generalization of Bayesian GAN

with learnable prior distribution. To keep the formulation simple we will

only rely on one generator and discriminator, i.e., the model represents only

one mode of the posterior distribution. This helps to save computational

time and it is a well motivated choice when the source data distribution is

relatively simple. Specifically, as we will see, even with unimodal approx-

imation of the posterior our model is successful in capturing the shared

effects between the datasets while producing individual samples with good

quality and diversity. Furthermore, the generalization to multiple genera-

tors and discriminators is relatively straightforward, even though there are

some foundational choices on how to use the multiple models in the infer-

ence process. Ultimately, the number of generators and discriminators is a

training hyperparameter that must be tuned accordingly to the application.

The choice of hierarchical modelling limits us from using the kind of evolv-

ing prior used in ProbGAN [16] as it prohibits the use of hyperpriors.

Furthermore, usage of improper uniform priors is as well ruled out. Thus,

an easy and well motivated choice is to place a Gaussian priors on the

model parameters and some weakly informative hyperpriors on its hy-

perparameters, in the same manner as we saw earlier in the example

with hierarchical BNN for multi-task regression modelling, illustrated in

Subsection 3.5.4. For the likelihood of the hierarchical GAN, we follow the

same convention as the ProbGAN [16] and use the exponential of some

44

Deep Generative Modeling

�

✓1

Task1

✓2

Task2

· · ·

· · ·

✓K

TaskKTasks

Models’ parameters

Hyperparameters

Fig. 4.3. Illustration of the hierarchical structure behind the generator. The structure of
the discriminator is identical.

GAN loss function as the likelihood for the generator and discriminator.

4.6.4 Hierarchical GANs

As explained, we place Gaussian priors for the generators and discrimina-

tors layer parameters ✓l and �k, respectively:

✓(l)
⇠ N (µ(l)

G ,�
2(l)
G I)

�(k)
⇠ N (µ(k)

D ,�
2(k)
D I).

For the prior hyperparameters we may set any kind of weakly informative

hyperpriors. However, as the priors have a regularizing effect on the net-

works, it is advisable to play around with different values and asses which

parameter configuration yields the best results. Our empirical observation

points that somewhat broad hyperprior distributions can yield to success-

ful training and good quality samples produced by the generator.

For the models’ likelihood we use (4.14) and (4.15). Note that since there

are multiple tasks, each of the tasks needs an individual likelihood. Fortu-

nately, the extension to multiple models is trivial if we assume the tasks

to be independent a priori. Now we may write likelihood for each of the

ith generators as `i(✓i | �G) and similarly for discriminators as `i(�i | �D),

where �i, i 2 {D,G} denotes the model hyperparameters. We denote the

parameters of the hyperpriors with ↵,�, and let ⇥ = (✓1, . . . ,✓K) and

� = (�1, . . . ,�K). The posteriors for K generators and discriminators in

the hierarchical setting may now be written as:

p(⇥,�G|�,↵G,�G) / p(↵G,�G)p(�G|↵G,�G)
QK

i=1 `i(✓i|�G)

p(�,�D|⇥,↵D,�D) / p(↵D,�D)p(�D|↵D,�D)
QK

i=1 `i(�i|�D),
(4.16)

respectively. Note that we used the notion of K generators and discrimina-

45

Deep Generative Modeling

tors to describe a generative model for K tasks. For each of the task, it is

possible to use multiple generators (and discriminators) in order to cover

the multimodality of the posterior distribution, as discussed in the general

case of Bayesian GANs. We note that for our use case with relatively

simple data generating distribution per task, even a simple generator can

yield good results.

The posterior computation may now be done via any of the discussed pos-

terior inference methods. We note that even a simple MAP estimate can

yield great results, and may be a well motivated choice given the unclear

motivation behind the full posterior computation discussed earlier. In our

experiments, we observed that even with the special case of one dataset

the hierarchical structure leads to a learning objective which stabilizes

the GAN training well even when the nonsaturating loss is used and the

generator and discriminator are trained with equal number of epochs,

i.e., there was no need to first train the discriminator for e epochs before

training the generator.

Even though the training process of the GAN may be more stable in

the Bayesian framework, it should be emphasized that the architectural

choices for both the generator and discriminator have a huge impact on

the training of the GANs and the performance of the generator. To keep

the discussion as general as possible we will not touch the architectural

choices here, as they are application specific. The hierarchical formulation

can be used with any kind of neural networks acting as generator and

discriminator. We will defer the discussion of architectural choices and

other practicalities for our application of channel modelling.

46

5. Generative modelling for the air
channel

Air as a communication channel has many challenges for reliable, high-

speed communication [27]. As transmitted signal propagates through the

air, its power decreases due to absorption of the air itself – this effect is par-

ticularly strong when utilising the millimeter frequency band, required by

many modern wireless systems. Additionally, when the signal propagates

through obstacles such as trees or walls, its power attenuates similarly, an

effect often called shadowing. Furthermore reflections and scattering from

any obstacles causes both time- and phase shifts for the signal, called the

multipath propagation. Due to these effects, the received signal arrives in

many time- and phase shifted components of varying power.

Since the availability of channel measurements is often a bottleneck in

developing a wireless communication system, there exists numerous ana-

lytical models trying to approximate the properties of the air channel. One

of the simplest of such models is the tapped delay line (TDL) channel model.

The TDL channel model may be modelled via a finite impulse response

(FIR) filter. In time domain, the filter may be written by a difference

equation:

y[n] =
NX

i=0

cix[n� i],

where ci 2 C are complex-valued weights. The N denotes the number of

taps in the TDL model. Thus, the characteristics of the TDL channel model

are parameterized through the number of taps and the complex-valued

weights. In order to have realistic model of the air channel in various

scenarios, 3GPP project [28] has standardized five TDL channel models,

three of which represents the non line-of-sight (NLOS) scenarios, and the

rest line-of-sight (LOS) scenarios.

47

Generative modelling for the air channel

For the objectives of this thesis, we find the TDL channel models suffi-

cient. However, the most accurate channel models are based on raytracing

[27]. In raytracing based channel models the environment of the wireless

communication system is modelled precisely in aims for the raytracing

algorithms faithfully reproduce the signals’ propagation through vari-

ous environments. Countrary to the analytical channel models, which

are relatively computationally inexpensive, the accuracy of raytracing

based modelling comes with high computational cost. Thus, our aim is

to utilise generative modelling to learn the channel conditions accurately

from channel measurements so that such model can produce new channel

measurements in a rapid fashion.

5.1 Recent work

As the generative channel modelling is relatively novel area of research,

there exists only a handful of literature on the subject. However, GAN

based modelling has been shown to be effective for the problem at hand.

Particularly, MIMO-GAN [29] proposed a GAN based modelling scheme

where a generative channel model was learnt for the channel impulse

response. Even though the modelling scheme was shown to be effective for

MIMO, the training data was generated in a manner where impulses were

transmitted sequentially from individual transmitter antennas, which is

infeasible in any practical scenario. Furthermore, in ChannelGAN similar

modelling scheme was proposed for modelling the air channel in the time

domain [30]. Diffusion models for this same problem have been proposed

as well [31, 32], but due to the computational cost of generating chan-

nel instances, we argue that GANs may be a better alternative. Since

GANs have negligible generation time, they can serve a better purpose in

applications where the generated channel instances are used to further

train components of the transmission chain, such as deep-learning based

receivers.

We note that there exists no standardized way of approaching the mod-

elling problem. Channel instances may be for example in time- or frequency

domain, or in both, if desired. Our aim is to approach the problem in such

a way that the format of the channel instance has little effect to the mod-

elling part. However, we limit the scope of the modelling to the simple

single-input single-output (SISO) case.

48

Generative modelling for the air channel

Channel measurements are expensive to obtain. Therefore, our aim is to

achieve as much data efficiency as possible in the generative modelling.

The problem of limited data is noted in the literature, yet there exists

few proposals on how to optimize the model performance with limited

data. In [32], the proposed solution was to train initial model with larger

dataset and fine-tune the model on a smaller dataset with decreased

learning rate. Even though this kind of approach is often used in many

applications, it lacks rigorous reasoning, and it poses the challenge on

setting the limited learning rate for the adaptation. Fine-tuning in this

manner equals to finding a starting point via the first dataset and then

optimizing with limited learning rate on another dataset, thus not utilizing

any of the dataset to their fullest extent. Furthermore, this approach leaves

us with only one channel model, not enabling the modelling of multiple

scenarios with information shared between them. Thus, our contribution

is to propose a novel way of generative modelling from multiple related

datasets via hierarchical Bayesian GAN.

5.2 Hierarchical generative modelling of the air channel

As discussed, we limit the scope of modelling to the SISO case in time-

domain. Since the channel impulse responses are complex-valued, we

have to rearrange them in some way to make learning with real-valued

neural networks possible. A simple solution is to "flatten" the complex

valued array to one real-valued array, so that the first part of the array

contains the real part of the impulse response and the second part of the

array contains the complex part of the impulse response. The function

flatten : Cn
! R2n is illustrated in Figure 5.1.

Cn
Re

Im

R2n

Fig. 5.1. Complex-valued impulse response is transformed to a real-valued vector.

49

Generative modelling for the air channel

5.2.1 Channel datasets

Since our aim is to enhance data-efficiency of channel modelling via hi-

erarchical modelling, our model must utilize multiple datasets. For a

realistic scenario we utilize MATLABs 5G toolbox to generate instances

from two TDL-A channels with different delay spreads, 300ns and 200ns,

respectively. The first dataset consist of 12,000 channel impulse responses,

whereas the second one only contains 3,000 channel impulse responses.

Both of the channels are sampled for 4.17ns with a sampling rate of

30.72GHz, identically to what was done in MIMO-GAN [29], resulting

in 128 samples per impulse response. Four randomly sampled channel

instances from the two channels are illustrated in Figure 5.2.

Fig. 5.2. Magnitudes of impulse responses in the time domain from the two different
channels. The first row represents instances from the first channel, whereas the
second row from the second one.

We note here that even 12,000 instances is a modest amount, but the

amount of data needed for modelling is highly variable on the complexity

of the channel, and for our SISO case with stationary receivers, it is likely

to be enough. It could be argued that the two generated channels are very

close to each other, however, it does not make much sense to apply hierar-

chical modelling for data generated by completely different mechanisms.

For example, the conditions here could be generated by two different cities

with different density of obstacles and distances between transmitters and

receivers.

Our goal is to achieve an accurate generative model for the second channel

dataset, which is very limited in data volume. In practical scenario this

50

Generative modelling for the air channel

kind of data augmentation could be done first by simulating the channel

conditions as close as possible and hierarchically learn model using real

channel measurements. Another possibility would be to have a modest

number of datasets all of limited size. However, as it is possible to simu-

late highly realistic channel scenarios via for example ray-tracing based

solutions, there is no reason for not to do so for more accurate generative

modelling.

5.2.2 Hierarchical Bayesian GAN for multi-task generative modelling

We have laid the mathematical foundations of hierarchical GANs, leav-

ing us with only the practical choices of the generator and discriminator

networks themselves. For both, we use simple hierarchical MLPs with

non-centered parameterization, similarly as illustrated in Figure 3.4. The

generator network consists of two hidden layers with hyperbolic tangent as

an activation function, whereas for the discriminator network, we use only

one hidden layer with LeakyReLU activation and sigmoidial output. The

input noise for the generator was sampled from 128-dimensional isotropic

standard normal distribution, which was then mapped to 256-dimensional

real space so that the first 128 values represent the real part of the im-

pulse response and the rest the imaginary part. The layers of generator

have a shape of 128 � 128 � 256 � 256. The discriminators input is the

256-dimensional impulse response, which is then mapped to real number

between 0 and 1, representing the probability for the fed impulse response

being fake or real, respectively. Layers of the discriminator are of shape

256� 128� 1. Architectures of both generator and discriminator networks

are illustrated in Figure 5.3.

For the hyperparameters of both networks we assigned nearly noninforma-

tive hyperpriors: µ(l)
⇠ N (0, 1002I), �(l)

⇠ Exp(0.5), to allow the model to

learn the hyperparameters from the data with little to no regularization.

Furthermore, for this kind of generating task, there exists no meaningful

way to assign any kind of informative priors as the models are considered

to be black boxes. The batch sizes were set to 128 for both networks, i.e., for

the discriminator, we fed 128 samples and with the generator we generated

128 samples. The training itself did not require any kind of interventions

typical for GAN training: the discriminator and generator were trained for

equal epochs and the loss function used was the nonsaturating loss. In the

training, we did not experience mode collapses typical for GAN training,

51

Generative modelling for the air channel

Generator

z

linear1: R128
! R128

tanh

linear2: R128
! R256

tanh

linear3: R256
! R256

H

Discriminator

H

linear1: R256
! R128

LeakyReLU

linear2: R128
! R

Sigmoid: R ! [0, 1]

o

Fig. 5.3. Neural architectures of the generator and discriminator networks.

although finding the right architectural choices helped the process.

The training was done in the same spirit as with BayesGAN [17] and

ProbGAN [16]. First, Adam optimizer was used to find a reasonable MAP

estimate of the posterior. However, after the MAP estimate was found,

we did not continue to the sampling process with any SG-MCMC method

because of the difficulty of utilizing the posterior samples, discussed in

subsection 4.6.2, and due to the fact that even this MAP estimate produced

excellent results in terms of sample diversity and fidelity. We however do

not rule out the usage of some SG-MCMC method in order to obtain even

better parameter configuration. However, as long as there are no sensible

way of utilising the posterior samples, every method for the inference will

only rely on a point-mass in probability space then utilised for the gener-

ation, motivating the usage of a simple MAP estimate from the practical

perspective. In order to reduce the noise from minibatching, the learning

rate was reduced linearly.

Figure 5.4 shows magnitudes of the impulse responses generated from the

second channel. We can seen that the generator produces diverse, high-

fidelity samples even if the size of the dataset was very limited. However,

52

Generative modelling for the air channel

Fig. 5.4. Magnitudes of the impulse responses generated from the second channel via
hierarchical GAN trained with the two datasets.

0 20 40 60 80 100 120

0.0

0.1

0.2

0 20 40 60 80 100 120

0.0

0.1

0.2

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0 20 40 60 80 100 120

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0 20 40 60 80 100 120

0.0

0.1

0.2

0 20 40 60 80 100 120

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

Fig. 5.5. Samples produced by the hierarchical generator trained only with the second
dataset yields much worse individual sample quality.

this kind of inspection allows only for intuitive view of the success of the

model. To gain more confidence that the utilisation of first, larger dataset

yields any boost for performance, we trained an identical hierarchical GAN,

using only the second dataset, which yielded much worse sample fidelity,

shown in Figure 5.5.

Note that we have only compared the magnitudes of the impulse responses,

but the generator and discriminator directly produced and evaluated com-

plex valued impulse responses, without direct information of the magnitude

response in time-domain. To gain even deeper understanding, we compare

the mean impulse responses between generated data and validation set

of the second channel. For validation set, we had 17,000 instances from

the second channel. From Figure 5.6, we can see that the average channel

impulse response is nearly identical to the one of the true value, which is

53

Generative modelling for the air channel

Fig. 5.6. Comparison of the mean impulse response between the validation set of the
second channel and instances generated by the hierarchical generator.

impressive since GANs do not have any explicit mechanism to measure

the average of the data distribution they are trying to learn.

5.3 Analytical evaluation of the produced channel

In order to measure the performance of the channel generation analyti-

cally, we must resort to some statistics. We may for example assume that

the channel magnitude response in time domain is normally distributed

with a diagonal covariance: |H| ⇠ N (µ,�2
I), where H 2 C128 and |H| =

[|h1|, |h2|, . . . , |h128|]T 2 R128
. Now we may estimate the parameters of the

aforementioned distribution via samples generated by our hierarchical

GAN and the validation dataset, and compare the estimates, assuming

the estimates from the validation data to be the ground truth. Note that

we use the notion of the magnitude response on purpose here, since our

MLP based GAN does not have access to the magnitude explicitly, thus

making the results more interpretable, as the magnitude couples the real-

54

Generative modelling for the air channel

0 20 40 60 80 100 120

0.000

0.001

0.002

0.003

0.004
| µGT � µGen |

0 20 40 60 80 100 120

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
| �GT � �Gen |

Fig. 5.7. Differences between the true channel and generated one in terms of first- and
second order statistics show that the generative model learns the channel produc-
ing mechanism accurately.

and imaginary parts of the generated impulse response.

We denote the ground truth mean by µGT and standard deviation by �GT.

Conversely, the mean statistic from the generated channel is denoted by

µGen and standard deviation by �Gen. The ground truth statistics are

estimated from the validation set with 17000 samples, wheres from the

generative model we sample 100000 samples. Since the both statistics are

128-dimensional points in the real space, intuition can be gained by plotting

the absolute value of the differences between the statistics, |µGT � µGen|

and |�GT � �Gen|. From Figure 5.7 we can see that the differences between

the true and generated channel are quite small.

55

Generative modelling for the air channel

In addition to visualizing the differences, we may also calculate some error

metrics between the statistics of true and generated channel. Consider for

example mean squared error (MSE), defined as:

1

d

dX

i=1

(yi � ŷi)
2
, (5.1)

where ŷ denotes the estimated value, and y the ground truth. For the

mean statistics, the MSE is 1.47 · 10�4, and for the standard deviation it is

5.23 · 10�5.

It is clear that our generative procedure produces high-quality channel

instances with good coverage of the true data generating distribution.

Even though the dataset used for the illustration is relatively simple,

clearly GANs do not have any problem modelling much more diverse

distributions. Furthermore, we have shown that the modelling of a channel

with only limited data is feasible using hierarchical generative modelling,

given that we have multiple related datasets, which is usually the case

in designing wireless communication systems for similar, but ultimately

different locations. These results are also reported in a conference paper

to be submitted to IEEE ICASSP 2025 [33].

56

6. Conclusions

In this thesis, we have investigated generative modelling of the air trans-

mission channels via GANs. Specifically, we have utilised the Bayesian

hierarchical modelling in order to extend the earlier Bayesian GAN formu-

lation to allow for multi-task generation. Our simulations show that via

hierarchical modelling, the data efficiency of GANs can be enhanced by

using multiple related, but limited datasets. Even though we have utilised

MLPs, the hierarchical formulation can be extended straightforwardly to

different neural architectures. Since the amount of data in many practical

applications is limited due the sheer expenses of collecting data, utilisation

of multiple related datasets in generative modelling can remedy plethora

of such applications. Futher, we observed that our hierarchical formulation

for GANs leads to a training process which seems to be relatively stable,

even without any traditional interventions usually required for stabilizing

the training process.

6.1 Future research directions

Although our experiments with hierarchical GANs were evident and con-

vincing, there exists a plenty of room for improvement. With more diverse

source data distributions, usage of multiple generators should be studied.

Further, the training process of the GANs should be based on computation

of the full posterior distribution, instead of simple point estimate. Fur-

thermore, to better model the air channel, different neural architectures

should be investigated. Specifically, for modelling the air channel in both

time- and frequency domains, convolutional neural networks should be

considered. It should also be emphasized that our current experiments

relied on access to all of the channel datasets in the training process. Since

this increases the requirements of storage, which may be an issue in a

57

Conclusions

practical scenario, transfer learning for Bayesian GANs should be further

investigated.

58

References

[1] K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT
Press, 2023. [Online]. Available: http://probml.github.io/book2

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0893608089900208

[3] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[4] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford university
press, 1995.

[5] B. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Computational Mathematics and Mathematical Physics,
vol. 4, no. 5, pp. 1–17, 1964. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0041555364901375

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https:
//arxiv.org/abs/1412.6980

[7] T. Tieleman, “Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, p. 26, 2012.

[8] M. Staib, S. J. Reddi, S. Kale, S. Kumar, and S. Sra, “Escaping saddle points
with adaptive gradient methods,” CoRR, vol. abs/1901.09149, 2019. [Online].
Available: http://arxiv.org/abs/1901.09149

[9] C. Bishop, Pattern Recognition and Machine Learning, ser. Information
Science and Statistics. Springer, 2006. [Online]. Available: https:
//books.google.fi/books?id=qWPwnQEACAAJ

[10] Y. Yao, A. Vehtari, and A. Gelman, “Stacking for Non-mixing
Bayesian Computations: The Curse and Blessing of Multimodal
Posteriors,” arXiv preprint arXiv:2006.12335, 2021. [Online]. Available:
https://arxiv.org/abs/2006.12335

[11] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts

59

http://probml.github.io/book2
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1901.09149
https://books.google.fi/books?id=qWPwnQEACAAJ
https://books.google.fi/books?id=qWPwnQEACAAJ
https://arxiv.org/abs/2006.12335

References

in Statistical Science. Taylor & Francis, 2013. [Online]. Available:
https://books.google.fi/books?id=ZXL6AQAAQBAJ

[12] R. M. Neal et al., “MCMC using Hamiltonian dynamics,” Handbook of Markov
Chain Monte Carlo, vol. 2, no. 11, p. 2, 2011.

[13] Y.-A. Ma, T. Chen, and E. Fox, “A Complete Recipe for Stochastic Gradient
MCMC,” Advances in neural information processing systems, vol. 28, 2015.

[14] M. Welling and Y. W. Teh, “Bayesian Learning via Stochastic Gradient
Langevin Dynamics,” in Proceedings of the 28th International Conference on
International Conference on Machine Learning, ser. ICML’11. Madison, WI,
USA: Omnipress, 2011, p. 681–688.

[15] T. Chen, E. Fox, and C. Guestrin, “Stochastic Gradient Hamiltonian Monte
Carlo,” 31st International Conference on Machine Learning, ICML 2014,
vol. 5, 02 2014.

[16] H. He, H. Wang, G.-H. Lee, and Y. Tian, “Bayesian modelling and monte carlo
inference for GAN,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=H1l7bnR5Ym

[17] Y. Saatci and A. G. Wilson, “Bayesian GAN,” in Advances in Neural Informa-
tion Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2017/file/312351bff07989769097660a56395065-Paper.pdf

[18] S. Kim, Q. Song, and F. Liang, “Stochastic Gradient Langevin Dynamics
Algorithms with Adaptive Drifts,” arXiv preprint arXiv:2009.09535, 2020.
[Online]. Available: https://arxiv.org/abs/2009.09535

[19] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, no. 1, pp. 145–151, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608098001166

[20] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT press,
2012.

[21] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “GANs Trained by a Two Time-Scale Update Rule Converge to
a Nash Equilibrium,” CoRR, vol. abs/1706.08500, 2017. [Online]. Available:
http://arxiv.org/abs/1706.08500

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances
in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran Associates,
Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[24] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint
arXive:1701.07875, 2017. [Online]. Available: https://arxiv.org/abs/1701.
07875

60

https://books.google.fi/books?id=ZXL6AQAAQBAJ
https://openreview.net/forum?id=H1l7bnR5Ym
https://proceedings.neurips.cc/paper_files/paper/2017/file/312351bff07989769097660a56395065-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/312351bff07989769097660a56395065-Paper.pdf
https://arxiv.org/abs/2009.09535
https://www.sciencedirect.com/science/article/pii/S0893608098001166
http://arxiv.org/abs/1706.08500
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875

References

[25] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANs,” CoRR, vol. abs/1704.00028, 2017.
[Online]. Available: http://arxiv.org/abs/1704.00028

[26] M. Arjovsky and L. Bottou, “Towards Principled Methods for Training
Generative Adversarial Networks,” arXiv preprint arXive:1701.04862, 2017.
[Online]. Available: https://arxiv.org/abs/1701.04862

[27] A. Goldsmith, Wireless Communications, ser. Cambridge Core. Cambridge
University Press, 2005. [Online]. Available: https://books.google.fi/books?id=
n-3ZZ9i0s-cC

[28] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd
Generation Partnership Project, Technical Specification Group Radio Access
Network, TR 38.901, Tech. Rep., 2017.

[29] T. Orekondy, A. Behboodi, and J. B. Soriaga, “MIMO-GAN: Generative MIMO
Channel Modeling,” in ICC 2022-IEEE International Conference on Commu-
nications. IEEE, 2022, pp. 5322–5328.

[30] H. Xiao, W. Tian, W. Liu, and J. Shen, “ChannelGAN: Deep Learning-Based
Channel Modeling and Generating,” IEEE Wireless Communications Letters,
vol. 11, no. 3, pp. 650–654, 2022.

[31] M. Arvinte and J. Tamir, “Score-based generative models for wireless channel
modeling and estimation,” in ICLR Workshop on Deep Generative Models for
Highly Structured Data, 2022.

[32] U. Sengupta, C. Jao, A. Bernacchia, S. Vakili, and D.-s. Shiu, “Generative
Diffusion Models for Radio Wireless Channel Modelling and Sampling,” arXiv
preprint arXiv:2308.05583, 2023.

[33] J. Kuikka, E. Ollila, and S. A. Vorobyov, “Multi-task generative modelling for
the air channel via hierarchical GANs,” ICASSP 2025-IEEE International
Conference on Acoustics, Speech and Signal Processing, 2025.

61

http://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1701.04862
https://books.google.fi/books?id=n-3ZZ9i0s-cC
https://books.google.fi/books?id=n-3ZZ9i0s-cC

	Abstract
	Tiivistelmä
	Contents
	Notations and abbreviations
	Introduction
	Deep Neural Networks
	Layers and activation functions
	Training a neural network
	Chain rule of calculus and backpropagation
	Learning as an optimization problem
	Stochastic optimization
	Regularization

	Bayesian Machine Learning
	Motivation for Bayesian approach
	Maximum a posteriori approximation
	Sampling based posterior computation
	Hamiltonian dynamics
	Integrating Hamilton's equations
	Canonical distributions
	HMC algorithm

	Stochastic variants of MCMC algorithms
	A general framework for stochastic Markov Chain Monte Carlo algorithms
	Construction of existing SG-MCMC samplers
	Adaptive SG-MCMC

	Bayesian Deep Learning
	Priors for Bayesian neural networks
	Priors in function space and architectural priors
	Hierarchical priors
	Multitask learning via Bayesian hierarchical modelling

	Deep Generative Modeling
	Divergence metrics for training a generative model
	f-divergence
	Integral probability metrics
	Density ratio estimation via binary classification

	Metrics for generative model evaluation
	Generative Adversarial Networks
	Learning by comparison
	Learning via density ratio estimation
	Learning via integral probability metrics
	Theoretical problems with f-divergences

	Training GANs
	Gradient based learning

	Instabilities in GAN training
	Better gradient information
	Optimization
	Conditioning GANs

	Bayesian GANs
	Bayesian formulation for GANs
	Problems with the posterior inference
	Bayesian GANs with hierarchical priors
	Hierarchical GANs

	Generative modelling for the air channel
	Recent work
	Hierarchical generative modelling of the air channel
	Channel datasets
	Hierarchical Bayesian GAN for multi-task generative modelling

	Analytical evaluation of the produced channel

	Conclusions
	Future research directions

	References

