Generative multi-task learning for the

air channel via hierarchical GANs

Juho Kuikka

A? Aalto University MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2024

Generative multi-task learning for
the air channel via hierarchical GANs

Juho Kuikka

Tapiola, 29.7.2024

Supervisor: Professor Esa Ollila
Advisor: Professor Sergiy Vorobyov

Aalto University

School of Science

Master’s Programme in Computer, Communication and
Information Sciences

A’, Aalto University Abstract

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Juho Kuikka

Title
Generative multi-task learning for the air channel via hierarchical GANs

School School of Science

Degree programme Master’s Programme in Computer, Communication and Information
Sciences

Major Machine Learning, Data Science and Artificial Intelligence Code SCI3044
Supervisor Professor Esa Ollila

Advisor Professor Sergiy Vorobyov
Level Master’s thesis Date 29.7.2024 Pages 61 Language English

Abstract

In wireless communication, channel model refers to an abstraction that aims to explain
how a transmitted signal is altered in the process of wireless communication. Currently,
most of the channel models are a compromise between accuracy and computational ex-
penses. In order to achieve higher accuracy with lower computational costs, deep learning
based generative modelling has been suggested for the channel modelling problem, with
promising results. However, a major drawback within the framework of deep learning
is the amount of training data required for success. Since channel measurements are
expensive to obtain, methods for enhancing the data efficiency of generative modelling
must be investigated. Specifically, as channel models for different locations share inherent
similarities, multi-task learning from different, yet related datasets could reduce required
data volume for an individual channel model.

This thesis investigates the deep generative modelling via generative adversarial net-
works (GANSs), their Bayesian generalisation, and finally proposes a novel generative
modelling scheme for multi-task generation, motivated by Bayesian hierarchical mod-
elling. Our simulations show that our proposed scheme does not only greatly enhance the
data efficiency of the channel modelling, but it also decreases instabilities usually present
in GAN training. Furthermore, as our proposed modelling scheme is of great generality, it
may be utilised in any modelling problem where multiple related, but limited datasets are
present.

Keywords GANs, Bayesian Deep Learning, stochastic gradient markov chain monte
carlo, hierarchical modelling, air channel, multi-task learning

urn https:/aaltodoc.aalto.fi

ii

A' Aalto-yliopisto Tiivistelma
| |

Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekija

Juho Kuikka

Tyén nimi

Generatiivinen monitehtévaoppiminen ilmakanavalle hierarkisilla generatiivisilla
kilpailevilla neuroverkoilla

Korkeakoulu Perustieteiden korkeakoulu

Koulutusohjelma Master’s programme in Computer, Communication and Information
Sciences

Paaaine Machine Learning, Data Science and Artificial Intelligence = Koodi SCI3044

Valvoja Professori Esa Ollila

Ohjaaja Professori Sergiy Vorobyov

Tyoén laji Diplomityo Paivays 29.7.2024 Sivuja 61 Kieli Englanti

Tiivistelma

Langattomassa tiedonsiirrossa kanavamallilla viitataan abstraktioon, jonka tarkoituk-
sena on selittdd, kuinka ldhetetty signaali muuttuu tiedonsiirron seurauksena. Talla
hetkelld suurin osa kiytetyistd kanavamalleista ovat kompromisseja laadun ja lasken-
nallisten kustannusten vililld. Paremman laadun saavuttamiseksi matalammilla lasken-
nallisilla kustannuksilla, syvidoppimiseen perustuvia generatiivisia malleja on ehdotettu
kanavamallinnusongelmaan, lupaavin tuloksin. Huomattava varjopuoli syvaoppimisen vii-
tekehyksessé on kuitenkin tarve suurelle méérille dataa. Koska kanavamittaukset ovat
kalliita, metodeja datan kayton tehokkuuden parantamiseksi taytyy tutkia. Erityisesti,
koska kanavamallit eri sijainneille jakavat luontaisia samankaltaisuuksia, monitehtava-
oppiminen (multi-task learning) erilaisista, mutta toisiinsa liittyvistd datajoukoista voisi
vahentda vaadittavaa datamééraa yksittaiselle kanavamallille.

Tama tutkielma tutkii syvadi generatiivista mallinnusta generatiivisilla kilpailevil-
la neuroverkoilla, niiden Bayesilaista yleistystéd ja lopuksi ehdottaa uutta mallinnus-
jarjestelméé monitehtdvageneroinnille (multi-task generation), jonka motivaationa on
Bayesilainen hierarkinen mallinnus. Simuloimamme tulokset osoittavat, ettd ehdotettu
mallinnusjérjestelm4 ei ainoastaan suuresti paranna datan kayton tehokkuutta kana-
vamallinnukselle, vaan lisdksi vidhentéaa koulutusprosessin epavakautta, joka on usein
lasné generatiivisten kilpailevien neuroverkkojen koulutuksessa. Liséksi, koska ehdot-
tamamme mallinnusjirjestelmé on hyvin yleisluontoinen, sitd voidaan kayttd4 missa
tahansa mallinnusongelmassa jossa esiintyy useita toisiinsa liittyvid, mutta kooltaan
rajoitettuja datajoukkoja.

Avainsanat GANSs, Bayesilainen syvaoppiminen, hierarkinen mallinnus, ilmakanava,
monitehtdvdoppiminen

urn https:/aaltodoc.aalto.fi

1ii

Preface

This Master’s thesis was funded by the Academy of Finland under the
academy project AoF-ISAC, led by professor Esa Ollila at Aalto University,
Department of Information and Communications Engineering. First, I
would like to express my deepest gratitude to professor Esa Ollila for offer-
ing me the possibility to do this thesis under the aforementioned academy
project. Furthermore, I would like to thank both professors Esa Ollila
and Sergiy Vorobyov for providing me excellent guidance throughout the
process of writing this thesis, while giving me the full freedom to explore
different ideas. Additionally, special thanks to M.Sc. Eeli Susan for the
helpful comments and for providing the excellent knowledge in the practi-

calities of wireless communications.

Tapiola, July 17, 2024

v

Contents

Abstract

Tiivistelma

Contents

0. Notations and abbreviations
1. Introduction

2. Deep Neural Networks

2.1 Layers and activation functions
2.2 Training a neural network
2.2.1 Chain rule of calculus and backpropagation . . .
2.2.2 Learning as an optimization problem
2.2.3 Stochastic optimization

224 Regularization

3. Bayesian Machine Learning

3.1 Motivation for Bayesian approach
3.2 Maximum a posteriori approximation
3.3 Sampling based posterior computation
3.3.1 Hamiltonian dynamics

3.3.2 Integrating Hamilton’s equations

3.3.3 Canonical distributions

3.34 HMC algorithm

3.4 Stochastic variants of MCMC algorithms
3.4.1 A general framework for stochastic Markov Chain
Monte Carlo algorithms

3.4.2 Construction of existing SG-MCMC samplers . .

ii

iii

viii

20

Contents

3.4.3 Adaptive SG-MCMC 21
3.5 Bayesian Deep Learning 22
3.5.1 Priors for Bayesian neural networks 22
3.5.2 Priors in function space and architectural priors 23
3.5.3 Hierarchical priors 24

3.5.4 Multitask learning via Bayesian hierarchical mod-
elling 25
Deep Generative Modeling 30
4.1 Divergence metrics for training a generative model 30
4.1.1 f-divergence 30
4.1.2 Integral probability metrics 31
4.1.3 Density ratio estimation via binary classification 32
4.2 Metrics for generative model evaluation 32
4.3 Generative Adversarial Networks 32
43.1 Learning by comparison 33
4.3.2 Learning via density ratio estimation. 34
4.3.3 Learning via integral probability metrics 35
434 Theoretical problems with f-divergences 37
44 TrainingGANS e 37
44.1 Gradient based learning 37
4.5 Instabilities in GAN training 38
45.1 Better gradient information 39
4.5.2 Optimization 40
45.3 Conditioning GANs 41
46 BayesianGANs 41
4.6.1 Bayesian formulation for GANs 42
4.6.2 Problems with the posterior inference 43
4.6.3 Bayesian GANs with hierarchical priors 44
4.6.4 Hierarchical GANs 45
Generative modelling for the air channel 47
51 Recentwork 48
5.2 Hierarchical generative modelling of the air channel . . . 49
5.2.1 Channel datasets 50

5.2.2 Hierarchical Bayesian GAN for multi-task gen-
erative modelling 51
5.3 Analytical evaluation of the produced channel 54

vi

Contents

6. Conclusions 57
6.1 Future research directions 57
References 59

vii

0. Notations and abbreviations

Notations

R
R+

exp a
z ~ p(z)
p(z | x)

N(p,0°)

Field of real numbers

Field of positive real numbers
Field of complex numbers

Scalar z

Matrix X

Unit matrix

Vector x

Transpose of z

Inverse of matrix X

Set D

Cardinality of set D

Cartesian product of sets S and P
Natural logarithm

Euler’s constant

ol

Random variable z is distributed according to p(z)
Conditional probability of z given x

Normal distribution with mean ;. and standard
deviation o

Multivariate normal distribution with mean p and
covariance matrix X

Exponential distribution with rate A

Expected value of random variable z

Expected value of random variable z given x

Expectation w.r.t. distribution p(z)

viii

Notations and abbreviations

argmax f(z) Value of z that maximises f

argmin f(z) Value of z that minimises f
z

min f Minimum of f

max f Maximum of f

supf Supremum of f

Z X X z is proportional to x

= Equal by definition

RIS nth norm

Il Lipschitz norm

% Partial derivative of f w.r.t.
V.f Gradient of f with respect to =
Re(c) Real part of ¢

Im(c) Imaginary part of ¢

1X

Abbreviations

ASGLD
BNN
DNN
FID
GAN
GP
HMC
IPM
JSD
KL-divergence
LOS
LS-GAN
MAP
MCMC
MH
MIMO
MLE
MLP
MSGD
MSGLD
MSE
NLOS
ReLU
SGD
SGLD
SG-MCMC
SISO
SNR

s.t.

TDL
VAE
WGAN

w.r.t.

Notations and abbreviations

Adam SGLD

Bayesian (deep) neural network
Deep neural network

Fréchet Inception Distance
Generative adversarial network
Gradient Penalty

Hamiltonian Monte Carlo
Integral probability metric
Jensen-Shannon divergence
Kullback Leibler divergence
Line-of-sight

Least Squares GAN

Maximum a posteriori

Markov Chain Monte Carlo
Metropolis-Hastings
Multiple-Input and Multiple-Output
Maximum likelihood estimation
Multi-layer perceptron
Momentum SGD

Momentum SGLD

Mean squared error

Non line-of-sight

Rectified linear unit

Stochastic Gradient Descent
Stochastic Gradient Langevin Dynamics
Stochastic Gradient MCMC
Single-Input and Single-Output
Signal-to-noise ratio

such that

Tapped delay line

Variational Autoencoder
Wasserstein GAN

with respect to

1. Introduction

Generative modelling of the air transmission channel for wireless commu-
nication is relatively novel area of research with no standardized approach.
Modelling via deep generative models have been shown to be successful in
both time- and frequency domains utilizing for example generative adver-
sarial networks (GANSs) or diffusion models. Since deep learning in general
is heavily dependent on massive volumes of high-quality data, the data
volume becomes the central challenge in channel modelling as the channel
measurements are generally expensive to obtain. The problem of limited
data is noted on the open literature — which is very scarce at the time of

writing — with only few primitive solutions.

Our goal is to develop a rigorous approach for generative modelling from
multiple data distributions, inspired by Bayesian hierarchical modelling
[1]. Ability to learn from multiple related, but often limited datasets lays a
foundation for better data efficiency in the generative channel modelling;
it does not only enable structured approach for utilizing many limited
datasets, for example channel measurements from different cities, but
also the usage of simulated data from similar scenario. Our proposed
solution, based on hierarchical Bayesian GANs, is shown to be effective for
utilizing data from different data distributions in such way that enhances

the modelling of any limited source distribution.

This thesis is organized as follows: In Chapter 2, we introduce the main
deep learning concepts required for our modelling purposes. Chapter 3
discusses both Bayesian inference in general level as well as develops a
mathematical view of Bayesian neural networks (BNNs) with an illus-
trative example on hierarchical modelling for multi-task prediction. In

Chapter 4 we develop a rigorous view of deep generative modelling via

Introduction

both classical, as well as Bayesian GANs. Furthermore, Chapter 4 extends
the Bayesian GAN formulation to the realm of hierarchical modelling for
multi-task generative modelling. Chapter 5 illustrates how hierarchical
GAN modelling can be used for generative modelling of the air channel
from multiple, related channel datasets. In Chapter 6 we discuss about the

results of the thesis, as well as point out possible future research directions.

Mathematical Notations

First, we introduce the mathematical notations used in this thesis. Vectors
are denoted by lowercase boldface letters or symbols, e.g., 8 and x are taken
to be vectors. Matrices are denoted by uppercase boldface letters, such as
the identity matrix I. For sets, we use uppercase calligraphic letters, e.g.,
D denotes training data for any machine learning algorithm, whence |D|
denotes the cardinality of this set. For exhaustive listing of mathematical

notations, we refer to Chapter 0.

2. Deep Neural Networks

In its modern usage, term neural network refers to a differentiable function
which can be expressed as a computational graph which nodes are some
primitive operations, such as matrix multiplication, and edges represent
numerical data [1]. The simplest form of such graph can be built as a
linear series of nodes, called layers of the network. The depth of the neural
network comes from the usage of many such layers, making the network
deep. Mathematically, this kind of simple network may be represented as

a composition of functions, for example, for a three-layer network we have:

N (x) = f3(f2(f1(x; 01); 02); 03),

where {0,}?_, are the weights of the layers. If the function f; is a linear map,
the whole network can be expressed as a simple linear mapping. For this
reason, we usually are interested in using nonlinear mappings, allowing
the composition to represent much more complex functions. Indeed, even
this kind of simple network can represent a wide variety of functions, more
formally, capable of approximating any Borel measurable function from
one finite dimensional space to another to any desired degree of accuracy
[2], given there are enough of network weights. From this result follows

that neural networks are often referred as universal approximators.

2.1 Layers and activation functions

The simplest kind of layer in neural networks is called the linear layer.

The linear layer performs an affine transformation:

fi(x;0) = Wlx +b,

where 8 = [W b]. The linear layer is often called fully connected layer,

Deep Neural Networks

Input Hidden Output
layer layer layer

N

.4> —» Output

T —»

Fig. 2.1. Simple neural network with one hidden layer.

which is illustrated in Figure 2.1. For historical reasons, neural network
consisting only of linear layers is often called a multi-layer perceptron
(MLP). There exists a plethora of different layer classes in modern deep
learning: for example convolutional layers have had a huge success in
computer vision tasks, whereas recurrent layers can be useful for working
with data with inherently sequential nature. However for the purposes of
this thesis, a simple linear layer is useful enough to meet all of our goals.
Thus we limit the discussion of different architectural choices and instead

focus more on the probabilistic modelling aspects.

In order to learn nonlinear mappings we must use some nonlinear activa-
tion functions alongside the affine transformation of the linear layer, i.e.,

let o : R? — R? be some nonlinear mapping and set
fi(x;0) = o(WTx +b).

The choice of activation function has an effect on the hypothesis space of
the neural network, but generally the universal approximation theorem
holds for a broad class of commonly used activation functions, given that
there is enough weights in the network [3]. Historically, the belief was that
the activation functions should be highly nonlinear, sigmoid and hyperbolic
tangent being common choices [3], and the empirical evidence pointed that
networks with hyperbolic tangent as an activation function were faster
to converge in comparison to those with sigmoidial activation function
[4]. An intuitive explanation why a hyperbolic tangent may outperform
the sigmoidial activation function follows from the fact that the learning
problem is close to learning a linear model when the inputs are close to

zero; that is,

Deep Neural Networks

—75 =50 25 00 25 50 75 =75 =50 =25 00 25 50 75 —75 =50 =25 00 25 5.0

Fig. 2.2. Illustration of different activation functions.

i = 62tanh (0% (tanh(67 %)) ~ 02 61 67 %,

when [|07%||2, [|02]|2, ||03]]2 < €, where € lies sufficiently close to neighbor-

hood of zero.

However, in the modern practice it is common to use piecewise linear
activation functions due to their more informative gradients and much
reduced computational costs. For example, one of the most commonly used

activation functions is the rectified linear unit (ReLU):
ReLU(z) = max(0, z).

ReLU has favorable computational properties as its gradient is equal to 1
whenever the neuron is active and zero when its inactive. Its most common
downside is the fact that it is not differentiable everywhere in its domain,
but it is rarely a problem in any practical setting [3]. Another benefit of

ReLU is its computational efficiency, compared to sigmoid

and hyperbolic tangent

tanh(z) = 20(22) — 1

activations, which are nontrivial to compute. The graphs of the aforemen-

tioned three activation functions are displayed in Figure 2.2.

2.2 Training a neural network

Even though the universal approximation theorem tells us that in theory
the neural networks can approximate a broad class of functions, given

enough weights, it does not tell us how can one obtain the set of weights

Deep Neural Networks

in order to obtain the desired function. A common paradigm for inferring
the weights of the network in order to learn arbitrary functions is called
gradient based learning, where we let the gradient of the prediction error
flow backwards through the network. This process is called the backpropa-
gation and is based on the chain rule of calculus. After the gradients have
been computed, each of the parameters may be then updated according to

some optimization rule.

2.2.1 Chain rule of calculus and backpropagation

Consider two functions f: R - Rand g: R — R s.t. z = f(z) and y = g(2).

The chain rule of calculus states that

oy _ 002

or 0z0x
Since we introduced neural networks as function compositions, it is easy
to see how the chain rule can be applied in order to obtain gradients of the
parameters with respect to (w.r.t.) some predetermined loss function. The
process which automatically calculates the desired gradients is called the
backpropagation, and its customary algorithm in automatic differentiation
typically implemented in any general deep learning framework, such as

PyTorch or Tensorflow.

2.2.2 Learning as an optimization problem

As stated before, the universal approximation theorem do not tell us how
to find a set of parameters in order to approximate the desired function.
Similarly, the backpropagation itself does not tell how to use the obtained
gradient information. Since the learning problem may be stated as an
optimization one, many optimization algorithms may be used in order to
use the gradient information to update the parameters of the model. For
illustrative example, let fxy : RY x R? — R be a nonlinear map such that
it maps the covariates or features x € R? to real valued outcome or response
y using the model parameters 8 ¢ RP. Furthermorelet £L: R x R —+ R
be some loss or objective function which compares the models prediction
to the true value of the outcome. If we have a dataset D = {(x;, ;) }Y; of
observations, |D| = N, the learning or optimization task is to find such

parameters 6 that minimize the loss function:

Deep Neural Networks

2|~

argmin
0

N
> Ly, fyn(xi.0)). @.1)
=1

In statistical learning theory this approach is called the empirical risk
minimization, where risk is used to denote loss or objective function. The
term empirical follows from the fact that we do not know the true data
generating distribution analytically, but only possibly noisy instances gen-
erated by the true distribution. This approach however can be prone to
overfitting, i.e., the predictor with enough capacity could memorize all of
the training samples, producing a perfect zero risk, while having a poor
generalization performance. As neural networks are in theory universal
approximators, the risk of overfitting can be significant, and must be re-

duced by some regularization techniques.

If we were to use the model negative log-likelihood as the loss function
s.t. L(y, fnn(x,0)) = —10g Pmodel (¥, [N (x;60)) the optimization problem
(2.1) would equal to maximizing the expectation of the models likelihood in
the log-space over the empirical distribution pg,, induced by the training

dataset:

argmax Ex y~paasa 108 Pmodel (> ¥)], (2.2)

where) £ fyn(x,0). This approach is also called the maximum likelihood

estimation (MLE).

Since the amount of training data required for training most deep learning
models is large, it is often unfeasible to use the whole dataset — historically
called the batch — in the optimization procedure. A common way of dealing
with this problem is to use minibatches of data B C D s.t. |B| < |D|. Even
though historically it was usual to call algorithms that used the whole
training dataset for the gradient evaluation as batch algorithms, in the
modern approach where datasets are large by default we are often using
terms batch and minibatch interchangeably. Minibatching introduces some
noise to the gradients w.r.t. the loss, which we may assume to be normally
distributed due to the central limit theorem, given the cardinality of the
minibatch is of magnitude of hundreds. However, as the nonlinearities
of the neural network will make the loss landscape highly nonconvex,
the noise introduced by minibatching the dataset has been empirically

shown to help the optimizer in escaping from shallow local minimas that

Deep Neural Networks

might not yield a good generalization. The nonconvexity of the learning
problem also comes with the expense that we will not have any guarantees
to converge to global optimum, which however can prevent overfitting in

many cases.

2.2.3 Stochastic optimization

Since our goal is to find a set of parameters 8* that minimize some loss
function, we may clear the notation a bit and write the objective as function

of the models parameters:

J(0) = EX,yNi)data [1og Pmodel (7> ¥)],

where we again denote j £ fyn(x,0). Note that we are considering the

maximum likelihood estimation here for the ease of exposure.

Since we are relying on gradient information in the optimization proce-
dure, we are interested in the gradient of J w.r.t. the models parameters
Vg J(0). Since we are relying on minibatches of data to alleviate the cost of
evaluating the gradient w.r.t. the whole dataset, the estimate is inherently
noisy. However, the empirical and analytical results have shown that this
is hardly an issue. Since the standard error of the mean is given by L,
where o is the true standard deviation of the samples, and M =|B]|, é\ge
observe that the accuracy of the estimate does not scale linearly w.r.t. the

number of datapoints used, whereas the gradient evaluation does [3].

Second consideration follows from the fact that there are usually redundan-
cies in the dataset, i.e., many of the samples have an identical contribution
to the gradient estimate thus wasting computational resources. Keeping
these considerations in mind together with the fact that the noise from
minibatching the data can actually help the optimizer to escape from shal-
low local minimas, the usage of stochastic optimization algorithms is the
de-facto practice in modern deep learning. It should also be stated that for
our purposes optimization methods based on the first-order gradient infor-
mation are sufficient; if one is to use higher-order methods, the accuracy of
the gradient estimate becomes a larger concern. For further references on
accuracy considerations for higher-order gradient methods see for example

[3].

Deep Neural Networks

Stochastic Gradient Descent
One of the simplest stochastic optimization algorithm is the stochastic gra-
dient descent (SGD). SGD updates the parameters via the noisy gradient

information produced by the expectation over minibatch B of samples

. 1 R
J(0) = Vi Zlogp(yi,yi)
1ES
where S is the set of indexes of the minibatch s.t. B = {D,};cs. Now the
unbiased estimate of gradient g is given by Vy.J (6;), which is then used to

update the model parameters as:

0111 =0+ 119,

where 7; is the learning rate at timestep ¢. The selection of learning rate
in context of deep learning is stated to be more art than science [3], but

sufficient theoretical conditions for the SGD to converge are met if

o0 oo
Zm = oo and an < 00.
t=1

t=1

The requirement for the learning rate to decay follows from the noise
introduced by minibatching the data. Even though these conditions in
theory are sufficient, the choice of 1; and the decaying schedule can play
a major part in the rate of convergence and even in the generalization
obtained [3]. A common practice in deep learning is to decay the learning

rate linearly.

Momentum SGD

Even though SGD is widely used method due to its simplicity, in highly
convex optimization problems, such as learning weights for deep neural
networks, its convergence can be slow. In order to speed up the conver-
gence, it is often useful to incorporate past gradient information to dampen
oscillations and escape shallow modes. The use of momentum in optimiza-
tion algorithms can be traced back to Polyak’s heavy ball method [5], which
introduces a velocity v for a particle moving in the optimization landscape.
The analogy is simple; when a particle with mass obtains high velocity, and
consequently high momentum, it will not stop in the face of small uphill
or oscillate much in a rough terrain. The momentum is introduced to the
plain SGD by accumulating exponentially decaying moving average of the

past gradients in the update. In the momentum SGD (MSGD) we usually

Deep Neural Networks

assume unit mass, so the velocity itself may be regarded the momentum of

the particle. The update rule in MSGD is given by:

Ut = avi-1 — g,

0111 =6+,
where a € [0,1) is a hyperparameter determining how quickly the contri-
bution of the past gradients is vanishing. The ratio of « to determines
the magnitude of effect the past gradients have on the update direction.
Similarly to the learning rate, « may also be decayed over time, however,

it is of less importance compared to the shrinkage of the learning rate [3].

Adaptive optimization methods

Learning rate is one of the hardest hyperparameters to select, as it has a
significant impact on the models generalization ability [3]. Furthermore,
the objective function is often highly sensitive in some directions in the
parameter, while being relatively insensitive in others. Thus, a natural
approach would be to set independent learning rates for each parameter

and adapt these automatically throughout the learning process.

For the aforementioned reasons, optimization methods that adaptively
change the learning rate for each hyperparameter individually are widely
of great interest in deep learning. Methods such as Adam [6] and RMSProp
[7] are widely used, but for a long time they were not well understood. It
appears however, that when studied as preconditioned SGD, that the adap-
tive methods indeed outperform SGD in escaping the saddle points of the
optimization landscape and can converge faster to second-order stationary
points [8]. For us it suffices to know that the both Adam and RMSProp
have a great empirical robustness and performance, but furthermore can
be analytically studied as preconditioned SGD, where the preconditioner

is estimated in an online manner.

2.2.4 Regularization

Since neural networks are universal approximators, they can be prone
to overfitting. As mentioned in Subsection 2.2.2, to remedy the issue of
overfitting, usage of some regularization technique is usually advisable.
There exists a plethora of regularization techniques in the modern deep
learning practice, however, many of these have no clear statistical motiva-

tions. A simple regularization technique arising from classical statistics is

10

Deep Neural Networks

to penalise the model for having large weights. A common penalty term,

which is added to the loss function to minimize, is given as:

A

R(6;)) = 5¢9T¢9, (2.3)

where 6 are the model parameters, and) is a hyperparameter controlling
the importance of the regularization term. This choice of regularizer is
called a weight decay in the machine learning literature [9]. Plugging
the regularizing term in the optimization problem given in Equation (2.2)

gives us:

argmax Ex y~paaia (108 Pmodel (75 ¥)) — R(O;\) |- 2.9

Note that here we are optimizing w.r.t. the model parameters, 0, i.e., the
hyperparameter)\ is selected prior to the model training process. The
selection of both the regularization term and its hyperparameters requires
expertise as well as experimenting. In machine learning, a common prac-
tice is to use an additional validation set of the data in order to select the

regularization method.

11

3. Bayesian Machine Learning

In the frequentist statistics we are interested in finding a set of parameters
that maximizes some quality metric of a model, for example, a likelihood:
6 = argmax p(D |). In the context of Bayesian statistics our goal is to
find a pgsterior distribution of the parameters given the data, p(6 | D),

which can be computed using Bayes’ theorem:

p(@)p(D | 0)
p(D)

Here p(0) is called a prior distribution of the parameters, in which we can

p(0|D) =

state our beliefs about how the parameters should be distributed. The prior
term also provides a natural regularisation term for the model at hand.
Term p(D) = / p(D | 0)p(0)d0 is called the marginal likelihood or evidence,
and is used as normalization constant in order to obtain a proper proba-
bility distribution. Since the computation of the evidence is intractable
for more complex models, such as neural networks, we must rely on some

approximate method for approximating the posterior distribution.

Bayesian computation literature has suggested several successful strate-
gies for approximating complex posterior distributions, however, there
exists no off-the-shelf methods for approximating highly multimodal pos-
teriors [10]. Major ideas for approximating the posterior either rely on
approximate inference, e.g., fit a normal distribution that minimises some
distributional divergence between the true posterior and the approxima-
tion, or sampling. Sampling based algorithms rely usually on constructing
a Markov chain that in the limit converges to the true posterior distribu-
tion, from which posterior samples are then collected. Markov chain based
sampling algorithms are called Markov chain Monte Carlo (MCMC), and
are considered to be the gold standard of Bayesian computation since they

do not require any assumptions on the form of the posterior distribution.

12

Bayesian Machine Learning

3.1 Motivation for Bayesian approach

One of the major motivations for being Bayesian comes from the estimation
of uncertainty. For example, consider a regression model f : R? x R™ — R
s.t. f maps the observed covariates x € R? to prediction § € R using
parameters @ € R™. In the case of maximum likelihood estimate, 6 =
argmax logp(D | 0), we obtain a prediction § = f(x; 9) with no measure of
unchtainty. When we have the posterior distribution for the parameters
p(@ | D), we can obtain posterior predictive distribution for new datapoint

1 as follows:

p(§ | %,D) = / p(i | %.8)p(6 | D)db, 3.1)

where p(7 | x,0) is the model likelihood for the new observation. The so
obtained distribution (3.1) gives us a meaningful way of estimating the

uncertainty of predictions.

In generative modeling, however, we are not necessarily interested in
the uncertainty estimation. Yet working with a posterior distribution
instead of a point estimate can be useful if the posterior is multimodal,
which usually is the case when working with Bayesian neural networks.
Other way to frame this phenomenon is to note that with highly flexible
models and complex data there usually exists multiple models that have
an equal training performance but yield different generalisations, called

underspecification [1].

p(x|0)

Fig. 3.1. Maximum likelihood estimation misses a second explanation for the data.

Consider a toy example illustrated in Figure 3.1: optimal maximum like-

lihood estimate will recover a model that explains the data through the

13

Bayesian Machine Learning

set of parameters 0 that maximizes the likelihood, while missing an al-
ternative explanation for the data. If we have the access to the whole
distribution of 8, we can recover every possible model explaining the data.
This is of high importance in generative modeling. Indeed, if we want
to have a model that can produce samples with good variety, we must be
able to produce samples that come from the mode missed by the maximum
likelihood estimate. Note the important distinction between multimodal
data distribution and multimodal parameter distribution: the maximum
likelihood estimation does not prohibit the modelling of multimodal data
distributions — Bayesian modelling only may make it easier to model those
distributions via the introduction of posterior distribution over the model

parameters.

Another strength of the Bayesian approach comes from the idea of hierar-
chical modelling [11]. This kind of modelling scheme allows us to model
multiple related datasets in a way that captures the individual properties
of each dataset while modelling the similarities shared by the datasets.
In the following sections we will see that this kind of modelling scheme
allows us to have a mathematically sound approach for multitask learning

and Bayesian transfer learning.

3.2 Maximum a posteriori approximation

Simplest way to approximate a posterior distribution is to estimate the

posterior as a point-mass 0 in the probability space, i.e.,
6 = argmax p(0 | D) = argmax [log p(6) + log p(D | 6)]. (3.2)
0 0

This estimate is often called the maximum a posteriori (MAP) estimate.
Note how the MAP estimate consists of log-likelihood function and the
prior density. If we were to assign an isotropic Gaussian prior to the model
parameters, 8 ~ N (0, \I), the prior density to maximize in Equation (3.2)
becomes log p(0) —%BTG = R(0; \). Note that with this particular prior
choice the MAP estimate equals to the regularized MLE problem given
in Equation (2.4), i.e., there exists a clear connection between the MAP
and regularized MLE. Even though the MAP estimate does not give us
any measure of uncertainty, it can be useful starting point for Bayesian

modelling, and furthermore it sheds a light on how the prior selection can

14

Bayesian Machine Learning

be seen as regularization technique.

3.3 Sampling based posterior computation

As mentioned in the beginning of Chapter 3, MCMC based algorithms are
considered to be the "gold standard" of Bayesian computation. MCMC
methods rely on constructing a Markov process with stationary distribution
equal to the desired posterior distribution, p(6 | D), and running the
simulation long enough for the draws from the chain to be close to this
stationary distribution [11]. A simple algorithm for constructing such
Markov process is called the Metropolis algorithm [11], see Algorithm 1.
In Metropolis algorithm, the idea is to adapt a random walk with an
acceptance/rejection rule such that the walk converges to the desired
distribution. The algorithm starts with an initial state 8° for which p(8° |
D) > 0. Then for t = 1,2,... new draws are acquired by proposing a new
state * from a proposal distribution, .J;(8* | 8'~!), which is required to be
symmetric, i.e., J(0, | 0,) = J(0; | 8,). The proposal is then accepted with

a probability min(1,), where

In layman terms, if the proposal increases posterior density, it is always
accepted, but only sometimes accepted in cases when the posterior density
would decrease. For a proof why this process converges to the specified
distribution, see for example [11]. A generalisation of Metropolis algorithm
where the jumping distribution is not required to be symmetric is called the
Metropolis-Hastings (MH) algorithm, which usually increases the speed of
the random walk in a sense that it requires fewer iterations for the process

to converge to the stationary distribution.

In order for the MH to allow for asymmetric proposal distribution the ratio

r is replaced by ratio of ratios:

65616

p(0)J(6" | 6)
which is called the Hastings correction. Note that in both Metropolis and
MH algorithms, we need to know the target densities only up to a normal-
ization constant, i.e., we can work with unnormalized distributions, which

is particularly useful for any posterior distribution.

15

Bayesian Machine Learning

Algorithm 1 Metropolis algorithm [1]

1: Initialize 0°
2: fort=1,2,... do
3 0« 6"!

4: Sample 8% ~ J,(60* | 9)
5: r < i}(oe))

6: A < min(1,7)

7: Sample u ~ U(0,1)

8: if u < A then

9: 0! — 0*

10: else

11: 0 — 6

12: end if

13: end for

There exists numerous ways of modifying the Metropolis or MH algorithms
to be more efficient. One can for example reparameterize the model to
allow for easier sampling, and even after that there is an infinite number
of ways to select the proposal distribution. Even then, the algorithm
suffers from its inherent local random-walk nature, zig-zagging in the
target distribution, which causes the samples to be serially correlated
and the algorithm to take a long time to converge, especially in high-
dimensional target distributions usually present in a deep learning setting.
Hamiltonian Monte Carlo (HMC) [12] borrows its idea from physics in order
to allow for more distant steps in the target distribution by introducing a

moment variable v; for every component 6; in the target space.

3.3.1 Hamiltonian dynamics

As the name suggests, HMC is based on Hamiltonian dynamics [12]. Hamil-
tonian dynamics for a physical system can be understood simply by think-
ing of a frictionless body sliding on a two dimensional surface with varying
height. The state of this system consists of position of the body, x € R?
and its momentum, v € R?, which is the mass of the body times its velocity.
Now the potential energy of the body is given by £(x) and its kinetic energy
by K(v) = ||v||3/2m, where m denotes the mass of the body. The set of
possible values of (x, v) is called the phase space, and we define a Hamilto-
nian function for each point of the phase space to be the total energy of the
system:
H(x,v) 2 E(x) + K(v).

Intuitively, if the body is on a level surface, its momentum will be constant

16

Bayesian Machine Learning

and its potential energy invariant. If the body is sliding towards upwards
slope, its momentum will decrease while its potential energy will increase,
leaving the Hamiltonian constant. In statistical scenario, the position of
the system is the variable of interest, denoted by the model parameters
6, while the momentum will serve as an auxiliary variable. Furthermore,
in statistical setting the potential energy £(0) is often defined as the
(unnormalized) negative log posterior density of 8, from which we wish to
sample, and the kinetic energy £(v) = %’UTE_I’U, where 3 is some positive
definite matrix, known as the mass matrix. Often the mass matrix is set

to be a scalar multiple of an identity matrix [12].

3.3.2 Integrating Hamilton’s equations

Since our goal is to obtain a computer program to produce samples from
a specified target distribution, the continuous time system must be dis-
cretized in order to update the position and momentum variables. A simple
yet accurate way of doing this is via the Leapfrog integrator, in which the
momentum first receives a "half" update, followed by a full position update

and finally a second half update for the momentum:

_ n 0E(6:)
Vip1/2 = Vi — 2796
0K (v
01 =0+ 77(6:1/2)
o0& (0
Ui+l = Vgp1/2 — 727(8;4&)

3.3.3 Canonical distributions

In order to sample from a desired target distribution we can relate it to
the potential energy function via the concept of a canonical distribution
originating from statistical mechanics [12]. If we have an energy function
for some state of some physical system, the canonical distribution over the

states has a density function

1

p(x) = exp(—~E(x)/T),

where F(x) is the energy for state x, 7" is the temperature of the system
and Z is a normalization constant in order to obtain a proper density

function. Since the Hamiltonian is a joint energy function w.r.t. position

17

Bayesian Machine Learning

and momentum, we obtain a joint distribution:

p(68,v) = exp(~£(6)/T) exp(~K(v)/T).

Note that 8 and v are independent with their own canonical distributions.
In the MCMC framework the position variables 8 are the variables of
interest and the momentum is introduced only to obtain proper Hamilto-
nian dynamics. The posterior distribution is now expressed as a canonical

distribution with 7' = 1 using the potential energy function as follows:

£(0) =— logp(x|) —p(H),

xeD
where the first term is the likelihood function and the second one is prior

density.

3.3.4 HMC algorithm

We use Metropolis algorithm as a backbone in order for the Hamiltonian
dynamics to define an MCMC sampler, i.e., the Hamiltonian dynamics are
turned to a proposition for the next state of the Markov chain. In the first
step of the HMC algorithm new momenta is sampled independently of
the position from their Gaussian distribution: v ~ A(0, X). In the second
step, a Metropolis update is performed using the Hamiltonian dynamics
to propose a new state (6*,v*), from which only the position variable
is stored since the momenta will be resampled for each iteration of the
algorithm. The Hamiltonian dynamics is simulated for L Leapfrog steps
with a stepsize of 1 as explained above. The parameters L and n need to be
tuned in order to have a good performance. As in the Metropolis framework,
the proposal is then accepted with probability min(1,exp(—H(6*,v*) +
H(0,v)). In the case of rejection, the new state is set to the previous state
just as in the Metropolis algorithm. The outline of the HMC algorithm is
given in Algorithm2.

3.4 Stochastic variants of MCMC algorithms

Since the HMC requires a gradient computation w.r.t. the whole dataset,
it can be computationally inefficient with large datasets, which are usually
present in modern deep learning problems, making the usage of standard

HMC questionable. Even a simple MH algorithm requires the MH correc-

18

Bayesian Machine Learning

Algorithm 2 HMC [1]

1: Initialize 6°
2: fort=1,2,... do

3: Sample momentum v'~! ~ N (0,)

4 (85,vp) < (01 v

5: CHPR aVE(67) > Half step for the momentum
6: fori=1:L—-1do

7: 0 < 0], + 772_1”1*71/2

8: Vi 1/s < Vs — NVEO])

9: end for
10: 107+ 772711)2_1/2
11: v} "’2—1/2 — 3VE(6T) > Half step for the momentum
12: (0%, v*) « (07,v])

13: r < exp(—H(0*, v*) + H(O viT1))
14: A < min(1,r)

15: Sample u ~ U(0,1)

16: if u < A then

17: 0! — 0*
18: else

19: [L L
20: end if

21: end for

tion to be computed using the whole dataset, which scales linearly w.r.t.
the datasets size, just as the gradient computation in the HMC. In order to
alleviate this problem, we must look at stochastic variants of the MCMC
algorithms, i.e., algorithms that can produce posterior draws only via usage

of a subset of the training data.

3.4.1 A general framework for stochastic Markov Chain Monte Carlo
algorithms

A general framework for constructing any stochastic gradient MCMC (SG-
MCMC) algorithms was given in [13], where the authors give a complete
recipe for constructing any continuous Markov process with desired invari-
ant distribution. In order to achieve this, the authors define a stochastic
system parameterized by a positive semi-definite diffusion matrix D(z)
and a skew-symmetric curl matrix Q(z), where z = (0,r) s.t. 8 ¢ R? are
the model parameters and r is a vector of auxiliary variables. For example,
in the case of HMC, z = (0, v). The dynamics are then written using the
target distribution and the two matrices, and by varying the choice of D(z)
and Q(z) the space of MCMC methods maintaining the correct invariant
distribution is explored. The general form of SG-MCMC update is then
given by:

19

Bayesian Machine Learning

6! =0'""! — 1 [D(2) + Q(2)|V,H(z) + I'(2z) + /21T, 3.3)

where n ~ N (0,D(z)), H(z) is the energy function of the system, V,H (z)

is an unbiased estimate of V,H (z), n; is the learning rate at step ¢ and

Ii(z) = Z?Zl %(DU(Z) +Qi;(z)). Here T is the temperature of the system
J

similarly as in the case with canonical distribution.

3.4.2 Construction of existing SG-MCMC samplers

One of the first innovations in the SG-MCMC methodology was the stochas-
tic gradient Langevin Dynamics (SGLD) [14], which combines Robbins-
Monro type algorithms with Langevin dynamics such that the trajectory of
parameter updates will converge to the full posterior distribution. As this
methods builds on the first-order Langevin dynamics, it does not include
the momentum term of the HMC, which we have seen to be useful in order
to make the sampler efficient. In order to combine the efficient sampling of
the HMC with stochastic updates, stochastic gradient Hamiltonian Monte
Carlo (SG-HMC) was proposed [15]. SG-HMC is based on the second-order
Langevin dynamics, where a friction term is added to the HMC momentum
update in order to retain the desired target distribution invariant. These
methods, as well as their variants, can be recovered in the framework

given by [13].
To give an illustrative example, in the SGLD, parameters are updated as

0; =0, 1 —n:VeE(0;_1) + /2mn, (3.4)

where n ~ N(0,I) and £(0) denotes the potential energy of the system,
defined identically as in the HMC algorithm, s.t. V¢&(0) is an unbiased
estimate of the gradient of the potential energy. By setting z = 6 s.t.
H(#) =&£(0), D(6:) =1 and Q(#) = 0 in (3.3) an identical update rule is
recovered. Note that the SGLD update rule does not include the tempera-
ture parameter so we may just set T'= 1. In fact, the temperature plays an

important role when sampling from posteriors of deep neural networks [1].

By similar derivation, any SG-MCMC samplers may be either recovered
or discovered. The importance of the general framework is that we do
not have to give sampler specific proofs; as the framework itself is proven

to be complete, any sampler arising from it will converge to an invariant

20

Bayesian Machine Learning

distribution equal to the desired posterior distribution [13].

3.4.3 Adaptive SG-MCMC

A well known fact is that the optimization landscape of a deep neural
network exhibits often pathological curvature and saddle points, making
the usage of first-order optimization methods inefficient. The same ar-
gument can be made for the posterior distributions of a DNN, rendering
the simplest SG-MCMC methods unusable. This is likely the case for the
GANSs as well: even though ProbGAN [16] and BayesGAN [17] stated to
use SG-HMC for posterior sampling, they point out that in order to achieve
success, the network is first trained with Adam optimizer in order to obtain

reasonable MAP estimate as a starting point for the stochastic sampler.

In order for the sampler to escape saddle points and speed up convergence
in difficult posterior distributions, [18] proposes the usage of past gradients.
Namely, the authors of [18] propose two adaptive SGLD methods: the
momentum SGLD (MSGLD) and the Adam SGLD (ASGLD). A general
update rule of an adaptive SGLD algorithm is given by

0 = 01 — 1,(VeE(O) + aay) + /21T, (3.5)

where n ~ N (0,1), a; is the adaptive bias term and « is the bias factor.

The MSGLD borrows its idea from the momentum algorithm [19], which
guides the direction of new updates by incorporating a fraction of past
update directions — the so-called momentum term — to the current gradient.
As the momentum term accumulates over iterations, updates to same
direction gets increased while updates to the opposite directions gets
decreased, reducing the oscillation and accelerating the convergence. In
the same spirit MSGLD introduces the momentum term to the SGLD
which is calculated as an exponentially decaying average of past stochastic
gradients and added as a bias term to the drift of SGLD. The update rule
for the MSGLD is obtained by setting a; = m; in the (3.5). The bias term
m; is updated by

m; = fimy_1 + (1 — B1)VeE(0:-1),

where (3] is a smoothing factor. The outline of MSGLD is given in Algorithm
3.

21

Bayesian Machine Learning

Algorithm 3 MSGLDI[18]

Input: Data D, minibatch size B, smoothing factor 5; € (0, 1), bias factor
a, temperature T and learning rate 7
Initialize 6°, my < 0
fort=1,2,... do
Draw a minibatch of data B C D, |B| = B
Sample n ~ N(0, 277I)
0" — 671 — 1, (VeE(0) + ami—1) +n
my = Bimy—1 + (1 — 51)VeE(0i-1)
end for

As the name suggests, ASGLD derives its idea from the Adam optimization
algorithm. The key difference here is that the ASGLD is designed to con-
verge in a distribution rather than a single value. To keep the discussion
short, it is worthwhile to note that the authors of [18] experienced the
simpler MSGLD to perform on par with the ASGLD, outperforming it in
some simulations. Thus we argue that if more complex algorithm does not
have a clear performance advantage despite being more computationally

expensive, it may be useful to proceed with the simpler one.

3.5 Bayesian Deep Learning

As we have already seen, difference between maximum likelihood and
Bayesian approaches can be characterised by the inference process and the
explicit introduction of the prior distribution. Thus, Bayesian approach to
deep learning follows naturally by setting prior distributions to the models
parameters inferring the posterior distribution over the parameters via
some Bayesian inference method. Here, we consider only the SG-MCMC
methods for the posterior computation. In this section, we cover mostly the
modelling ideas behind Bayesian neural networks (BNNs), as the posterior
computation can be done via any suitable SG-MCMC method presented

earlier.

3.5.1 Priors for Bayesian neural networks

The general idea behind the prior distribution is to state our prior beliefs
about how the model parameters should be distributed. However, for
neural networks, this approach does not have an intuitive basis. A common
approach of prior selection in the context of BNNs is to use Gaussian priors.
For a BNN with L — 1 layers we set a Gaussian prior for the weights and

biases independently for each layer as follows:

22

Bayesian Machine Learning

W, ~ N(0,a7T), b ~ N(0,671), I =1,...,L. (3.6)

The selection of « and 5 may be done for example via prior predictive
checking, but some standard choices are Xavier /Glorot initialization or
LeCun initialization, defined respectively as

) 2 1

o?=——" anda®=—,
Nin + Nout Min

where n;, denotes the number of weights coming into neuron at level /, and

neut the number of weights flowing out of the neuron [3].

Even though the factored Gaussian is the most common choice for prior in
the context of BNNSs, it is not the only suitable choice. As we have seen,
prior distributions can be seen as Bayesian counterpart of the regular-
ization in maximum likelihood paradigm, and therefore, it is natural to
consider such prior distributions that promote sparsity in the model. A
common choice for such prior is the Laplace distribution [1]. Another way
of dealing with the difficulty of selecting the prior is to learn the prior
from the data, which can be useful mechanism for both Bayesian transfer

learning and multitask learning.

3.5.2 Priors in function space and architectural priors

In the context of neural networks, prior distributions set on the model
parameters are difficult to be understood in the parameter space. To gain
better intuition, it is often helpful to study the priors in the function space.
For example, if we would have a multilayer perceptron (MLP) for a regres-
sion problem with a structure 1 — n — 1 and we were to set Gaussian prior
with zero mean and standard deviation 5; independently for each [layer
we can study the effects of choosing different sets of {BZ}ZL: 1» L =2, with
some fixed n. Draws from the prior for different selection of 51 x (2 can be
seen in Figure 3.2. In the example, the width of the network was set as

n = 20 and hyperbolic tangent was used as the activation function.

It is clear that the higher variance in the prior of the weights lets the
functions have more wiggly shape due to the increased sensitivity to the
change of the input value. Note that the prior draws from the network
are in a sense smooth functions, which follows directly from the activation

function used. It should be stated that the choice of prior does not set the

23

Bayesian Machine Learning

~10

~1.0 05 0.0 0.5 10 -10 05 0.0 0.5 10
z z

Fig. 3.2. Effects of prior distribution on the functions produced by an MLP.

hypothesis space of the neural network strictly. It merely favors hypotheses
closer to those produced by the prior, as the posterior distribution is always
a compromise between the data and the prior, converging to the MLE when
the number of datapoints goes to infinity. Thus, the choice of prior is of

more importance in applications with limited amounts of data.

In addition to the choice of prior distribution laid on the weights of the
model parameters, the choice of activation functions and structure of the
neural network has similar effect on the hypotheses the model favours.
These architectural considerations are sometimes called architectural pri-
ors [1]. It has been established in the field of computer vision that even
with random weights a neural network can be a powerful feature extractor,

given a proper architecture of the network.

3.5.3 Hierarchical priors

If we wish not to state any strong prior beliefs about the distribution of the
models weights, we can set a functional form of the prior distribution, set
hyperpriors for the prior distribution parameters and infer the posterior
distribution for the hyperparameters from the data. Consider for example
a prior 8 ~ N(a, 5%I). In order to learn the hyperparameters o € R” and
B € R from the data, we may set weakly informative hyperpriors for those

parameters and infer their posterior distribution. We may for example set

24

Bayesian Machine Learning

ap ~ N(0,10%), 3 ~ Exp(0.5),

and infer the posterior distribution of the hyperparameters. Even though
at glance counterintuitive approach, as we should state prior beliefs be-
fore seeing the data, it becomes evidently useful when we can learn the
prior distribution from different, but similar datasets. This approach is
sometimes called a Bayesian transfer learning [1]. Another perspective for
hierarchical modelling arises from the approach of sharing information
between multiple models with common hyperparameters: via hierarchical
structure the hyperparameters may be inferred from multiple related, but
usually limited datasets, allowing to learn a stronger prior which then
guides the learning process of the individual models. This may be seen as

a Bayesian approach for multitask learning.

3.5.4 Multitask learning via Bayesian hierarchical modelling

In multitask learning the goal is to learn a model from multiple datasets
so that the model learns the similarities between different data distribu-
tions while allowing the model to excel in the individual tasks. This is
usually realized by sharing some of the model parameters while leaving
some other parameters to be task-specific [1]. Our approach to realize
such model is through hierarchical Bayesian modelling. For an illus-
trative example, consider a simple regression problem with M = 3 re-
lated datasets {D;}},, each having relatively small number of datapoints,
|Dil= N; = 32, i € {1,...,M}. The data (z;,y;) are generated as y = f(z)
where f(z) = 23, and x; are covariates between —1 and 1. To obtain three
related datasets, the generated observations are consequently rotated by
15 and 30 degrees, so that the first dataset contains the original obser-
vations, second contains original observations rotated by 15 degrees and
third one contains the original observations rotated by 30 degrees. Finally,
observation noise ¢ ~ N(0,0.1%) is injected to each of the three datasets.

The generated data are illustrated in Figure 3.3.

Our goal is to learn a function that performs regression task well on all
three datasets. Since the data is limited in volume, training a neural
network individually for each of the datasets will be prone to overfitting.

Pooling the data could help to increase the training data volume, but yield

25

Bayesian Machine Learning

Data from three different datasets

1.00
e D '
0.75 D>
O Dj .
0.50 : —
0.25 — — |
0.00 N 1
~0.25 : ‘ :
050 i
—0.75 .
~1.00
~1.00 —-0.75 —0.50 -0.25 000 025 050 075 1.00

Fig. 3.3. The datasets share a similar shape but are coming from different distributions.

a model that is not suited for any of the regression tasks. Instead, we are
applying the idea of Bayesian hierarchical model to learn the similarities
shared between the datasets while having individual parameters for each

of the tasks.

The model of choice for this multitask learning problem will be hierar-
chical Bayesian neural network, which we denote as fyy(z,8;), where
i denotes for which task we are mapping the covariates z. We assume
that the underlying target variable y; = fyn(x,0;) + ¢, where € ~ N(0,02),
i.e., yi ~ N(fyn(z,0;),0%). For the sake of simplicity, we assume that we
know the variance of the underlying noise process, c = 0.1. Since we are
using a simple neural network as the model, for notational convenience
we divide the parameters for each layer separately, so that Ogl) denotes the
parameters of the models’ [-th layer. For each of the model layer weights,
we place a Gaussian prior: 01(»1) ~ N (¥, 52D 1), and for the priors hyperpa-

rameters, we place weakly informative priors: u) ~ N (0,), s) ~ Exp(1).

Note that it becomes hard for the sampler to sample from N (z, %) when
the standard deviation o becomes small. This problem is known as the
Neals funnel. For this reason, we use the non-centered parameterization

for the model weights 8 = p + 0s s.t. 8 ~ N(0,I) and s ~ Exp(1). The

26

Bayesian Machine Learning

@)
et
@)
G
@)
@

OO

’I’LIIINJW
m=1:M

(. J

Fig. 3.4. Graphical illustration of the structure of hierarchical Bayesian neural network
for M different tasks.

reparameterization scheme is illustrated in Figure 3.4, where we have
used triangular boxes to underline the fact that with this parameterization
scheme the model weights are indeed deterministic product of their parents.
Since we have now defined the model likelihood function and the prior

densities, the posterior is obtained via Bayes’ formula:

~1:L . . ~ A
p(elsMaﬂ’(l'L)wS(l.L)) ‘ Dl:M) OCp(Dle ‘ e)p(e ‘ 07”78)p(0)p(3)p(u) (37)

Even with this very limited amount of data we can easily perform the
posterior computation with the HMC. However, it has been stated that the
HMC may not be the best option with hierarchical models [12]. Thus, to
make the most of this illustration, we use the MSGLD for the posterior
computation. For the MSGLD, we set hyperparameters 5, = 0.99, T' = 1,
a = 10 and n = 10~*. For each minibatch, we randomly select half of
the training data, |B|= 16. We sample from the posterior distribution
for 10,000 iterations and discard the first half of the draws. Since the
neural networks are unidentifiable, using any statistics for the raw pos-

terior draws of the parameters is not sensible [20]. Instead, we use the

27

Bayesian Machine Learning

posteriors draws for predictions and take the 50th percentile to measure
the location of the prediction and illustrate the uncertainty with 5th and
95th percentiles of the predictions, i.e., 90% of the predictions lay in the

range of illustrated uncertainty as shown in Figure 3.5.

0.0

Fig. 3.5. Hierarchical structure helps the model to learn the similar shape of the regression
problem without overfitting even when only small number of datapoints are
available.

From Figure 3.5 we can see that the hierarchical BNN gives reasonable
generalization w.r.t. the very limited number of datapoints. The model
does not overfit the noisy data and generally learns the shape of the regres-
sion tasks well. Note that Figure 3.5 illustrates only the uncertainty w.r.t.
the model parameters, and it does not reflect on the observation noise,
which we assumed to be normally distributed with standard deviation of
0.1. For any practical scenario the observation noise should be learned
and reflected in the posterior predictions. In the hierarchical modelling
paradigm the learnable noise could be coming from common prior for all
datasets, but if we are unsure if the assumption is correct, we could easily
learn the observation noise for each task as an independent parameter.
This would make sense if we would have measurements generated by simi-
lar measure instruments from different manufacturers, or with different

physical conditions.

For this example, we used three limited datasets with equal number
of datapoints. However, the hierarchical modelling can be used with
great imbalance of datapoints per task without any modifications to the
modelling or inference processes. In practical setting imbalances between
datasets are present often, making the hierarchical modelling a great tool
for learning strong prior knowledge about some data generating process,

which can then easily be utilised in similar task with only small number of

28

Bayesian Machine Learning

available data.

29

4. Deep Generative Modeling

The objective in generative modelling is to model the data distribution, p(x)
for x € X. Furthermore, for our use case, the model must be able to produce
new, high fidelity samples x ~ p(x) relatively fast. Autoregressive models,
normalizing flows, diffusion models and energy based models do take
relatively large amount of time to produce new samples, and are therefore
not considered. Both variational autoencoders (VAEs) and generative
adversarial networks (GANSs) can produce samples rapidly, however VAEs
often produce inferior quality samples in terms of fidelity. Furthermore,
GANSs have been used succesfully in the channel modeling literature and

thus we limit the scope of this thesis to the usage of GANSs.

4.1 Divergence metrics for training a generative model

As our goal is to generate samples from data distribution P, we need
to define some measures for divergences between two distributions. For
our case, we need a measure between the true data distribution P and
the generated data distribution 9, both defined in the same space. Two
commonly used ways of comparing two distributions are their ratio, g,
and their difference P — Q [1]. Ideally, we would have a divergence metric
D :R? x RY — RT that is computationally efficient and can be evaluated
only through the samples from the respective distributions, for reasons
that will become clear when we define our generative modelling procedure.
Note that we are not limiting our interest only to distances; i.e., we do not

require D to be symmetric.

411 f-divergence

f-divergence provides us a way of quantifying the similarity between two

distributions in terms of their ratio:

30

Deep Generative Modeling

Dy (plla) Z/Q(x)f@g)dx,

where f : RT — R is a convex function satisfying f(1) = 0 [1]. It follows
from Jensen’s inequality that D(p||¢) > 0. Obviously, it also holds that
D¢(p|lp) = 0 and thus Dy is a valid divergence. The choice of f plays
an important role for the properties of the divergence. In fact, if we set
f(r) £ rlogr, we obtain Kullback Leibler (KL) divergence [21], which plays
a major part in variational Bayesian methods. For our purposes the KL
divergence has a downside: it requires analytical distributions in order to
be evaluated. In addition, if our objective is to learn a generative procedure
that minimizes the KL divergence between the true data distribution and
the generated one, then cases where ¢ has zero density in the support of p
will lead to KL divergence equal to zero, giving us no gradient information
for the learning procedure. Fortunately, we will see both of these downsides
vanish when using neural approximation of the KL divergence. With
different definitions of f we can recover for example alpha divergences,

Hellinger distance and x? distance.

4.1.2 Integral probability metrics

As stated before, another way of measuring similarity between distribu-
tions is via their difference, P — @, which can be computed by integral
probability metrics (IPMs), defined as follows [1]:

D7(P,Q) £ sup|E,[f(x)] = Eqy)[f(¥)]]- (4.1)
feF

The set F is some class of smooth functions, and the function f maximizing
the difference between the expectations is called a witness function. We
can, for example, define F to be a set of functions that have bounded
Lipschitz constant, 7 = {|| f ||z< 1}, where || - || is the Lipschitz norm,

defined as follows:
” f ||L: sup |f(X) - f(xl>| .

sx X = X[|2
This formulation yields an IPM (4.1) to be equivalent to Wasserstein-1

distance:

WI(P7 Q) 2 HfSHugl‘Ep(x) [f(l‘)] - IE"q(y) [f(y)” (4.2)

In the following sections we will see that this metric has favorable proper-

31

Deep Generative Modeling

ties for GAN training.

4.1.3 Density ratio estimation via binary classification

Consider a binary classification problem with a classifier f : R* — {0, 1}
st.xcRI~P= f(x)=landx € R~ Q = f(x) = 0. Now P(x) = p(x |
f(x) =1) and Q(x) = p(x | f(x) = 0). Further, we define the class priors
as m = p(f(x) = 1) and my = p(f(x) = 0). Via the Bayes’ rule, we obtain

the density ratio r(x) = g(x) as
X

_px[fx)=1) _ p(f(x)=1]x)m
p(x|f(x)=0) p(f(x)=0[x)m

If we let the class prior m; = 0.5 = my = 1 — 7, which is a reasonable

r(x)

assumption when there does not exist a class imbalance, we can estimate
the ratio r(x) with a binary classifier f(x) and compute » = f/(1— f), which
is called the density ratio estimation trick [1]. If we optimize the classifier
f by minimizing the empirical risk, depending on the loss function used,
we can recover any f-divergence. Furthermore, there exists a connection

between the binary classification and IPMs.

4.2 Metrics for generative model evaluation

The literature on measuring performance of generative modelling revolves
around the most common use cases for generative modelling, i.e., image
and text generation. For images, a commonly used metric is the Fréchet
Inception Distance (FID) [22], computation of which is based on high-
dimensional features extracted from the generated images using some
pretrained image classification neural network. However, for the channel
modelling there does not exist any commonly used classifier to extract
high-dimensional features from generated channel instances. Thus, to
compare the generated channel instances, we resort to manual labour
in inspecting the quality of the generated channel instances, and first-
and second order statistics on checking the distributional coverage of the

generative model.

4.3 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) are implicit generative models,

i.e., they lack an explicit likelihood function [1]. In contrast to prescribed

32

Deep Generative Modeling

generative models, which provide an explicit parametric likelihood func-
tion p(x | @) for observed random variable x, implicit generative models
define stochastic procedure to directly generate data. In mathematical
terms, implicit generative models define a deterministic parametric map-
ping from latent space to the data space G : R™ — R%. In the case of
GANSs, the function Gy is a nonlinear mapping with d > m specified by
deep neural network. Furthermore, the latent space of the generator is
usually taken to be defined by isotropic standard normal distribution. To
retain generality, we denote the samples of the latent space with z ~ ¢(z).
Since the GANSs lack the likelihood term, the learning problem is called
likelihood-free inference, and its solution relies on a comparing real and
simulated data. For our mathematical treatment of GANs we will mostly

rely on the presentation given in [1].

4.3.1 Learning by comparison

In order to generate realistic data, we must learn a generative model
go that minimizes the KL-divergence between the unknown true data
distribution, p*, which effectively corresponds to maximizing the likelihood
under seen true data. Since GANs are implicit models, we do not have
the likelihood term, and thus have to learn by comparing the true and
generated data. Therefore, we are looking for an objective D(p*, go) that
can be computationally effectively evaluated using only samples of data,
and provides guarantees about learning the true data distribution. The

problem then becomes:

argmin D(p”, qp) = p*.
90

Since many of the distributional distances and divergences are either com-
putationally intractable or cannot be evaluated by using samples, we will
learn a model D that will act as critic or discriminator s.t. D(p*,q9) =
argmax F(D, qg, p*), where F is a functional that depends on the p* and ¢y
onb? through samples. Similarly to the generator Gg, the discriminator
is a nonlinear mapping Dy : R? — [0,1], or, in some cases Dy : R? - R,

realized by a deep neural network.

Intuitively, we can view GANSs as two neural networks where the generator

tries to fool the discriminator thinking that the generated data is coming

33

Deep Generative Modeling

Fig. 4.1. Structure of the GAN. The generator G¢ aims map samples from its latent space to
data similar to the true data generating distribution, whereas the discriminator
Dy tries to distinguish between the samples produced by the generator and
samples coming from the true data generating distribution.

from the true data distribution, and the discriminator tries to learn to
classify data presented to it as real or fake. The general structure of
GAN is illustrated in Figure 4.1. Next, we will establish more analytical
view on how the data are actually compared using the divergence metrics

presented in Section 4.1.

4.3.2 Learning via density ratio estimation

As we stated earlier, we can convert the density ratio estimation into a
binary classification problem. In the case of classifier realized by a neural
network D, using the density estimation trick presented in Subsection

4.1.3, the density ratio estimation becomes:

pi(x) _ Dg(x)
go(x) 11— Dg(x)

We learn the discriminator D, parameters ¢ by minimizing some loss

function. If we use for example Bernoulli log-loss, the objective function

becomes:
N 1 1
V¢(q9,p) = iEp*(x) IOg D¢<X) + iqu(x) log(l — D¢(X)> (43)

From the definition of density ratio estimation using binary classification,

we obtain the optimal classifier as:

P D) p)
w6 1D * VT et e

If we plug the optimal classifier into (4.3), the objective boils down to

34

Deep Generative Modeling

minimization of Jensen-Shannon divergence (JSD):

1 * X) 1 p*(X)
V*(qg,p*) = p*(x) 1O +5E log(1 =)+ 4o (x)
(90, ") 1)98 (%) + qo(x) x{ 3P 108 p*(X)+qe(X))
DKL(v +q) QDKL< : ;qe> "o
= JSD(p*, 10g2

4.4)
Recall that our goal is to learn a generator Gy that minimizes the density
ratio between true and generated data distributions when we do not have
access to the optimal classifier, but we are learning a neural approximation

D¢ of it. All of this combined results in a min-max optimization problem:

. 1 1
min mgx §Ep*(x) [log Dy(x)] + iEq(z) log(1 — Dy(Go(z)))]. (4.5)

The resulting objective (4.5) is equivalent to the definition given by Good-
fellow et al. in [23]. Note that the resulting objective is obtained when we
use Bernoulli loss for the discriminative model that tries to approximate
the density ratio between the true and generated data distribution. If we
use for example Brier loss we are minimizing Pearson y? divergence, which
leads to Least Squares GAN (LS-GAN) [1]. Via different loss functions for
the discriminator, we may obtain a wide variety of different GAN objec-
tives, under the assumption of optimal classifier, which is rarely accurate
in practical scenarios since it would require that the discriminator capacity

is infinite.

4.3.3 Learning via integral probability metrics

Instead of comparing the ratio of distributions, we may also compare their
difference. The general class of IPMs, introduced in subsection 4.1.2 are

given as:

IF(p" (%), 40(x)) = SUP|E () f (%) — Eqgg) f(x)]-
feFr

If we let F to be set of 1-Lipschitz functions, the obtained IPM corresponds

to the Wasserstein distance:

Wi (p*(X), QG(X)) = f”?chlp Ep*(x)f(x) -]qu(x)f(x)'

Since the supremum over the set of 1-Lipschitz functions is usually in-
tractable, we again have to approximate the divergence with a neural

network, Dg:

35

Deep Generative Modeling

441 (p*(X), do (X)) = sup Ep* (x)f(x> - qu(x)f(x)
Tl fllLip<1 (4.6)
Z max Ep* (X)D¢ (X) — qu(x)D¢ (X)
¢ Dy llLip<1

Note that equation (4.6) assumes that the weights ¢ of the discriminator
are such that the Lipschitz constraint is satisfied, i.e., we have to make
sure to regularize Dy to be 1-Lipschitz. Now to train the generative model,
we must learn a generator Gy that minimizes the learned divergence:

min Wi (p*(x), qe (X)) > min max Ep* (x) D¢ (X) — qu(x) D¢(X)
o 0 #:lDgllLip<1

=min max Ep*(x)D¢(X) - Eq(Z)D¢(G9(Z)).
0]| DgllLip<1

4.7
This formulation recovers the widely used Wasserstein GAN (WGAN) [24].
The authors of [24] did not touch upon any specialized techniques for enforc-
ing the 1-Lipschitz constraint; instead they only forced the discriminator
networks parameters to lie in a compact space by clipping the weights
— which they stated to be a terrible practice, but good enough to provide

reasonable performance.

In [25] it was further stated that clipping the weights in order to enforce
the 1-Lipschitz constraint can indeed lead to undesirable performance:
low quality samples produced by the generator or even complete failure to
converge. They provided a new way of enforcing the Lipschitz constraint
by introducing a gradient penalty (GP) term, which they stated helped
to avoid the problems in the GAN training. The GP term is added to the
original WGAN objective and weighted by hyperparameter \ :

min max By Dg(Go(2)) — By (x) Do (%) + A5 [(| Ve Dy (%) [[2—1)%],
0 ¢l Dy llLip<1
(4.8)

where the samples x are generated by a distribution that is a random linear
combination of the true data distribution and the distribution implicitly

prescribed by the generative model:

p=ap*+(1—-a)g
a~U(0,1).

In a practical scenario, x is a randomly weighted linear combination of x

36

Deep Generative Modeling
and Gp(z).

4.3.4 Theoretical problems with f-divergences

As we have already seen, f-divergences are problematic for training gen-
erative models when the distribution induced by the generative model
has zero density under the support of the true data distribution, i.e., KL
divergence between the distributions equals to infinity or log 2 for the JSD,
providing no useful gradient for training the generative model. However,
we are not using analytical form of any of the f-divergences but only a neu-
ral approximation. This will remedy the problem since the approximation

will usually be smoother than the analytical form of f-divergence.

4.4 Training GANs

We have now shown how GANs arise from likelihood-free inference with
neural discriminator trained to estimate divergence between real and
generated distributions. We have formulated the minimization problem,
but not touched upon how to train the networks in order to find a solution
for the optimization problem at hand. First of all, we have formulated
the GANs with zero-sum objective, however, that needs not to be the case.
More generally, we may write the objectives for the discriminator and

generator, respectively, as:

mgx Lp(¢,0); max La(¢,0). (4.9

The majority of typical GAN objectives can now be written as

LD(¢7 0) = Ep*(x)g(D¢(X)) + Eq(z)h(D¢(G9(z)))
LG(¢79) = Eq(z)l(D¢(G€(Z)))a

with g, h, [: R — R. With certain choices of g, h and | we can recover a

(4.10)

wide variety of different GAN formulations [1].

441 Gradient based learning

In order to learn both discriminator and generator, which are deep neu-
ral networks, the usual convention is to calculate the gradients of the
loss functions and backpropagate the loss through the networks. For the

discriminator we have:

37

Deep Generative Modeling

VoLp($,0) = V[Epx)9(Dgp (X)) + Egyx)1(Dg(x)))]
= Ep*(x)vqbg(D(b(X)) +Eq9(x)v¢h(D¢(X))) (4.11)

M
~ — 3" [Vp9(Dy(xm)) + V(Do (Golzm)));

where V49(Dg(x)) and Vgh(Dg(x))) can be computed via backpropagation
and the expectation itself is approximated via Monte Carlo integration. As

for the generator, the gradient of the loss is obtained as:

VoLa(¢,0) = VoEy, x)(Dg(x))

= Eq(z)VBl(Dqﬁ(GB(Z)))
1 M
oy Z Vol(Dg(Go(zm))).

m=1

4.12)

Here we again used the reparameterization trick introduced in subsection
4.1.3. Specifically, since go(x | z) is deterministically induced by our gen-
erative model, we can draw samples from it by first sampling from ¢(z)
and then transforming them via our generative model. This allows us to
change the order of integration, since gg(x) depends on the differentiation

parameter 6, and ¢(z) does not.

We have defined a general framework for updating both discriminator and
generator, however, we have not discussed on Aow the training should
precisely be done. Recall that the theoretical viewpoint of learning the
true generating distribution relies on optimal discriminator. However,
fully solving the optimization problem m;n Lp(¢,0) is not computationally
feasible. The general way of approximating this in practice is to perform

first K updates for the discriminator and then update the generator once.

4.5 Instabilities in GAN training

GANSs are notoriously difficult to train due to their adversarial nature;
most notably they suffer from both mode collapse and mode hopping [1].
Mode collapse refers to a behavior when the generator stops producing data
from one of the modes of the data distribution, or even worse, starts only

producing variants of handful of training examples. Mode hopping exhibits

38

Deep Generative Modeling

similar kind of behaviour; at some point of training the generator produces
data from one of the modes of the data distribution and later moves to
another mode. Note that these behaviours have been a problem since
the invention of GANs and there exists now a plethora of work focusing
on overcoming these problems, which include different loss functions,
such as the usage of Wasserstein-1 distance, network level regularization,
i.e., using dropout layers, different optimization algorithms and other

modifications, which we shall discuss more in detail later.

4.5.1 Better gradient information

Before diving deeper in the refinements for GANSs proposed in the litera-
ture, we first take a look to a simple improvement proposed in the original
GAN paper. Usage of Bernoulli log-loss leads to the JSD, as discussed, and
can be interpreted so that the generator tries to minimize the probability
that the discriminator labels the sample that it produces as fake. Albeit
theoretically sound objective, it may not provide good gradient informa-
tion for the generator to learn. Instead, Goodfellow et al. [23] propose
to use nonsaturating loss, in which the generator aims to maximize the

probability for the discriminator to label the sample it produces as real:

m(%n qu(x) — lOg(D¢(X)) (413)

Figure 4.2 illustrates the difference between the original and nonsaturat-
ing objectives: the original objective offers no gradient information when
the generator is performing poorly, whereas the nonsaturating loss will

help the generator to actually learn in such cases.

Wasserstein GAN

Even though the nonsaturating loss offers favorable properties for training
GAN:s, in practice it still suffers from unstable training [26]. The already
discussed Wasserstein GAN (WGAN) is shown to be generally much more
stable to train, which is mainly due to the better gradient properties of the
loss function. However, even though the original authors of WGAN [24]
stated that none of their experiments encountered the mode collapse prob-
lem, further investigation done in [25] showed that WGAN implemented
via the discriminator weights clipping can perform poorly when the depth
of the networks are increased. This is due to the fact that the weight clip-
ping in practice will cause the weights to tend towards either maximum

of their clipping range, wasting the representative power of the network.

39

Deep Generative Modeling

) log(1 — Dy(Gy(z)))
—log(Dy(Gy(z)))

Generator loss
=}

0.0 0.2 0.4 0.6 0.8 1.0
Dy(Go(z))

—— Vn,(Go(a)) 108(1 — Dy(Gy(2)))
Vb,(Go(z))) — 108(Dy(Go(2)))

Gradient of the generator loss w.r.t. Dy(Gy(z))

0.0 0.2 0.4 0.6 0.8 1.0
Dy(Go(2))

Fig. 4.2. Nonsaturating loss offers meaningful gradient information when the generator is
performing poorly.

When implemented with the gradient penalty term, the weights tend to be

distributed more evenly, even when the networks depth is increased.

4.5.2 Optimization

Since have laid the general ideas of neural network training in Subsection
2.2, we will now discuss the special considerations of optimization for
GANSs. Since GANSs can be unstable to train, the choice of optimization
algorithm and its hyperparameters plays even greater part on achieving
stable training. Generally, momentum-based optimization with high mo-
mentum values is the typical choice on supervised learning, but in order to
achieve stability on GAN training lower momentum values are preferred
[1]. The authors of WGAN found out that for their WGAN implementation
momentum-based optimizers, such as Adam [6] do not work very well,
and used the RMSProp [7] instead. However, when implemented with
the GP term, WGANs have shown to be stable to train with Adam [25].

Even though more complex optimization methods may have edge in GAN

40

Deep Generative Modeling

training, their scalability for bigger datasets and network sizes can be

questionable [1].

4.5.3 Conditioning GANs

Conditioning generative models has attractive properties from the practical
viewpoint. Consider for example GAN trained on images of different ani-
mal species; now the generator will yield different animal species with no
way of specifying the species. If we however add conditioning information
about the species in the training part for both generator and discriminator,
we can generate pictures of the desired animal on command. In mathemati-
cal terms, we are learning conditional distribution p*(x | y) instead of p*(x).
This requires the access to the conditioning information, i.e., class label of
the data sample. In addition, conditioning forces the networks to use more
of their representative power since the weights are shared for different
generation tasks. For our use case, we might like to add information about
the channel samples, e.g., signal-to-noise ratio (SNR) of the channel or
type of the channel. Further, conditioning GANs may be useful for the
regularization purposes, since the parameters of the network’s have to be

shared between different generation tasks.

4.6 Bayesian GANs

Since we have shown some general strengths of Bayesian modelling and
inference, and also introduced GANs from the maximum likelihood per-
spective, developing Bayesian GANs follows naturally. At the moment, the
literature on Bayesian GANSs is scarce. Yet, it has been investigated to a de-
gree with promising results. Authors of BayesGAN [17] showed that their
formulation of Bayesian GAN is stable to train without any interventions
to the GAN training and can produce diverse results with good fidelity.
They proved their approach to be efficient to produce good training data to
complement limited real-world data in semi-supervised learning scenario,
which is a huge interest for us since real-world channel measurements are
expensive and often only limited data can be obtained. ProbGAN proposed
in [16] is shown to be theoretically sufficient in learning highly multimodal

distributions and succeed in scenarios where the BayesGAN fails.

We should note that even though Bayesian treatment of GANs mitigate the

41

Deep Generative Modeling

training instabilities without much of intervention techniques discussed
already, the Bayesian framework does not prohibit the usage of those; i.e.,
we can train Bayesian GAN with the Wasserstein critic if desired. In this
section we will have a deeper look at the already existing literature of
Bayesian GANSs, discuss some of the challenges arising from the Bayesian
inference process as well as extend the current Bayesian formulations for
GANSs to allow for generative modelling of multiple related datasets via

Bayesian hierarchical modelling.

4.6.1 Bayesian formulation for GANs

The goal of a Bayesian GAN is to model the data generating distribution
Pdata(X) via modelling the distribution over generators ggen(6) and discrimi-
nators qgisc(¢). We denote the data density induced by the generator Gy(z)
as pg(x; 0). It follows that the total data distribution induced by the model
is a mixture of distributions induced by the distribution over generators:

Pmodel (X; Ggen) = Eg~ggen [Pa(x; 0)]. Thus, our goal is to find a distribution

QQen 8.t. Pmodel (X, QQen> = Pdata(X)-

In order to perform Bayesian inference for the model, we first must state
our prior beliefs about the distributions over the discriminator and gen-
erator. In one of the first contributions for the Bayesian GANs weakly
informative Gaussian priors were assigned on both the discriminator and
the generator [17]. A follow-up work assigned an evolving prior on the
generator, while using improper uniform prior on the discriminator, in
order to achieve theoretical guarantees for the generator to converge to
arbitrary data generating distribution [16]. Since our aim is to learn a gen-
erative model using multiple target distributions, we are restricted to use
some fixed parametric prior distributions in order to allow the hierarchical

structure of the model.

To formulate the posterior distribution, we must set the likelihood function
over the models parameters. Here we follow the formulation presented in
[16] and use the exponentiated GAN objective function as the likelihood
function, i.e., the discriminators and generators likelihoods are obtained
via taking an exponential w.r.t. (4.10). Note that since we are now working
with distributions over both discriminators and generators, we must revise

the GAN objectives given in (4.10) slightly. Essentially for the discrimina-

42

Deep Generative Modeling

tors objective we set
Lp (@, Pmodel) (4.14)

emphasizing the fact that the loss is evaluated over the distribution of

generators. For the generators, we set
Lg(D, 0), (4.15)

where D(-) = Egq,..[D(-; ¢)], i.e., the discriminating score function is an
average over the distribution of discriminators. In practice, the distribu-
tions over both the discriminators and the generators are achieved via
running multiple chains of both models, which is a typical way of dealing

with multimodal posteriors given in [10].

As for the posterior computation, SG-HMC algorithm was used in [17],
but the authors noted that in order to have reasonable success with the
convergence, Adam optimizer should be used for the first few thousand of
iterations before switching to the SG-HMC. This strengthens the motiva-
tion given for the usage of MSGLD as well as the ASGLD for Bayesian deep
learning; it might be desirable to rely only on the sampling based inference
in order to justify the claims of covering broad, multimodal distribution
via Bayesian methods. However, most of the claims will be fulfilled with
the usage of multiple generators covering different modes of the posterior
distribution, as it is nontrivial to use the posterior draws of one chain in

generative modelling.

4.6.2 Problems with the posterior inference

As we already mentioned, it is nontrivial to use posterior draws from
individual chains for the data generation with deep generative models.
This is due the fact that in posterior computation the general goal of any
sampler is to converge in some local mode of the posterior, thus requiring
us to use multiple chains in order to approximate the multimodal pos-
terior. One should note that these considerations do not arise similarly
with predictive modelling, as we can use the samples even from individual
chains for multiple predictions, which can then be taken as a measure of
uncertainty. However, since the uncertainty in generative modelling does
not have similarly well defined purpose as it does in predictive modelling,
it is questionable to refer the posterior computation as sampling since we

are essentially running multiple chains of inference which are then used

43

Deep Generative Modeling

to represent individual point-masses in the parameter space.

To conclude, for the most part, Bayesian GANs seems to be mathematically
well defined ensemble of generators. However, even in such case the
empirical evidence is that the Bayesian formulation of GANs leads to easier
training process, and the ensemble it produces can cover well even highly
multimodal data distributions. Furthermore, the Bayesian formulation
allows for the hierarchical modelling, which we show to be useful for

learning a generative model from multiple target data distributions.

4.6.3 Bayesian GANs with hierarchical priors

As our goal is to learn a generative model from multiple M > 2 distribu-
tions, a feasible approach is to extend the current Bayesian GAN formula-
tions to the realm of hierarchical modelling. To our best knowledge there
exists no literature on hierarchical GANs at the time of writing, and thus,
our contribution is to establish a simple generalization of Bayesian GAN
with learnable prior distribution. To keep the formulation simple we will
only rely on one generator and discriminator, i.e., the model represents only
one mode of the posterior distribution. This helps to save computational
time and it is a well motivated choice when the source data distribution is
relatively simple. Specifically, as we will see, even with unimodal approx-
imation of the posterior our model is successful in capturing the shared
effects between the datasets while producing individual samples with good
quality and diversity. Furthermore, the generalization to multiple genera-
tors and discriminators is relatively straightforward, even though there are
some foundational choices on how to use the multiple models in the infer-
ence process. Ultimately, the number of generators and discriminators is a

training hyperparameter that must be tuned accordingly to the application.

The choice of hierarchical modelling limits us from using the kind of evolv-
ing prior used in ProbGAN [16] as it prohibits the use of hyperpriors.
Furthermore, usage of improper uniform priors is as well ruled out. Thus,
an easy and well motivated choice is to place a Gaussian priors on the
model parameters and some weakly informative hyperpriors on its hy-
perparameters, in the same manner as we saw earlier in the example
with hierarchical BNN for multi-task regression modelling, illustrated in
Subsection 3.5.4. For the likelihood of the hierarchical GAN, we follow the

same convention as the ProbGAN [16] and use the exponential of some

44

Deep Generative Modeling

Hyperparameters r
Models’ parameters 0, 0 e O
Tasks Task; Tasky --- Taskg

Fig. 4.3. Illustration of the hierarchical structure behind the generator. The structure of
the discriminator is identical.

GAN loss function as the likelihood for the generator and discriminator.

4.6.4 Hierarchical GANs

As explained, we place Gaussian priors for the generators and discrimina-

tors layer parameters 6; and ¢,, respectively:

o) N(Mg),gé(l)ﬂ
d’(k) ~ N(ug),a%(k)I).

For the prior hyperparameters we may set any kind of weakly informative
hyperpriors. However, as the priors have a regularizing effect on the net-
works, it is advisable to play around with different values and asses which
parameter configuration yields the best results. Our empirical observation
points that somewhat broad hyperprior distributions can yield to success-

ful training and good quality samples produced by the generator.

For the models’ likelihood we use (4.14) and (4.15). Note that since there
are multiple tasks, each of the tasks needs an individual likelihood. Fortu-
nately, the extension to multiple models is trivial if we assume the tasks
to be independent a priori. Now we may write likelihood for each of the
ith generators as ¢;(0; | I'g) and similarly for discriminators as ¢;(¢, | I'p),
where I';, i € {D, G} denotes the model hyperparameters. We denote the
parameters of the hyperpriors with «, 3, and let ® = (6,,...,0) and
® = (¢y,...,¢k). The posteriors for K generators and discriminators in

the hierarchical setting may now be written as:

p(©,Tg|®,aq,8g) o plag, Be)p(Talag, Ba) [T, 4:(6:|Tq)

(4.16)
p(®,Tp|®,ap, Bp) o plap, Bp)p(Uplap, Ap) [Ti5, 4i(¢:|Tp),

respectively. Note that we used the notion of K generators and discrimina-

45

Deep Generative Modeling

tors to describe a generative model for K tasks. For each of the task, it is
possible to use multiple generators (and discriminators) in order to cover
the multimodality of the posterior distribution, as discussed in the general
case of Bayesian GANs. We note that for our use case with relatively
simple data generating distribution per task, even a simple generator can

yield good results.

The posterior computation may now be done via any of the discussed pos-
terior inference methods. We note that even a simple MAP estimate can
yield great results, and may be a well motivated choice given the unclear
motivation behind the full posterior computation discussed earlier. In our
experiments, we observed that even with the special case of one dataset
the hierarchical structure leads to a learning objective which stabilizes
the GAN training well even when the nonsaturating loss is used and the
generator and discriminator are trained with equal number of epochs,
i.e., there was no need to first train the discriminator for ¢ epochs before

training the generator.

Even though the training process of the GAN may be more stable in
the Bayesian framework, it should be emphasized that the architectural
choices for both the generator and discriminator have a huge impact on
the training of the GANs and the performance of the generator. To keep
the discussion as general as possible we will not touch the architectural
choices here, as they are application specific. The hierarchical formulation
can be used with any kind of neural networks acting as generator and
discriminator. We will defer the discussion of architectural choices and

other practicalities for our application of channel modelling.

46

5. Generative modelling for the air
channel

Air as a communication channel has many challenges for reliable, high-
speed communication [27]. As transmitted signal propagates through the
air, its power decreases due to absorption of the air itself — this effect is par-
ticularly strong when utilising the millimeter frequency band, required by
many modern wireless systems. Additionally, when the signal propagates
through obstacles such as trees or walls, its power attenuates similarly, an
effect often called shadowing. Furthermore reflections and scattering from
any obstacles causes both time- and phase shifts for the signal, called the
multipath propagation. Due to these effects, the received signal arrives in

many time- and phase shifted components of varying power.

Since the availability of channel measurements is often a bottleneck in
developing a wireless communication system, there exists numerous ana-
lytical models trying to approximate the properties of the air channel. One
of the simplest of such models is the tapped delay line (TDL) channel model.
The TDL channel model may be modelled via a finite impulse response
(FIR) filter. In time domain, the filter may be written by a difference

equation:

where ¢; € C are complex-valued weights. The N denotes the number of
taps in the TDL model. Thus, the characteristics of the TDL channel model
are parameterized through the number of taps and the complex-valued
weights. In order to have realistic model of the air channel in various
scenarios, 3GPP project [28] has standardized five TDL channel models,
three of which represents the non line-of-sight (NLOS) scenarios, and the

rest line-of-sight (LOS) scenarios.

47

Generative modelling for the air channel

For the objectives of this thesis, we find the TDL channel models suffi-
cient. However, the most accurate channel models are based on raytracing
[27]. In raytracing based channel models the environment of the wireless
communication system is modelled precisely in aims for the raytracing
algorithms faithfully reproduce the signals’ propagation through vari-
ous environments. Countrary to the analytical channel models, which
are relatively computationally inexpensive, the accuracy of raytracing
based modelling comes with high computational cost. Thus, our aim is
to utilise generative modelling to learn the channel conditions accurately
from channel measurements so that such model can produce new channel

measurements in a rapid fashion.

5.1 Recent work

As the generative channel modelling is relatively novel area of research,
there exists only a handful of literature on the subject. However, GAN
based modelling has been shown to be effective for the problem at hand.
Particularly, MIMO-GAN [29] proposed a GAN based modelling scheme
where a generative channel model was learnt for the channel impulse
response. Even though the modelling scheme was shown to be effective for
MIMO, the training data was generated in a manner where impulses were
transmitted sequentially from individual transmitter antennas, which is
infeasible in any practical scenario. Furthermore, in Channel GAN similar
modelling scheme was proposed for modelling the air channel in the time
domain [30]. Diffusion models for this same problem have been proposed
as well [31, 32], but due to the computational cost of generating chan-
nel instances, we argue that GANs may be a better alternative. Since
GANs have negligible generation time, they can serve a better purpose in
applications where the generated channel instances are used to further
train components of the transmission chain, such as deep-learning based

receivers.

We note that there exists no standardized way of approaching the mod-
elling problem. Channel instances may be for example in time- or frequency
domain, or in both, if desired. Our aim is to approach the problem in such
a way that the format of the channel instance has little effect to the mod-
elling part. However, we limit the scope of the modelling to the simple

single-input single-output (SISO) case.

48

Generative modelling for the air channel

Channel measurements are expensive to obtain. Therefore, our aim is to
achieve as much data efficiency as possible in the generative modelling.
The problem of limited data is noted in the literature, yet there exists
few proposals on how to optimize the model performance with limited
data. In [32], the proposed solution was to train initial model with larger
dataset and fine-tune the model on a smaller dataset with decreased
learning rate. Even though this kind of approach is often used in many
applications, it lacks rigorous reasoning, and it poses the challenge on
setting the limited learning rate for the adaptation. Fine-tuning in this
manner equals to finding a starting point via the first dataset and then
optimizing with limited learning rate on another dataset, thus not utilizing
any of the dataset to their fullest extent. Furthermore, this approach leaves
us with only one channel model, not enabling the modelling of multiple
scenarios with information shared between them. Thus, our contribution
is to propose a novel way of generative modelling from multiple related

datasets via hierarchical Bayesian GAN.

5.2 Hierarchical generative modelling of the air channel

As discussed, we limit the scope of modelling to the SISO case in time-
domain. Since the channel impulse responses are complex-valued, we
have to rearrange them in some way to make learning with real-valued
neural networks possible. A simple solution is to "flatten" the complex
valued array to one real-valued array, so that the first part of the array
contains the real part of the impulse response and the second part of the
array contains the complex part of the impulse response. The function

flatten : C* — R?" is illustrated in Figure 5.1.

Re

Im

Fig. 5.1. Complex-valued impulse response is transformed to a real-valued vector.

49

Generative modelling for the air channel

5.2.1 Channel datasets

Since our aim is to enhance data-efficiency of channel modelling via hi-
erarchical modelling, our model must utilize multiple datasets. For a
realistic scenario we utilize MATLABs 5G toolbox to generate instances
from two TDL-A channels with different delay spreads, 300ns and 200ns,
respectively. The first dataset consist of 12,000 channel impulse responses,
whereas the second one only contains 3,000 channel impulse responses.
Both of the channels are sampled for 4.17ns with a sampling rate of
30.72GHz, identically to what was done in MIMO-GAN [29], resulting
in 128 samples per impulse response. Four randomly sampled channel

instances from the two channels are illustrated in Figure 5.2.

040
05 07
035
0o 06
030
05
025
03
04
020
02 015 03
010 02
01
005 01
00 000 00
0 20 4 s 8 10 120 0 20 4 6 80 100 12 0 20 4 6 80 100 120
030
030 06
025
025 05
020
020 04
015
015 03
0.0 02 0.10
005 01 005
000 00 000
0 20 4 s 8 100 120 0o 20 40 6 80 100 12 o 20 4 6 s 100 120

Fig. 5.2. Magnitudes of impulse responses in the time domain from the two different
channels. The first row represents instances from the first channel, whereas the
second row from the second one.

We note here that even 12,000 instances is a modest amount, but the
amount of data needed for modelling is highly variable on the complexity
of the channel, and for our SISO case with stationary receivers, it is likely
to be enough. It could be argued that the two generated channels are very
close to each other, however, it does not make much sense to apply hierar-
chical modelling for data generated by completely different mechanisms.
For example, the conditions here could be generated by two different cities
with different density of obstacles and distances between transmitters and

receivers.

Our goal is to achieve an accurate generative model for the second channel

dataset, which is very limited in data volume. In practical scenario this

50

Generative modelling for the air channel

kind of data augmentation could be done first by simulating the channel
conditions as close as possible and hierarchically learn model using real
channel measurements. Another possibility would be to have a modest
number of datasets all of limited size. However, as it is possible to simu-
late highly realistic channel scenarios via for example ray-tracing based
solutions, there is no reason for not to do so for more accurate generative

modelling.

5.2.2 Hierarchical Bayesian GAN for multi-task generative modelling

We have laid the mathematical foundations of hierarchical GANSs, leav-
ing us with only the practical choices of the generator and discriminator
networks themselves. For both, we use simple hierarchical MLPs with
non-centered parameterization, similarly as illustrated in Figure 3.4. The
generator network consists of two hidden layers with hyperbolic tangent as
an activation function, whereas for the discriminator network, we use only
one hidden layer with LeakyReLU activation and sigmoidial output. The
input noise for the generator was sampled from 128-dimensional isotropic
standard normal distribution, which was then mapped to 256-dimensional
real space so that the first 128 values represent the real part of the im-
pulse response and the rest the imaginary part. The layers of generator
have a shape of 128 — 128 — 256 — 256. The discriminators input is the
256-dimensional impulse response, which is then mapped to real number
between 0 and 1, representing the probability for the fed impulse response
being fake or real, respectively. Layers of the discriminator are of shape
256 — 128 — 1. Architectures of both generator and discriminator networks

are illustrated in Figure 5.3.

For the hyperparameters of both networks we assigned nearly noninforma-
tive hyperpriors: pu) ~ N(0,100%1), ¢ ~ Exp(0.5), to allow the model to
learn the hyperparameters from the data with little to no regularization.
Furthermore, for this kind of generating task, there exists no meaningful
way to assign any kind of informative priors as the models are considered
to be black boxes. The batch sizes were set to 128 for both networks, i.e., for
the discriminator, we fed 128 samples and with the generator we generated
128 samples. The training itself did not require any kind of interventions
typical for GAN training: the discriminator and generator were trained for
equal epochs and the loss function used was the nonsaturating loss. In the

training, we did not experience mode collapses typical for GAN training,

51

Generative modelling for the air channel

Generator
ﬁ) (Discriminator)
linearl: R!2% — R128
l linearl: R?%6 — R128
tanh l
l LeakyReLU
linear2: R1%® — R2%6
l linear2: R'?® — R
tanh
l Sigmoid: R — [0,1]
linear3: R?°6 — R256 l
| ®
® ‘ :

Fig. 5.3. Neural architectures of the generator and discriminator networks.

although finding the right architectural choices helped the process.

The training was done in the same spirit as with BayesGAN [17] and
ProbGAN [16]. First, Adam optimizer was used to find a reasonable MAP
estimate of the posterior. However, after the MAP estimate was found,
we did not continue to the sampling process with any SG-MCMC method
because of the difficulty of utilizing the posterior samples, discussed in
subsection 4.6.2, and due to the fact that even this MAP estimate produced
excellent results in terms of sample diversity and fidelity. We however do
not rule out the usage of some SG-MCMC method in order to obtain even
better parameter configuration. However, as long as there are no sensible
way of utilising the posterior samples, every method for the inference will
only rely on a point-mass in probability space then utilised for the gener-
ation, motivating the usage of a simple MAP estimate from the practical
perspective. In order to reduce the noise from minibatching, the learning

rate was reduced linearly.

Figure 5.4 shows magnitudes of the impulse responses generated from the
second channel. We can seen that the generator produces diverse, high-

fidelity samples even if the size of the dataset was very limited. However,

52

Generative modelling for the air channel

o 2 40 60 80 100 120 0 20 a0 0 80 100 120 0 20 a0 0 80 100 120
0 20 40 0 0 100 120 0 20 40 0 80 100 120

Fig. 5.4. Magnitudes of the impulse responses generated from the second channel via
hierarchical GAN trained with the two datasets.

0.0 0.0 0.0
0 20 10 60 80 100 120 0 20 10 60 80 100 120 0 20 10 60 80 100 120
0.20
0.15
0.10
0.05

0.00 0.0 0.0
0 20 10 60 80 100 120 0 20 10 60 80 100 120

) 100 120

020 03
015
0.10
0.05 01

0.00 0.0 0.0
0 20 10 60 80 100 120 0 20 10 60 80 100 120

) 100

Fig. 5.5. Samples produced by the hierarchical generator trained only with the second
dataset yields much worse individual sample quality.

this kind of inspection allows only for intuitive view of the success of the
model. To gain more confidence that the utilisation of first, larger dataset
yields any boost for performance, we trained an identical hierarchical GAN,
using only the second dataset, which yielded much worse sample fidelity,

shown in Figure 5.5.

Note that we have only compared the magnitudes of the impulse responses,
but the generator and discriminator directly produced and evaluated com-
plex valued impulse responses, without direct information of the magnitude
response in time-domain. To gain even deeper understanding, we compare
the mean impulse responses between generated data and validation set
of the second channel. For validation set, we had 17,000 instances from
the second channel. From Figure 5.6, we can see that the average channel

impulse response is nearly identical to the one of the true value, which is

53

Generative modelling for the air channel

—— Mean of generated real part

Ground truth mean of real part
0.2

0.1

0.0 n - —

0 20 40 60 80 100 120

—— Mean of generated imaginary part

0.15
Ground truth mean of imaginary part

0.10
0.05
0.00
-0.05
-0.10

0 20 40 60 80 100 120

Fig. 5.6. Comparison of the mean impulse response between the validation set of the
second channel and instances generated by the hierarchical generator.

impressive since GANs do not have any explicit mechanism to measure

the average of the data distribution they are trying to learn.

5.3 Analytical evaluation of the produced channel

In order to measure the performance of the channel generation analyti-
cally, we must resort to some statistics. We may for example assume that
the channel magnitude response in time domain is normally distributed
with a diagonal covariance: |H| ~ N(u,0?I), where H € C'*® and |H| =
[|h1], |h2l, - . ., |h1os|]T € R128%. Now we may estimate the parameters of the
aforementioned distribution via samples generated by our hierarchical
GAN and the validation dataset, and compare the estimates, assuming
the estimates from the validation data to be the ground truth. Note that
we use the notion of the magnitude response on purpose here, since our
MLP based GAN does not have access to the magnitude explicitly, thus

making the results more interpretable, as the magnitude couples the real-

54

Generative modelling for the air channel

| LGT — PGen |
0.004 GT Gen

0.003
0.002

0.001

0.000 ij

0 20 40 60 80 100 120
0.0030 | 7GT = 7Gen|

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
0 20 40 60 80 100 120

Fig. 5.7. Differences between the true channel and generated one in terms of first- and
second order statistics show that the generative model learns the channel produc-
ing mechanism accurately.

and imaginary parts of the generated impulse response.

We denote the ground truth mean by pgr and standard deviation by ogr.
Conversely, the mean statistic from the generated channel is denoted by
taen and standard deviation by ogen. The ground truth statistics are
estimated from the validation set with 17000 samples, wheres from the
generative model we sample 100000 samples. Since the both statistics are
128-dimensional points in the real space, intuition can be gained by plotting
the absolute value of the differences between the statistics, |ugr — tGen]
and |ogr — 0Gen|- From Figure 5.7 we can see that the differences between

the true and generated channel are quite small.

55

Generative modelling for the air channel

In addition to visualizing the differences, we may also calculate some error
metrics between the statistics of true and generated channel. Consider for

example mean squared error (MSE), defined as:

d

1

yi > (i —9:)° (5.1)
=1

where 7 denotes the estimated value, and y the ground truth. For the
mean statistics, the MSE is 1.47 - 1074, and for the standard deviation it is
5.23-107°.

It is clear that our generative procedure produces high-quality channel
instances with good coverage of the true data generating distribution.
Even though the dataset used for the illustration is relatively simple,
clearly GANs do not have any problem modelling much more diverse
distributions. Furthermore, we have shown that the modelling of a channel
with only limited data is feasible using hierarchical generative modelling,
given that we have multiple related datasets, which is usually the case
in designing wireless communication systems for similar, but ultimately
different locations. These results are also reported in a conference paper
to be submitted to IEEE ICASSP 2025 [33].

56

6. Conclusions

In this thesis, we have investigated generative modelling of the air trans-
mission channels via GANs. Specifically, we have utilised the Bayesian
hierarchical modelling in order to extend the earlier Bayesian GAN formu-
lation to allow for multi-task generation. Our simulations show that via
hierarchical modelling, the data efficiency of GANs can be enhanced by
using multiple related, but limited datasets. Even though we have utilised
MLPs, the hierarchical formulation can be extended straightforwardly to
different neural architectures. Since the amount of data in many practical
applications is limited due the sheer expenses of collecting data, utilisation
of multiple related datasets in generative modelling can remedy plethora
of such applications. Futher, we observed that our hierarchical formulation
for GANSs leads to a training process which seems to be relatively stable,
even without any traditional interventions usually required for stabilizing

the training process.

6.1 Future research directions

Although our experiments with hierarchical GANs were evident and con-
vincing, there exists a plenty of room for improvement. With more diverse
source data distributions, usage of multiple generators should be studied.
Further, the training process of the GANs should be based on computation
of the full posterior distribution, instead of simple point estimate. Fur-
thermore, to better model the air channel, different neural architectures
should be investigated. Specifically, for modelling the air channel in both
time- and frequency domains, convolutional neural networks should be
considered. It should also be emphasized that our current experiments
relied on access to all of the channel datasets in the training process. Since

this increases the requirements of storage, which may be an issue in a

57

Conclusions

practical scenario, transfer learning for Bayesian GANs should be further

investigated.

58

References

[1] K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT
Press, 2023. [Online]. Available: http:/probml.github.io/book2

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366,
1989. [Online]. Available: https:/www.sciencedirect.com/science/article/pii/
0893608089900208

[3] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[4] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford university
press, 1995.

[5] B. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Computational Mathematics and Mathematical Physics,
vol. 4, no. 5, pp. 1-17, 1964. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0041555364901375

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https:
/larxiv.org/abs/1412.6980

[7] T. Tieleman, “Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, p. 26, 2012.

[8] M. Staib, S. J. Reddi, S. Kale, S. Kumar, and S. Sra, “Escaping saddle points
with adaptive gradient methods,” CoRR, vol. abs/1901.09149, 2019. [Online].
Available: http:/arxiv.org/abs/1901.09149

[9] C. Bishop, Pattern Recognition and Machine Learning, ser. Information
Science and Statistics. Springer, 2006. [Online]. Available: https:
/Mooks.google.fi/books?id=qWPwnQEACAAJ

[10] Y. Yao, A. Vehtari, and A. Gelman, “Stacking for Non-mixing
Bayesian Computations: The Curse and Blessing of Multimodal
Posteriors,” arXiv preprint arXiv:2006.12335, 2021. [Online]. Available:
https://arxiv.org/abs/2006.12335

[11] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts

59

http://probml.github.io/book2
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1901.09149
https://books.google.fi/books?id=qWPwnQEACAAJ
https://books.google.fi/books?id=qWPwnQEACAAJ
https://arxiv.org/abs/2006.12335

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

References

in Statistical Science. Taylor & Francis, 2013. [Online]. Available:
https://books.google.fi/books?id=ZXL6AQAAQBAJ

R. M. Neal et al., “MCMC using Hamiltonian dynamics,” Handbook of Markov
Chain Monte Carlo, vol. 2, no. 11, p. 2, 2011.

Y.-A. Ma, T. Chen, and E. Fox, “A Complete Recipe for Stochastic Gradient
MCMC,” Advances in neural information processing systems, vol. 28, 2015.

M. Welling and Y. W. Teh, “Bayesian Learning via Stochastic Gradient
Langevin Dynamics,” in Proceedings of the 28th International Conference on
International Conference on Machine Learning, ser. ICML11. Madison, WI,
USA: Omnipress, 2011, p. 681-688.

T. Chen, E. Fox, and C. Guestrin, “Stochastic Gradient Hamiltonian Monte
Carlo,” 31st International Conference on Machine Learning, ICML 2014,
vol. 5, 02 2014.

H. He, H. Wang, G.-H. Lee, and Y. Tian, “Bayesian modelling and monte carlo
inference for GAN,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=H117bnR5Ym

Y. Saatci and A. G. Wilson, “Bayesian GAN,” in Advances in Neural Informa-
tion Processing Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https:/proceedings.neurips.cc/
paper_files/paper/2017/file/312351bff07989769097660a56395065- Paper.pdf

S. Kim, Q. Song, and F. Liang, “Stochastic Gradient Langevin Dynamics
Algorithms with Adaptive Drifts,” arXiv preprint arXiv:2009.09535, 2020.
[Online]. Available: https://arxiv.org/abs/2009.09535

N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, no. 1, pp. 145-151, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608098001166

K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT press,
2012.

S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79-86, 1951.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “GANs Trained by a Two Time-Scale Update Rule Converge to
a Nash Equilibrium,” CoRR, vol. abs/1706.08500, 2017. [Online]. Available:
http://arxiv.org/abs/1706.08500

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances
in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran Associates,
Inc., 2014. [Online]. Available: https:/proceedings.neurips.cc/paper._files/
paper/2014/file/5ca3e9b122f61f8f06494c97blafccf3-Paper.pdf

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint
arXive:1701.07875, 2017. [Online]. Available: https:/arxiv.org/abs/1701.
07875

60

https://books.google.fi/books?id=ZXL6AQAAQBAJ
https://openreview.net/forum?id=H1l7bnR5Ym
https://proceedings.neurips.cc/paper_files/paper/2017/file/312351bff07989769097660a56395065-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/312351bff07989769097660a56395065-Paper.pdf
https://arxiv.org/abs/2009.09535
https://www.sciencedirect.com/science/article/pii/S0893608098001166
http://arxiv.org/abs/1706.08500
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

References

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANSs,” CoRR, vol. abs/1704.00028, 2017.
[Online]. Available: http:/arxiv.org/abs/1704.00028

M. Arjovsky and L. Bottou, “Towards Principled Methods for Training
Generative Adversarial Networks,” arXiv preprint arXive:1701.04862, 2017.
[Online]. Available: https:/arxiv.org/abs/1701.04862

A. Goldsmith, Wireless Communications, ser. Cambridge Core. Cambridge
University Press, 2005. [Online]. Available: https://books.google.fi/books?id=
n-3ZZ9i0s-cC

3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd
Generation Partnership Project, Technical Specification Group Radio Access
Network, TR 38.901, Tech. Rep., 2017.

T. Orekondy, A. Behboodi, and J. B. Soriaga, “MIMO-GAN: Generative MIMO
Channel Modeling,” in ICC 2022-IEEE International Conference on Commu-
nications. IEEE, 2022, pp. 5322-5328.

H. Xiao, W. Tian, W. Liu, and J. Shen, “Channel GAN: Deep Learning-Based
Channel Modeling and Generating,” IEEE Wireless Communications Letters,
vol. 11, no. 3, pp. 650-654, 2022.

M. Arvinte and J. Tamir, “Score-based generative models for wireless channel
modeling and estimation,” in ICLR Workshop on Deep Generative Models for
Highly Structured Data, 2022.

U. Sengupta, C. Jao, A. Bernacchia, S. Vakili, and D.-s. Shiu, “Generative
Diffusion Models for Radio Wireless Channel Modelling and Sampling,” arXiv
preprint arXiv:2308.05583, 2023.

dJ. Kuikka, E. Ollila, and S. A. Vorobyov, “Multi-task generative modelling for
the air channel via hierarchical GANs,” ICASSP 2025-1EEE International
Conference on Acoustics, Speech and Signal Processing, 2025.

61

http://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1701.04862
https://books.google.fi/books?id=n-3ZZ9i0s-cC
https://books.google.fi/books?id=n-3ZZ9i0s-cC

	Abstract
	Tiivistelmä
	Contents
	Notations and abbreviations
	Introduction
	Deep Neural Networks
	Layers and activation functions
	Training a neural network
	Chain rule of calculus and backpropagation
	Learning as an optimization problem
	Stochastic optimization
	Regularization

	Bayesian Machine Learning
	Motivation for Bayesian approach
	Maximum a posteriori approximation
	Sampling based posterior computation
	Hamiltonian dynamics
	Integrating Hamilton's equations
	Canonical distributions
	HMC algorithm

	Stochastic variants of MCMC algorithms
	A general framework for stochastic Markov Chain Monte Carlo algorithms
	Construction of existing SG-MCMC samplers
	Adaptive SG-MCMC

	Bayesian Deep Learning
	Priors for Bayesian neural networks
	Priors in function space and architectural priors
	Hierarchical priors
	Multitask learning via Bayesian hierarchical modelling

	Deep Generative Modeling
	Divergence metrics for training a generative model
	f-divergence
	Integral probability metrics
	Density ratio estimation via binary classification

	Metrics for generative model evaluation
	Generative Adversarial Networks
	Learning by comparison
	Learning via density ratio estimation
	Learning via integral probability metrics
	Theoretical problems with f-divergences

	Training GANs
	Gradient based learning

	Instabilities in GAN training
	Better gradient information
	Optimization
	Conditioning GANs

	Bayesian GANs
	Bayesian formulation for GANs
	Problems with the posterior inference
	Bayesian GANs with hierarchical priors
	Hierarchical GANs

	Generative modelling for the air channel
	Recent work
	Hierarchical generative modelling of the air channel
	Channel datasets
	Hierarchical Bayesian GAN for multi-task generative modelling

	Analytical evaluation of the produced channel

	Conclusions
	Future research directions

	References

