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Tree Ways to Order the Material
• By Characterization of Uncertainty Sets

– Deterministic uncertainty modeling
– Stochastic uncertainty modeling
– Distributional uncertainty modeling
• By Solution Approaches

– Convex optimization
– Non-convex optimization
– Learning to optimize
• By Applications

– Receive Beamforming
– Transmit Beamforming
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Part I: Introduction to Robust
Beamforming
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Beamforming Definition
 Signal processing technique that exploits arrays of sensors improve one of many possible 

application-driven performance objectives
 Steer, shape, and focus an electromagnetic wave
 Applications: radar, sonar, wireless communications, acoustics, astronomy, seismology, and 

medical imaging.

Beamforming techniques by (a) transmission range (b) transceiver architectures (c) paths and (d) applications
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Evolution of Beamformers

1901: Marconi
Circular array with 4 antennas 
to improve the gain of trans-

Atlantic Morse code 
transmission

1905: Braun
Early demonstration of gains 
provided by a phased array to 

direct radio waves

1940s 
Antenna 
diversity

1950s 
Beamforming in 

sonar

1960s 
Adaptive 

beamforming 
(Widrow) &

Capon 
Beamformer
to select the 

weight vectors or 
beamformers to 

minimize the 
array output 

power.

1990s-early 
2000s 
Convex 

beamformers

Late 2000s 
Nonconvex 

beamformers

Late 2010s 
Learning-based 
beamformers
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Robust Beamforming Optimization:
Background

The output of a narrowband beamformer

y(k) = wHx(k)

w = [w1, . . . , wM ]T

x(k) = [x1(k), . . . , xM(k)]T

Σ

w1 w2 w3

2x1x x3

M
w

Mx

y

* * * *. . .
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Background

The received data vector

x(k) = s(k)a︸ ︷︷ ︸
signal

+ i(k)︸︷︷︸
interference

+ n(k)︸︷︷︸
noise

Max signal-to-interference-plus-noise ratio (SINR) criterion for a point source

max
w

SINR , SINR =
σ2s |wHa|2
wHRi+nw

Interference-plus-noise covariance matrix

Ri+n = E
{
(i(k) + n(k)) (i(k) + n(k))H

}
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Background

Equivalent MVDR beamforming problem [Capon; 1968]

min
w

wHRi+nw subject to wHa = 1

Optimal weight vector

wopt =
1

aHR−1i+na
R−1i+na

The data covariance matrix R = Ri+n + σ2saa
H can be used instead of Ri+n.

Presence of signal component in R does not affect the SINR.
In practice, R is unavailable =⇒ sample estimate R̂ of R is used.
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Background

Sample estimate of R

R̂ =
1

K

K∑

k=1

x(k)xH(k) ←− contains the signal component!

Practical formulation of the MVDR problem

min
w

wHR̂w subject to wHa = 1

Sample matrix inversion (SMI) algorithm [Reed, Mallett, Brennan; 1974]

wSMI = R̂
−1

a ←− immaterial constant ommited
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Implementation Requirements

• The steering vector of the desired signal has to be known precisely, when the
signal component is present in the training data cell.

Otherwise, the signal can be suppressed by means of output power (objective)
minimization ←− signal self-nulling

• Large number of snapshots (training sample size)

• Stationary training data set

Violation of any of these assumptions is known to lead to a dramatic performance
breakdown of adaptive beamforming.
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Modelling Error Causes

Typical causes of steering vector mismatch

• Look direction uncertainty and signal pointing errors

• Poor array calibration

• Unknown distortions of array geometry

• Unknown sensor mutual coupling

• Signal local scattering, source spreading, and fading effects

• Near-far wavefront mismodeling

• Unknown wavefront distortions and fluctuations
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Drawbacks of SMI beamformer
Why the robustness of SMI beamformer is insufficient?
• The main cause of performance degradation is the presence of

the signal component in the training data cell when the steering
vector is mismatched
• Then, the signal can be misinterpreted as an interference and

suppressed by means of adaptive nulling instead of being protected
• Similar effect when there is no mismatch but the training sample

size is small ←− signal cancellation phenomenon

Diagonal loading SMI method [Cox et al.], [Carlson], [Abramovich]; 80’s

wLSMI = R̂
−1
dl a, R̂dl = R̂+ ξI
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Part II: Deterministic Uncertainty
Modeling
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Norm-Bounded Additive Mismatch
Actual steering vector

ã = a+∆ ̸= a

Let the unknown steering vector mismatch ∆ be bounded by some known constant
ε > 0:

∥∆∥ ≤ ε

Our formulation of the robust MVDR beamformer

min
w

wHR̂w s. t. |wH(a+∆)| ≥ 1 for all ∥∆∥ ≤ ε

Instead of fixed distortionless response towards the presumed steering vector a, a
distortionless response is maintained for a continuum of all possible steering vectors

Aalto University
Department of Information and Communications Engineering 11/130



,

Convex Optimization
The constrains guarantee that the distortionless response will be main-
tained in the worst case.

Equivalent problem

min
w

wHR̂w subject to min
∥∆∥≤ε

|wH(a+∆)| ≥ 1

Result 1 (if ε is small enough, i.e., |wHa| ≥ ε∥w∥ )

min
∥∆∥≤ε

|wH(a+∆)| = |wHa| − ε∥w∥
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Robust MVDR Beamforming
New problem [Vorobyov, Gershman, Luo; 2003] (using Result 1 and
requiring Im{wHa} = 0)

min
w

wHR̂w subject to ε∥w∥ ≤ wHa− 1

This is convex second order cone (SOC) programming problem. It can
be easily solved. The complexity is the same as for SMI beamformer.
Samples of farther extentions of our work
• Ellipsoidal uncertainty set for ∆ [Lorenz, Boyd; 2005]
• Covariance fitting interpretation [Li, Stoica, Wang; 2003]
• Newton-type solutions [Zarifi et al.; 2005], [Lorenz, Boyd]
• Modified uncertainty region [Yu, Er; 2006]
• General rank source [Shahbazpanahi et al.; 2003]

Aalto University
Department of Information and Communications Engineering 13/130



,

Modeling Error Causes
Coherent signal local scattering / Ricean propagation medium

The actual steering vector is formed by L+ 1 signal paths as

ã = a+
L∑

i=1

ejψjb(θi)

a is the direct path / line of side (LOS)
b(θi) are scattered paths / non-line of sides (NLOS)
Aalto University
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Simulations
Example 1: Coherent local scattering

0 20 40 60 80 100
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

NUMBER OF SNAPSHOTS

O
U

T
P

U
T

 S
IN

R
 (

D
B

)

OPTIMAL SINR

PROPOSED ROBUST BEAMFORMER

SMI BEAMFORMER

LSMI BEAMFORMER

EIGENSPACE−BASED BEAMFORMER

ULA, M=10 omnidirectional sensors, half-wavelength spacing; Desired signal DOA is 3◦; 2 inter-

ferences with DOA’s 30◦ and 50◦; INR = -10 dB; signal component is always present; L = 4,

stdθi = 2◦; SNR = -10 dB

Aalto University
Department of Information and Communications Engineering 15/130



,

Simulations
Example 1: Coherent local scattering
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Simulations
Example 2: Distortion of the signal wavefront

0 20 40 60 80 100
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

NUMBER OF SNAPSHOTS

O
U

T
P

U
T

 S
IN

R
 (

D
B

)

OPTIMAL SINR

PROPOSED ROBUST BEAMFORMER

SMI BEAMFORMER

LSMI BEAMFORMER

EIGENSPACE−BASED BEAMFORMER

ULA, M=10 omnidirectional sensors, half-wavelength spacing; Desired signal DOA is 3◦; 2 interfe-

rences with DOA’s 30◦ and 50◦; INR = -10 dB; signal component is always present; independent-

increment phase distortions are Gaussian with the variance 0.04; N = 30
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Simulations
Example 2: Distortion of the signal wavefront
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Moving Interferences

Signal

Interference

interference
Moving

Matrix taper [Mailloux], [Zatman], [Guerci]

wT ∝ R̂
−1
T a , R̂T = R̂⊙ T

where T is a specially designed taper matrix: [T ]ij = sinc(ρ|i− j|).
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Moving Interferences
Actual data matrix and steering vector

Y = X +Z, ∥Z∥F ≤ δ
ã = a+∆, ∥∆∥ ≤ ε

Z takes into account interference nonstationarity

Our robust problem formulation

min
w

max
Z
∥Y Hw∥ , ∥Z∥F ≤ δ

subject to |wHã| ≥ 1 for all ∥∆∥ ≤ ε
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Moving Interferences
Result 2 (for objective)

max
∥Z∥F≤δ

∥Y Hw∥ = ∥XHw∥+ δ∥w∥

New problem (using Results 1 and 2)

min
w
∥Uw∥+ δ∥w∥

subject to ε∥w∥ ≤ wHa− 1

where U = XH or U =
√
NR̂

1/2
T

This is a SOC programming problem!
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Nonconvex norm-constrained beamforming
Considers an additional norm constraint for beamformer weights in a more general
setting. The problem becomes [Li et. al., 2004]

minã ã
HR̂
−1

ã s.t. ∥ã− a∥2 ≤ ϵa, ∥ã∥22 = N

Nonconvex norm constraint ∥ã∥22 = N is added. This is a nonconvex problem, but
it can be solved via SDP relaxation followed by a rank-reduction postprocessing
[Huang and Palomar, 2010]. Always has an optimal rank-one solution!
Better problem [Kabazibasmenj, Vorobyov, Hassanien, 2012]

minã ã
HR̂
−1

ã s.t. ãHC̃ã ≤ ∆0, ∥ã∥22 = N

C̃ =
∫
Θ̃
a(θ)aH(θ) dθ and Θ̃ is the complement of the angular sector

Θ = [θmin, θmax] where the desired signal is located;
∆0 ≜ maxθ∈Θ aH(θ)C̃a(θ) represents the boundary to distinguish approxima-
tely whether or not the direction of a is in the actual signal angular sector Θ.
Aalto University
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New Constraint Visualized
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Nonconvex double-sided norm constraint
Add double-sided norm constraint to account for gain perturbations in the steering
vector. [Huang and Vorobyov, 2019]

minã ã
HR̂
−1

ã s.t. ãHCã≥∆1, N(1−η1)≤∥ã∥22≤N(1+η2), ∥V H(ã−a0)∥22≤ϵu

a0 = a(θ0), θ0 = (θmax + θmin)/2 is the middle value of the region Θ;
V ∈ CN×N – in the generalized similarity constraint together with a0 and ϵu;
C =

∫
Θ a(θ)aH(θ) dθ; and ∆1, η1, and η2 are selected values.

• The quadratic constraint is inverted
• The norm constrained is relaxed and generalized
• The similarity constraint is generalized

These problem is nonconvex, but can be often exactly or conditionally solved
through SDR.
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Part III: General Form of
Worst-Case SINR Maximization
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Data Sample Covariance Matrix Error

• Assume further that the sample covariance matrix R̂ and the interference-
plus-noise covariance (INC) matrix Ri+n have mismatch.
• Common reasons for the mismatch:

– Finite sample size (estimation error)
– Non-stationarity of signals
– Model mismatch
– Measurement noise

• Let R ≜ Ri+n (dropping the subscript for easy notation without causing
confuses).
• Suppose that the uncertainty sets A for R, and B for a are known.
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Worst-Case SINR Maximization

• An optimal robust adaptive beamforming (RAB) solution w⋆ is obtained by
solving the worst-case SINR maximization problem:

maximize
w∈W

minimize
ã ∈ A,R ∈ B

|wHã|2
wHRw

.

• Here W is the feasible set of RAB vectors w.
• The uncertainty sets A, B and the feasible set W are either convex or non-

convex. For instance,
– uncertainty set A:
∗ convex A = {ã | ∥ã− a∥ ≤ ϵ0};
∗ nonconvex A = {ã | ∥ã − a∥ ≤ ϵ0, N(1 − η1) ≤ ∥ã∥2 ≤ N(1 +

η2)};
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Worst-Case SINR Maximization

– uncertainty set B:
∗ convex B = {R | ∥R− R̂∥2 ≤ γ0, R ⪰ 0};
∗ nonconvex B = {R | ∥R− R̂∥2 ≤ γ0, Rank (R) = N/2, R ⪰ 0};

– feasible set W :
∗ convex W = {w | |a(θj)Hw| ≤ √η, j = 1, . . . , J} with the grid
Θ = {θ1, . . . , θJ} approximating the sidelobe regions (enforcing the
sidelobe level control);
∗ nonconvex W = {w | ∥w∥0 ≤ 2N/3}.
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Minimax SINR

• Another RAB solution w⋆ can be defined by estimating the best signal steering
vector a⋆ and INC matrix R⋆ and forming the MVDR RAB solution:

w⋆ ≜ wMVDR = (R⋆)−1a⋆.

• This solution can by obtained by solving the minimax SINR problem:

minimize
a ∈ A,R ∈ B

maximize
w∈W

|wHa|2
wHRw

with feasible set W = CN/{0}.
• In other words, solve the problem which is assumed solvable efficiently:

minimize
a ∈ A,R ∈ B

aHR−1a

obtaining (a⋆,R⋆).
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Maximin SINR vs. Minimax SINR

• Only for one scenario when W = CN/{0}, and A and B are convex and
compact [Kim et al., 2008], the two RAB problems (via the maximin SINR
and minimax SINR criteria) are tantamount:

maximize
w ̸=0

minimize
a ∈ A,R ∈ B

|wHa|2
wHRw

= minimize
a ∈ A,R ∈ B

maximize
w ̸=0

|wHa|2
wHRw

.

• Otherwise, the trivial case holds:

minimize
a ∈ A,R ∈ B

maximize
w∈W

|wHa|2
wHRw

≥maximize
w∈W

minimize
a ∈ A,R ∈ B

|wHa|2
wHRw

.
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Maximin SINR vs. Minimax SINR

• Why the worst-case SINR maximization based RAB problem is useful and
solved to find an optimal beamforming solution w⋆, rather than the minimax
SINR problem (an upper bound for the maximin SINR problem)?
– When evaluating w⋆, the real data is outside the preset uncertainty set

very far away.
– The minimax problem is a hard problem (e.g., a nonconvex optimization

problem) while the maximin problem is easy (e.g., a convex or hidden
convex problem).

– In some fast changing environment (e.g., an automotive radar receiver),
the beamforming solution obtained from the minimax SINR problem using
the out-of-date data (after which the data has been collected for ma-
ny times) is not guaranteed to have better array performance than the
beamforming solution for the maximin problem.
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Uncertainty Sets of Steering Vectors
• Let us focus on how the RAB solution w⋆ is affected by uncertainty sets of

the desired signal steering vectors.
• So, we consider W = {w ∈ CN | w ̸= 0}, and

B1 = {R | ∥R− R̂∥2F ≤ γ, R ⪰ 0}.
• Also, a nonconvex uncertainty set of the signal steering vectors

A1 = {ã | ∥ã− a∥2 ≤ ϵ, N(1− η1) ≤ ∥ã∥2 ≤ N(1 + η2)}
includes a similarity constraint and a norm perturbation constraint of the
steering vectors.
• Some other generalized uncertainty sets can be studied (but not herein):

– A′1 = {ã = Qu + a | ∥u∥ ≤ 1, N(1 − η1) ≤ ∥ã∥2 ≤ N(1 + η2)},
where Q ∈ CN×M [Lorenz and Boyd, 2005].

– If Q is of full rank, A′′1 = {ã | ∥(QHQ)−1QH(ã − a)∥ ≤ 1, N(1 −
η1) ≤ ∥ã∥2 ≤ N(1 + η2)}.
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MVDR RAB Optimization Problem
• The minimax SINR problem is written as, with uncertainty sets A1 and B1:

minimize
ã ∈ A1,R ∈ B1

maximize
w ̸=0

|wHã|2
wHRw

.

• It is further expressed as

minimize
ã ∈ A1,R ∈ B1

ãHR−1ã.

• An equivalent nonconvex optimization is derived:

minimize
t,ã,R

t

subject to

[
t ãH

ã R

]
⪰ 0,

∥ã− a∥2 ≤ ϵ,
N(1− η1) ≤ ∥ã∥2 ≤ N(1 + η2),

∥R− R̂∥2F ≤ γ.
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MVDR RAB Optimization Problem
• However, if we assume that the sample covariance matrix is sufficiently good,

i.e., R = R̂, then the previous problem is simplified into the hidden convex
QCQP:

minimize
ã

ãHR̂
−1

ã

subject to ∥ã− a∥2 ≤ ϵ,
N(1− η1) ≤ ∥ã∥2 ≤ N(1 + η2).

• It is known that it is a hidden convex problem, namely, a globally optimal
solution ã⋆ can be obtained within a polynomial-time complexity.
• If ã⋆ is optimal for the QCQP, then the MVDR RAB vector is defined as:

w⋆ = R̂
−1

ã⋆.

• This RAB solution will be evaluated in our late simulation, with comparision
to other proposed RAB vectors.
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Worst-Case SINR Maximization
• The worst-case SINR maximization based RAB design is:

maximize
w ̸=0

minimize
ã ∈ A1,R ∈ B1

|wHã|2
wHRw

.

• Evidently, it can be recast into (since the two parameters are separable):

maximize
w ̸=0

minimize
ã ∈ A1

|wHã|2

maximize
R ∈ B1

wHRw
.

• It is not hard to verify that wH(R̂+
√
γI)w = maximize

R ∈ B1
wHRw.

• Letting R̄ = R̂+
√
γI , this is further equivalent to the following problem:

minimize
w ̸=0

wHR̄w

subject to minimize
ã ∈ A1

|wHã|2 ≥ 1.
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Worst-Case SINR Maximization

• Related existing works:
– The scenario of the uncertainty set A1 = {ã | ∥ã− a∥2 ≤ ϵ} has been

studied in an early paper [Vorobyov, Gershman, Luo, 2003].
– Therein, the worst-case SINR maximization problem was transformed into

an SOCP problem.
– The case where W = {w | |ℜ(âH0 w) ≥ 1 + ϵ0∥w∥, |a(θj)Hw| +
ϵj∥w∥ ≤

√
η, j = 1, . . . , J} with the grid Θ = {θ1, . . . , θJ} en-

forcing the robust mainlobe and sidelobe levels control, was consided
[Huang, Li, Vorobyov, 2024] to maximize the worst-case INP.

– It can be recast into an SOCP again, with one half grid size but lower
lower sidelobes in the normalized beampattern.

– Many others....
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Maximin & Nonconvex Uncertainty Set

• To solve the worst-case SINR maximization based RAB problem

minimize
w ̸=0

wHR̄w subject to minimize
ã ∈ A1

|wHã|2 ≥ 1,

only the QCQP problem in the constraint shall be dealt with.
• By the way, additional constraints on w can be considered if necessary; for

example, a sparsity constraint on the beamforming vector; then the RAB pro-
blem is formulated into

minimize
w ̸=0

wHR̄w

subject to minimize
ã ∈ A1

|wHã|2 ≥ 1

∥w∥0 ≤ 2N/3.
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Hiddenly Convex QCQP and Its Dual

• The inhomogeneous QCQP in the constraint is written as:

minimize
ã∈CN

ãHwwHã

subject to ∥ã− a∥2 ≤ ϵ,
N(1− η1) ≤ ∥ã∥2 ≤ N(1 + η2).

• Observe that a with ∥a∥2 = N is a strictly feasible point of the QCQP.
• Then the SDP relaxation problem of it has an interior point too (in fact,

the interior point can be constructed from the strictly feasible point a of the
QCQP).
• The dual of the SDP can be shown strictly feasible.
• Therefore, it follows from the linear conic programming strong duality theorem

that the QCQP, the SDP relaxation and its dual problems are solvable and
share the equal optimal value [Huang and Palomar, 2014].
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QMI Reformulation of Maximin SINR

• The dual problem for the SDP or the QCQP is the LMI problem:

maximize
y1,y2,y3,y4

N(1− η1)y2 +N(1 + η2)y3 + y4

subject to

[
wwH − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.

• The worst-case SINR maximization problem RAB design problem:

minimize
w ̸=0

wHR̄w subject to minimize
ã ∈ A1

|wHã|2 ≥ 1,

has an equivalent quadratic matrix inequality (QMI) problem for-
mulation (as shown in the next slide).
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QMI Reformulation of Maximin SINR
• The QMI problem w.r.t. beamforming vector w is expressed as:

minimize
w, {yi}

wHR̄w

subject to N(1− η1)y2 +N(1 + η2)y3 + y4 ≥ 1,[
wwH − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

w ∈ CN , y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.

• A QMI problem is hard to solve, in general, with higher computa-
tional cost.
• The quadratic matrix inequaliy constraint implies

y1 + y2 + y3 ≤ 0.
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LMI Relaxation of QMI Problem
• The LMI relaxation for the QMI problem is formulated as

minimize
W , {yi}

tr (R̄W )

subject to N(1− η1)y2 +N(1 + η2)y3 + y4 ≥ 1,[
W − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 + y2 + y3 ≤ 0,

W ⪰ 0, y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.

• Solving the SDR may not reach an optimal rank-one solution.
• Thus, how to design an efficient algorithm to return an optimal

rank-one solution W ⋆ = w⋆w⋆H for the LMI problem is a key
question to the worst-case SINR maximization RAB problem.
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A Tightened LMI Relaxation
• Not many approaches to solve the SDP relaxation problem for a

QMI problem guaranteeing a rank-one solution, years ago
• Here, we would like to present an efficient method to get a rank-

one approximate solution.
• Suppose that any feasible W ̸= 0 (otherwise, w = 0 is optimal

for the QMI problem).
• The statement that a nonzero Y ⪰ 0 is of rank one is equivalent

to λ2(Y ) ≤ 0, or

λ1(Y ) + λ2(Y ) ≤ λ1(Y ),

where the eigenvalues λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λN(Y ) ≥ 0

are ordered in a descending way.
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A Tightened LMI Relaxation

• The rank-one condition λ1(Y ) + λ2(Y ) ≤ λ1(Y ) is univer-
sal, since it can be plugged to the SDP relaxation, such that the
tightened SDR is identical to the original QMI or QCQP problem.
• Therefore, the original QMI problem is reformulated as:

minimize
W , {yi}

tr (R̄W )

subject to (N − η1)y2 + (N + η2)y3 + y4 = 1,[
W − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 + y2 + y3 ≤ 0,

λ1(W ) + λ2(W ) ≤ λ1(W ),

W ⪰ 0, y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.
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LMI for Sum of K Largest Eigenvalues

• However, λ1(W ) and λ1(W )+λ2(W ) are convex for W ⪰ 0.
• Suppose that SK(W ) is the sum of K largest eigenva-

lues of Hermitian matrix W (K ≤ N ). Then the epigraph
{(W , t) | SK(W ) ≤ t} of the function admits the LMI re-
presentation:

t−Ks− trZ ≥ 0

Z −W + sI ⪰ 0

Z ⪰ 0

where Z is an N ×N Hermitian matrix and s is a real number.∗

∗A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, MPS-SIAM Series on
Optimization, SIAM, Philadelphia, 2001.
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Equivalent Description of Rank-One Matrix

• Thus, the rank-one condition for W ⪰ 0, λ1(W ) + λ2(W ) ≤
λ1(W ), amounts to

λ1(W )− 2s− trZ ≥ 0, Z −W + sI ⪰ 0,Z ⪰ 0,

• Here, the variables are W , Z and s, with two LMIs and one
inequality constraints.
• However, the inequality condition is nonconvex (since λ1(W ) is

convex).
• Nevertheless, it is known that

λ1(W ) = maximize tr (WX) subject to trX = 1, X ⪰ 0.
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Bilinear Reformulation of QMI Problem
• A bilinear matrix inequality (BLMI) form for the QMI problem is

built: [Huang, Fu, Vorobyov, Luo, 2023]:

minimize tr (R̄W )

subject to N(1− η1)y2 +N(1 + η2)y3 + y4 = 1,[
W − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 + y2 + y3 ≤ 0,

tr (WX)−2s− trZ ≥ 0,

Z −W + sI ⪰ 0,

trX = 1,

W ⪰ 0, Z ⪰ 0,X ⪰ 0,

y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R, s ∈ R.
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Bilinear Reformulation of QMI Problem
• The optimization variables are W ,Z,X, {yi} and s.
• The only bilinar term tr (WX) in the fourth constraint is non-

convex (w.r.t. W and X jointly), while all others are convex.
• The red and blue constraints are tantamount to the rank-one con-

dition for W .
• In words, the bilinear optimization problem is equivalent to the

original worst-case SINR maximization based RAB problem.
• So, we only need to deal with the bilinear term tr (WX).
• If a feasible solution W for the BLMI problem is computed effi-

ciently, then the solution W must be rank-one.
• Note that the bigger tr (WX) is, the larger the feasible set of

the BLMI problem is.
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Approximation for the Bilinear Problem

– Solve LMI relaxation problem of the QMI reformulation for
the maximin SINR, obtaining W ⋆ as an initial point, namely,
W k ≜ W ⋆, k = 0;

– Update the bilinear inequality constraint to

tr (W kX)− 2s− tr (Z) ≥ 0,

and solve the LMI problem:
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Approximation for the Bilinear Problem

minimize tr (R̄W )

subject to (N − η1)y2 + (N + η2)y3 + y4 = 1,[
W − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 + y2 + y3 ≤ 0,

tr (W kX)− 2s− tr (Z) ≥ 0,

Z −W + sI ⪰ 0,

trX = 1,

W ⪰ 0, Z ⪰ 0, X ⪰ 0,

y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R, s ∈ R.

– Once a new solution W ⋆ is obtained, set W k+1 ≜ W ⋆ and
k = k + 1.
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Approximation for the Bilinear Problem
– In this way, an iterative procedure is established until a stopping

criterion (for instance, ∥W k −W k−1∥2 ≤ ξ) is fulfilled.
• The approximation algorithm is summarized as follows.

1. Let k = 0, and W 0 = W ⋆ (optimal for the LMI relaxation
problem for the QMI problem);

2. Do
3. Solve the LMI problem (previous slide), obtaining solution

W k+1;
4. k = k + 1;
5. Until ∥W k −W k−1∥2 ≤ ξ;
6. Output w⋆ =

√
λ1w1 (where W k = λ1w1w

H
1 indeed is

rank-1).
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Convergence Properties

• It is verified that tr (R̄W k−1) ≥ tr (R̄W k) for k = 1, 2, . . .,
since W k−1 is feasible for the LMI in the k-th step (previous
slide).
• Since the finally output solution must be feasible for the BLMI

problem, it is of rank one.
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Rank-Reduction for LMI Relaxation
• Claim: For W ⪰ 0, tr (W ) = ∥W ∥F = tr (WW )/∥W ∥F
⇐⇒W is of rank one. [Huang, Yang, Vorobyov, 2022]
• The LMI relaxation can be solved iteratively by solving

minimize
W , {yi}

tr (R̄W ) + ρ(tr (W )− tr (WW k)
∥W k∥F

)

subject to N(1− η1)y2 +N(1 + η2)y3 + y4 ≥ 1,[
W − (y1 + y2 + y3)I y1a

y1a
H −y4 − y1(∥a∥2 − ϵ)

]
⪰ 0,

y1 + y2 + y3 ≤ 0,

W ⪰ 0, y1 ≤ 0, y2 ≥ 0, y3 ≤ 0, y4 ∈ R.

• This rank-one PSD condition is weaker than ∥W ∥2 = ∥W ∥F ,
or ∥W ∥2 = ∥W ∥∗.
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Simulation Setup
• Scenario settings:

– A uniformly linear array with N = 12 sensors spaced half a
wavelength;

– the actual signal direction θ = 7◦;
– the presumed direction θ0 = 5◦;
– two interferers located in the directions of θ1,2 = ±15◦ with

the same interference-to-noise ratio (INR) of 30 dB;
– the array noise: a spatially and temporally white Gaussian vec-

tor with zero mean and covariance I ;
– wavefront distortion: The phase increments are independent

Gaussian variables each with zero mean and standard deviation
0.02, with the zero initial phase distortion;
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Simulation Setup

– parameters η1 = η2 = 0.2, and ϵ = 0.3N ;
– the radius

√
γ = 0.1λN(R̂).

• All results are averaged over 200 simulation runs.
• Three robust beamformers are compared: The proposed one,

SOCP beamformer, and MVDR RAB beamformer.
• The SOCP beamformer is a solution for the RAB design problem

in [Vorobyov, Gershman, Luo, 2003].
• The MVDR RAB beamformer is the optimal beamformer for the

minimax SINR problem with R = R̂.
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Beamformer Output SINR vs SNR
The average beamformer output SINR versus the SNR, with number
of snapshots T = 100:
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Array Output SINR vs Snapshot Numbers
The average array output SINR versus the number of snapshots, with
SNR=23 dB (due to 200 = 1023/10):
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Lessons
• The RAB designs can be implemented via the worst-case SINR

maximization (maximin SINR) and the minimax SINR problems.
• MVDR RAB beamforming optimization problem is identical to

the minimax SINR problem, which could be a hard problem (it
depends on the predefined uncertainty sets).
• The worst-case SINR maximization based RAB problem can be

reformulated into a QMI problem and further reexpressed as a bi-
linear optimization problem, via which an approximation algorithm
can be designed.
• Alternatively, the QMI is solved by using a certain rank-reduction

process to obtain a rank-one solution for the LMI relaxation pro-
blem.
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Part IV: Stochastic Uncertainty
Modeling
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Probabilistically-constrained Beamformer
Our formulation of the robust probabilistically-constrained beamformer

min
w

wHR̂w s. t. Pr{|wH(a+∆)| ≥ 1} ≥ p

∆ ∼ NC(0,C∆)

• instead of maintaining a distortionless response for a continuum
of all possible steering vectors ã, our constrain guarantees that
the distortionless response will be maintained with a certain “suf-
ficient” probability
• |wH(a+∆)|2 is Ricean distributed – how to solve?

Well approximated by SOCP for both Gaussian and worst-case distri-
buted mismatch.
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Probabilistically-constrained Beamformer

Approximation of the probability in the constraint

Pr{|wHã|≥1} ≥ Pr{|Re{wHã}| ≥ 1 ∩ |Im{wHã}| ≥ 1}
= Pr{|Re{wHã}| ≥ 1} Pr{|Im{wHã}| ≥ 1}
=
(
Pr{|Re{wHã}| ≥ 1}

)2
=
(
Pr{|Im{wHã}| ≥ 1}

)2

Approximate problem

min
w

wH(R̂+ ξI)w s. t. Pr{|Re{wHã}| ≥ 1} ≥ √p

Re{wHã} ∼ NR
(
Re{wHa}, ∥C1/2

∆ w∥2/2
)
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Probabilistically constrained Beamforming
Using the standard error function for Gaussian distribution

Pr{|Re{wHã}| ≥ 1} = Pr{Re{wHã} ≥ 1}
− Pr{Re{wHã} ≥ −1}

=
1

2


erf


1− Re{wHa}

∥C1/2
∆ w∥




− erf


−1− Re{wHa}

∥C1/2
∆ w∥






If the mismatch’s distribution is worst-case, we derive a generalization
of Chebyshov inequality (has to hold for all distributions). The solution
has the same SOCP structure!
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Part V: Distributional Uncertainty
Modeling
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Distributionally Robust Optimization (DRO)

Consider both Ri+n ∈ HN and a ∈ CN as random variables.
The RAB problem can be formulated as a stochastic programming problem:

minimize
w

E[wHRi+nw]

subject to E[wHaaHw] ≥ 1,

However, the exact knowledge of the underlying distribution might not always be
available.
• distributionally robust optimization (DRO) is employed

– considers uncertainty sets that capture the uncertainty about the true
distribution and aims to maximize the worst-case SINR over a range of
possible distributions.

minimize
w

max
G1∈D1

EG1
[wHRi+nw]

subject to min
G2∈D2

EG2
[wHaaHw] ≥ 1,
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Distributionally Robust Beamforming

minimize
w

max
G1∈D1

EG1
[wHRi+nw]

subject to min
G2∈D2

EG2
[wHaaHw] ≥ 1,

Distributional uncertainty sets D1 and D2 account for uncertainty in probability
distributions of steering vector and INC matrix.
Two main approaches:
• Moment-based DRO:

first-/second-order moment constraints
• Wasserstein DRO:

uncertainty sets based on probability distribution geometry
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Moment-based DRO-based RAB

D1 =



G1 ∈M1

∣∣∣∣∣∣

PG1
(Ri+n ∈ Z1) = 1

EG1
[Ri+n] ⪰ 0

∥EG1
[Ri+n]− S0∥F ≤ ρ1



 ,

• Support Constraint:
– Ensures Ri+n remains within physically meaningful support set Z1.
– Encodes prior knowledge (e.g., limits on interference/noise power).

• PSD Constraint:
– Guarantees positive semidefiniteness, consistent with covariance matrix

properties.
• Similarity Constraint:

– Keeps expected INC matrix close to empirical estimate S0.
– S0 can be approximated by sample data covariance matrix

R̂ = 1
T

∑T
t=1 y(t)y

H(t) or improved reconstruction.
– ρ1 acts as a trust level: Small ρ1: strong reliance on data. Large ρ1: more

flexibility to handle mismodeling.
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Moment-based DRO-based RAB

D2 =



G2 ∈M2

∣∣∣∣∣∣

PG2
(a ∈ Z2) = 1

∥EG2
[a]− a0∥ ≤ γ1

EG2
[aaH ] ⪯ (1 + γ2)Σ+ a0a

H
0



 ,

• Support Constraint:
– Restricts a to feasible region Z2 (e.g., angular sector, element magnitu-

de/phase limits).
– Encodes prior knowledge, excludes unrealistic directions.

• First-Order Moment Constraint:
– Ensures expected steering vector remains close to nominal mean a0

– Parameter γ1 controls tolerance: Small γ1: tight trust in a0. Large γ1:
allows flexibility for mismodeling.

• Second-Order Moment Constraint:
– Bounds variability of a.
– Parameter γ2 controls robustness against uncertainty in covariance.

Aalto University
Department of Information and Communications Engineering 63/130



,

The Maximization Problem in the Objective
• The inner maximization problem in the objective of the DRO-based RAB

problem is rewritten as (the subscript of Ri+n is dropped for notational sim-
plicity.)

maximize
G1∈M1

∫

Z1
wHRw dG1(R)

subject to
∫

Z1
dG1(R) = 1,

∫

Z1
R dG1(R) ⪰ 0,

∥∥∥∥
∫

Z1
R dG1(R)− S0

∥∥∥∥
F

≤ ρ1.

• The dual problem is cast as

minimize
X,Y

ρ1∥X∥F + δZ1(wwH +X + Y )− tr(XS0)

subject to X ∈ HN ,Y ⪰ 0 (∈ HN+ ),

where δZ1(·) is defined as the support function of Z1, and it is convex.
• Clearly, the dual problem is a finite-dimension convex optimization problem.
• It is verified that the strong duality holds between them.
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• Assuming prior knowledge of an upper bound on the total
interference-plus-noise power, the support set Z1 is defined as

Z1 = {R ∈ HN | tr(R) ≤ ρ2,R ⪰ 0}
Then, the corresponding support function is expressed as (note

that in this case, the second constraint becomes redundant and
can be excluded; therefore, dual variable Y is omitted):

δZ1(wwH +X) = ρ2λmax(wwH +X).

• In the case where the Frobenius norm of the INC matrix is assumed
to be upper-bounded, the set Z1 can be expressed as

Z1 = {R ∈ HN | ∥R∥F ≤ ρ2,R ⪰ 0}
Then, the following identity holds for the support function:

δZ1(wwH +X) = ρ2

∥∥∥wwH +X
∥∥∥
F
.

• Consequently, the dual problem is obtained by replacing the sup-
port function.
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The Minimization Problem in the Constraint
• The minimization problem in the constraint of the DRO-based RAB problem

can be expressed as

minimize
G2∈M2

∫

Z2
aHwwHa dG2(a)

subject to
∫

Z2
dG2(a) = 1,

∥∥∥∥
∫

Z2
a dG2(a)− a0

∥∥∥∥ ≤ γ1,
∫

Z2
aaH dG2(a) ⪯ (1 + γ2)Σ+ a0a

H
0 .

• The dual problem can be derived as follows

maximize
x,x,Z

x+ ℜ(aH0 x)−γ1∥x∥− tr(Z((1+γ2)Σ+a0a
H
0 ))

subject to aH(wwH +Z)a−ℜ(aHx)− x ≥ 0, ∀a ∈ Z2,
Z ⪰ 0,x ∈ CN , x ∈ R.

• The strong duality between the two problems holds.
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• Suppose that Z2 = CN . The semi-infinite inequality constraint in
the dual is equivalent to the following quadratic matrix inequality
(QMI):

[
wwH +Z −x

2

−xH

2 −x

]
⪰ 0.

• Additionally, suppose that Z2 is defined by at most two quadratic
constraints. Specifically,

aHQia+ 2ℜ(qHi a) + qi ≤ 0, i = 1, . . . , k,

where k ∈ {1, 2}. According to the S-procedure, if there exists
a complex vector a in the interior of the set Z2, the semi-infinite
inequality constraint can be reformulated as the following QMI:

[
wwH +Z −x

2

−xH

2 −x

]
⪰

k∑

i=1

τi

[
Qi qi
qHi qi

]
, τi ≤ 0.
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• In the ideal scenario where there is no uncertainty in the steering
vector a, its norm satisfies ∥a∥2 = N .
• Consequently, a reasonable choice for the support set Z2 is:

Z2 = {a ∈ CN | (1−∆)N ≤ ∥a∥2 ≤ (1 + ∆)N},

where 0 < ∆ < 1 quantifies the allowable deviation from the
ideal norm.
• Therefore, the QMI constraint can be rewritten as:
[
wwH +Z −x

2

−xH

2 −x

]
⪰ τ1

[
I 0

0 −(1 + ∆)N

]
+ τ2

[
−I 0

0 (1−∆)N

]
,

τ1, τ2 ≤ 0.
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Equivalent QMI Reformulation

• The original DRO-based RAB problem can be transformed into

minimize ρ1∥X∥F + ρ2

∥∥∥wwH +X
∥∥∥
F
− tr(XS0)

subject to x+ ℜ(aH0 x)− γ1∥x∥ − tr(Z((1 + γ2)Σ+ a0a
H
0 )) ≥ 1,[

wwH +Z −x
2

−xH

2 −x

]
⪰

τ1

[
I 0

0 −(1 + ∆)N

]
+ τ2

[
−I 0

0 (1−∆)N

]
,

τ1, τ2 ≤ 0,

w,x ∈ CN , X ∈ HN , Z ⪰ 0, x, τ1, τ2 ∈ R.
• This is a nonconvex QMI problem (w.r.t. w).
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• The conventional LMI relaxation technique can be applied, name-
ly, the following LMI problem is solved:

minimize ρ1∥X∥F + ρ2 ∥W +X∥F − tr(XS0)

subject to x+ ℜ(aH0 x)− γ1∥x∥ − tr(Z((1 + γ2)Σ+ a0a
H
0 )) ≥ 1,[

W +Z −x
2

−xH

2 −x

]
⪰ τ1

[
I 0
0 −(1 + ∆)N

]
+ τ2

[
−I 0
0 (1−∆)N

]
,

τ1, τ2 ≤ 0,

x ∈ CN , X ∈ HN , W ,Z ⪰ 0, x, τ1, τ2 ∈ R.

• If the LMI problem has a rank-one optimal solution W ⋆ =

w⋆w⋆H , then w⋆ is optimal for the QMI problem.
• A rank-one solution procedure is desired when the LMI relaxation

problem admits an optimal solution W ⋆ of rank more than one.
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Rank-One Solution Procedure for the LMI Relaxation

• Observe that if nonzero W ⪰ 0 is of rank one, then tr(W ) = ∥W ∥F , and
vice versa.
• The previous condition can also take the form: tr(W )− tr(WW )

∥W ∥F = 0.

• Therefore, at iteration k of a procedure, the following LMI problem with a
penalty term on the rank-one solution constraint is solved:

minimize ρ1∥X∥F + ρ2 ∥W +X∥F − tr(XS0) + α

(
tr(W )− tr(WW k)

∥W k∥F

)

subject to x+ ℜ(aH0 x)− γ1∥x∥ − tr(Z((1 + γ2)Σ+ a0a
H
0 )) ≥ 1,[

W +Z −x
2

−xH

2 −x

]
⪰ τ1

[
I 0
0 −(1 + ∆)N

]
+ τ2

[
−I 0
0 (1−∆)N

]
,

τ1, τ2 ≤ 0,

x ∈ CN , X ∈ HN , W ,Z ⪰ 0, x, τ1, τ2 ∈ R.
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Finding a Rank-One Solution for the LMI Relaxation

Algorithm 1 Finding a Rank-One Solution for LMI Relaxation Problem
Input: S0,Σ,a0, γ1, γ2, ρ1, ρ2, α, η;

Output: A rank-one solution w⋆w⋆H for problem;

1: Solve LMI problem, returning W ⋆

2: if W ⋆ is of rank one then
3: Output w⋆ with W ⋆ = w⋆w⋆H , and terminate;
4: end
5: k ← 0; Let W k be the optimal (high-rank) solution W ⋆ for LMI problem;
6: do
7: Solve the LMI problem with penalty, obtaining solution W k+1;
8: k ← k + 1;
9: until tr(W k)−

tr(W kW k−1)
∥W k−1∥F ≤ η

10: Output w⋆ with W k = w⋆w⋆H .
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Finding a Rank-One Solution for the LMI Relaxation

• It can be shown that the sequence of the optimal values is descent, and the
penalty term converges to zero.
• The terminating condition implies that the output solution W k is a rank-one

solution, since tr(W k) ≈
tr(W kW k−1)
∥W k−1∥F ≈ ∥W k∥F

• The computational complexity is dominated by solving the LMI problem (12) in
each iteration, which is manageable since the problem has only one inequality
constraint and one LMI constraint with size N + 1.
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Alternative Uncertainty Sets for Steering Vector

• D′2 =



G2 ∈M2

∣∣∣∣∣∣

PG2
(a ∈ Z2) = 1

(EG2
[a]− ā)HQ−1(EG2

[a]− ā) ≤ γ1
∥EG2

[(a− ā)(a− ā)H ]− Σ̄∥F ≤ γ2



,

– the second constraint ensures that the mean of the random vector a resides within an
ellipsoid of size γ1, centered at the empirical mean ā, with the ellipsoid’s shape defined
by the positive definite matrix Q ≻ 0.

– The third constraint in forces that EG2
[(a− ā)(a− ā)H ], which is called the centered

second-order moment matrix of a and is different from the covariance matrix unless
EG2

[a] = ā (e.g., when γ1 = 0), is located in a ball of radius γ2, centered at the
empirical covariance matrix Σ̄.

– Accordingly, the DRO-based RAB problem can be recast into

minimize ρ1∥X∥F + ρ2

∥∥∥wwH +X
∥∥∥
F
− tr(XS0)

subject to − x+ 2ℜ(āHx)− tr(Z(Σ̄− āāH )) ≥ 1 + 2
√
γ1∥Q

1
2x∥+ γ2∥Z∥F ,[

wwH +Z −Zā− x

−āHZ − xH x

]
⪰ τ1

[
I 0

0 −(1 + ∆)N

]
+ τ2

[
−I 0

0 (1−∆)N

]
,

τ1, τ2 ≤ 0.

w,x ∈ CN, X,Z ∈ HN, x ∈ R.
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Alternative Uncertainty Sets for Steering Vector

• D′′2 =

{
G2 ∈M2

∣∣∣∣∣
PG2

(a ∈ Z2) = 1

(EG2
[a]− ā)HQ−1(EG2

[a]− ā) ≤ γ1
EG2

[(a− ā)(a− ā)H ] ⪯ (1 + γ2)Σ̄

}
,

– The third constraint allows us to control how far the realization might be
from ā on average.

– Accordingly, the DRO-based RAB problem can be recast into

minimize ρ1∥X∥F + ρ2∥wwH +X∥F − tr(XS0)

subject to − x+ 2ℜ(āHx)− tr(Z(Σ̄− āāH)) ≥ 1 + 2
√
γ1∥Q

1
2x∥+ γ2tr(Σ̄Z),[

wwH +Z −Zā− x

−āHZ − xH x

]
⪰

τ1

[
I 0
0 −(1 + ∆)N

]
+ τ2

[
−I 0
0 (1−∆)N

]
,

τ1, τ2 ≤ 0.

w,x ∈ CN , X ∈ HN , Z ⪰ 0, x ∈ R.
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Alternative Uncertainty Set for INC Matrix

• D′1 =
{
G1 ∈M1

∣∣∣∣∣
PG1

(Ri+n ∈ Z1) = 1
EG1

[Ri+n] ⪰ (1− ρ1)(S0 + ϵI)
EG1

[Ri+n] ⪯ (1 + ρ1)(S0 + ϵI)

}
,

– the second and third constraints ensure that the expected value of the
INC matrix remains in close proximity to a diagonally loaded version of its
empirical mean, with the allowable deviation regulated by ρ1.

– It enhances robustness against the influence of the desired signal present
in the training data.

– Accordingly, the DRO-based RAB problem can be recast into

minimize ρ2∥wwH +X −X′∥F + tr(((1 + ρ1)X
′ − (1− ρ1)X)(S0 + ϵI))

subject to x+ ℜ(aH0 x)− γ1∥x∥ − tr(Z((1 + γ2)Σ+ a0a
H
0 )) ≥ 1,[

wwH +Z −x
2

−xH

2 −x

]
⪰ τ1

[
I 0
0 −(1 + ∆)N

]
+ τ2

[
−I 0
0 (1−∆)N

]
,

τ1, τ2 ≤ 0,

w,x ∈ CN , , X,X′,Z ⪰ 0, x, τ1, τ2 ∈ R.
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Simulation Setup

• Scenario: A uniform linear array with N = 10 sensors spaced half a wavelength;
– The angular sector of interest Θ = [0◦, 10◦];
– The actual signal direction θ = 5◦;
– The presumed direction θ0 = 1◦;
– Two interferers located in the directions of θ1 = −5◦ and θ2 = 15◦ with

the same interference-to-noise ratio (INR) of 30 dB;
– The array noise: a spatially and temporally white Gaussian vector with zero

mean and covariance I ;
– Wavefront distortion: The phase increments are independent Gaussian va-

riables each with zero mean and standard deviation 0.02;
– S0 is the sampling covariance matrix, unless otherwise stated;
– a0 =

1
L

∑L
l=1 d(θl) and Σ = 1

L

∑L
l=1(d(θl)− a0)(d(θl)− a0)

H ;
– Parameters ρ1 = 0.001∥S0∥F , ρ2 = 1.1tr(S0), and α = 103.

• All results are averaged over 200 simulation runs.
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Simulation Result: Average Array Output SINR versus SNR
• Number of snapshots T = 100.
• Proposed DRO-based beamformer with D1 and D2 outperforms [Li’18]∗, [Zhang’15]†.
• Performance drops at high SNR due to poor INC matrix approximation.
• Reconstructed INC matrix ([Gu’12]‡) improves robustness.
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∗ B. Li, Y. Rong, J. Sun and K. L. Teo, “A distributionally robust minimum variance beamformer design,” IEEE Signal Processing

Letters, vol. 25, no. 1, pp. 105–109, Jan. 2018.

† X. Zhang, Y. Li, N. Ge and J. Lu, “Robust minimum variance beamforming under distributional uncertainty,” in Proc. IEEE Int.

Conf. Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia, Apr. 2015, pp. 2514–2518.

‡ Y. Gu and A. Leshem, “Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector

estimation,” IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3881–3885, July 2012.
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Simulation Result: Average Array Output SINR versus SNR
• Number of snapshots T = 10.
• Exact knowledge of the actual INC matrix

– No distortion from desired signal in covariance.
– Avoids performance degradation at high SNR.

• Proposed DRO-based beamformer
– Consistently superior SINR across the full SNR range.
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Perfect INC knowledge eliminates high-SNR performance loss.

Aalto University
Department of Information and Communications Engineering 79/130



,

Simulation Result: Effect of Different Uncertainty Sets
• Average Array Output SINR versus SNR. Number of snapshots T = 100.
• High-SNR performance

– D′1 improves SINR at high SNR.
– Incorporates diagonal loading constraints. Keeps expected INC matrix close to a diago-

nally loaded empirical mean.
– Effectively mitigates influence of desired signal in training samples.
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Smartly designed uncertainty sets enhance robustness against signal
contamination.
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Simulation Result: SINR vs. Number of Snapshots
• Fixed SNR at 10 dB. Varying number of snapshots.
• Proposed beamformer outperforms beamformer in [Zhang’15] and [Li’18] across all snapshot

counts.
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Simulation Result: Parameter Sensitivity
• Beamformer maintains consistent SINR across a wide range of values for all four parameters.
• Demonstrates robustness and parameter insensitivity.
• Exact parameter tuning is not critical.
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Simulation Result: High-Resolution Scenario (N = 32 sensors)
• Scenario setup

– Desired signal direction: 5◦, presumed signal direction: θ0 = 4◦,
desired sector [θ0 − 2◦, θ0 + 2◦]. Interferers at 0◦ and 8◦.

– DRO-based beamformer uses reconstructed INC matrix [Gu’12].
• DRO-based beamformer performs comparable to beamformer in [Gu’12].
• Beamformer in [Gu’12] is sensitive to the presumed direction.
• Proposed DRO-based beamformer does not rely on the presumed direction. (a0 is estimated

as the mean of steering vectors generated from random directions within the desired sector)
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Summary of Moment-based DRO-based RAB

• We have studied the DRO-based RAB problem of maximizing the worst-case
SINR over the distributional sets for random INC matrix and desired signal
steering vector.
• The RAB problem is transformed into a nonconvex QMI problem via the strong

duality theorem of linear conic programming.
• The QMI problem is tackled by iteratively solving a sequence of LMI relaxation

problems with a penalty term on the rank-one constraint.
• The sequence of the optimal values for the LMI relaxation problems is descent,

which means that the algorithm always outputs a rank-one solution when the
penalty weight is large enough.
• Numerical results show that the proposed beamformer outperforms the other

two existing beamformers in terms of the array output SINR.

Aalto University
Department of Information and Communications Engineering 84/130



,

Wasserstein DRO

• Drawbacks of moment-based DRO
– ignores higher-order distributional structure
– Cannot adapt to geometry of actual data → robustness is limited

• Wasserstein DRO
– Uncertainty sets defined via Wasserstein distance from empirical distribu-

tion
– Geometrically interpretable, data-driven formulation
– Avoids restrictive moment assumptions
– Define uncertainty set of distributions as a Wasserstein ball:

Bϵ(P̂ ) =
{
P ∈M(X ) : Wα(P, P̂ ) ≤ ϵ

}
.
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Wasserstein Ball

Bϵ(P̂ ) =
{
P ∈M(X ) : Wα(P, P̂ ) ≤ ϵ

}
,

where Wα = Wasserstein distance, P̂ = empirical distribution.
• Wasserstein metric measures minimal transport cost to transform one distri-

bution into another

Wα(P,Q) =

(
inf

γ∈Γ(P,Q)

∫

X×X
dα(x,y) dγ(x,y)

)1/α

,

• Advantages:
– Captures full distributional shape, not only moments
– Naturally data-driven (uncertainty ball around empirical distribution)
– Radius ϵ controls conservativeness
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Wasserstein DRO-based RAB

• Assuming distributional uncertainty for the steering vector, Wasserstein DRO-
based RAB problem in real domain is represented by

min
wr

wT
r R̂rwr s.t. inf

P∈Bϵ(P̂ )
Ear∼P [w

T
r ar] ≥ 1,

• Using the strong duality property in Wasserstein DRO, the dual formulation
corresponding to the constraint can be expressed as

min
λ≥0

{
λϵα + E

âr∼P̂M

[
sup

ar∈R2N

{
−wT

r ar − λdα(âr,ar)
}]}

.

• Let α = 1 and the metric d be the norm distance function. The dual formu-
lation can be simplified as

min
λ≥∥wr∥∗

{
λϵ+ E

âr∼P̂M

[
−wT

r âr

]}
= ϵ ∥wr∥∗ −wT

r ār,
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Main Results (Norm-based Cost)

• If Wasserstein distance uses ℓ2 norm as transport cost →
– DRO formulation reduces to second-order cone program (SOCP)
– Equivalent to worst-case norm-bounded RAB

min
wr

wT
r R̂rwr s.t. ϵ ∥wr∥2 ≤ wT

r ār − 1.

• Interpretation:
– Wasserstein radius ≡ bound on possible steering vector error norm
– Provides geometric interpretation of norm-constrained uncertainty sets

Established worst-case norm-bounded RAB solution justified from DRO.
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Main Results (Quadratic Cost)

• If Wasserstein metric uses quadratic cost (Mahalanobis-like metric) →

d(x,y) =
1

2
(x− y)TΛ(x− y),

– DRO formulation recovers ellipsoidal uncertainty sets
– Equivalent to ellipsoidal RAB in prior literature

min
wr

wT
r R̂rwr s.t.

√
2ϵ
∥∥∥Λ

−1
2 wr

∥∥∥
2
≤ wT

r ār − 1,

– Specifically, the ellipsoidal uncertainty set takes the form

E(ār, 2ϵΛ−1) =
{
ar

∣∣∣ (ar − ār)
TΛ(ar − ār) ≤ 2ϵ

}
,

– Ellipsoidal sets ↔ Chance-constrained formulations (under Gaussianity)
This observation underscores a fundamental connection between the metric em-
ployed in the Wasserstein DRO-based RAB formulation and the structure of the
uncertainty set in deterministic robust models.
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Wasserstein DRO for INC Matrix Uncertainty
• The Wasserstein DRO-based formulation corresponding to the objective is

given by
min
wr

sup
Q∈Bρ(Q̂)

ERr∼Q[w
T
r Rrwr],

• we adopt the Frobenius norm as the underlying metric, leading to the following
dual formulation for the inner supremum:

min
λ≥0

{
λρ+ E

Řr∼Q̂

[
sup
Rr

{
wT

r Rrwr − λ∥Rr − Řr∥F
}]}

.

• The dual problem simplifies to

min
λ≥∥wr∥22

{
λρ+ E

Řr∼Q̂
[
wT

r Řrwr

]}
= wT

r R̂rwr + ρ∥wr∥22.

• Therefore, the optimization problem is equivalent to

min
wr

{
wT

r R̂rwr + ρ∥wr∥22 = wT
r (R̂r + ρI)wr

}
.

This result suggests that introducing the Wasserstein uncertainty in the INC ma-
trix induces a regularization effect, effectively approximating the INC matrix as a
diagonally loaded version of the sample data covariance matrix.
Aalto University
Department of Information and Communications Engineering 90/130



,

Summary of Wasserstein DRO-based RAB

• Introduced a novel Wasserstein DRO-based RAB formulation ensuring robust-
ness against distributional uncertainties in beamforming
• Unlike conventional DRO-RAB methods (moment-based), our approach uses

the 1-Wasserstein metric to construct uncertainty sets
• Provides a comprehensive representation of uncertainty beyond first- and

second-order moments
• Demonstrated that the choice of Wasserstein cost metric fundamentally shapes

the resulting RAB formulation
• Revealed a deep connection between distributional and deterministic robust-

ness
• Established Wasserstein DRO as a unifying framework, where deterministic

robust formulations emerge as special cases under appropriate cost functions
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Part VI: Learning to Optimize
(L2O) Beamforming and Other

Applications
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Introduction to L2O

Fig. Deployment procedures of classic or learned optimizers [CHL22]. 

[CHL22]  Chen T, Chen X, Chen W, Heaton H, Liu J, Wang Z, Yin W. Learning to optimize: A primer and a benchmark. Journal of 
Machine Learning Research. 2022;23(189):1-59.

§ Classic Optimizer

• manually designed
• few or no tuning parameters

§ Learned Optimizer
• train over a set of similar optimizees
• solve unseen optimizees from the same distribution

1

Classic Optimizer vs Learned Optimizer 

Chen, Chen, Chen, Heaton, Liu, Wang and Yin

Selected
Optimizer

Online

Classic
Optimizers

New Optimizees

Inference
Deploy

(a) Classic Optimizer

Learned
Optimizer

New Optmizees

Online

Learnable 
Optimizer

 Update

Training 
Optmizees

Training Dynamics

Update

Offline

Inference

(b) Learned Optimizer by L2O

Figure 1: Deployment procedures of classic or learned optimizers, both consisting of an
o✏ine design phase and an online deployment phase. (a) Classic optimizers are
manually designed; they usually have few or no tuning parameters; (b) Learned
optimizers are trained in an L2O framework over a set of similar optimizees
(called a task distribution) and designed to solve unseen optimizees from the
same distribution.

a completely new method. This paper provides a timely and up-to-date review of the rapidly
growing body of L2O results, with a focus on continuous optimization.

Classic optimization methods are built upon components that are basic methods—such
as gradient descent, conjugate gradient, Newton steps, Simplex basis update, and stochastic
sampling—in a theoretically justified manner. Most conventional optimization methods
can be written in a few lines, and their theories guarantee their performance. To solve an
optimization problem in practice, we can select a method that supports the problem type
at hand and expect the method to return a solution no worse than its guarantee.

L2O is an alternative paradigm that develops an optimization method by training, i.e.,
learning from its performance on sample problems. The method may lack a solid theoret-
ical basis but improves its performance during the training process. The training process
often occurs o✏ine and is time-consuming. However, the online application of the method
is (aimed to be) time-saving. When it comes to problems where the target solutions are
di�cult to obtain, such as nonconvex optimization and inverse-problem applications, the
solution of a well-trained L2O method can have better qualities than those of classic meth-
ods. Let us call the optimization method (either hand-engineered or trained by L2O) the
optimizer and call the optimization problem solvable by the method the optimizee.2 Fig-
ure 1 compares classic optimizers and L2O optimizers and illustrates how they are applied
to optimizees (yellow boxes).

In many optimization applications, the task is to repeatedly perform a certain type of
optimization over a specific distribution of data. Each time, the input data that define the
optimization are new but similar to the past. We say such an application has a narrow
task distribution. Conventional optimizers may be tuned for task distribution, but the
underlying methods are designed for a theory-specified class of optimization problems. We
often describe a conventional optimizer by the formulation (and its math properties), not

2. Optimization problem and optimizee are equivalent terms in this paper. We will use optimizee by default
in the remaining of this paper but sometimes use them interchangeably depending on the context when
necessary. Please also refer to Section 1.2 for more details of notations and terminology.

2
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Introduction to L2O

Fig. A conventional neural network architecture [MLE21]. 

• fast inference

• slow training

Model-free Neural Networks (NNs)

• fully data driven

[MLE21] V. Monga, Y. Li and Y. C. Eldar, "Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image 
Processing," IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18-44, 2021.

2
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Introduction to L2O

Model-based NNs -- Plug-and-Play (PnP)

Fig. Illustration of (a) ADMM algorithm; (b) PnP ADMM network [SWC23].

[SWC23] N. Shlezinger, J. Whang, Y. C. Eldar and A. G. Dimakis, "Model-Based Deep Learning," Proceedings of the IEEE, vol. 111, 
no. 5, pp. 465-499, 2023.

• examples:

ü algorithm unrolling

• modify existing 
optimization algorithms

ü plug-and-play

3
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Introduction to L2O

[MLE21] V. Monga, Y. Li and Y. C. Eldar, "Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing," 
IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18-44, 2021.

4

Model-based NNs -- Algorithm Unrolling  (AU) 

Introduction System Model PGDA Unrolled PGDA Numerical Evaluation Conclusion References

Introduction to Algorithm Unrolling (AU)

Input h1
(
·; θ1

)
h2

(
·; θ2

)
· · · OutputUnrollingh(·; θ)

End-to-end Training

Interpretable Layers

Output

Input

Figure from [MLE21]

Procedure of AU
• pick an iterative algorithm
• unroll it to a neural network (NN)
• select a set of NN parameters to learn

Advantages of AU
• (can) achieve better performance
• naturally inherit interpretability
• require fewer training data

3
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System model

§ Transmit signal

: analog beamforming matrix

: digital beamforming matrix for communications

: digital beamforming matrix for sensing

: communication data symbols satisfying

: radar waveforms satisfying 

• A dual-function radar-communication base station

     (     transmit antennas and receive antennas)

• single-antenna communication users

• point-like targets

• interferences

§ System composition

6

Fig. Illustration of the ISAC system [MWD24] . 

[MWD24] C. Meng, Z. Wei, D. Ma, W. Ni, L. Su and Z. Feng, "Multiobjective-Optimization-Based Transmit Beamforming for 
Multitarget and Multiuser MIMO-ISAC Systems," IEEE Internet of Things Journal, vol. 11, no. 18, pp. 29260-29274, 2024.

Aalto University
Department of Information and Communications Engineering 96/130



,

System model

§ Communication performance metric

Achievable sum-rate (SR) for      users: 

7

where the communication SINR for the      th user is: 

: noise power at     th user equipment

: communication channel from BS to the     th user
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System model

§ Sensing performance metric

Mutual information (MI) for     targets: 

8

At BS, the    th target’s echo signal is filtered by a receive combiner                   .

where the sensing SINR for the    th target is: 

is the radar round-trip channel.

: direction of the target

: propagation reflection coefficient
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System model

§ Uncertainty model

: presumed receive steering vector

: steering vector error, bounded by     , i.e., 

§ Problem formulation (maximize the communication SR and worst-case sensing MI)

9

where      denotes the weight factor, and      is the power budget of BS. 
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Projected Gradient Descent and Ascent (PGDA)

§ PGD-based minimization over the uncertainty set 

•  Gradient step

• Projection step

10

where      is the step size for     . 
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Projected Gradient Descent and Ascent (PGDA)

§ PGA-based maximization over  

• Gradient step

• Projection step

11

where               and      are the step sizes for              and      . 

and
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Unrolled PGDA

§ Aim
Use algorithm unrolling to tune step sizes in PGDA algorithm based on data

§ Trainable parameters

with                                                        representing the step size vector for the    th iteration

§ Loss function [LS23]

§ Tune the hyperparameter

12

• weighted sum of losses

•      : data set containing communication and sensing channel realizations
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Numerical Evaluation

§ System Parameters

• Dataset sizes for training and testing: 1000 and 100

• Stochastic gradient descent (SGD) optimizer with learning rate of 0.01

• Fixed step size for PGDA and initial step size for unrolled PGDA: 0.1

•  

13

Noise variance                                  , power budget  •  

weight factor •  

§ Training settings

• Each element of channel     , reflection coefficients     , and      are drawn from zero-mean 

complex Gaussian distribution with variances of 0 dB, 2 dB, and 3dB, respectively.
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Numerical Evaluation

§ Performance evaluation

Fig. The objective value versus the number of iterations.

• The benchmark PGDA may easily get trapped in

local optima when solving non-convex problem.

• The unrolled PGDA is capable of learning the

update rules from data, allowing it to fit the

objective function and escape local optima

more effectively than the benchmark.

14
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Fig. 1. The objective function value versus the number of iterations.
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Fig. 2. The sensing MI versus εr .

PGDA consistently outperforms that achieved by the bench-
mark PGDA with fixed step sizes. The results demonstrate the
advantages of the algorithm unrolling technique in facilitating
the optimization of hybrid transmit beamformer and receive
combiner. The reason why the proposed unrolled PGDA
algorithm outperforms the benchmark PGDA algorithm is that
the benchmark PGDA algorithm may easily get trapped in
local optima when solving non-convex problem (8). However,
the proposed unrolled PGDA algorithm is capable of learning
the update rules from data, allowing it to fit the objective
function. This capacity allows the unrolled algorithm to escape
local optima more effectively than the benchmark.

Next, the sensing MI versus the error bound values varying

from 0.02 to 0.10 is evaluated. As it is shown in Fig. 2,
as the error bound value increases, the sensing MI curve
achieved by the unrolled PGDA algorithm has lower slope
than that corresponding to the benchmark PGDA algorithm.
This demonstrates that the unrolled PGDA algorithm is less
sensitive than the benchmark PGDA algorithm in the face of
increased level of uncertainties, which further proves that the
unrolled PGDA is more robust than the benchmark PGDA.

Lastly, we evaluate the running time of the proposed PGDA
algorithms on MacBook Pro M3 with 16 GB memory, both
using 15 iterations. The unrolled PGDA took 28.2 ms, while
the benchmark PGDA took 28.3 ms, demonstrating compara-
ble complexity.

VI. CONCLUSION

The robust hybrid beamforming design for the ISAC system
that maximizes the communication SR and the worst-case
sensing MI under the bounded uncertainty in sensing reception
has been proposed. To solve the correspoding optimization
problem, we developed a benchmark scheme using the PGDA
algorithm. Moreover, by incorporating algorithm unrolling, we
also developed an unrolled PGDA algorithm, where step sizes
are learned from training data. Numerical results have shown
the unrolled PGDA’s superior convergence and performance
over the benchmark one. Additionally, the uncertainties of
communication channel and transmit steering vector will be
explored in our future work.

VII. APPENDIX

We omit the detailed derivations due to the space
limitation. The gradient of γs with respect to δr is given
by (14), where F̄d = FdF

H
d , Wt = wtw

H
t . Also, the

gradients of γ = εγc + (1 − ε)γs with respect to Fa,
Fd, and wt are given by (15), (16), and (17), where
H̄m = hmhH

m, F̄′
d = Fd,"mFH

d,"m, and matrices Gt,
G′

t, T, and T′ are given by (18) and (19), respectively.
Here, Fd,"m is obtained by replacing the mth column
of Fd by an all-zero vector. tr(·) denotes the trace.

∂γs

∂δ∗
r (θp)

=

T∑

t=1

(
α∗
pWtH

s
pFaF̄dF

H
a a

∗
t (θp)

vt + rt + ct + σ2
t ‖wt‖22

−
α∗
p "=tWtH

s
p "=tFaF̄dF

H
a a

∗
t (θp "=t)

rt + ct + σ2
t ‖wt‖22

)
, ∂γs

∂δ∗
r (θj)

=

T∑

t=1

(
α∗
jWtH

s
jFaF̄dF

H
a a

∗
t (θj)

vt + rt + ct + σ2
t ‖wt‖22

−
α∗
jWtH

s
jFaF̄dF

H
a a

∗
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Numerical Evaluation

§ Robustness evaluation

Fig. The sensing MI versus     .

• The sensing MI curve achieved by the unrolled PGDA

algorithm has lower slope than that corresponding to the

benchmark PGDA algorithm.

• The unrolled PGDA algorithm is less sensitive than the

benchmark PGDA algorithm in the face of increased level of

uncertainties.

• The unrolled PGDA is more robust than the benchmark PGDA.
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Fig. 1. The objective function value versus the number of iterations.
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Fig. 2. The sensing MI versus εr .

PGDA consistently outperforms that achieved by the bench-
mark PGDA with fixed step sizes. The results demonstrate the
advantages of the algorithm unrolling technique in facilitating
the optimization of hybrid transmit beamformer and receive
combiner. The reason why the proposed unrolled PGDA
algorithm outperforms the benchmark PGDA algorithm is that
the benchmark PGDA algorithm may easily get trapped in
local optima when solving non-convex problem (8). However,
the proposed unrolled PGDA algorithm is capable of learning
the update rules from data, allowing it to fit the objective
function. This capacity allows the unrolled algorithm to escape
local optima more effectively than the benchmark.

Next, the sensing MI versus the error bound values varying

from 0.02 to 0.10 is evaluated. As it is shown in Fig. 2,
as the error bound value increases, the sensing MI curve
achieved by the unrolled PGDA algorithm has lower slope
than that corresponding to the benchmark PGDA algorithm.
This demonstrates that the unrolled PGDA algorithm is less
sensitive than the benchmark PGDA algorithm in the face of
increased level of uncertainties, which further proves that the
unrolled PGDA is more robust than the benchmark PGDA.

Lastly, we evaluate the running time of the proposed PGDA
algorithms on MacBook Pro M3 with 16 GB memory, both
using 15 iterations. The unrolled PGDA took 28.2 ms, while
the benchmark PGDA took 28.3 ms, demonstrating compara-
ble complexity.

VI. CONCLUSION

The robust hybrid beamforming design for the ISAC system
that maximizes the communication SR and the worst-case
sensing MI under the bounded uncertainty in sensing reception
has been proposed. To solve the correspoding optimization
problem, we developed a benchmark scheme using the PGDA
algorithm. Moreover, by incorporating algorithm unrolling, we
also developed an unrolled PGDA algorithm, where step sizes
are learned from training data. Numerical results have shown
the unrolled PGDA’s superior convergence and performance
over the benchmark one. Additionally, the uncertainties of
communication channel and transmit steering vector will be
explored in our future work.

VII. APPENDIX

We omit the detailed derivations due to the space
limitation. The gradient of γs with respect to δr is given
by (14), where F̄d = FdF

H
d , Wt = wtw

H
t . Also, the

gradients of γ = εγc + (1 − ε)γs with respect to Fa,
Fd, and wt are given by (15), (16), and (17), where
H̄m = hmhH

m, F̄′
d = Fd,"mFH

d,"m, and matrices Gt,
G′

t, T, and T′ are given by (18) and (19), respectively.
Here, Fd,"m is obtained by replacing the mth column
of Fd by an all-zero vector. tr(·) denotes the trace.
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Part VII: General Learning-Based
Beamforming
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Deep Learning Applications in the Physical Layer

DL can be used for various PHY applications. 

Elbir, Ahmet M. and Kumar Vijay Mishra. "Cognitive Learning-Aided Multi-Antenna Communications.’’, IEEE Wireless Communications.
Elbir, Ahmet M., et al. "Federated Learning for Physical Layer Design.", IEEE Communications Magazine, vol. 59, no. 11, pp. 81-87, 2021
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Motivation for Learning in Beamforming

 Robust performance against the 
corruptions/imperfections

 Easily updated for incoming future data, adapt in 
response to the environmental changes

 Lower post-training computational complexity.

Elbir, Ahmet M. and Kumar Vijay Mishra. "Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning 
Networks." IEEE Trans. Wireless Commun., vol. 19, no. 3, 5 Dec. 2019
Elbir, Ahmet M., et al. "Federated Learning for Physical Layer Design.", IEEE Communications Magazine, vol. 59, no. 11, pp. 81-87, 2021
Heath, Robert W., et al. "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems." IEEE J. Sel. Top. Signal Process., vol. 10, 
no. 3, 8 Feb. 2016
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Motivation for DL in Hybrid Beamforming

 Therefore, to reduce the number of digital RF components, hybrid analog and baseband beamforming 
architectures have been introduced, wherein a small number of digital beamformers are employed.

 Hybrid beamforming (HB) is an essential tool for inexpensive and yet effective transmission for mm-Wave 
massive MIMO.

Elbir, Ahmet M. and Kumar Vijay Mishra. "Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning 
Networks." IEEE Trans. Wireless Commun., vol. 19, no. 3, 5 Dec. 2019
Elbir, Ahmet M., et al. "Federated Learning for Physical Layer Design.", IEEE Communications Magazine, vol. 59, no. 11, pp. 81-87, 2021
Elbir, Ahmet M., et al. "Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques." IEEE 
Signal Process. Mag., vol. 40, no. 4, 6 June 2023
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Learning Schemes

Unsupervised Learning  Reinforcement Learning

Elbir, Ahmet M., et al. "A Family of Deep Learning Architectures for Channel Estimation and Hybrid Beamforming in Multi-Carrier mm-Wave 
Massive MIMO’’, IEEE Transactions on Cognitive Communications and Networking, in press
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Learning Schemes

Reinforcement Learning

Hojatian, Hamed, et al. "Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming." arXiv, 30 June 2020
Gao, Jiabao, et al. "Unsupervised Learning for Passive Beamforming." IEEE Commun. Lett., vol. 24, no. 5, 10 Jan. 2020
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Learning Schemes

Huang, Chongwen, et al. "Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning." 
arXiv, 24 Feb. 2020
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Learning Schemes

Elbir, Ahmet M. and Sinem Coleri. "Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO." IEEE Commun. Lett., vol. 
24, no. 12, 25 Aug. 2020
Elbir, Ahmet M., et al.  Federated Dropout Learning for Hybrid Beamforming with Spatial Path Index Modulation in Multi-User Mmwave-
Mimo Systems. ICASSP, 6 June 2021
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Learning Schemes

Elbir, Ahmet M. and Sinem Coleri. "Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO." IEEE Commun. Lett., vol. 
24, no. 12, 25 Aug. 2020
Elbir, Ahmet M., et al.  Federated Dropout Learning for Hybrid Beamforming with Spatial Path Index Modulation in Multi-User Mmwave-
Mimo Systems. ICASSP, 6 June 2021
Elbir, Ahmet M. and Sinem Coleri. "Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO.’’, IEEE 
Transactions on Wireless Communications, in press
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Learning Schemes

Elbir, Ahmet M., et al. "A Family of Deep Learning Architectures for Channel Estimation and Hybrid Beamforming in Multi-Carrier mm-
Wave Massive MIMO.’’ IEEE Transactions on Cognitive Communications and Networking, in press
Elbir, Ahmet M. "A Deep Learning Framework for Hybrid Beamforming Without Instantaneous CSI Feedback." IEEE Trans. Veh. Technol., 
vol. 69, no. 10, 18 Aug. 2020
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Learning Schemes

Elbir, Ahmet M. and Kumar Vijay Mishra. "Sparse Array Selection Across Arbitrary Sensor Geometries With Deep Transfer Learning." IEEE 
Trans. Cognit. Commun. Networking, vol. 7, no. 1, 4 June 2020
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Learning Model Types

 Generative Adversarial Network (GAN)

Huang, Hongji, et al. "Deep Learning for Super-Resolution 
Channel Estimation and DOA Estimation Based Massive 
MIMO System." IEEE Trans. Veh. Technol., vol. 67, no. 9, 29 
June 2018

 Multi Layer Perceptron (MLP)  Convolutional Neural Network (CNN)

 Convolutional-only Neural Network (CoNN)

Dong, Peihao, et al. "Deep CNN-Based Channel Estimation for mmWave Massive 
MIMO Systems." IEEE J. Sel. Top. Signal Process., vol. 13, no. 5, 1 July 2019

Balevi, Eren and Jeffrey G. Andrews. "Unfolded Hybrid Beamforming with 
GAN Compressed Ultra-Low Feedback Overhead." IEEE Trans. Wireless 
Commun., 2 July 2021

Elbir, Ahmet M. and Kumar Vijay Mishra. "Joint Antenna Selection and Hybrid 
Beamformer Design Using Unquantized and Quantized Deep Learning 
Networks." IEEE Trans. Wireless Commun., vol. 19, no. 3, 5 Dec. 2019
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Data Collection/Generation andTraining

Elbir, Ahmet M. and Sinem Coleri. "Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO.’’, IEEE Transactions 
on Wireless Communications, in press
Elbir, Ahmet M. and Anastasios K. Papazafeiropoulos. "Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning 
Approach." IEEE Trans. Veh. Technol., vol. 69, no. 1, 4 Nov. 2019
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Data Collection/Generation andTraining

Elbir, Ahmet M., et al. "Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming." , IEEE 
Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1468-1483, Nov. 2021
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Implementation in MATLAB

Elbir, Ahmet M. and Sinem Coleri. "Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO." , IEEE Transactions
on Wireless Communications, in press
Elbir, Ahmet M. and Anastasios K. Papazafeiropoulos. "Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning 
Approach." IEEE Trans. Veh. Technol., vol. 69, no. 1, 4 Nov. 2019
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Implementation in MATLAB

Elbir, Ahmet M. "CNN-Based Precoder and Combiner Design in mmWave MIMO Systems." IEEE Commun. Lett., vol. 23, no. 7, 9 May. 2019
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Implementation in MATLAB

Elbir, Ahmet M. "CNN-Based Precoder and Combiner Design in mmWave MIMO Systems." IEEE Commun. Lett., vol. 23, no. 7, 9 May. 2019
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Implementation in MATLAB

Elbir, Ahmet M. "CNN-Based Precoder and Combiner Design in mmWave MIMO Systems." IEEE Commun. Lett., vol. 23, no. 7, 9 May. 2019
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Implementation in MATLAB

Elbir, Ahmet M. "CNN-Based Precoder and Combiner Design in mmWave MIMO Systems." IEEE Commun. Lett., vol. 23, no. 7, 9 May. 2019
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Implementation in MATLAB

Useful Links:
 LTE Downlink Channel Estimation and Equalization: https://www.mathworks.com/help/lte/ug/lte-downlink-channel-estimation-

and-equalization.html
 802.11p Packet Error Rate Simulation for a Vehicular Channel: https://www.mathworks.com/help/wlan/ug/802-11p-packet-error-

rate-simulation-for-a-vehicular-channel.html
 Train CNN with Two inputs: https://www.mathworks.com/matlabcentral/fileexchange/74760-image-classification-using-cnn-with-

multi-input-cnn
 Reinforcement Learning in MATLAB: https://www.mathworks.com/help/reinforcement-

learning/index.html?searchHighlight=reinforcement%20learning&s_tid=srchtitle_reinforcement%20learning_1
 Use parfeval to Train Multiple Deep Learning Networks: https://www.mathworks.com/help/parallel-computing/use-parfeval-to-

train-multiple-deep-learning-networks.html
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Implementation in MATLAB

Useful Links:

 DeepMIMO: A Generic Deep Learning Dataset: https://www.deepmimo.net/index.html
 DeepSense6g: A Large-Scale Real-World Multi-Modal Sensing and Communication Dataset for 6G 

Deep Learning Research: https://deepsense6g.net/
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Implementation in MATLAB

Useful Links:

 Federated Learning in Python: https://towardsdatascience.com/federated-learning-a-step-by-step-
implementation-in-tensorflow-aac568283399

 Federated Learning in MATLAB: https://www.mathworks.com/help/deeplearning/ug/train-network-
using-federated-learning.html
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Hybrid Beamforming via Deep Learning
(Joint Radar-Communications)

Major Challanges in THz Hybrid Beamforming :
• High path loss: LoS-dominant with multiple NLoS channel
• Ultra-massive number of antennas: Group-of-subarrays (GoSA)
• Complexity: Deep-learning-based solutions

Elbir, Ahmet M., et al. "Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming.’’, IEEE 
Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1468-1483, Nov. 2021

Fully-connected Array-of-subarrays (AoSA) Group-of-subarrays (GoSA)

Number of
phase shifters: 
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Summary and Emerging Techniques
• Beamforming has a rich research heritage spanning several decades
• Beamforming in other applications: ultrasound, quantum, acoustics, synthetic apertures
• mmWave vs THz, intelligent surfaces, near-field, joint radar-comms
• Learning techniques offer a very interesting future outlook
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Lessons and Future
• Advances in robust optimization are quite important! So, advan-

cing math for robust optimization is of high significance.
• Optimization algorithms can be mapped relatively straightforward-

ly to network architectures that can be learned (L2O). Powerful
tool to find better solutions, but we can do better in terms of
computational complexity.
• Solutions for complex beamforming problems follow the same ba-

sic principles, but face challenges that can be efficiently addressed
only by learning
• Robust optimization is still instrumental in the design of network

architectures, learning based solutions; deriving guarantees, which
are useful to know in practice
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