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x�k Vector containing UL data transmitted by user k of cell �.
ydl Received vector in downlink.
yul Received vector in uplink.

Greek Letters
α Complex path-gain
βj�k Large-scale path-loss coefficient between user (�, k) and BS

j.
γ Shrinkage coefficient.
δ Antenna spacing
δKr (·) Kronecker-delta function
θ Angle of arrival.
λ Wavelength of the radio signal.
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μ μ2 is the fraction of UL power allocated to pilot.
ξdl Weight for the interference power in the DL.
ξul Weight for the interference power in the UL.
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CN (μ,R) Complex Gaussian distribution with mean μ and covari-

ance matrix R.
∅ Null set.

17



List of Symbols

18



1. Introduction

1.1 Motivation

With limited quantity of available spectrum, improving the spectral effi-
ciency to cater to the exponentially increasing demand for data rates has
engaged communication and signal processing engineers for the past few
decades. With the advent of technologies such as the internet of things (IoT)
or machine-type communication (MTC), devices and appliances around
us which have predominantly been offline are now being equipped with
sensors that generate data. Making use of this data, in many cases, re-
quires it to be sent over a communication link to a central location, with
the nature of the sensed data specifying the communication requirements.
For instance, support for high-bandwidth high-reliability communication
with low latency is required in vehicle-to-vehicle (V2V) networks which
have been envisaged to enable future autonomous vehicles to share sensor
data [1, 2]. On the other extreme, we have massive MTC (mMTC) where
the focus is on a massive number of battery-operated devices transmitting
intermittently at low-data rates (of the order of 10 Kb/s) with uplink (UL)
dominant traffic [3]. Therefore, a strong and versatile communication back-
bone is required to address these diverse needs. Moreover, with the advent
of these devices, the demand for data rates is now machine-driven rather
than human-driven and therefore, the design of future communication
networks should take this into account.

The next-generation fifth generation (5G) communication standard is
being developed to address these diverse use-cases. One of the enabling
technologies of 5G is the use of antenna arrays with orders of magnitude
more elements than in conventional fourth generation (4G) long-term
evolution (LTE) transceivers (which have upto 8 antenna elements). The
large-scale antenna arrays offer significantly higher array and diversity
gains which result in higher spectral and UL energy efficiencies at low
computational complexities. Consequently, transceivers equipped with
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these large antenna arrays are expected to be a standard feature of 5G [4]
and beyond-5G cellular networks. Another important shift in 5G is the
push to use the relatively unused spectrum in millimeter-wave (mmWave)
frequencies. mmWave, with carrier frequencies in the range 30− 300 GHz,
offers large contiguous blocks of bandwidth of upwards of 1 GHz. For
instance, the IEEE 802.11ad wireless local area network (WLAN) standard
uses 1.88 GHz bandwidth at 60 GHz carrier frequency [5] while, in contrast,
4G LTE at sub-6 GHz frequency supports a bandwidth of only 20 MHz.

The gain in spectral efficiency promised by transceivers with large an-
tenna arrays is contingent on the availability of accurate channel-state
information (CSI) for beamforming. In practice, the CSI has to estimated at
the receiver from observations made when known pilot sequences are sent
from the transmitter. Estimating the channel in a multi-cell multi-user
environment with large antenna arrays and with a low overhead mandates
using time-division duplexing (TDD) and UL pilot reuse [6, 7, 8]. Pilot
reuse results in coherent interference in the UL and downlink (DL) and
is termed as pilot contamination [9, 6]. Pilot contamination also reduces
the coherent beamforming gain offered by the large antenna array. The
coherent interference and decreased beamforming gains negatively im-
pact the UL and DL throughputs [10], thereby diminishing the benefits of
large-scale antenna arrays.

Large-scale antenna arrays also impose unique constraints on transceiver
architecture, especially at mmWave frequencies. The mmWave channel
also exhibits very different propagation characteristics in comparison with
the sub-6 GHz channel. These two critical differences mandate novel signal
processing algorithms for mmWave communication links.

1.2 Research Objectives

In this thesis, we consider sub-6 GHz massive multi-user (MU)-multiple-
input multiple-output (MIMO) and mmWave MIMO transceivers. The first
objective of this thesis is to develop methods for avoiding pilot contami-
nation by suitably modifying the nature of pilot transmission at the user
terminal.

The spatial covariance matrices (SCMs) of individual users at the
base station (BS) are useful for decontaminating the channel estimates
[11, 12, 13]. These SCMs have to be estimated at the BS from observations
of the individual user channels. However, due to pilot contamination, ob-
servations of individual user channels are contaminated with the channel
vectors of users in neighboring cells which share the same pilot, and using
these contaminated observations directly will result in the estimates of the
SCMs also becoming contaminated. Therefore, the problem of estimating
the individual SCMs in the presence of pilot contamination is challenging.
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The second objective of this thesis is to develop pilot structures and algo-
rithms to obtain contamination-free estimates of the individual user SCMs
at the BS in the presence of pilot contamination.

mmWave transceivers use large antenna arrays and generate narrow
beams to compensate for the increased path-loss at mmWave frequencies.
These narrow beams render the mmWave communication link sensitive to
user mobility since the communication link is susceptible to changes in the
angles of departure and arrival of the channel paths at the transmitter and
receiver. Furthermore, mmWave communication links are also sensitive to
blockages because of the higher penetration losses at mmWave frequen-
cies. Consequently, the time-varying mmWave channel has to be tracked
at both ends of the communication link in order to maintain sufficient
signal-to-noise ratio (SNR). Developing algorithms for mmWave channel
tracking is further complicated by the hardware constraints imposed on
the transceiver architecture. Therefore, the third objective of this thesis
is to develop algorithms to track changes in the mmWave channel with a
low overhead while satisfying the hardware constraints on the transceiver
architecture.

1.3 Contributions

The main contributions of this thesis are described as follows

1. We have proposed using superimposed pilots (SPs) to avoid pilot con-
tamination for estimating the channel in massive MU-MIMO. We have
also proposed variations of SP such as staggered pilots and the hybrid
system to obtain higher throughputs by reducing the inter and intra-cell
interference in SP. This contribution is summarized in Chapter 3.

2. We have proposed a novel pilot structure and algorithm for estimating
asymptotically contamination-free individual user SCMs in the presence
of pilot contamination. The proposed method has the benefit of not
requiring UL synchronization between users in the different cells. This
contribution is summarized in Chapter 4.

3. We have proposed two semi-blind methods for channel tracking in point-
to-point mmWave MIMO transceivers. In the first method, the trans-
mitter transmits pilots in the null-space of the channel matrix and data
in its signal space. The receiver then estimates the data and the time-
variations in the channel jointly. In the second method, we consider the
scenario in which the angles of arrival (AoAs) of the paths change at
the receiver while the corresponding angles of departure (AoDs) at the
transmitter are fixed. We propose an algorithm to track the receiver-side

21



Introduction

channel for this scenario with a low overhead. Both these methods satisfy
the hardware constraints imposed by mmWave MIMO. This contribution
is summarized in Chapter 5.

1.4 Author’s Independent Contribution

The main results of this thesis have been published in two journal articles
and five conference papers. An additional journal article is currently in the
last stage of review (after revision). The author of this thesis is responsible
for the theoretical studies, algorithm development, and numerical results
in all the publications included in this dissertation (Publications I-VIII).
The co-authors helped with planning the research and in writing and
revising the publications.

1.5 Thesis Structure

This thesis is divided into an introduction part which summarizes the
contributions in Publications P.I - P.VIII, and a collection of the eight
original publications P.I - P.VIII. The attached publications include the
original theory, methods, and results that are presented in this dissertation.
The introductory part of this thesis is structured as follows. In Chapter 2,
we briefly recap the concepts of point-to-point MIMO and MU-MIMO,
introduce massive MIMO, and discuss its potential benefits. We then
describe some of the challenges in massive MIMO that are addressed in
this thesis. Methods for mitigating the effect of pilot contamination are
discussed in Chapter 3. SPs for massive MIMO along with its variants
are introduced in this chapter. In Chapter 4, methods for estimating the
individual user SCMs in massive MIMO are discussed. We also introduce
a novel pilot structure for estimating the SCM in the presence of pilot
contamination. Chapter 5 contains an overview of mmWave architectures
and channel estimation and precoding/combining algorithms. Methods for
channel tracking are also discussed in the chapter.
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2. Massive MIMO

MIMO technology has been a topic of interest for the past two decades
and MU-MIMO has made its way into standards such as 4G LTE and
IEEE 802.11 (WiFi). Massive MIMO is a variant of MU-MIMO with the
potential to offer significantly higher spectral and energy efficiencies at
low computational complexities, making it one of the enabling technologies
for 5G communication systems [4, 14, 15, 16].

Before we look at massive MIMO in further detail, we will briefly review
point-to-point and MU-MIMO technologies, discuss its limitations, and
describe how massive MIMO overcomes these limitations and what it has
to offer.

2.1 Point-to-Point MIMO

Point-to-point MIMO is an elementary version of a MIMO system in which
a BS with M antennas communicates with a user terminal with K anten-
nas, as shown in Fig. 2.1. Let H ∈ C

M×K be the channel in the UL. Then,
under the assumption of channel reciprocity, the received observations at
the BS and the user terminal in the UL and DL, respectively, are

yul =

√
Pul

K
Hs+ nul (2.1)

ydl =

√
Pdl

M
HTd+ ndl (2.2)

where Pul and Pdl are the powers with which symbols s ∈ C
K and d ∈ C

M

are transmitted in the UL and DL, respectively, and (·)T denotes the matrix
transpose. The vectors s and d are assumed to be such that E

{
‖s‖2

}
= K

and E
{
‖d‖2

}
= M , where E {·} is the expectation operator and ‖ · ‖ is the

�2 norm of a vector. The additive noise vectors nul and ndl are assumed to
be zero-mean and independent and identically distributed (i.i.d) complex
Gaussian random variables with unit variance. If the CSI is available only
at the receiver, which is the BS in the UL and the user terminal in the DL,
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Figure 2.1. Representation of a point-to-point MIMO communication link in (a) the UL;
(b) the DL.

the channel capacity in the UL and DL can then be obtained as [17]

Cul = log2

∣∣∣∣IK +
Pul

K
HHH

∣∣∣∣ = min{M,K}∑
k=1

log2

(
1 +

Pul

K
σ2
k

)
(2.3)

Cdl = log2

∣∣∣∣IM +
Pdl

M
HHH

∣∣∣∣ = min{M,K}∑
k=1

log2

(
1 +

Pdl

M
σ2
k

)
(2.4)

where σk is the kth singular value of H and (·)H denotes conjugate trans-
pose.

The channel capacities Cul and Cdl depend on the values of M and K

and the richness of the scattering environment. With rich scattering, the
channel coefficient at each antenna is uncorrelated, and consequently, the
communication link benefits from both an array and a spatial multiplexing
gain. The former increases with both M and K and improves the link
SNR, while the latter allows for a maximum of Ns � min {M,K} streams
to be transmitted in parallel. Increasing Ns when the channel can support
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these streams (such as with rich scattering) results in a capacity increase
through spatial multiplexing. In the other extreme, with limited scattering
and a rank-one channel, such as in line-of-sight (LOS) conditions, spatial
multiplexing is not possible and the communication link only benefits from
the array gain. Since the SNR, which is a function of the array gain, is
inside the logarithm, the amount of increase in the throughput diminishes
with increasing M .

In channel conditions that support multiple streams, exploiting this
feature requires increasing M and K, with the latter increasing the cost
and complexity of the user terminal since each antenna needs a dedicated
radio-frequency (RF) chain. The number of antennas K is also limited
by the size of the device since the antennas have to be separated by half
the wavelength in order to prevent undesirable grating lobes in the gener-
ated beams while ensuring that the channel coefficients between different
antennas are uncorrelated.

MU-MIMO overcomes some of the aforementioned limitations of point-
to-point MIMO, and is discussed in detail in Section 2.2.

2.2 Multi-User MIMO

In MU-MIMO, the K antennas in a point-to-point MIMO user terminal is
separated across K single-antenna terminals1 (as shown in Fig. 2.2). The
BS then communicates with the K terminals over the same time-frequency
resource. Denoting hk ∈ C

M as the channel between user k and the BS,
the received symbols in the UL can be written as

yul =
√
Pul

K∑
k=1

hksk + nul =
√
PulHs+ nul (2.5)

where H � [h1, . . . ,hK ] and s � [s1, . . . , sK ]T . The UL symbols sk are
normalized such that E

{
|sk|2

}
= 1. The received signal by user k in the

DL can be written as

ydl,k =
√
Pdlh

T
k d+ ndl,k . (2.6)

Stacking the elements {ydl,k}Kk=1 in a column vector, we get

ydl =
√
PdlH

Td+ ndl (2.7)

where ndl � [ndl,1, . . . , ndl,K ]T . Assuming that the CSI is available at the
BS in the UL and both the BS and the user terminals in the DL, the sum
1The user terminals could also have multiple antennas which would then allow
multiple simultaneous data streams between a multi-antenna user terminal and
the BS under favorable propagation conditions. However, to describe the salient
features of MU-MIMO over point-to-point MIMO, single-antenna terminals are
sufficient, which is what we will consider in this section.
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Figure 2.2. Representation of an MU-MIMO system in (a) the UL; (b) the DL.

capacity in the UL and DL is then given as [18]

Cul = log2
∣∣IK + PulH

HH
∣∣ (2.8)

Cdl = max
pT 1=1
p≥0

log2
∣∣IM + PdlHPHH

∣∣ (2.9)

where P = diag {p} is a diagonal matrix with the elements of p on its
diagonals. Non-linear methods such as successive interference cancellation
(SIC) and dirty paper coding approach these theoretical limits [19, 20].

In comparison with point-to-point MIMO, MU-MIMO is less sensitive
to channel propagation conditions. This is because the channel vectors
between the user terminals and the BS are more likely to be independent
than in point-to-point MIMO owing to the greater separation between
user terminals. Moreover, propagation conditions such as LOS, which are
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severely detrimental to point-to-point MIMO, are less stressing for MU-
MIMO. From the point of view of hardware complexity, MU-MIMO requires
only single antenna terminals thereby addressing an important hardware
limitation of point-to-point MIMO terminals. However, achieving the UL
and DL spectral efficiencies in (2.8) and (2.9) requires complicated non-
linear signal processing at the BS and the user terminals. This limitation is
addressed by massive MIMO which is explained in detail in the subsequent
section.

2.3 Massive MU-MIMO

Massive MIMO, introduced in the seminal papers [6, 9], is a variant of
MU-MIMO with M being much larger than K. In [6], it was shown
that under favorable propagation conditions, the achievable throughput
increases logarithmically in M , and that linear precoding and combining
at the BS are asymptotically optimal. In addition, under these propagation
conditions, the number of users supported, and consequently, the spatial-
multiplexing gain also increases with M . All these benefits are under
the assumption that perfect CSI is available at the BS. In Section 2.3.1,
we describe in detail the nature of the propagation conditions that are
favorable for large antenna systems. CSI acquisition and the effect of
imperfect CSI at the BS are described in Sections 2.3.3 and 2.4.1.

2.3.1 Favorable Propagation Conditions

Let hk ∈ C
M be the channel vector of an arbitrary user k at the reference

BS. We say that the channel exhibits favorable propagation when the
channel vectors of any two users are asymptotically orthogonal, i.e.,

1

M
hH
k hk′ → 0, ∀ k �= k′ . (2.10)

As an example, consider the rich-scattering environment in which the
channel coefficients at each antenna are i.i.d complex Gaussian random
variables, i.e., hk ∼ CN (0, βkIM ), where βk ∈ R+ is the large-scale path-
loss coefficient. Assuming that the channel vectors of any pair of users are
independent, we have from the law of large numbers that

1

M
hH
k hk′

a.s.−→ 1

M
E
{
hH
k hk′

}
= 0, ∀ k �= k′ (2.11)

1

M
‖hk‖2

a.s.−→ 1

M
E
{
‖hk‖2

}
= βk, ∀ k (2.12)

where a.s.−→ signifies almost-sure convergence. From (2.11), we see that
the Rayleigh-fading channel satisfies asymptotic orthogonality. The large
array at the BS with independent channel coefficients provides a diversity
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order of M , and as M → ∞, the increasing diversity order renders the
communication link insensitive to small-scale fading. This phenomenon
is called channel hardening [6, 10] and results in the inner product of the
channel vector h and a beamforming vector v, which is obtained from h,
becoming equal to its average value asymptotically, i.e., vHh

a.s.−→ E
{
vHh

}
.

In addition, consider the narrow-band LOS channel with AoA θ

at the BS. If the BS is equipped with a uniform linear array
(ULA) with elements spaced half the wavelength apart from each
other, the steering vector corresponding to AoA θ can be defined as
a (θ) �

[
1, ejπ sin(θ), ejπ2 sin(θ), . . . , ejπ(M−1) sin(θ)

]T . Then the channel vector
of user k with AoA θk can be written as [19]

hk =
√
βke

−j 2πdk
λ a (θk) (2.13)

where dk is the distance between user k and the reference BS and λ is the
wavelength of the carrier. For large antenna arrays, we have the property
[11]

1

M
aH(θk)a (θk′) → δKr (θk, θk′) (2.14)

where δKr (·) is the Kronecker delta function. From (2.14), it is straight-
forward to show that the LOS channel in (2.13) satisfies the asymptotic
orthogonality condition in (2.10) provided each user has a distinct AoA at
the BS. The asymptotic orthogonality is a consequence of the large array
gain at the BS allowing the BS to form narrow beams towards each user
with the beam-width progressively decreasing with increasing M . Note the
difference between the LOS and the independent Rayleigh fading scenarios
where the former channel is deterministic and the latter is random.

2.3.2 Single-cell Massive MIMO With Perfect CSI at BS

Consider a single-cell MIMO system with K single-antenna users and M

antennas at the BS. We assume that the channel vector hk can be written
as

hk =
√
βkgk (2.15)

where gk ∈ C
M accounts for the small-scale fading or the array response.

Setting D � diag {β1, . . . , βK} and G � [g1, . . . , gK ], the channel matrix H

can be written as H = GD1/2. As a consequence of asymptotic orthogonal-
ity, we have [7]

HHH = D1/2GHGD1/2 ≈ MD (2.16)
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Substituting (2.16) into (2.8) and (2.9), the asymptotic capacity can be
obtained as [7]

Cul = log2
∣∣IK + PulH

HH
∣∣

≈ log2 |IK + PulMD|

=
K∑
k=1

log2 (1 + PulMβk) (2.17)

Cdl = max
pT 1=1
p≥0

log2
∣∣IM + PdlHPHH

∣∣
≈ max

pT 1=1
p≥0

log2 |IK + PdlMPD| . (2.18)

With a maximum-ratio (MR) combiner used for detection in (2.5), as a
consequence of asymptotic orthogonality, we obtain the following at the
output of the combiner [7, 16]

ŝ = HHyul =
√
PulH

HHs+HHnul ≈
√
PulMDs+HHnul . (2.19)

Similarly, with an MR precoder, the transmitted signal is
d = M−1/2H∗D−1/2P 1/2x, where x ∈ C

K is the source information
vector such that E

{
xxH

}
= I. Normalizing d by

√
M ensures that the

average transmit power is E
{
‖d‖2

}
= 1. Then, the received vector of

symbols at the K users in the DL is given as

ydl =

√
Pdl

M
HTH∗D−1/2P 1/2x+ ndl ≈

√
PdlMD1/2P 1/2x+ ndl . (2.20)

From (2.19) and (2.20), it can be seen that for large M , the spectral effi-
ciency with MR precoder and combiner is the same as that of (2.17) and
(2.18), implying that the simple linear MR precoder and combiner with
computational complexity proportional to M are optimal with perfect CSI
at the BS [7]. This is a shift in paradigm with respect to MU-MIMO
in which computationally complex non-linear processing is required to
achieve capacity.

Another consequence of (2.17) is that, with perfect CSI, the UL transmit
power required to achieve a particular spectral efficiency is inversely
proportional to M [21].

2.3.3 Channel Estimation

While the results in Section 2.3.2 are obtained by assuming the availability
of perfect CSI at the BS, in practice, the channel has to be estimated from
received observations. In conventional MIMO systems, CSI is obtained at
the receiver by transmitting an orthogonal pilot from each transmitter an-
tenna. The amount of time-frequency resource used for pilot transmission
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is then proportional to the number of transmitter antennas and is inde-
pendent of the number of receive antennas. Conventional MU-MIMO is
implemented in either TDD or frequency-division duplexing (FDD) modes.
In the former, the UL and DL transmissions occupy the entire available
bandwidth but in separate time-slots, whereas in the latter, the UL and DL
transmissions are in different frequency bands but happen simultaneously.

With FDD, since UL and DL transmissions are at different frequency
bands, the CSI in both these bands are different. Consequently, the CSI
corresponding to both the UL and DL channels need to be available at the
BS for precoding and combining. Estimating the UL channel requires the
K users to transmit orthogonal pilots with an overhead proportional to
K. However, for estimating the DL channel, the BS has to transmit M or-
thogonal pilots (one pilot per antenna element) and the channel estimates
obtained at the user terminal have to be fed back to the BS through the UL
channel. The DL channel estimation requires an overhead proportional to
M , which becomes prohibitive when M is large. Furthermore, the channel
is coherent over a certain time and frequency, which is referred to as a
coherence block. Channels across multiple coherence blocks are assumed
independent (in a block-fading model), and therefore, the channel coeffi-
cients in each of these coherence blocks have to be separately estimated.
For a coherence time of 1 ms (corresponding to a maximum user velocity of
135 km/h at 2 GHz carrier frequency) and coherence bandwidth 200 kHz
(corresponding to a maximum delay spread of 5μs), the channel is coherent
for 200 kHz × 1 ms = 200 symbols. Since both pilots and data have to
be transmitted in a given coherence block which is of the order of a few
hundred symbols, the pilot overhead severely constrains the size of the
antenna array at the BS. Despite several alternative methods having been
proposed in literature for reducing the channel estimation overhead and
for designing the precoders and combiners [22, 23, 24, 25], FDD is not a
preferred option for implementing massive MIMO [8].

On the other hand, with TDD, if the transmit and receive RF chains at
the BS are properly calibrated, the UL and DL channels can be assumed
to be reciprocal. Consequently, the channel estimated in the UL can be
used for designing the precoder for transmission in the DL. Since channel
estimation in the UL can be accomplished with users transmitting orthog-
onal pilots, the overhead for channel estimation in the UL is proportional
only to K and is independent of M . Therefore, for a given K, M can be
arbitrarily large. As in the case with perfect CSI, if each user is assigned a
unique pilot, the achievable rate increases logarithmically in M when the
estimated CSI is used in conjunction with linear precoding and combining
at the BS [21]. However, the UL transmit power required to achieve a par-
ticular spectral efficiency decreases as

√
M instead of as M when perfect

CSI is available.
TDD along with channel reciprocity at the BS allows for the pilot se-
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quence length to become independent of M and depend only on K. However,
in practice, it is impractical to assign unique orthogonal pilots when the
coherence time is small and when K is large. The latter is typical in
multi-cell environments. This necessitates pilot reuse across cells result-
ing in a phenomenon called pilot contamination. In addition, using large
antenna arrays enforces certain hardware constraints on the transceiver
architecture, especially at mmWave frequencies. The issue of channel esti-
mation in multi-cell massive MIMO systems in addition to the implication
of large-scale antenna arrays on the hardware architecture are described
in the next section.

2.4 Challenges

The benefits of massive MIMO, described in the previous sections, are de-
pendent on propagation conditions, channel estimate quality, BS hardware
architectures, etc. In this section, we will describe two challenges in mas-
sive MIMO which are relevant to this thesis, namely, pilot contamination
and the hardware constraints in mmWave transceivers.

2.4.1 Pilot Contamination

As described in Section 2.3.3, the channel is estimated in TDD massive
MIMO through UL pilots transmitted by the users. Consider a multi-cell
network with L cells and K single-antenna users per cell. We denote user
k in cell � using the tuple (�, k). Let BS j be the reference BS. Then, in
order to obtain the channel estimate of (j, k) without interference, each
of the LK users in the network has to be assigned a unique orthogonal
pilot. However, assigning LK orthogonal pilots necessitates reserving
LK symbols in the UL time-slot for pilot transmission. With the channel
having to be estimated in every coherence block, the overhead due to pilot
transmission becomes prohibitive when LK is large, which is the case
in practice. Therefore, in order to reduce the overhead, pilots need to be
reused across cells, which leads to interference in the UL and DL. As an
illustration, let Φ ∈ C

τ×τ be a scaled unitary matrix such that ΦHΦ = τIτ
where τ ≥ K is the length of the UL pilot. We assume for simplicity that
user k in each of the L cells uses the kth column of Φ, i.e., φk as its pilot
sequence. Denoting the channel vector between user (�, k) and BS j as
hj�k ∈ C

M , if all the pilot transmissions are synchronized, the received
observations at BS j during pilot transmission, denoted as Y

(p)
j ∈ C

M×τ ,
can be written as

Y
(p)
j =

√
Pul

L∑
�=1

K∑
k=1

hj�kφ
T
k +N (p) (2.21)
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where N (p) ∈ C
M×τ is the matrix of additive white Gaussian noise (AWGN)

at the BS during pilot transmission, with each element being i.i.d and
distributed as CN (0, 1). Then, the least-squares (LS) estimate of the
channel vector of user m in cell j can be obtained as

ĥjjm =
1

τ
√
Pul

Y
(p)
j φ∗m = hjjm︸ ︷︷ ︸

Desired Channel

+
∑
��=j

hj�m︸ ︷︷ ︸
Interfering Channels

+
1

τ
√
Pul

N (p)φ∗m .

(2.22)

As a consequence of reusing pilots, it can be seen from (2.22) that the
estimate of the channel is contaminated by the channel vectors of users
that reuse the same pilot as that of the reference user. Since the error in the
channel estimate is correlated with channel vectors of other users in the
system, the BS forms beams in the directions of these interfering users in
addition to the desired users both in the UL and DL, thereby reducing the
beamforming gain for the desired user and causing coherent interference
to other users that share the pilots. This phenomenon is referred to as pilot
contamination [6, 7, 10]. As a result of pilot contamination, the component
corresponding to coherent interference remains as M → ∞ even though the
non-coherent interference vanishes. Consequently, when the LS channel
estimate is used in an MR or zero-forcing (ZF) precoder/combiner, pilot
contamination results in a ceiling on the asymptotic throughput. The UL
and DL signal-to-interference-plus-noise ratios (SINRs) of user (j,m) as
M → ∞ are given as

SINRul
jjm =

β2
jjm∑

��=j

β2
j�m

(2.23)

SINRdl =
νjmβ2

jjm∑
��=j

ν�mβ2
�jm

(2.24)

where the parameters ν�k, ∀ (�, k) normalize the transmit power at the BS
to unity. This is in stark contrast to the result obtained in Section 2.3.2
where the spectral efficiency scales logarithmically in M without bound
when perfect CSI is available at the BS. A detailed survey of the literature
on mitigating pilot contamination can be found in Chapter 3.

In this thesis, we will consider using SPs for channel estimation. With
SP, the pilots are transmitted alongside data at a reduced power. This
results in a larger set of pilots becoming available, thereby allowing for
a reduced reuse of pilots. Our contribution has also been summarized in
Chapter 3.

Recently, it was shown in a seminal work that the ceiling on the achiev-
able throughput due to pilot contamination can be eliminated under certain
conditions on the SCM [12, 13]. This result is contingent on the availability
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of estimates of the SCMs of the individual users at the BS. Since covari-
ance matrix estimation is performed in the presence of pilot contamination,
estimating contamination-free covariance matrices is challenging and non-
trivial.

In this thesis, we propose a novel pilot structure that provides asymptoti-
cally contamination-free SCM estimates. We describe the problem of SCM
estimation as well as our contribution in detail in Chapter 4.

2.4.2 Hardware Constraints

Massive MIMO is characterized by a large number of antenna elements. An
antenna element separation of λ/2 is sufficient to ensure that the channel
coefficients between antenna elements are uncorrelated in an environment
with rich scattering, thereby providing diversity and channel hardening,
while preventing grating lobes in LOS propagation conditions. However, at
sub-6 GHz frequencies, which have been the mainstay of cellular commu-
nication for the past four decades, the half-wavelength spacing between
antenna elements ranges from 2 cm to 0.2 m. With constraints on the phys-
ical dimensions of the antenna arrays, the large inter-element spacing at
sub-6 GHz frequencies limits the number of elements in a massive MIMO
array.

On the other hand, with mmWave frequencies in the range 30− 100 GHz,
the half-wavelength antenna element spacing is in the range 1.5− 5 mm
allowing for orders of magnitude more antenna elements in the same phys-
ical area. Consequently, mmWave MIMO is a more promising candidate
for large-scale antenna arrays than conventional sub-6 GHz transceivers.
However, the small inter-element spacing and large transmission band-
widths impose constraints on the transceiver architecture which in turn
necessitates novel signal processing algorithms. These constraints and
their impact on signal processing algorithms are discussed in detail in
Chapter 5. In this thesis we develop two algorithms for channel tracking
at mmWave frequencies under the mmWave hardware constraints.
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3. Channel Estimation in TDD Massive
MIMO

3.1 Overview

CSI is essential for designing the precoder and combiner at the BS and
therefore plays a crucial role in realizing the promised gains of massive
MIMO. In massive MIMO, the CSI is estimated at the BS using UL pilots.
Under the assumption of channel reciprocity, the estimated CSI is utilized
by the BS for both precoding and combining.

Wireless channels are selective in both time and frequency, implying
that they are only valid over a finite time-interval and frequency range.
A commonly used approach in communication literature to model such
doubly-selective channels is block-fading. In this model, the channel vector
is assumed to be constant for Tc seconds over a bandwidth of Bc Hz, allow-
ing for a coherence block with C = BcTc channel uses, and channel vectors
in two different coherence blocks are assumed to be independent. Under
this model, it is clear that pilots need to be transmitted every C channel
uses to re-estimate the channel. If each user is to be assigned a unique
pilot, the channel-estimation overhead increases linearly in the number
of users reducing the number of available channel uses for transmitting
data.

As demonstrated in Section 2.4.1, reusing pilot sequences results in the
channel estimates of a reference user being contaminated by the channel
vectors of the users in the neighboring cells [6, 7, 26]. The contaminated
channel, when used to design the precoder and combiner results in in-
terference in the DL and UL. It is therefore necessary to mitigate pilot
contamination to reduce the amount of interference and in turn increase
the spectral efficiency.

35



Channel Estimation in TDD Massive MIMO

3.2 State-of-the-Art in Channel Estimation for TDD Massive MIMO

Several methods have been proposed recently to mitigate the effects of pilot
contamination. In a broad sense, these methods can be classified into two
types (i) methods that utilize the differences between user transmissions or
channel properties of the users to decontaminate pilot contamination at the
BS; (ii) methods that avoid or mitigate pilot contamination by modifying
user transmissions or pilot structure.

3.2.1 Pilot Decontamination at the BS

As mentioned earlier, pilot contamination is a consequence of not being
able to assign each user a dedicated pilot. Methods that decontaminate the
pilots at the BS utilize properties such as limited scattering, linear indepen-
dence between the user covariance matrices, and asymptotic orthogonality
between user channels to differentiate between users and separate their
channel vectors at the BS.

Blind Subspace Methods
As described in Section 2.3.1, under favorable propagation conditions, the
channel vectors of any pair of users at the BS are asymptotically orthogonal.
Let Y ∈ C

M×Cu be the received observations at the M BS antennas in the
Cu symbols in the UL time-slot. Let X ∈ C

LK×Cu be the matrix of UL data
transmitted by the K users in each of the L cells and H ∈ C

M×LK be the
channel matrix between these users and the reference BS. Then, Y can be
written as

Y =
√
PulHX +N (3.1)

where, N ∈ C
M×Cu denotes the additive noise at the BS. In turn, the

covariance matrix of the received data in a particular time-slot can be
written as

RY � EX,N

{
Y Y H

}
= PulHHH + I = PulGDGH + I (3.2)

where EX,N {·} denotes that the expectation is only over the random vari-
ables X and N . As a consequence of asymptotic orthogonality, when M

is large, the eigenvectors of the covariance matrix RY are approximately
the channel vectors hk upto a scalar multiple [27]. The eigenvectors corre-
sponding to the K largest eigenvalues are then computed from the sample-
covariance matrix R̂Y � Y Y H/Cu and an estimate of the scalar multiple
is obtained by comparing the eigenvectors to the observations received
during pilot transmission. In [28], the channel estimate is decontaminated
by projecting the LS estimate of the channel onto a subspace spanned by
the eigenvectors of R̂Y corresponding to the K largest eigenvalues.
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The efficacy of the blind-subspace methods in [27] and [28] in reducing
interference is dependent on the separation between the signal and inter-
ference subspaces, which in turn is dependent on the difference between
the eigenvalues of RY . From (3.2), the eigenvalues corresponding to the
signal subspace are approximately of the form MPulβk + 1. Therefore,
the difference between the eigenvalues is proportional to the difference
between the large-scale path-loss coefficients of the users in the reference
and interfering cells, and the signal and interference subspaces overlap
when the users are close to the cell edges when M is finite. The conditions
for separability between the signal and interference subspaces have been
quantified in [29].

Blind subspace methods suffer a performance degradation when two
users that share the same pilot have similar values of large-scale path-loss
coefficient. In [30], the authors propose a maximum a posteriori (MAP)-
based channel estimation method which is shown through simulations
to significantly outperform the blind subspace-based method while being
robust to channel conditions in which the large-scale path-loss coefficients
of the reference and interfering users are similar.

Other Semi-Blind Methods
Another form of semi-blind channel estimation is to treat the detected
UL data as pilots, effectively increasing the pilot sequence length. In
[31], a semi-blind method has been proposed for channel estimation in
single-cell massive MIMO systems, wherein each user is assumed to
transmit a unique pilot followed by UL data. The channel and data are
jointly estimated to maximize the likelihood function using the expectation-
maximization (EM) algorithm.

It is shown that as M → ∞ the deterministic Cramér-Rao lower-bound
(CRLB) corresponds to the case when all the symbols that are transmitted
in the UL are perfectly known. In addition, the stochastic CRLB when
M → ∞ corresponds to the case when the users transmit orthogonal pilot
sequences for the whole length of the UL time-slot. Simulation results
show that the proposed EM method achieves the CRLB at moderately
high-SNR and that the channel estimation mean-squared error (MSE)
decreases for large M to the value corresponding to when all UL symbols
are used for transmitting pilots. These results are useful since they show
promise for methods that utilize the transmitted UL data to improve the
quality of the channel estimate.

However, this paper considers only the single-cell scenario and therefore,
the error component in the MSE corresponds to only the AWGN at the
BS. It will therefore be interesting to extend the results to the multi-cell
scenario and obtain bounds on the performance of data-aided algorithms.

In [32], the authors propose an iterative channel estimation method in
which the estimated payload data are treated as pilots to obtain the linear
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minimum mean-squared error (LMMSE) estimate of the channel. Work
[33] proposes a space-alternating generalized EM for jointly estimating
the channel and data. In [34], the payload symbols are assumed to be
drawn from a finite constellation, and some of the estimated symbols after
a hard-decision operation are treated as pilots. The set of payload symbols
that are treated as pilots are chosen based on a reliability function that is
defined in the paper. In these methods, since the users transmit symbols
that are independent and zero-mean, the mean-squared distance between
the payload data-streams of the reference and interfering users increases
with the number of payload-data symbols in the UL time-slot, which in
turn improves the efficacy of these methods.

The dependencies (or correlation) within the sequence of payload data
transmitted by a user can also be used to separate the user channels at the
BS, provided that the nature of this dependency is different for different
users. The transmitted data symbols are dependent on each other when
they are the output of an error control code, which in modern communi-
cation systems is either low-density parity check (LDPC) or turbo codes.
An (n, k) code with k message bits and n code bits (n > k) contains 2k valid
codewords from a possible set of 2n codewords. For LDPC codes, the set of
valid codewords depends on the permutation used at the interleaver. In
[35], the authors propose using different permutations of the interleavers
for the reference and interfering users, thereby changing the set of valid
codewords between them. Using the linear programming (LP) relaxation
of the LDPC decoder, the set of valid codewords are added as constraints to
a minimum-variance-based combiner design problem, so that the output of
the combiner is always a valid codeword of the reference user. As a result,
the combiner actively rejects the interference from the users sharing the
same pilots since their set of valid codewords is different from that of the
reference user.

Pilot Decontamination Using Second-order Statistics of the Channel
The received pilots and data signals at the BS are typically correlated
in the spatial and/or temporal dimensions, and different users exhibit
different amounts of correlation across these dimensions. The differences
between the user covariance matrices can potentially be used to separate
the user channels and decontaminate the channel estimates in the respec-
tive domains. Moreover, the second-order statistics are valid for a longer
duration and have to be estimated less frequently in comparison with the
channel vectors. For instance, the SCM of the channel is valid for one to
two orders of magnitude longer than the coherence time [36, 37, 38]. There-
fore, mitigating pilot contamination using covariance estimates requires a
lower overhead than utilizing longer-length pilot sequences.

Channel environments with limited scattering are characterized by a
spatially correlated channel. Considering a ULA with steering vector a (θ)
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corresponding to the AoA θ, the channel vector of user k comprised of P
paths can be written as

hk =
1√
P

P−1∑
p=0

αkpa (θkp) (3.3)

where αkp is the channel coefficient of the pth path and is assumed to be
distributed as CN (0, βk).

Let pθk be the probability density function of the AoAs of the paths
{θkp}Pp=1, then, assuming that {αkp}P−1p=0 and {θkp}P−1p=0 are independent, the
covariance matrix of the reference user Rk can be written as

Rk = E
{
hkh

H
k

}
= βk

π∫
0

a (θ)a (θ)H pθk (θ) dθ . (3.4)

Let ĥk be the LS channel estimate of user k, h̃k � hk− ĥk be the estimation
error, and Ri

k � E

{
h̃kh̃

H
k

}
be the SCM of the estimation errors in the LS

channel estimate of user k. Ri
k is essentially the sum of the SCMs of the

users that interfere with user k and the additive noise. Then, the LMMSE
channel estimate can be obtained as

ĥLMMSE
k = Rk

(
Rk +Ri

k

)−1
ĥk . (3.5)

If the AoAs of the reference and interfering users are distributed such
that the reference and interfering users have non-overlapping angular
supports, i.e., the supports of the probability density functions pθ (·) corre-
sponding to the reference and interfering users do not overlap, it is shown
in [11] that the signal spaces of Rk and Ri

k are asymptotically orthogonal
to each other. As a result, the MSE of the LMMSE channel estimate
(3.5) approaches that for the interference-free case asymptotically in M .
Furthermore, the quantity of residual interference is dependent on the
amount of overlap of the angular supports and magnitude of the large-scale
path-loss coefficients of the interfering users. Since the set of users that
interfere with the reference cell is dependent on the pilot allocation, an
algorithm is proposed in [11] that assigns pilots so as to minimize the MSE
of the channel estimate.

The spatial covariance information can also be used to be improve the
blind pilot decontamination method in [28]. It was mentioned in Sec-
tion 3.2.1 that blind methods are less-effective in the finite M regime due
to subspace-leakage when the reference and interfering users have similar
large-scale path-loss coefficients. On the other hand, the efficacy of the
method in [11], detailed in the previous paragraph, is limited by the over-
lap of the angular supports between the user and interference channels
and is less sensitive to the large-scale path-loss coefficients.

Noticing that the methods in [11] and [28] are complementary to each
other the authors in [39] propose a covariance-aided blind-pilot decontam-
ination method. In this method, the covariance information is utilized
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to design a spatial filter for removing the interference from outside the
angular support of the reference user channel in the received observations.
The filtered output is then used to compute the sample covariance matrix
in [28], and the channel estimate is projected onto the subspace spanned by
the eigenvectors corresponding to the K largest eigenvalues. As expected,
the proposed method outperforms the methods in [11] and [28].

In the wideband scenario, in addition to the angular domain, variations
in the support of the channel impulse response of different users can be
used to separate them in the temporal domain. In [40], the authors esti-
mate the wideband channel covariance matrix under the assumption that
the channel is sparse in the angular and temporal domains. Since the
covariance matrices are estimated in the presence of pilot contamination,
the covariance matrix of the reference user is contaminated with the covari-
ance matrices of users that transmit the same pilot. The authors propose a
supervised/unsupervised clustering method to obtain the spatio-temporal
channel clusters corresponding to the reference user and decontaminate
the covariance matrix estimate. The decontaminated covariance matrix
estimates are then utilized in an LMMSE channel estimator to eliminate
pilot contamination from interfering users that have a different temporal
or angular support when compared with that of the reference user.

The aforementioned works utilize the asymptotic orthogonality between
the signal subspaces of the covariance matrices of the reference and inter-
fering users to decontaminate the channel estimates. However, when this
orthogonality condition is not satisfied, such as in the case of overlapping
angular supports in [11], the presence of pilot contamination imposes a
ceiling on the asymptotic UL and DL throughput.

In the seminal work [13], the authors observed that the LMMSE channel
estimates of the reference and interfering users are asymptotically linearly
independent when their covariance matrices are asymptotically linearly
independent. The linearly independent channel estimates, when used in a
minimum mean-squared error (MMSE) or multi-cell zero-forcing (M-ZF)
precoder/combiner, results in the throughput increasing logarithmically in
M without bound. The following two assumptions on the SCMs are shown
in [13] to result in linearly independent LMMSE channel estimates.

• For any user k in cell �, the SCM at BS j is such that
lim infM

1
M trace (Rj�k) > 0 and lim supM ‖Rj�k‖2 < ∞ as M → ∞.

• For any user k in cell j with λjk � [λj1k, . . . , λjLk]
T ∈ R

L and �′ = 1, . . . , L

lim inf
M

inf
{λjk:λj�′k=1}

1

M

∥∥∥∥∥
L∑

�=1

λj�kRj�k

∥∥∥∥∥
2

F

> 0 . (3.6)

Another result derived in [13] is that the unbounded increase in the UL
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and DL rates can be obtained even when the element-wise LMMSE channel
estimate is used with MMSE precoding/combining, provided the diagonals
of the covariance matrices are asymptotically linearly independent. This
is an important result from a practical standpoint since computing the
element-wise LMMSE estimate is simple and requires estimating only the
diagonals of the covariance matrices.

3.2.2 Pilot Contamination Avoidance

An alternative approach is to design the pilots transmitted by the users
such that the impact of pilot contamination at the BS is minimized. This
class of methods focuses on utilizing longer pilots, allocating pilots to users
intelligently based on their location or the amount of interference they
cause, and designing the pilot sequences based on the channel properties
to avoid pilot contamination.

Protocol-Based Methods
A simple approach to avoid pilot contamination is to allocate more UL sym-
bols for pilot transmission, thereby allowing for a larger set of orthogonal
pilots to be shared across a larger number of cells.

Let τ = rK symbols be used for pilot transmission where r is the pilot
reuse factor defined as the number of cells over which the τ pilots are
shared. When r > 1, only a subset of the τ pilots are used in each cell. Let
γτ be the SINR for a given τ , then a lower bound on the UL capacity R is
given as

R =

(
1− rK

Cu

)
log2 (1 + γτ ) . (3.7)

For a particular K, utilizing a larger r lowers pilot contamination, thereby
leading to a higher SINR γτ . However, a larger r results in a smaller
pre-log factor because of the larger pilot transmission overhead, implying
that there exists a trade-off between the pre-log factor and γτ .

In [41, 42], the authors derive expressions for the ergodic sum UL and
DL achievable rates of the users in a cell when the pilots are reused across
r cells. Based on these expressions, the number of users that maximize a
lower bound on the ergodic capacity for a particular value of r is computed
in [42]. It is shown that when M → ∞ the number of users that need to be
scheduled to maximize the UL and DL sum throughputs is proportional to
the number of symbols in each coherence block C, and that the spectral
efficiency is maximum when half of the symbols in each coherence block
is allocated for pilot transmission, i.e., τ = C/2. Through simulations, the
authors analyze the optimal values of K and r for a finite M , and conclude
that r = 3 is often a decent choice to maximize the spectral efficiency.

Fractional pilot reuse [43] can be viewed as a generalization of the concept
of integer pilot reuse described in [42], where users (rather than cells, as
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in the case of integer pilot reuse) are divided into disjoint sets and are
allocated pilots based on their large-scale path-loss coefficients.

Users that are at the cell-edge cause significantly higher interference in
the UL and DL than users close to their BSs because of the proximity of
the former to the interfering BSs. Therefore, a reasonable approach is to
allocate the pilots such that users that cause/perceive the most interference
are allocated pilots that are reused with a larger pilot reuse factor than
users that cause less interference.

A larger number of pilot sequences can also be made available to the
BS by overlaying the pilot and data transmissions. Our contributions
in Publication I - Publication V are in this context and are explained in
greater detail in Section 3.3.

Another approach to avoid pilot contamination is to stagger UL pilot
transmissions. In this regard, there are two main approaches: (i) users
in a cell transmit pilots when the neighboring cells transmit DL data
[44, 45] and (ii) the users in a cell transmit pilots when the users in the
neighboring cells transmit UL data [46, 47]. In both cases, the set of cells
in the network is divided into Γ subsets and the users in a given subset Aγ

are assumed to transmit their pilots simultaneously.
In the former approach, the reference BS perceives interference from

UL pilot transmissions from users in its subset and powerful DL signals
from the BSs in the other Γ − 1 subsets. In [45], it is shown that the
interference from DL data transmitted by the BSs in the Γ − 1 subsets,
when users in Aγ transmit their pilots, vanishes asymptotically in M ,
and the only remaining interference is the pilot contamination from the
interfering users within Aγ . As a result, it is shown that staggering the UL
and DL pilot transmissions results in substantial gains in the asymptotic
achievable throughput.

It has to be noted that in [45], only asymptotic expressions for the achiev-
able rate have been derived, and the claims made are based on these
expressions. In [46], the authors obtained approximate expressions for the
achievable rates for a finite M for both cases (i) and (ii). For the latter
approach, in which users of the Γ − 1 interfering subsets transmit UL
payload data when the users in the reference subset transmit pilots, it is
shown that the achievable throughput can be improved, with respect to the
case when all the pilots are aligned, by varying the transmit powers of the
pilots and data. Based on these expressions, [46] concludes that method (i)
outperforms (ii) when the number of users is small.

User-Location-Aided Methods
If the SCM can be accurately parameterized with the geographical location
of the user, a method similar to [11] can be used to perform pilot allocation.

In [48], the authors assume an elevated BS with a ring of scatterers
around the user terminal. The SCM is then parameterized by the mean
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angle of the scatterers, given by the physical angle of the user with respect
to the BS, and the angular spread which is dependent on the size of the
ring and the distance of the user terminal from the BS. In [49], the authors
consider a Ricean channel in which the LOS component is parameterized
by the location of the user terminal. In both the aforementioned methods,
assuming that all the user locations are known, a metric is defined for the
amount of interference from an interfering user based on its location and
steering angle. The pilots are then allocated to minimize this metric.

The efficacy of location-aided methods is contingent on the availabil-
ity of precise location information, which may not always be feasible, for
example, in the absence of indoor localization. Channel characteristics
also vary depending on the nature of the propagation environment around
the user. For instance, a user indoors experiences a different angle-delay
profile when compared to a pedestrian outdoors. Experimental validation
is needed to ensure an accurate mapping between user location and chan-
nel knowledge at the BS. Developing methods that are robust to these
discrepancies is also an interesting research direction.

Pilot Design
UL pilots can be designed to take advantage of the channel statistics
as well as modulation characteristics of the transmitted signal, thereby
providing additional means to separate users.

In [50], the channel is assumed to be correlated across different UL time-
slots and the temporal covariance matrices of the reference and interfering
users are utilized for designing the pilot sequences such that the Doppler
spectra of the desired and interfering users at the BS do not overlap. The
designed pilots are orthogonal in the Doppler domain and thereby avoid
pilot contamination.

For wideband orthogonal frequency-division multiplexing (OFDM) trans-
mission, [51] proposed adjustable phase-shift pilots which allow for the
user transmissions to be separated in the delay domain.

In [52] the authors extend the method in [51, 50] for the wide-band case.
To design the pilots, the authors use a combination of the limited angular
scattering of the channel, the small root mean-square (RMS) delay spread
of the channel (in comparison with the duration of the OFDM symbol), in
conjunction with the temporal covariance matrices to separate the user
transmissions in the angle, delay, and Doppler domains, respectively.

Precoding Methods
Methods based on precoding have been proposed in [53, 54]. The authors
in [54] proposed a distributed single-cell method for precoding for mit-
igating pilot contamination. The authors in [53] proposed a precoding
method that uses coordination between cells to eliminate the effects of
pilot contamination, theoretically yielding infinite SINRs.
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3.3 Contribution

In Publications I-V, we consider channel estimation and pilot contamina-
tion avoidance by using longer length pilot sequences which are obtained
by overlaying pilots and data. Publications IV and V are extensions of
Publications I-III. Therefore, we will consider only Publications IV and V
(henceforth, referred to as [55] and [56], respectively) for the rest of this
chapter.

The main contributions of these publications are as follows

• Methods for channel estimation using longer length pilot sequences
obtained by overlaying pilots and data.

• Deriving expressions for the achievable rates in the UL and DL with
channel estimates obtained using these pilots.

• Formulating and developing the concept and design of a hybrid system
which contains users transmitting both SPs and regular pilots (RPs).

• Deriving the Bayesian CRLB of the channel estimate obtained from SP.

• Showing that staggered pilots are a particular case of SPs and can trade
off intra-cell interference for channel estimation overhead

3.4 Superimposed Pilots

In conventional communication systems, training-based or semi-blind
approaches are typically used for estimating the channel at the receiver.
These approaches involve transmitting a known pilot sequence either on
dedicated symbols (henceforth referred to as RP) or alongside the data at a
reduced power (henceforth referred to as SP).

Methods for channel estimation with SPs have been extensively studied
for MIMO systems [57, 58, 59, 60]. However, for conventional MIMO, the
data transmitted alongside pilots in SPs results in a poorer quality channel
estimate as compared with RP, which in turn reduces the SNR. Earlier
works on SP have focused on accommodating this loss in SNR in exchange
for a reduced pilot overhead. For instance, when the coherence time of
the channel is small, such as in cases of high user-mobility, transmitting
dedicated pilots for channel estimation is infeasible/expensive, and SPs
are an attractive and viable alternative.

On the other hand, in multi-cell multi-user MIMO, SPs allow for a larger
number of orthogonal UL pilots to be transmitted; their number being

44



Channel Estimation in TDD Massive MIMO

limited by the number of symbols in the UL time-slot. Specifically, with
SP, the vector transmitted by user (�, k) is of the form

s�k = ρx�k + μp�k (3.8)

where x�k ∈ C
Cu is the vector of data symbols and p�k ∈ C

Cu is the pilot.
The parameters ρ2 and μ2 are the fractions of transmit power assigned to
pilots and data, respectively, such that ρ2+μ2 = 1. The pilots p�k are taken
from the columns of the scaled unitary matrix P ∈ C

Cu×Cu . In contrast,
with RP, s�k is of the form s�k =

[
φT
�k,x

T
�k

]T , and the pilots φ�k are taken
from the columns of the scaled unitary matrix Φ ∈ C

τ×τ with K ≤ τ ≤ Cu.
With SP, the larger set of pilots facilitates reduced pilot-reuse and a

lower inter-cell interference from pilot contamination. However, trans-
mitting pilots alongside data causes intra-cell interference, since the data
sequences are not orthogonal across users. This allows the designer to
trade-off one type of interference for the other.

SP for massive MIMO has also been considered in [61, 62, 63]. In [61],
the authors considered SP for massive MIMO and derived approximate
expressions for the UL and DL achievable rates when Cu ≥ LK, and
compared the performance of SP with RP with rRP = 1. In [62], exact
expressions for the UL achievable rates are derived for the general case
of Cu ≤ LK, and the UL spectral and energy efficiency of SP is compared
with that of RP with optimized rRP. The authors of [62] conclude that SP
and RP offer similar spectral and energy efficiencies when the pilot reuse
factor of RP rRP is optimized.

In [55] and [56], we compare SP and its variants with RP for channel
estimation in massive MIMO. In [55], we obtain approximate expressions
for the UL achievable rate when the LS channel estimate obtained from SP
is used in an MR combiner, which is then compared with the achievable rate
of RP with rRP = 1. These expressions are obtained under the assumption
that Cu ≥ KL and inter-cell interference from cells which reuse SPs are
negligible. Exact expressions for both UL and DL achievable rates with
SP and MR precoder and combiner for the general case of Cu ≤ KL are
derived in [56].

Note that the exact expressions for UL throughput derived in [56] is
different from that obtained in [62]. Two expressions for the UL achiev-
able rate with SP are obtained in [62]. In obtaining the first expression,
the pilot transmitted alongside the data is treated as interference, and
consequently, the resulting expression underestimates the achievable rate.
Whereas, in obtaining the second expression, the pilots are assumed to be
removed perfectly, and consequently, the achievable rate is overestimated.
In [56], we side-step the aforementioned issue by multiplying the received
observations with a unitary matrix that relegates all the interference from
the transmitted pilot to a single UL symbol. This symbol is then discarded
since we are only interested in a lower-bound on the UL channel capacity.
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The remaining Cu − 1 symbols are free from the interference caused by the
pilot of the reference user, and consequently, standard methods in massive
MIMO literature are used to compute an expression for the achievable
rate.

The asymptotic MSE and achievable rates of SP are dependent on the
fractions of transmit power allocated to data and pilots. The optimal values
of ρ2 and μ2 are obtained by maximizing a lower bound on the UL rate as
[56]

ρ2opt =
(
1 +

√
Mκ
)−1

(3.9)

μ2
opt =

(
1 +

1

κ
√
M

)−1
(3.10)

where κ is a constant dependent on the large-scale path-loss coefficients
and is defined in [56]. Note that in (3.9), ρ2opt is inversely proportional to√
M , as a result of which, the component of the MSE corresponding to the

overlaid data decreases at a rate of
√
M .

In [56], the Bayesian CRLB is derived for SPs under the condition that
Cu ≥ LK. We impose this condition specifically to evaluate the effect of
the data transmission on the estimation error. The MSE is then shown to
asymptotically achieve a close approximation of the CRLB. In addition, the
MSE for the more general case of Cu ≤ LK asymptotically achieves the
MSE of the channel estimate obtained from RP with reuse factor rRP = rSP.

Since a lower ρ2 implies a better quality channel estimate, the component
of the inter and intra-cell interference power from data transmission also
reduces at a rate of

√
M . While this reduction in interference does not

significantly improve the UL throughput, there is a notable improvement
in the DL achievable rate, and the asymptotic DL throughput of SP with
reuse factor rSP is the same as that of RP with the same reuse factor.

For finite M , with the aforementioned values of ρ2 and μ2, SPs in general,
offer a higher UL and DL achievable rate in comparison with RP when
rRP = 1 [55, 56]. However, SP and RP are shown to be comparable when
the pilot reuse factor rRP is optimized for a particular coherence length
[62, 63].

The performance of SP is limited by self-interference resulting from
transmitting pilots alongside data. Since the reference users are closest to
the reference cell, the intra-cell interference forms the largest component
of interference in both the UL and DL. In order to minimize the impact of
this intra-cell interference, we propose the following approaches

• A hybrid system containing both SP and RP

• Staggered pilots in which users in the reference cell utilize orthogonal
pilots, thereby eliminating intra-cell interference.
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• Iterative data-aided channel estimation to estimate and remove the data
that is overlaid with pilots.

3.4.1 Hybrid System

One of the main features of SP is that it does not require a dedicated set
of symbols for pilot transmission. This property can be used to overlay
users transmitting SP over a set of users transmitting RP without causing
any interference to the latter, and increase the overall throughput of the
network. We consider two approaches to utilize users transmitting SP in a
hybrid system.

In the first approach, we add users transmitting SPs to an optimized
network (in terms of UL and DL spectral efficiency) with users transmitting
only RPs. The combined throughput of both users transmitting RPs and
SPs is shown to be higher than that of the network in which users transmit
only RPs, as is shown by the following theorem [55].

Theorem 1. In a system that employs time-multiplexed pilots and is de-
signed to maximize the UL and DL sum-rate (such as the scheme described
in [42]), let K be the optimal number of users per cell, L be the total number
of cells in the system, τ > 0 be the optimal number of symbols used for
pilot training, rRP be the optimal pilot-reuse factor, and Cu − τ and Cd be
the number of data symbols in the UL and DL slots, respectively. Then,
with M → ∞, there exists a hybrid system, that uses both RP and SP,
which is capable of supporting Cu − τ additional users and offers a higher
sum-rate in the UL and DL than the optimal system that only employs
time-multiplexed pilots.

The proof of this theorem is straightforward given the structure of the
hybrid system in Fig. 3.1. The users that employ SPs cease from transmit-
ting data or pilots when users that employ RPs transmit their pilots. Since
the channel vectors of users are asymptotically orthogonal, even with MR
precoding and combining, the users transmitting SPs do not interfere with
the users transmitting RPs, and as a result, the UL and DL throughput of
the users transmitting RPs is unchanged. The users transmitting SPs also
offer a non-zero UL and DL throughput, and as a result, the hybrid system
offers a higher asymptotic throughput than a system that only employs
RPs.

SPs and RPs exhibit complementary behavior with respect to the achiev-
able spectral efficiencies when rRP = 1, in the sense that SP offers higher
UL and DL throughput with respect to RP when the users are at the edge
of a cell and lower UL and DL throughput when the users are close to
the BS. In the second approach, given a network with users transmitting
only RPs, we utilize the aforementioned observation and propose a simple
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Figure 3.1. Frame structure of a hybrid system with users employing time-multiplexed
and superimposed pilots.

framework and algorithm to partition the set of users U into two disjoint
sets URP and USP which contain users that transmit RPs and SPs, respec-
tively [55, 64, 56]. The partitioning is accomplished by minimizing the
total interference in the UL and the DL.

Let ξul and ξdl be non-negative weights for the UL and DL interference
powers such that ξul + ξdl = 1. Let IRP−ul and IRP−dl be user (�, k)’s
contribution to the interference power in the UL and DL when assigned to
URP, and similarly, let ISP−ul and ISP−dl be the corresponding interference
powers when user (�, k) is assigned to USP. Then, the weighted interference
power in the UL and DL, which is given as

TRP
�k � ξulIRP−ul

�k + ξdlIRP−dl
�k (3.11)

T SP
�k � ξulISP−ul�k + ξdlISP−dl�k , (3.12)

is used to construct the objective function. For a given partition URP and
USP of the total set of users U , the sum of the weighted interference of all
the users in the UL and DL can be written as

I (URP,USP) =
L−1∑
�=0

K−1∑
k=0

(
TRP
�k 1{(�,k)∈URP} + T SP

�k 1{(�,k)∈USP}
)
. (3.13)

We utilize (3.13) as the objective function to obtain the optimal partitioning
URP and USP through solving the following optimization problem

(URP,USP) = arg min
URP⊆UUSP⊆U

I (URP,USP)

subject to URP ∪ USP = U

URP ∩ USP = ∅ (3.14)

where ∅ is the null-set. The constraints in (3.14) are non-convex and
solving the optimization problem requires a complexity that is exponential
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in the number of users. In [55, 64], we propose a simple greedy algorithm
which utilizes asymptotic expressions of I (URP,USP) to partition the users
into these two sets.

From the simulation results in [56], it is clear that the proposed greedy
algorithm exploits the complimentary behavior of the users in the hybrid
system and offers a sum UL and DL throughput higher than that of either
RP or SP alone.

3.4.2 Staggered Pilots

The interference from a user transmitting SP increases with its proximity
to the reference BS. As a result, the intra-cell interference resulting from
transmitting pilots alongside data is typically the strongest source of
interference in the UL and DL. This component of intra-cell interference
can be eliminated by assigning orthogonal pilots to users in the reference
cell. The resulting pilot structure is called staggered pilots and has been
investigated earlier from a different perspective in [46, 47].

Staggered pilots are an intermediate choice between SP and RP when
rSP = rRP (c.f. Figs. 3.2-3.4). In Fig. 3.2, we see that no two cells that
share the τ = rRPK pilots interfere with each other since they transmit
orthogonal pilots. Only cells that reuse the rRP pilots interfere with each
other. On the other extreme, with SP, all users in all cells interfere with
each other since the users overlay data with the pilots. Staggered pilots is
in between both these extremes since users within a cell do not interfere
with each other, whereas two users in different cells do irrespective of
whether they share the pilot or not.

A consequence of eliminating the intra-cell interference is that, for the
same pilot transmission overhead and with optimized values of ρ2 in (3.9),
the DL throughput of staggered pilots is very close to that of RP with reuse
factor rSP [56].

In Figs. 3.5 and 3.6, the DL achievable rate of RP with various pilot reuse
factors, SP, and staggered pilots is plotted against M when the LS channel
estimate is used in an MR and ZF precoder at the BS. The simulation is
performed with L = 91 hexagonal cells with inter-BS separation of 1km.
Each cell has K = 5 users. The UL time-slot has Cu = 35 symbols. The
users are assumed to be uniformly distributed in the cells. More details of
the simulation setup can be found in [56]. SP and staggered pilots use a
pilot reuse factor of rSP = 7.

It can be seen in Fig. 3.5 that the DL throughput of staggered pilots is
very close to that of RP with rRP = 7 despite requiring only 14.29% of the
UL overhead. Similarly, with the ZF precoder in Fig. 3.6, staggered pilots
achieve around 90% of the throughput obtained by RP with rRP = 7. Given
that services such as high-definition video streaming require considerably
larger throughput in the DL than in the UL, using staggered pilots is an
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Figure 3.4. Pilot structure of staggered pilots. In contrast with RP, the pilot transmissions
cover the entire UL slot, as with SP. However, in contrast with SP, the users
in a cell do not transmit pilots and data simultaneously.

attractive alternative to pilot-reuse.

3.4.3 Iterative Data-Aided Channel Estimation

As mentioned earlier, the dominating component of interference from the
users that share the set of Cu SPs is from the UL data that is transmitted
alongside the pilot. This component of interference in the channel estimate
can be reduced by jointly estimating the channel and data.

In the absence of any structure within the channel or payload data, the
likelihood function is the only available metric for semi-blind channel
estimation. Similar to the method proposed in [31], an EM or alternating
maximization (AM) can be used to iteratively maximize the log-likelihood
and obtain estimates for the channel and data.

However, when the UL symbols are continuous random variables, such as
in the case of a Gaussian constellation, such iterative data-aided methods
that maximize the likelihood of the channel and/or UL data are not suitable.
Since, in the absence of constraints on the UL data, an iterative algorithm
can choose x̂ to maximize the likelihood by penalizing the MSE of ĥ.
While finite constellations could also exhibit such undesirable behavior,
the possibility of that is limited especially with lower-order constellations
such as 16−quadrature amplitude modulation (QAM). However, with finite
constellations, the optimization problem involving data estimation (even
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after AM) is non-convex, with the complexity increasing exponentially in
the number of users in the reference cell.

In [55], a heuristic iterative data-aided algorithm has been proposed
under the assumption that the data is drawn from a finite-constellation.
With each iteration, the algorithm is guaranteed to maximize the approxi-
mate UL SINR. However, since the expressions for the UL SINR are only
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approximate, the algorithm is not guaranteed to maximize the actual UL
SINR. From simulations, we see that the proposed method significantly
reduces the intra-cell interference with lower-order constellations, and that
the proposed algorithm performs better than its non-iterative counterpart
[55]. Similar improvements in the BER and SINR performance of RPs are
also possible, as demonstrated in [31] for the single-cell case.

Note that the method proposed in [55] employs MR combining for data
detection. An alternative would be to employ computationally complex non-
linear methods such as coded SIC at the BS for data detection, and use this
data in the subsequent iteration for estimating the channel. However, one
of the salient features of massive MIMO is that simple linear precoding
and combining are capacity achieving (with RP and in the absence of
pilot contamination), thereby obviating the need for SIC-type methods.
Nonetheless, there are preliminary works that consider SIC for massive
MIMO with RP [65], and utilizing SIC in iterative data-aided methods
could be a potential research direction.

In conclusion, this improvement in both BER and (approximate) SINR
performance of the proposed heuristic algorithm makes iterative algo-
rithms practically relevant for mitigating interference when either RP or
SP is employed. Developing methods that offer a convergence guarantee
while requiring a low computational complexity as well as methods that
exploit structure within in transmitted data (such as in [35]), are also
interesting problems for future research.
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4. Covariance Matrix Estimation for
Massive MIMO

4.1 Background and Motivation

As mentioned in Chapter 3, pilot contamination is a consequence of the
finite coherence time and coherence bandwidth of the channel since the
number of orthogonal pilot sequences that can be transmitted is limited by
the number of channel uses in the coherence block. For example, consider
a coherence bandwidth of Bc = 200kHz and a coherence time of Tc = 1ms,
which allows for a user communicating at 2 GHz carrier frequency with
a 5μs channel delay spread at the BS to travel at a velocity of 135 km/h
[38]. Hence, for such a user, the channel can be assumed to be static for
BcTc = 200 channel uses which have to be shared between payload data
and UL pilots. As a result, longer pilot sequences use up the portion of the
coherence interval that can be allocated for data transmission which in
turn results in a reduced spectral efficiency.

On the other hand, the SCM varies approximately one to two orders
of magnitude slower than the channel vectors [36, 37]. For example, in
[38], the channel statistics are assumed to be constant for the system
bandwidth of Bs = 10 MHz and frame-length of Ts = 0.5s, which results in
the SCM being constant over τs = (BsTs) / (BcTc) = 25000 coherence blocks.
Consequently, SCMs need to be estimated less frequently in comparison
with the actual channel vectors, and therefore require a lower overhead in
comparison with estimating the channel vectors in each coherence block.
The coherence block and frame structure for TDD massive MIMO with
additional pilots for estimating the SCMs is shown in Fig. 4.1.

Once estimated, these SCMs can be used to decontaminate the channel
estimates [11, 12, 13, 40]. In channels with limited scattering and non-
overlapping user angular supports, the signal spaces of different user SCMs
are asymptotically orthogonal [11], which results in an asymptotically
pilot contamination-free LMMSE channel estimate. However, when the
angular support of the user channels overlap, the interference resulting
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(a) Time-frequency grid

Pilots
Additional pilots 
for estimating 
individual SCMs

UL Payload 
data

DL Payload 
data

(b) Frame structure of an individual coherence block

Figure 4.1. Coherence blocks across the time-frequency grid over which the channel
statistics is fixed [38]. Some of the coherence blocks have additional pilots for
estimating the SCM.

from pilot contamination can be reduced by suitably allocating the pilots
to minimize this overlap. In addition, when the SCMs satisfy certain
conditions (detailed in Section 3.2.1), the throughput can be shown to
scale logarithmically in the number of antenna array elements when the
LMMSE channel estimate is used in conjunction with the LMMSE precoder
and/or combiner [13].

Since SCMs are valid for a considerably longer duration than the channel
coherence time, and since they can be used to decontaminate the chan-
nel estimate, utilizing the SCM for pilot decontamination is a preferred
alternative to using longer-length pilot sequences. However, estimating
these covariance matrices for large antenna arrays in the presence of pilot
contamination is challenging for two reasons, namely:

• The number of samples needed to estimate the SCMs increases with the
number of elements in the antenna array.

• Estimating the SCMs of individual users in the presence of pilot contam-
ination is not straightforward.

These two issues, and possible workarounds, are discussed in detail in the
subsequent section.
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Figure 4.2. Illustration of the challenge in acquiring the individual user SCM in the
presence of pilot contamination. Here, User 1 is the reference user and
Users 2 and 3 are interfering users.

4.2 Challenges in Estimating the Spatial Covariance Matrices

We denote the SCM of user (�, k) at BS j as Rj�k. Computing the LMMSE
channel estimate requires estimates of Rj�k corresponding to the reference
users as well as the SCM of the LS channel estimate. Specifically, let
ĥj�k be the LS estimate of hj�k at BS j. If Qjm � E

{
ĥjjmĥH

jjm

}
and

Rj�k � E

{
hj�kh

H
j�k

}
are the covariance matrices of the channel estimate

and the channel vectors, respectively, the LMMSE estimate of the channel
of user (�, k) is given as

ĥLMMSE
j�k = Rj�kQ

−1
jmĥj�k . (4.1)

A large antenna array at the BS is a characteristic feature of massive
MIMO. With M antennas at the BS, at least M uncorrelated samples of
the channel are required to obtain a full-rank SCM. This is important espe-
cially in the case of Qjm since it has to be invertible, which is particularly
problematic when M is large, as in the case of massive MIMO, since the
number of samples N has to scale with M .

A possible workaround is to estimate only the diagonals of the SCM. In
[13], it is shown, under certain conditions, that using only the diagonals of
the SCM to obtain an element-wise LMMSE channel estimate also results
in an unbounded logarithmic increase in the UL/DL spectral efficiency
with respect to M . This is a useful result since estimating only the diago-
nal elements of the SCM requires significantly fewer observations whose
number is independent of the dimensions of the antenna array. Therefore,
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utilizing the estimates of the diagonals of the SCM is a viable substitute to
estimating the full SCM, albeit at the cost of a higher channel estimation
MSE and lower spectral efficiency when compared to the latter.

The second issue with estimating the SCMs is that the theoretical results
derived in [11, 12, 13] are contingent on the availability of the individual
covariance matrices Rj�k, ∀ (�, k). Estimating these SCMs is not straight-
forward since the user channel vectors hj�k, ∀ (�, k) are observed in the
presence of pilot contamination. Thus, using these contaminated channel
estimates for estimating the SCM will result in the estimated SCM being
contaminated with the SCMs of other users in the system that employ
the same orthogonal pilots. This issue is illustrated in Fig. 4.2 where the
objective is to estimate the SCM of User 1. Users 2 and 3 are interfering
users belonging to the neighboring cells and transmit the same pilot as
User 1. The BS receives the contaminated observation ĥ1 which when used
to estimate R1 results in a contaminated SCM estimate.

Note also that, while the issue of estimating a large covariance matrix
with limited observations can be addressed by estimating a diagonal sur-
rogate as mentioned earlier, the problem of estimating these diagonal
elements in the presence of pilot contamination still remains.

A few recent works have addressed both the aforementioned issues of
estimating the large-dimensional SCMs with a small sample-size in the
presence of pilot contamination. These works, their shortcomings, and our
contribution are discussed in the subsequent sections of this chapter.

4.2.1 Estimating Spatial Covariance Matrices When N < M

When the number of available samples N to estimate the SCM is less than
M , the estimated SCM will have to be regularized to ensure that it has
full rank [38].

One approach to regularize the estimated SCM is to shrink it towards a
target matrix [66]. Based on the approach described in [66], the authors
in [67] propose shrinking the non-diagonal entries of the estimated SCM
towards zero and derive the optimal shrinkage coefficient that minimizes
the MSE of the estimate. The regularized SCM is guaranteed to be full-
rank and positive definite.

Imposing structure on the SCM can also reduce the number of samples
required to estimate it. For instance, under limited scattering in the
angle/delay domain, the narrow-band/wide-band SCM can be assumed to
be low rank, which in turn can be used to reduce the number of samples to
estimate it [40].

Under the limited scattering assumption, the channel vector of each user
is a linear combination of the steering vectors which are parameterized
by the AoAs of the received paths. Utilizing this property, a method such
as in [68] can be used to improve the SCM estimate through an iterative
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approach. In each iteration, estimates of the AoAs are obtained from
the sample SCM using a parametric estimation method such as root-
multiple signal classification (MUSIC). The estimated AoAs are then used
to refine the sample SCM by eliminating undesirable cross-terms, which
are significant when the sample-size used to estimate the SCM is small.

In [48], the authors parameterize the SCM with the location of the user.
The received paths at the BS are assumed to be originating from a ring of
scatterers around the user. Given the user location, the mean angle of the
ring of scatterers is given by the physical angle between the user and the
BS, and the angular spread is obtained from the radius of the ring and the
distance of the user terminal from the BS. This information can then be
used to compute the SCM at the BS. However, the use of such a method
requires precise knowledge of the user location, which may not always be
available. Moreover, the channel propagation conditions also change with
the nature of the environment around the user, and therefore, extensive
experimental validation may be required before such methods can be used
in practice.

4.2.2 Covariance Matrix Estimation in Massive MIMO in the
Presence of Pilot Contamination

In [38], the authors propose two methods that employ unique and dedicated
pilots for estimating the individual SCMs. In both methods, the estimate
Q̂jm is obtained by computing the sample SCM of the LS channel estimate
using observations from NQ coherence blocks and then regularizing it by
shrinking its non-diagonal elements. The sample SCM of the LS channel
estimate can be obtained as

Q̂
(sample)
jm =

1

NQ

NQ∑
n=1

ĥ
(n)
jjm

(
ĥ
(n)
jjm

)H
(4.2)

where the superscript n indicates that the LS estimates of the channel
have been obtained in the nth coherence block.

The sample SCM is then regularized using the method described in [67]
as

Q̂jm = γQ̂
(sample)
jm + (1− γ)Q̂

(diag)
jm (4.3)

where γ ∈ [0, 1] is the shrinkage coefficient and Q̂
(diag)
jm is a diagonal matrix

containing only the diagonal entries of Q̂(sample)
jm . Note that Q̂jm is a full-

rank and positive-definite matrix.
For estimating Rj�k, in the first method, each user transmits a unique

pilot for NR coherence blocks to obtain an LS estimate of its individual
channel vector at the reference BS. Then, R̂j�k is straightforwardly ob-
tained by computing the sample SCM of the interference-free channel
vectors.
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In the second method, all the users that interfere with user (�, k) transmit
pilots simultaneously in NR coherence blocks, while the user (�, k) main-
tains radio silence. The sample SCM obtained from these observations,
denoted Q̂j,−�k, contains the sum of the SCMs of all the interfering users.
R̂j�k is then obtained by subtracting Q̂j,−�k from Q̂jm as

R̂
(diff)
j�k = Q̂

(sample)
jm − Q̂

(sample)
j,−�k . (4.4)

In both the aforementioned methods, R̂(sample)
j�k and R̂

(diff)
j�k converges al-

most surely to Rj�k as NR → ∞. When NR ≤ M , the estimated R̂j�k is
regularized as in (4.3). However, note that this type of regularization for
R̂

(diff)
j�k need not result in a full-rank or positive-definite matrix. Through

simulations, it has been demonstrated in [38] that the second method
outperforms the first one. With the second method, the channel estimate
using the sample SCMs approaches the LMMSE estimate when NR is close
to M .

In [69], the pilots are allocated to users in the reference and interfering
cells systematically across consecutive coherence blocks. Let the LK users
be indexed with a single index k. Let Π [n] ∈ {0, 1}LK×τ with τ < LK be
the matrix representing the pilot allocation in coherence block n, with
[Π [n]]kp = 1 implying that user k is assigned pilot p, and Ωp [n] be the set of
users assigned pilot p in coherence block n. Then, if the pilot transmissions
in all the cells are synchronized, the SCM of the channel estimate of users
transmitting pilot p is given as

Qp [n] = Pul

∑
k∈Ωp[n]

Rk + I . (4.5)

Stacking the vectorized versions of Qp [n] and Rk into the matrices BR and
BQ[n] defined as

BR � [vec(R1), . . . , vec(RLK)] (4.6)

BQ[n] � [vec(Q1 [n]), . . . , vec(Qτ [n])] (4.7)

we have the relation

BQ[n] = BRΠ [n] + vec(I)1T . (4.8)

Note that Π [n] is a tall matrix, and therefore, BR cannot be recovered
uniquely in (4.8). However, using a set of N pilot allocations over N

coherence blocks, i.e., Π � [Π1, . . . ,ΠN ], we can write

BQ �
[
BQ[1], . . . ,BQ[N ]

]
= BRΠ+ vec(I)1T . (4.9)

If Π is chosen such that it has full row-rank, BR can be recovered as

BR =
(
BQ − vec(I)1T

)
Π† (4.10)

60



Covariance Matrix Estimation for Massive MIMO

where (·)† denotes the Moore-Penrose pseudo-inverse.
With this pilot allocation strategy, the maximum-likelihood (ML) esti-

mate of the diagonals of the SCM is obtained in [69] and is shown to
converge almost surely to their actual values without requiring dedicated
training symbols for estimating the individual SCMs. This method is
extended in [70] wherein a framework as well as a greedy algorithm are
proposed for optimizing the pilot allocations for estimating the SCM while
maximizing a network utility function.

In [71], the SCM estimation problem with time-varying pilot allocation
across consecutive coherence blocks is cast as an estimation problem with
missing data. The missing data problem is solved using EM and the
estimated SCMs are shown to be asymptotically free of pilot contamination.

In [40], an estimate of the wideband channel covariance matrix of a user
is recovered from the contaminated covariance matrix using a clustering
algorithm. Under the assumption of limited scattering, the channel can
be modeled to be composed of a few clusters in the delay and angle do-
main. A supervised/unsupervised learning algorithm is then proposed to
identify the clusters corresponding to the reference user. These clusters
are then utilized to extract the individual user covariance matrix from the
contaminated covariance matrix.

Note that, unlike for [38] and [69], no theoretical guarantees are available
for [40] and [71].

In the aforementioned methods, the authors implicitly assume that
the BSs coordinate the pilot transmissions across all cells. For instance,
employing unique pilots in [38] across different cells necessitates that
all users in the network have perfect timing synchronization and utilize
the same symbols in the UL time-slot for pilots. Similarly, the system
model and the methods in [69, 70] assume that all the users are perfectly
synchronized. While this is a common assumption in massive MIMO
literature, assuming that all users are synchronized is infeasible in practice.
Furthermore, requiring all the users to use the same set of UL symbols
requires coordination between BSs and large cyclic prefixes to account for
the time delay from distant users.

4.3 Contributions

In Publication VI (henceforth referred to as [72]), we address the problem
of estimating the SCM of an arbitrary user in the presence of pilot contam-
ination and in the absence of BS coordination. The main contribution of
this publication is a novel pilot structure for estimating the SCM.
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Figure 4.3. Illustration of contamination-free SCM estimation with randomly phase-
shifted pilots. Each user transmits a pilot with a random phase-shift ejΘk .
The realizations of Θ1 are assumed to be known at the BS.

4.4 Estimation using Randomly Phase-Shifted Pilots in Publication
VI

In the proposed method, each user in the reference cell is assumed to trans-
mit two pilots in each coherence block. The second pilot is multiplied by a
randomly generated phase-shift. The phase-shifts are realizations of the
random variables {Θt}Tt=1 which are distributed such that E

{
ejΘt
}
= 0, ∀ t

and are mutually independent for different values of t. Here, T is the
number of disjoint subsets into which the set of all the cells in the network
is partitioned. The cells inside each of the T ≥ 1 subsets are assumed to be
perfectly synchronized.

The LS channel estimates obtained from both the pilots for an arbitrary
user (c, u) can be written as

ĥ
(1)
jcu = hjcu +α(1)

cu + ε(1)cu +w
(1)
j (4.11)

ĥ
(2)
jcu = hjcu + e−jΘtα(2)

cu + e−jΘtε(2)cu + e−jΘtw
(2)
j (4.12)

where, for p ∈ {1, 2}, α(p)
cu corresponds to the interference from the subset

of cells that are synchronized with cell c, ε(p)cu corresponds to asynchronous
UL or DL transmissions from the cells outside the subset, and w

(p)
j is

the additive noise. These terms have been defined in [72] and have been
omitted here for the sake of brevity.

Since the random variable Θt is independent of the channel vectors and
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Method
Supports

asynchronous

networks

Pilot overhead

for estimating

Rj�k, ∀ (�, k)

Offers

theoretical

guarantees

[38] - NRLK +

[69] - 0 +

[40] - 0 -

Proposed method + NK +

Table 4.1. Important attributes of the proposed and state-of-the-art methods for covariance
estimation in massive MIMO.

the UL data, we have

R
ĵh

(1)
jcu,

̂h
(2)
jcu

= E

{
ĥ
(1)
jcu

(
ĥ
(2)
jcu

)H}
= Rjcu . (4.13)

In the absence of the random phase-shift, the channel estimation errors
in ĥ

(1)
jcu and ĥ

(2)
jcu are correlated, since α

(1)
cu and α

(2)
cu are correlated. The

random phase-shift to the second pilot decorrelates these terms and the
resulting sample cross-correlation matrix converges in probability to the
true covariance matrix asymptotically in N . However, for a finite number
of observations, the sample cross-correlation matrix is not Hermitian
symmetric, and therefore needs to be regularized to ensure both Hermitian
symmetry and full rank.

A simple illustration of the idea behind the proposed method is given in
Fig. 4.3. Each user transmits two pilots. The first pilot is as in Fig. 4.2
and results in a contaminated observation. For the second pilot, user k

applies a random phase-shift ejΘk . The realizations of the random vari-
able corresponding to the reference user Θ1 are assumed to be known at
the BS and therefore, the phase-shift on h1 can be compensated. It is
then straightforward to see that the estimation errors in ĥ11 and ĥ12 are
uncorrelated, and their cross-correlation gives the SCM of the reference
user.

In order to obtain the SCM of an arbitrary user, a BS has to be synchro-
nized with the user in question and have knowledge of the realizations θtn
of the random variable Θt corresponding to that user. This requirement is
less demanding when compared with that of perfect timing synchroniza-
tion and/or simultaneous transmission of UL pilots required by existing
methods [38, 69, 40]. The attributes of the proposed and state-of-the-art
methods for covariance estimation in massive MIMO are summarized in
Table 4.1.

In Figs. 4.4 and 4.5, the MSE and UL achievable rate of the proposed
method is compared with the method in [38] for different values of N . Figs.
4.4 and 4.5 are plotted for L = 7 cells with M = 100 and K = 5 users
per cell. The channel statistics are assumed to be constant for τs = 25000
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coherence blocks. The users are assumed to be distributed at a distance of
120 m from the BS with the BSs separated by 300 m. The received paths
are assumed to be uniformly distributed over an angular spread of 20◦

with mean AoA given by the angle between the reference between the
BS and the users. It can be seen that the proposed method significantly
outperforms the method in [38].

Note that in [72], the system model assumes perfect symbol-level timing
synchronization for users in all cells. However, it is straightforward to
show that the proposed method works even in the general case when no
symbol-level timing or frequency synchronization is assumed across the
cells.
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5. Channel Estimation and Tracking in
Millimeter-Wave MIMO

5.1 Motivation

Carrier frequencies less than 6 GHz have been the mainstay of conven-
tional terrestrial communication links owing to their good propagation
properties. The last decade has seen the birth of several new technologies
such as IoT, MTC, unmanned aerial vehicles, and self-driving vehicles.
These emerging technologies involve numerous devices and vehicles com-
municating with each other as well as the infrastructure around them, and
the limited available bandwidth at sub-6 GHz frequencies is insufficient to
cater to the needs of these technologies.

To address this bottleneck, an alternative would be to communicate in
the relatively unused mmWave band which have carrier frequencies in the
range of 30 - 300 GHz [1, 2, 73]. Owing to their higher carrier frequencies,
these communication links offer large contiguous blocks of spectrum of
upwards of 1 GHz, which is orders of magnitude larger than what is offered
by their sub-6 GHz counterparts [74, 5]. These large chunks of spectrum
have the potential to offer unprecedented individual and network-level
throughputs and enable the aforementioned applications.

However, mmWave signals face a hostile propagation environment char-
acterized by diffuse scattering, higher penetration losses, and lower diffrac-
tion. These propagation effects result in mmWave communication links
being predominantly LOS with a few non-line-of-sight (NLOS) clusters.
In the next section, we will explain the characteristics of the mmWave
propagation environment as well as its impact on the design of both the
transceiver architecture and the algorithms for precoding/combining and
channel estimation.
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5.2 mmWave Channel Characteristics

Since mmWave signals have very small wavelengths in comparison with
the objects in the environment that they interact with, they experience a
distinct set of propagation characteristics when compared with sub-6 GHz
signals. Understanding these propagation effects is essential for designing
signal processing algorithms for mmWave transceivers. These propagation
effects are detailed in the remainder of this section.

5.2.1 Diffraction

Diffraction is an important propagation characteristic in sub-6 GHz sys-
tems since it allows for signal coverage around corners and obstacles [75].
The Fresnel zone between the transmitter and receiver, which is the set of
diffracted angles that interfere constructively at the receiver, specifies the
diffraction angle. The width of the Fresnel zone is a function of the signal
wavelength and becomes narrower with decreasing wavelength, thereby
resulting in reduced diffraction at mmWave frequencies. Furthermore, the
size of the object required to occlude the Fresnel zone is smaller when it is
narrow, implying that small objects can significantly attenuate the signal.

5.2.2 Scattering and Penetration Losses

A radio wave propagating in a medium undergoes reflection when it in-
teracts with an object with a different set of electrical properties than the
medium. When the surface of the object is rough, the signal also undergoes
diffuse scattering. The fractions of signal power corresponding to specular
and diffuse components of the reflected signal is determined by the rough-
ness of the reflecting surface, with the latter component dominating when
the surface is rough [76].

Since the effective roughness of a surface increases with decreasing
wavelength, mmWave signals experience higher diffuse scattering when
compared with sub-6 GHz signals [77]. This scattering results in small-
scale fading and rapid variations in the received signal power over travel
distances of a few wavelengths [78]. Reflection and scattering are im-
portant mechanisms for obtaining coverage in mmWave networks in the
absence of the LOS component. Many objects such as clothing, building
walls, and trees are excellent reflectors of mmWave signals [79, 80].

mmWave signals experience significant penetration losses from station-
ary objects in the environment in the range of 2.7 dB to 35.3 dB depending
on the type of building material [81]. Brick walls attenuate the signal by
25.3 dB and the human body blockage can attenuate the signal by 30-40 dB
[82]. Objects close to the antenna array such as finger or dirt can also alter
the beam pattern and significantly attenuate the transmitted/received
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signal. As a result, the LOS path, as well as several of the NLOS paths
resulting from reflection and scattering are attenuated by objects in the
environment. This phenomenon, in conjunction with a lower diffraction,
reduces the richness of the scattering environment with only the unblocked
LOS path and dominant NLOS clusters providing coverage. Consequently,
the mmWave channel is sparse in the angular domain.

5.2.3 Distance-Dependent Path-loss

In addition to penetration losses, mmWave signals experience a higher
path-loss for fixed transmitter and receiver gains due to the smaller wave-
lengths employed. Compensating for these losses by keeping the antenna
effective aperture constant (or increasing the gain) imposes constraints on
the transceiver hardware.

To demonstrate this, let PT , GT , and AT be the transmitted power, gain
and aperture of the transmit antenna, respectively. Similarly, let PR, GR,
and AR be the corresponding parameters for the receiver. Then, assuming
that the transmitter and receiver beams are oriented towards each other,
we have from the Friis transmission formula that [83]

PR =
λ2

(4πd)2
GRGTPT (5.1)

where λ is the wavelength of the transmitted signal and d is the separation
between the transmitter and the receiver. The transmitter (or receiver)
gain is related to the effective aperture of the antenna as

GT =
4π

λ2
AT . (5.2)

For a fixed GT and GR, it can be observed from (5.1) that the received
power is proportional to the squared of the wavelength. Consequently,
communicating at higher frequencies with fixed-gain antennas/antenna
arrays increases the path-loss and reduces the received power. In contrast,
it can be seen from (5.1) and (5.2) that holding the effective apertures AT

and AR constant will more than compensate for the path loss [84].
Note that the received power in (5.1) is contingent on the beams of the

transmitter and receiver being oriented towards each other. In practice,
this is accomplished using steerable antenna arrays in which the antenna
elements have to be spaced by at most λ/2 to prevent undesirable grating
lobes. With carrier frequencies between 30 - 300 GHz, the spacing between
the antennas are in the range of 0.5 - 5 mm. This narrow spacing impacts
the choice of RF elements since they have to fit within the limited space
available.

Furthermore, the power consumption of an ADC increases linearly with
the sampling frequency for a given architecture [85, 86], and running
full-resolution analog-to-digital converters (ADCs) on the baseband signal
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results in a power consumption in the range 15 - 795 mW at bandwidths of
36 MHz - 1.8 GHz per ADC [87]. The large power consumption of ADCs and
other components of the RF chain in conjunction with the narrow spacing
between antenna elements renders it infeasible to utilize an RF chain for
each antenna element.

5.2.4 Channel Representation

Since mmWave channels have a dominant LOS path with a few NLOS
clusters, the channel can be represented as a sum of steering vectors cor-
responding to these paths. Let θp, ψp, αp be the AoA, AoD and complex
channel coefficient of path p, respectively. For a ULA with M antenna
elements with spacing δ between the elements, the steering vector corre-
sponding to angle θ is given as

a (θ) �
[
1, e−j

2πδ
λ

sin(θ), e−j
2πδ
λ

2 sin(θ), . . . , e−j
2πδ
λ

(M−1) sin(θ)
]T

. (5.3)

Let aT (ψ) and aR (θ) be the steering vectors corresponding to the trans-
mitter and receiver. The narrow-band channel H ∈ C

MR×MT at the receiver
can be written as

H =

P−1∑
p=0

αpaR (θp)aT (ψp)
H = ĀRD̄ĀH

T (5.4)

where ĀR � [aR (θ0) , . . . ,aR (θP−1)], ĀT � [aT (ψ0) , . . . ,aT (ψP−1)], and
D̄ � diag {α0, . . . , αP−1}.

Equation (5.4) can easily be extended for the wide-band channel and
for the case of two-dimensional arrays by accounting for the time-delay
of the received paths and redefining the steering vectors in terms of the
azimuth and elevation. However, for the rest of this chapter, we will restrict
ourselves to the narrow-band case with the ULA since our contributions in
Publication VII and Publication VIII are for this scenario. Representations
for wide-band channels with multi-dimensional antenna arrays can be
found in [87, 88].

Another representation of (5.4) can be obtained in which the matrix D̄

can be replaced by a sparse matrix. This representation allows for the
channel estimation problem to be treated as a sparse-recovery problem as
will be discussed in Section 5.4. Let {θq}GR

q=1 and {ψq}GT
q=1 be the set of GR

and GT quantized AoAs and AoDs, respectively. Then, (5.4) can be written
as

H = ĀRD̄ĀH
T ≈ ARDAH

T (5.5)

where the columns of AR ∈ C
MR×GR and AT ∈ C

MT×GT are steering
vectors corresponding to the quantized AoAs and AoDs, and D is a sparse
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Figure 5.1. Architecture of fully-digital transceivers typically used in sub-6 GHz
transceivers.
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Figure 5.2. RF elements in a sub-6 GHz transceiver. For the rest of the chapter, the term
‘RF chain’ will be used to refer to the elements inside the dashed box.

matrix. The approximation in (5.5) is because the error resulting from
off-grid AoAs and AoDs are neglected in this representation.

With AR and AT replaced by the discrete Fourier transform (DFT) ma-
trices VR and VT , we obtain a beamspace representation of the channel Hb

as

H = VRHbV
H
T . (5.6)

The matrices VR and VT well approximate the left and right singular
subspaces of H and therefore, the matrix Hb is sparse.

5.3 mmWave Architectures

Conventional sub-6 GHz MIMO transceivers utilize fully digital archi-
tectures wherein each antenna is connected to a dedicated RF chain (c.f.
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Figure 5.3. mmWave MIMO architecture based on hybrid precoding/combining.

Fig. 5.1). The block diagram of the RF chain is shown in Fig. 5.2. Since
fully-digital architectures are not feasible for mmWave transceivers with
large antenna arrays (as explained in Section 5.2.3), various alternative
architectures have been proposed in recent literature to replace the fully-
digital transceiver and satisfy the power and space constraints imposed by
mmWave communication. These architectures can be broadly divided into
two categories, namely,

• A hybrid architecture in which the precoding/combining is performed
in both RF and baseband. The RF precoding/combining is implemented
using an RF lens or a network of analog phase-shifters and/or switches.

• A low resolution architecture wherein each antenna element has a dedi-
cated RF chain with a low-resolution ADC.

With hybrid beamforming, the number of RF chains and ADCs used is
much smaller than the number of antennas, and each antenna is connected
to one or more RF chains through a network of analog phase-shifters and/or
switches (c.f. Fig. 5.3). The precoding and combining operations are then
split across the RF and base-band with the former accomplished using the
analog elements.

However, this split is not straightforward since the design of the analog
precoder/combiner is a non-convex problem, owing to the element-wise
constraints imposed by the analog elements. With phase-shifter networks,
these constraints arise from the fact that the phase-shifters can only
change the phase of the signal by quantized phase-shifts, constraining
the elements of the analog precoding/combining matrix to posses unit-
amplitude with quantized phase-shifts.
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Figure 5.4. mmWave MIMO architecture based on low-resolution ADCs.

Switch networks, on the other hand, perform antenna selection and
connect the MRF RF chains to MRF of the M antenna elements, constrain-
ing the analog precoding/combining matrix to contain only binary values.
Analog precoders/combiners that are formed with a mix of both phase-
shifters and switches will have a combination of both the constraints on
the elements of the corresponding matrix.

A variant of the hybrid architecture is a lens-based architecture in which
the analog precoding/combining is performed using an RF lens instead of
phase-shifters/switches. The M antenna elements are fed to an RF lens
front-end which performs the spatial Fourier transform, thereby enabling
the Ns-dimensional baseband precoder/combiner to access the beamspace
of the channel. With a properly designed lens front-end, the different feed
antennas to the RF lens excite spatially orthogonal beams. The Ns data
streams are then mapped onto these orthogonal beams through a mmWave
beam-selector to excite the corresponding antenna elements.

An alternative to the hybrid architecture, in which MRF � M ADCs
are used for M antenna elements, is to use a low-resolution ADC at each
antenna element. For a given ADC architecture and sampling frequency,
the power consumed by an ADC increases exponentially with the number
of bits [85, 86]. The lower power requirement allows low-resolution ADCs
to be employed for each antenna element (c.f. Fig. 5.4). We will not
be discussing low-resolution architectures in further detail. Interested
readers can refer [87] and the references therein for more information.

An important consequence of these new architectures is that existing al-
gorithms for designing the precoding and combining matrices in sub-6 GHz
MIMO have to be suitably modified to satisfy the aforementioned hardware
constraints. Furthermore, as mentioned earlier, mmWave signals expe-
rience higher losses due to penetration and scattering, and the resulting
channel is predominantly sparse in the angular domain. This channel
sparsity can be used to reduce the computational complexity required to
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design the precoder and combiner.
The hardware constraints imposed by mmWave communication also

affects channel estimation. For instance, with the hybrid architecture,
the beams are steered by setting the values of the phase-shifters and/or
switches. For a particular choice of phase-shifter values, the transmit-
ter/receiver has access to only a low-dimensional subspace of the MR ×MT

channel corresponding to the directions of the transmit and receive beams.
Therefore, several observations are required to populate the entire channel
matrix. This is in contrast to the fully-digital case in which only one obser-
vation is required to obtain all the values in a column of the channel matrix.
Again, utilizing the sparsity of the channel, the number of observations
required to estimate the full channel can be significantly reduced through
compressive sensing and sparse recovery.

In the subsequent sections, we will discuss existing methods for channel
estimation, channel tracking, and precoder/combiner design for mmWave
transceivers with hybrid architectures.

5.4 Channel Estimation in mmWave MIMO

Channel estimates are necessary for designing the precoders and combin-
ers. With analog and hybrid architectures, the channel can be accessed only
at the output of the RF precoder/combiner, and consequently, the complete
MR × MT channel matrix is unobservable at the baseband. As a result,
methods for channel estimation for fully-digital transceivers, typically used
at sub-6 GHz frequencies, cannot be directly used in the mmWave context.

In addition, as mentioned earlier in Section 5.2, the propagation char-
acteristics of mmWave signals result in a channel that is sparse in the
angular domain. The sparsity potentially allows for the transceiver to pop-
ulate the large MR ×MT dimensional matrix H with significantly fewer
observations. The low-rank nature of the channel also reduces the over-
head required for the receiver to feedback the CSI since only the singular
vectors corresponding to the few non-zero singular values have to be fed
back.

Channel estimation in mmWave transceivers is typically accomplished
using one of three approaches, namely:

• Beam-training

• Compressive sensing and sparse recovery

• Low-rank matrix completion.

With beam-training, the transmitter and receiver generate spatially
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orthogonal beams that span non-overlapping angular regions. The receive
signal strength is evaluated for each beam pair and the beam-pair with
the highest received signal strength is selected for data transmission. A
maximum of M spatially orthogonal beams are possible with M antenna
elements, and therefore, the transmitter and receiver together can generate
a maximum of MT ×MR beam pairs. In its naivest form, beam-training
involves exhaustively searching through each of the MT ×MR beams to
find the one that maximizes the received signal power. When MT and MR

are of the order of hundreds of elements, the estimation overhead becomes
prohibitively large, thereby restricting the number of symbols available
for data transmission in a coherence block.

A more efficient approach would be to use a set of hierarchical beams
from a multi-resolution codebook [89, 90, 91, 92]. With this codebook, the
transmitter and receiver initialize beam-training with a set of wide beams
that divide the angular domain into a number of sectors. The receiver
computes the power of the received signal for each pair of transmit and
receive beams/sectors. The pair of sectors at the transmitter and receiver
that generate the highest receive signal power are then chosen for the
next round, and the receiver feeds back the selected transmit sector to the
transmitter. The chosen sectors are then divided into narrower sub-sectors
and the iteration proceeds till a target angular resolution or signal power
is achieved.

While hierarchical beam-training has been well known for use with
analog beamforming [5], an extension to the hybrid architecture is possible
in which the beam pattern for a sector is approximated by using all the
available RF chains instead of only a single RF chain [91]. The use of
multiple RF chains available in a hybrid architecture results in a beam
pattern that is closer to the desired beam pattern compared to the case
when only a single RF chain is employed. Quite expectedly, the error
between the desired beam pattern and the actual one realized with MRF

RF chains reduces with increasing MRF.
Several variants of the beam-training protocol have been proposed in

recent literature [90, 93, 94, 95, 96, 92]. In [90, 93], the beam-training pro-
tocol is modified to obviate the need for receiver to feed back the strongest
sector to the transmitter. The training overhead in a hierarchical beam-
search-type method is reduced by overlapping different beam-training
sectors in [96], at the cost of a lower SNR. A method for designing beam
patterns for uniform planar arrays by minimizing the MSE between the
desired and actual beams has been proposed in [97].

In [94], it is noticed that using only a subset of the antenna elements
results in better approximating the broad beams used in the initial stages
of the hierarchical beam search algorithm. The authors propose an archi-
tecture consisting of a combination of analog phase-shifters and switches,
with the latter being used to select the subset of antennas used to generate
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the broad beams.
Beam training can lead to significant variations in the receive power

when various beam pairs are tested, resulting in frequent automatic gain
controller (AGC) resets. This problem is addressed in [95] by coding the
beams with orthogonal codes and spreading out the transmitted energy.

Using only the received power could result in erroneous beam selections
at low SNR in the initial stages of the beam-training algorithm. This can
be addressed by using hypothesis testing which involves comparing the
received signal to a threshold that is obtained by imposing constraints on
the false-alarm rate [92].

Beam training is conceptually simple and requires a low computational
complexity to implement; the latter feature possibly explaining its adoption
in the IEEE 802.11ad Wi-Fi standard. However, in a multi-user scenario,
the training overhead scales linearly with the number of users and the per-
user training overhead increases with the number of spatially multiplexed
streams.

In addition, to estimate a channel with P paths, the overhead is pro-
portional to P 2 [91]. If the number of users or streams are large enough
such that the channel estimation overhead becomes a bottleneck, more
sophisticated methods such as compressive sensing and sparse-recovery
have to be used for estimating the channel in the context of multi-user and
multi-stream communications.

Compressive sensing and sparse recovery methods utilize the sparse na-
ture of the mmWave channel to reduce the number of observations needed
to estimate it [98]. For channel estimation, the transmitter is assumed
to use a sequence of NT precoding vectors {fm}NT

m=1 during training. For
each of these precoding vectors, the receiver makes NR measurements
using combining vectors {wn}NR

n=1. Then, setting F � [f1, . . . ,fNT
] and

W � [w1, . . . ,wNR
], the received observations during training is given as

Y =
√
PTW

HHF +Q (5.7)

where Q is the noise at the output of the combiner. Vectorizing (5.7) and
using the channel representation in (5.5), we obtain

y � vec(Y ) =
√

PT

(
F T Ā∗T ◦WHĀR

)
diag

{
D̄
}
+ q

≈
√
PT

(
F TA∗T ⊗WHAR

)
d+ q (5.8)

where q � vec(Q), d � vec(D), and ◦ denotes the Khatri-Rao product.
With the measurement matrix defined as Ψ �

√
PT

(
F TA∗T ⊗WHAR

)
,

an estimate of the sparse vector d̂ can be recovered from y as

d̂ =argmin
d

‖d‖0

subject to ‖y −Ψd‖ < ε (5.9)
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where ε is a design parameter. The non-convex optimization problem in
(5.9) can be solved by relaxing the ‖ · ‖0 operator with the �1 norm or using
a sparse recovery algorithm such as orthogonal matching pursuit (OMP) or
sparse Bayesian learning (SBL) [99]. The channel estimate Ĥ is obtained
from d̂ as

Ĥ = ARD̂AH
T . (5.10)

The left and right singular vectors of Ĥ are used to design the precoder
and combiner during data transmission after accounting for the hardware
constraints [91, 100].

The choice of F and W in (5.7) defines the angular directions in which
the channel is probed. A commonly used method is to generate NT and
NR pseudo-random precoding and combining vectors. With analog or
hybrid architectures, the pseudo-random precoding vectors are obtained by
setting the analog phase-shifters and/or switches to random values in the
constraint set for each measurement. These beamforming vectors generate
diffused beams in random directions.

If all the quantized analog phase-shifts ejθ in the range θ ∈ [0, 2π] are
equally likely, the average received power is the same in all directions.
However, when random beamforming is performed with switch-based ana-
log precoders, more power is transmitted towards the broadside of the array.
Despite this difference, the channel estimates obtained through phase-
shifter and switch-based architectures are shown through simulations to
result in similar MSEs [101].

One of the benefits of using pseudo-random precoding and combining
vectors is that the overhead for channel estimation in a multi-user envi-
ronment is independent of the number of users that are associated with
a BS, provided the channel is trained in the DL [102]. With this setup,
proposed in [102], the BS uses a set of NT pre-defined pseudo-random
vectors {fm}NT

m=1 during training. The users then make NR measurements
using randomly generated combining vectors {wn}NR

n=1 and reconstruct
their channels using any off-the-shelf sparse-recovery algorithm. Each
user then feeds back the values and indices of the non-zero elements of
d̂ to the BS to reconstruct the channel and design the precoder for data
transmission.

This ability to estimate the channel of all users simultaneously addresses
an important shortcoming of beam-training-based methods, which is that
the overhead for channel estimation increases proportionally with the
number of users. However, one of the drawbacks with this setup is that
the mobile user-terminal, running on a limited energy budget, bears the
computational complexity of estimating the channel. The sparse recovery
formulation in (5.9) also leads to a biased channel estimate since the AoAs
and AoDs are quantized to obtain the measurement matrix.

As with beam-training, several variants of the compressive sensing-based
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approaches have been proposed recently [103, 104, 105, 98, 106]. In [103],
the authors propose compressed beam-selection in which the channel and
the precoder-combiner pair are jointly recovered from the observations y

when the analog architecture is used at both ends of the communication
link.

As mentioned earlier, channel estimation in the DL requires the mobile
terminal to solve (5.9). This issue is addressed in [104] wherein the users
transmit their training beams using a layered frame structure in the UL
and the channel is estimated through a parallel factor analysis (PARAFAC)
decomposition at the BS. With this method, it is shown that the training
overhead required in the UL is less than in the case when the users
employed orthogonal pilots.

References [98] and [105] address the estimation errors resulting from
AoA and AoD quantization in (5.5) by modifying the measurement matrix
[105] and using a Newton-type method to obtain the off-grid components
[98]. A framework to train users in the DL that have diverse SNR and
mobility conditions is proposed in [106].

Wide-band channel estimation can also be cast as a sparse-recovery
problem [105, 88, 107], and the angular support of the wide-band chan-
nel is constant across all sub-carriers [88]. Consequently, the channel
can be recovered using sparse-recovery methods that leverage multiple
measurement-vectors (MMVs).

An alternative approach to estimate the channel is to use the property
that H is low-rank. Then, Ĥ can be recovered from Y in (5.7) by solving
the following optimization problem

Ĥ =argmin
H

rank (H)

subject to ‖Y −
√
PTW

HHF ‖ < ε . (5.11)

The non-convex objective in (5.11) can be relaxed by replacing it with the
nuclear norm [108] or the atomic norm [109]. The solution to (5.11) does
not require quantizing the AoAs and AoDs, and consequently, offers a lower
MSE than with grid-based approaches [109].

An alternative to estimating the full CSI is to estimate only the domi-
nant subspaces of the low-rank mmWave channel since the knowledge of
the dominant singular vectors of the channel are sufficient for precoder/-
combiner design (singular values are required for power allocation) [110].
Methods for estimating the dominant signal subspace through Krylov sub-
space methods and through estimating the low-rank covariance matrix
have been proposed in [111] and [112, 113, 114], respectively.
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5.5 Hybrid Beamforming

The matrices F and W for channel estimation are chosen such that the di-
rections corresponding to all the singular vectors of the channel are probed,
since the objective is to recover the singular vectors corresponding to the
strongest singular values. These singular vectors are then used to design
F and W for maximizing the spectral efficiency of the communication link.

The beam-training method described in Section 5.4 for channel estima-
tion can also be viewed as a method to design the precoders and combiners
from channel observations [87]. In the absence of errors and with a spa-
tially sparse channel, r distinct spatially orthogonal beam-pairs identified
during beam-training are approximates of the left and right singular vec-
tors of the channel matrix corresponding to the r largest singular values.

However, with the CSI available at the transmitter and receiver, more
sophisticated techniques such as multi-user MIMO and interference can-
cellation can be applied. In addition, designing F and W to maximize
the spectral efficiency results in a higher throughput than with beam-
training [100].

With hybrid beamforming, the precoding and combining matrices are
of the form F = FRFFBB and W = WRFWBB. When H is available at
the receiver, the matrices FRF, FBB, WRF, and WBB can be designed to
maximize the mutual information which, when Gaussian symbols are
transmitted over the mmWave channel, is given by [17]

I (FRF,FBB,WRF,WBB) = log2

∣∣∣∣INs +
PT

Ns
R−1n WH

BBW
H
RFHFRFFBB

× FH
BBF

H
RFH

HWRFWBB

∣∣∣∣ (5.12)

where Rn = WHW is the noise covariance matrix after combining. Jointly
optimizing F and W in (5.12) is often found to be intractable and the
non-convex constraints on FRF and WRF make finding the global optimum
unlikely [100]. In [100], the authors decouple the optimization over F and
W by optimizing over the variables separately.

Assuming that the receiver uses a fully-digital architecture, an approxi-
mation of the mutual information can be obtained as [100]

I (FRF,FBB) = log2

∣∣∣∣INs +
PT

Ns
R−1n HFRFFBBF

H
BBF

H
RFH

H

∣∣∣∣
≈ log2

∣∣∣∣INs +
PT

Ns
Σ2

s

∣∣∣∣− (Ns − ‖V H
s FRFFBB‖2F

)
(5.13)

where Σs is a diagonal matrix containing the Ns largest singular values
and Vs contains the corresponding right singular vectors of H. Setting
Fopt � Vs, (5.13) can be approximately maximized by solving the following
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optimization problem [100](
F opt
RF ,F opt

BB

)
= arg min

FRF,FBB

‖Fopt − FRFFBB‖F

subject to FRF ∈ FRF

‖FRFFBB‖2F = Ns (5.14)

where FRF is the set of feasible RF precoders. For analog phase-shifters,
FRF is the set of MT ×MRF

T matrices with elements that are unit-amplitude
and have quantized phase-shifts. Similarly, for switches, FRF is such
that each column of FRF is a binary vector with a single one and zeros
elsewhere [101].

With a constraint set WRF on WRF, W can be designed by minimizing
the MSE of the data s at the output of the combiner.(

W opt
RF ,W opt

BB

)
= arg min

WRF,WBB

E

{∥∥s−WH
BBW

H
RFy

∥∥2
2

}
subject to WRF ∈ WRF . (5.15)

Equation (5.15) can be shown to be equivalent to minimizing the weighted
Frobenius norm of the difference between the MMSE combiner WMMSE

and WRFWBB [100]. The latter problem is given as(
W opt

RF ,W opt
BB

)
= arg min

WRF,WBB

∥∥∥∥E [yyH
] 1
2 (WMMSE −WRFWBB)

∥∥∥∥
F

subject to WRF ∈ WRF . (5.16)

With analog phase-shifters capable of continuous phase-shifts, Fopt and
WMMSE can be exactly realized with the hybrid architecture if MRF ≥ 2Ns

[115]. However, more sophisticated techniques are required when using
quantized phase-shifters or switches in the RF precoder.

Using the sparsity of the mmWave channel, [100] proposed using OMP
to jointly compute the analog and digital precoders/combiners in (5.14) and
(5.16). For the analog phase-shifter-based architecture, and in mmWave
channels with limited scattering, the resulting precoder and combiner is
shown through simulations to outperform beam-training and approach the
throughput of an optimal capacity-achieving unconstrained precoder with
water-filling.

Other precoding/combining methods proposed in the existing literature
including those for wide-band multi-user scenarios can be found in [116,
115, 117, 118, 119].

5.6 Channel Tracking in mmWave MIMO

mmWave channels are time-varying owing to user-mobility as well as
movement of scatterers in the environment. Since large arrays with narrow
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beams are used at both ends of the communication link, user mobility
results in pointing errors which have to be compensated for in order to
maintain sufficient link SNR. Fading in conjunction with penetration losses
from blockage mandate frequent re-training.

Moreover, channel estimation with mmWave communication links re-
quires a large overhead since mmWave communication links operate with
pre-beamforming SNRs in the range −20 dB to 5 dB owing to the higher
path-loss and larger operating bandwidth. This results in a large overhead
for initial channel estimation since additional samples are necessary to
reduce the noise power.

However, after initial channel estimation and precoder/combiner design,
the array gain after beamforming ensures a higher SNR for data trans-
mission. For instance, with perfect CSI, MT = 64 and MR = 32 critically
spaced antenna elements at the transmitter and receiver provide an array
gain of 10 log10 (MTMR) ≈ 33 dB resulting in post-beamforming SNRs of
upwards of 13 dB. Consequently, very few samples are required for tracking
variations in the channel in comparison with initial channel estimation
since the former operation is performed in the post-beamforming high-SNR
region [118].

With beam-training, channel tracking boils down to selecting a set of
candidate beams around the estimated AoD/AoA and testing them for the
received signal strength. This channel tracking can be performed during
data transmission without a separate training interval since beam-training
is an energy-based method, meaning that only the received signal strength
is used for selecting the beam.

If the channel variation can be modeled, the set of optimal beams can be
obtained through dynamic programming by treating the channel estimates
as the output of a partially observable Markov decision process [120]. An
alternative approach would be to use these models in a Kalman filter to
track the parameters of individual channel paths [121, 122, 123]. Models
for user mobility can also be used to reduce the overhead needed to track
the channel beamspace [124].

In the absence of such models, if the new channel AoD/AoA can be
restricted to within a confidence interval around the estimated value, a set
of training precoders for channel estimation/tracking can be obtained by
minimizing the CRLB of the AoAs or AoDs [118]. Since channel tracking
is performed in the high SNR region, the ML estimates of the AoAs and
AoDs are close to their CRLB.

With compressive sensing and sparse recovery, a heuristic method for
channel tracking has been proposed in [125].

We have proposed two model-free methods for tracking the channel
coefficients in Publication VII and Publication VIII. In Publication VII,
we overlay training and data information to track abrupt changes in the
channel and in Publication VIII we consider receiver-side channel changes.
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These contributions are described in greater detail in Section 5.7.

5.7 Contribution

In Publication VII and Publication VIII (henceforth written as [126] and
[127], respectively), we propose two sparse-recovery-based methods for
channel tracking that do not require a dedicated pilot interval for estimat-
ing the support of the channel.

5.7.1 Method Proposed in Publication VII

In [126], we assume that a few of the MRF RF chains are reserved for
tracking the channel. Then, the pilot and training are transmitted along-
side each other, at different powers, for estimating the channel. Unlike
the concept of SP described in Section 3.4 and proposed for use in sub-6
GHz systems, the difference in [126] is that the data is transmitted in the
signal space and the pilots are transmitted in the null space of the esti-
mated channel matrix. In the presence of estimation errors, the training
sequence transmitted in the null-space of the channel estimate results in a
non-zero received signal which can then be used to reconstruct the channel
estimation error.

For a large number of antennas M , we have the relation [11]

1

M
aH (θ1)a (θ2) ≈ δ (θ1, θ2) . (5.17)

As a result of this asymptotic orthogonality, steering vectors corresponding
to paths with AoDs/AoAs that are not in the estimated support of the
channel matrix are in the null-space of the channel matrix. This property
effectively decouples the data and channel estimation problems when the
changed/newly-appeared paths are outside the range space of the channel
estimate.

Transmitting energy in the null-space of the channel matrix allows for
estimating both changes the parameters of paths in Ĥ as well as any
new paths that may have appeared after initial channel training. The
receiver then jointly estimates the channel and data using a SBL-based
approach [99, 128].

In [129], a similar approach to channel tracking was developed indepen-
dently in parallel with our work in [126]. While both methods involve
transmitting energy in the range and null-spaces of the channel estimate,
an important difference between [129] and [126] is that the former method
transmits pilots both in the range and null-spaces of the channel at dif-
ferent powers whereas the latter method involves transmitting data in
the range space. In [126], the transmitted data is jointly estimated along
with the channel at the receiver using the EM method so as to maximize
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the likelihood. Consequently, the choice of the training precoder in [129]
is a particular case of [126] when the data is assumed to be known. A
side-by-side comparison of the quality of the channel estimate from both
methods is an interesting problem for future research.

5.7.2 Method Proposed in Publication VIII

In [127], we propose a blind subspace estimation/tracking algorithm for
tracking the channel at the receiver assuming that the AoD at the trans-
mitter is constant whereas the AoA at the receiver can change. Such an
assumption is valid in scenarios such as a fixed BS communicating with a
mobile terminal (hand-held receiver or a drone) in the DL.

Assuming that the receiver reserves an RF chain for the duration of the
training interval, it is shown that estimating the basis of the left singular-
subspace from the received observations during data transmission can
be cast as a sparse-recovery problem and that the basis can be recovered
provided that the transmitter probes all the eigenmodes of the channel.
Since two bases for a vector space are related to each other through a
non-singular matrix, the ZF combiner can be obtained by estimating this
non-singular matrix using MRF pilots. Note that estimating both the
subspace and the ZF combiner does not require any knowledge of the
transmit precoder.

In Figs. 5.5 and 5.6, the performance of the proposed channel tracking
method is compared with the combiner design method proposed in [118].
The algorithms were compared with a transmitter and receiver equipped
with MT = 64 and MR = 32 antennas. Both the transmitter and receiver
used a hybrid architecture with MRF

T = MRF
R = 4 RF chains. At the

receiver MRF−T
R = 1 RF chain out of the MRF

R RF chains is used for channel
tracking for the duration of the training interval. The training interval is
assumed to be 5120 symbols and the difference in AoA and AoD between
subsequent training intervals is assumed to be distributed as CN (0, σθ)

and CN (0, σψ), respectively. Additional details of the simulation setup can
be found in [127]. The proposed method performs similar to the method in
[118] despite not requiring the knowledge of the precoding matrix at the
receiver.

The proposed method can be viewed as a generalization of energy-
detection-based channel tracking algorithms such as beam-training (de-
scribed in Section 5.6) for the hybrid architecture with compressive sensing
and sparse recovery. The implementation discussed in [127] has two draw-
backs, namely, (i) an additional RF chain is required for channel tracking
and (ii) the training combiners are random and therefore do not use the
prior information of the channel. We are currently working on designing
the training combiners to track the channel, obviate the need for a dedi-
cated RF chain, and obtain the updated combiner without using training.
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Figure 5.5. Plot of the average achievable rate vs block index at SNR = 0 dB, σθ = 2◦ and
σψ = 0.
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6. Conclusion and Future Work

In this thesis, we have considered channel estimation in sub-6 GHz and
mmWave MIMO.

In the first and second parts of this thesis (Chapters 3 and 4, respectively),
we focus on the detrimental phenomenon in massive MIMO systems known
as pilot contamination. For mitigating/avoiding pilot contamination, we
have proposed SP and its variants namely, staggered pilots and the hybrid
system in Chapter 3.

SP, through the hybrid system, has the potential to increase the through-
put of a network that consists of users transmitting only RP. Staggered
pilots, on the other hand, eliminate the intra-cell component of the inter-
ference resulting from transmitting pilots alongside the data, and conse-
quently, offers a significantly higher DL throughput in comparison with
RP while requiring the same overhead.

We have also discussed using semi-blind methods to remove a portion of
the inter and intra-cell interference resulting from using SP. However, the
performance analysis of these methods in the multi-cell scenario with pilot
contamination (both for RP and SP) is an unsolved problem.

In Chapter 4, we have considered the problem of estimating the individ-
ual user SCMs in the presence of pilot contamination. We have proposed
a method for SCM estimation that is capable of providing asymptotically
contamination-free covariance matrices without requiring any synchroniza-
tion between BSs or user terminals. A theoretical analysis of the ergodic
achievable spectral efficiency of the proposed method in comparison with
other state-of-the-art methods is a topic of interest and is currently being
investigated by us.

In the third part of this thesis (Chapter 5), we focus on channel tracking
for mmWave MIMO. We show that semi-blind methods have the potential
to reduce the overhead as well as the latency due to channel tracking.
However, the proposed semi-blind methods require dedicated RF chains
for training, and obviating this requirement is also a future research
direction.
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ABSTRACT

Superimposed pilots are proposed as an alternative to time-
multiplexed pilot and data symbols for mitigating pilot con-
tamination in massive multiple-input multiple-output sys-
tems. Provided that the uplink duration is larger than the
total number of users in the system, superimposed pilots
enable each user to be assigned a unique pilot sequence,
thereby allowing for a significant reduction in pilot con-
tamination. Channel estimation performance in the uplink
is further improved using an iterative data-aided algorithm.
Based on approximate expressions for the uplink signal-to-
interference-plus-noise ratio, it is shown that superimposed
pilots provide a better performance when compared with
methods that use time-multiplexed data and pilots. Numeri-
cal simulations are used to validate the approximations and
the improved performance of the proposed method.

Index Terms— Massive MIMO, pilot decontamination,
superimposed pilots

1. INTRODUCTION

Existing methods to mitigate pilot contamination for mas-
sive multiple-input multiple-output (MIMO) [1] systems are
designed for the case where the pilots are time-multiplexed
with the data, henceforth referred to as conventional time-
multiplexed pilots. To mitigate interference, methods that
employ conventional time-multiplexed pilots utilize the array
gain offered by the large antenna array, asymptotic orthog-
onality between channel vectors and coordination between
base stations (BS) [2–4].

On the other hand, superimposed pilots have been exten-
sively studied for channel estimation in MIMO systems [5–8]
in the context of minimizing the loss in data-transmission rate
by foregoing the need for separate time slot for pilot-symbol
transmission. However, in multi-cell massive MIMO sys-
tems, superimposed pilots allow each user in the system to
be assigned a unique pilot sequence enabling the BS to esti-
mate the channel vectors of both the desired and interfering
users. Most recently, superimposed pilots have been used in

the context of multi-cell multiuser MIMO systems [9] with-
out realizing that it provides a superior solution to the pilot
decontamination problem in massive MIMO systems.

In this paper, we show that superimposed pilots are supe-
rior to conventional time multiplexed pilots in the context of
pilot contamination in massive MIMO systems. We propose
a novel low-complexity iterative matched-filter based channel
estimation scheme for superimposed pilots and demonstrate
its effectiveness by deriving a closed-form approximation
for the uplink (UL) signal-to-interference-plus-noise ratio
(SINR) of the system. Although the use of superimposed
pilots requires some coordination between the BSs in assign-
ing pilot sequences to the users and estimating their path-
loss coefficients, these are minor impediments compared to
the performance improvements provided by the proposed
scheme.

2. SYSTEM MODEL

For channel estimation, the massive MIMO uplink with L
cells and K users per cell is considered. Each cell has a BS
with M � K antennas. Assuming that the channel is con-
stant for Cu symbols in the uplink, the matrix of received
values Yj ∈ C

M×Cu at the jth BS can be written as

Yj =

L−1∑
�=0

K−1∑
k=0

hj,�,kx
T
�,k +Wj (1)

where hj,�,k ∈ C
M×1 is the channel vector from the kth

user in the �th cell to the jth BS, x�,k ∈ C
Cu×1 is the se-

quence of symbols transmitted by the kth user in the �th

cell, (·)T denotes the transpose, Wj ∈ C
M×Cu is the ad-

ditive white Gaussian noise at the jth BS with each column
distributed as CN (0, σ2IM ) and mutually independent of
the other columns. The nth element of hj,�,k is given as
[hj,�,k]n = gj,�,k,n

√
βj,�,k, where gj,�,k,n ∼ CN (0, 1) and

βj,�,k are the fast-fading and large-scale fading components,
respectively. The elements gj,�,k,n are mutually independent
of each other for all n and βj,�,k is assumed to be known
at the BS. Therefore, the vectors hj,�,k are complex normal



distributed and are assumed to be mutually independent of
each other ∀j, �, k.

3. CONVENTIONAL TIME-MULTIPLEXED PILOTS

AND THE PILOT CONTAMINATION PROBLEM

With conventional time-multiplexed pilots, each user in a cell
transmits a τ ≥ K length orthogonal pilot sequence for chan-
nel estimation and the same pilot sequences are transmitted
by the users in the L − 1 interfering cells. The received sig-
nal at the jth BS during pilot training Y

(p)
j ∈ C

M×τ can be
written as

Y
(p)
j =

L−1∑
�=0

Hj,�Φ
T +Wj (2)

where Hj,� � [hj,�,0, . . . ,hj,�,K−1], Φ ∈ C
τ×K is the ma-

trix of pilot sequences with mutually orthogonal columns
such that ΦTΦ∗ = τIK , (·)∗ denotes conjugation, and IN
represents the N ×N identity matrix. The least-squares (LS)
estimate of the channel of the mth user in the jth BS can be
written as

ĥCP
j,j,m � 1

τ
Y

(p)
j Φ∗m = hj,j,m+

L−1∑
�=0
��=j

hj,�,m+
1

τ
WjΦ

∗
m (3)

where Φm is the mth column of Φ and it is the pilot sequence
transmitted by the mth user in each cell. It can be seen that
the estimates of the channel vectors of the users in the jth cell
are contaminated by the channel vectors of the users in the
remaining L − 1 cells. The MSE of the channel estimate of
the mth user at the jth BS can be shown to be

MSECP
j,j,m � 1

M
E

[
‖hj,j,m − ĥj,j,m‖2

]
=

L−1∑
�=0
��=j

βj,�,m +
σ2

τ
.

(4)

4. SUPERIMPOSED PILOTS

When using superimposed pilots, the pilot symbols are trans-
mitted at a reduced power alongside the data symbols for the
entire duration of the uplink data slot Cu. If the total number
of users in the system is less than the uplink pilot duration,
i.e., KL ≤ Cu, each user can be assigned a unique orthog-
onal pilot sequence pj,m ∈ C

Cu×1 taken from the columns
of an orthogonal matrix P ∈ C

Cu×Cu . The received signal at
the jth BS Yj ∈ C

M×Cu , when using the superimposed pilot
scheme, can be written as

Yj =
L−1∑
�=0

K−1∑
k=0

hj,�,k (ρdx�,k + ρpp�,k)
T
+Wj (5)

where ρ2d and ρ2p are the fractions of the transmit powers re-
served for the pilot and data symbols, respectively. The total
transmitted power pu is given as pu = ρ2p + ρ2d.

4.1. Non-Iterative Channel Estimation

The LS estimate of the channel of the mth user at the jth BS
can be written as

ĥj,j,m � 1

Cuρp
Yjp

∗
j,m = hj,j,m +

ρd
Cuρp

Wjp
∗
j,m (6)

+
ρd

Cuρp

L−1∑
�=0

K−1∑
k=0

hj,�,kx
T
�,kp

∗
j,m .

The estimated channel can be used to obtain the data vector
using matched filtering (MF) as

(x̂j,m)
T
= η

{
1

Mρd
ĥH
j,j,m

(
Yj − ρpĥj,j,mpT

j,m

)}
(7)

where η {·} is an hard-slicing function that replaces each el-
ement of the input vector with the constellation point that is
closest in Euclidean distance to that element and (·)H denotes
the Hermitian transpose. The mean-squared error (MSE) of
the channel estimate in (6) can be obtained as

MSESP
j,j,m =

ρ2d
Cuρ2p

⎛⎜⎝K−1∑
k=0

βj,j,k +
L−1∑
�=0
��=j

K−1∑
k=0

βj,�,k

⎞⎟⎠+
σ2

Cuρ2p
.

(8)

The details of all derivations are given in [10, 11] which are
our associated journal papers. Large coherence times, and in
turn large values of Cu, reduce the MSE in (8) by a signifi-
cant amount. Moreover, by comparing (4) and (8), it can be
seen that in scenarios with little or no pilot contamination, i.e.,
(βj,�,k ≈ 0, ∀ � �= j), the first term in (8), which is due to the
overlapping data symbols, dominates and leads to a higher
MSE than for the case of time-multiplexed pilots. In addi-
tion, since this scheme allows for estimating the channels of
the interfering users, iterative data-aided methods can be used
to remove interference from both the desired and interfering
users.

4.2. Iterative Data-Aided Channel Estimation

For the sake of clarity and without loss of generality, we re-
place the two indices k, � with a single index k that is used to
index the users in all the L cells. Assuming that the path-loss
coefficients of all the users are available at the jth BS, they
are arranged in the decreasing order, i.e., βj,0 ≥ βj,1 ≥ . . . ≥
βj,N−1, where N � KL. It is assumed that the BSs have ac-
cess to the exact values of the path-loss coefficients βj,k and
that there is no false-ordering. This assumption is reasonable
since for large M , the path-loss coefficients can be computed



Iul
j,m(i) ≈ pu

Mρ2d

N−1∑
k=0
k �=m

βj,kβj,m +
pu

Cuρ2p

⎧⎪⎪⎨⎪⎪⎩
m−1∑
k=0
k∈Uj

β2
j,kα

(i)
j,k +

N−1∑
k=m
k∈Uj

β2
j,kα

(i−1)
j,k +

N−1∑
k=0
k/∈Uj

β2
j,k

⎫⎪⎪⎬⎪⎪⎭+
σ2βj,m

Mρ2d

+
pu

MCuρ2p

⎧⎪⎪⎨⎪⎪⎩
m−1∑
k=0
k∈Uj

N−1∑
n=0
n�=k

βj,nβj,kα
(i)
j,k +

N−1∑
k=m
k∈Uj

N−1∑
n=0
n�=k

βj,nβj,kα
(i−1)
j,k +

N−1∑
k=0
k/∈Uj

N−1∑
n=0
n�=k

βj,nβj,k +
N−1∑
k=0

βj,kσ
2

⎫⎪⎪⎬⎪⎪⎭ (13)

at the BS with negligible error by averaging the power of the
channel coefficients over the entire array.

The channel vector for the mth user can be estimated sim-
ilar to (6) and can be written as

ĥ
(1)
j,m = hj,m +

ρd
Cuρp

N−1∑
k=0

hj,kx
T
k p

∗
m +

1

Cuρp
Wjp

∗
m (9)

where the superscript (1) is the iteration index and it denotes
the first iteration. The estimate for the mth user is contam-
inated by the product of the channel and data vectors of all
the users projected onto the mth orthogonal pilot. Therefore,
to improve the quality of the channel estimate, it is neces-
sary to estimate the channel and data vectors of the remaining
N−1 users and subtract them from the channel estimate. The
decision-aided estimation is started with the 0th user who in-
cidentally has the highest SINR, owing to the ordering of the
users. The hard-sliced data from the 0th user is then used to
correct the channel estimate of the user with the next highest
SINR, which is the 1st user. This can be written as(

x̃
(1)
j,0

)T
=

1

Mρd

(
ĥ
(1)
j,0

)H (
Yj − ρpĥ

(1)
j,0p

T
0

)
(10)

x̂
(1)
j,0 = η

(
x̃
(1)
j,0

)
(11)

ĥ
(1)
j,1 =

1

Cuρp

(
Yj − ρdĥ

(1)
j,0

(
x̂
(1)
j,0

)T)
p∗1 (12)

where the subscript j in x̂j,0 and x̃
(1)
j,0 indicates that these es-

timates are computed at the jth BS. To prevent error propa-
gation, it is necessary to exclude users with poor SINR from
the feedback loop. This exclusion can be accomplished by
analyzing the impact of symbol errors on the MSE.

To derive the MSE, let Uj be the set of users whose es-
timated data is fed back to improve the channel estimate. It
is assumed that the estimation errors of both the channel and
data vectors in the feedback loop are uncorrelated in every it-
eration and that the estimation error in each element of x̃j,m

is zero-mean circular complex-Gaussian with variance equal
to the uplink interference power Iul

j,m(i). The expression for
Iul
j,m(i), whose derivation is omitted here and will appear

in [10], is given in (13) at the top of the page. The parameter
α
(i)
j,m in (13) is the variance of each element of the symbol er-

ror vector Δx
(i)
j,m � xm− x̂

(i)
j,m. For example, when xm takes

values from a quadrature phase-shift keying (QPSK) constel-
lation, α(i)

j,m is given as

α
(i)
j,m =

⎧⎨⎩E

{∣∣∣[Δx
(i)
j,m

]
n

∣∣∣2} = 4Q

(
βj,m√
Iul
j,m(i)

)
, i ≥ 1

1 , i = 0

(14)

where Q(x) is the Q-function. Using (13) and (14), the MSE
(derived in [11]) can be written as

MSESP−iter
j,m (i) ≈ 1

Cuρ2p

⎡⎢⎢⎣ρ2dm−1∑
k=0
k∈Uj

βj,kα
(i)
j,k+ρ2d

N−1∑
k=m
k∈Uj

βj,kα
(i−1)
j,k

+ ρ2d

N−1∑
k=0
k/∈Uj

βj,k + σ2

⎤⎥⎥⎦ . (15)

Let us now assume that the decoded data vector of only
the mth user is used in the feedback loop, so that the MSE
after the first iteration is obtained from (15) by setting Uj =
{m} as

MSESP−iter
j,m (2) =

ρ2d
Cuρ2p

⎛⎜⎝βj,mα
(1)
j,m +

N−1∑
k=0
k �=m

βj,k

⎞⎟⎠+
σ2

Cuρ2p
.

(16)

On the other hand, the MSE for the non-iterative scheme,
given by equation (8), can be rewritten as

MSESP
j,m =

ρ2d
Cuρ2p

(
N−1∑
k=0

βj,k

)
+

σ2

Cuρ2p
. (17)

Then, a reasonable approach for the inclusion of the mth user
in the feedback loop would be to include the user only if it
does not increase the MSE. The impact of including the mth

user in the feedback loop is clarified by comparing (16) and
(17). Therefore, with Uj = {m}, the estimated data of the
mth user is included in the feedback loop if

4Q

⎛⎝ βj,m√
I(ul)
j,m (1)

⎞⎠ < 1 . (18)
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Fig. 1. Comparison of the SINR of a user in the reference BS
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based, and the proposed scheme at 10dB SNR.

If γj is a threshold on βj,m obtained from (18) and if Uj �
{m βj,m > γj}, then the estimate of the channel and data
vectors for the mth user at the ith iteration can be written as

ĥ
(i)
j,m =

1

Cuρp

⎡⎢⎢⎣Yj − ρd

m−1∑
k=0
k∈Uj

ĥ
(i)
j,k

(
x̂
(i)
k

)T

− ρd

N−1∑
k=m
k∈Uj

ĥ
(i−1)
j,k

(
x̂
(i−1)
k

)T⎤⎥⎥⎦p∗j,m (19)

(
x̃
(i)
j,m

)T
=

1

Mρd

(
ĥ
(i)
j,m

)H (
Yj − ρpĥ

(i)
j,mpT

j,m

)
(20)

x̂
(i)
j,m = η

(
x̃
(i)
j,m

)
(21)

where ĥ
(0)
j,m = 0, x̂

(0)
j,m = 0 ∀ m = 0, . . . , N − 1. It has to

be noted that the threshold is computed in the first iteration
and is fixed for the subsequent iterations. Ideally, the thresh-
old should decrease at each iteration since the improvement
in the channel estimate would allow users with lower SINR
to be included in Uj . However, this is not feasible since the
expression for Iul

j,m(i) is only an approximation and a conser-
vative threshold is used instead. The SINR for the iterative
scheme, given the above assumptions, is written then as

SINRSP−ul
j,m (i) =

β2
j,m

Iul
j,m(i)

(22)

5. SIMULATION RESULTS

The bit-error rate (BER) and SINR of the proposed super-
imposed pilot scheme is compared with that of the LS-

based channel estimate [1] and the eigenvalue decomposition
(EVD)-based method [3] that use time-multiplexed pilots.
The methods are tested with L = 7 cells and K = 5 users
per cell. The users are assumed to be spaced at equal inter-
vals on a circle of radius 800m from the BS in hexagonal
cells with radius 1km. The path-loss coefficient is assumed
to be 3 and Cu is assumed to be 100 symbols. The power
of the transmitted symbols pu is set to 1 and for simplicity,
ρp = ρd = 1/

√
2. The simulations for the proposed superim-

posed pilot-based method are performed for 4 iterations.
It can be seen from the SINR plot presented in Fig. 1

that as M increases, the SINR saturates for the conventional-
pilot scheme due to pilot contamination. However, the SINR
increases almost linearly in M for the proposed superim-
posed pilots scheme and this trajectory can be potentially
maintained using techniques such as adaptive modulation
and coding, thereby implying that the pilot contamination
effect can be eliminated. From Fig. 2, it can be seen that the
proposed pilot structure and the iterative channel estimation
algorithm offer a significant improvement in BER over both
the LS-based and EVD-based schemes.

6. CONCLUSION

We have proposed using superimposed pilots as a superior al-
ternative to time-multiplexed data and pilots for uplink chan-
nel estimation in massive MIMO systems. In addition, an
iterative data-aided channel estimation scheme is developed.
This scheme uses data symbols from both the desired and in-
terfering users in the feedback loop, provided the SINR of
these users exceeds a threshold. Theoretical expressions and
numerical simulations show that the proposed method signif-
icantly alleviates the pilot contamination problem.
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ABSTRACT

In this paper, we analyze the downlink (DL) performance
of superimposed pilots in time division duplexing massive
multiple-input multiple-output (MIMO) systems, and show
that superimposed pilots offer an increased resilience to pi-
lot contamination with respect to time-multiplexed pilots and
data. Based on a closed form expression for the DL signal-
to-interference-plus-noise ratio (SINR) at the user terminal,
we show that the DL SINR increases without bound with
an increasing number of antennas at the base station (BS).
In addition, we derive the Cramér-Rao lower bound (CRLB)
for the channel estimator that uses superimposed pilots. The
CRLB is compared with the mean-squared error and we show
that the estimator achieves the CRLB asymptotically in the
number of antennas at the BS. Simulation results validate our
closed-form expressions and the performance of the proposed
method.

Index Terms— Massive MIMO, pilot decontamination,
superimposed pilots

1. INTRODUCTION

Existing methods for channel estimation in time-division
duplexing (TDD) massive multiple-input multiple-output
(MIMO) systems employ time-multiplexed pilots and data
[1, 2]. Since time-multiplexed pilots and data (henceforth re-
ferred to as time-multiplexed (TM) pilots), require dedicated
symbols for pilot transmission, assigning a unique orthogonal
pilot to each user in the system will reduce the transmis-
sion efficiency, thereby necessitating the sharing of pilots
across cells [1]. This pilot sharing results in a phenomenon
referred to as pilot contamination and leads to inter-cell in-
terference in both the uplink (UL) and downlink (DL) [1, 2].
Several methods have been proposed to decontaminate pilots
by exploiting the asymptotic orthogonality between chan-
nel vectors, angular separation between the users, forward
error correction (FEC) code diversity, pilot allocation, and
coordination between BSs [3–11]. These methods, with the
exception of [7–10], focus on separating the channels of
desired and interfering users at the BS. However, there is

scope for mitigating interference from pilot contamination by
focusing on the user terminals as well.

Superimposed (SP) pilots and embedded training have
been studied extensively for use in MIMO systems [12–14],
especially when it is impractical to reserve dedicated symbols
for pilot transmission [12]. SP pilots have been proposed
for massive MIMO in our previous papers [15, 16] in which
we describe a non-iterative and an iterative data-aided chan-
nel estimation scheme, and show that the UL performance
offered by SP pilots is resilient to pilot contamination in sce-
narios with high inter-cell interference. The UL performance
of SP and TM pilots have been compared in greater detail
in [15, 16].

In this paper,1 we find a closed-form expression for the
DL signal-to-interference-plus-noise ratio (SINR) at the user
terminal when the channel estimate based on SP pilots is
used in a matched-filter (MF) precoder at the BS. In addition,
we compare the mean-squared error (MSE) of the channel
estimated from SP pilots with its Cramér-Rao lower bound
(CRLB). Simulations demonstrate the validity of these ex-
pressions and the superiority of the proposed method with
respect to channel estimates based on TM pilots.

2. SYSTEM MODEL

We consider a TDD massive MIMO system with L cells and
K single-antenna users per cell. Each cell has a BS with
M � K antennas. The number of symbols C, for which
the channel is coherent, is assumed to be divided into Cu and
Cd symbols corresponding to the UL and DL time slots, re-
spectively. Using the tuple (�, k) to denote user k in cell �,
the matrix of received symbols Yj ∈ C

M×Cu at the j’th BS
in the UL time slot can be written as2

Yj =
L−1∑
�=0

K−1∑
k=0

√
μ�,khj,�,ks

T
�,k +Wj (1)

1This paper is an overview-type version of a relevant part of our submitted
journal paper [17].

2We have considered narrow-band flat fading channels in this paper. The
analysis would also hold in frequency-selective channels, provided modula-
tion schemes such as orthogonal frequency division multiplexing are used.



where μ�,k is the power with which user (�, k) transmits the
vector of symbols s�,k ∈ C

Cu×1, (·)T denotes the transpose,
hj,�,k ∈ C

M×1 is the channel vector between user (�, k) and
the j’th BS, and Wj ∈ C

M×Cu is the matrix of additive
white Gaussian noise at the BS, whose columns are indepen-
dent and identically distributed (i.i.d) as CN (0, σ2I). The
channel vector hj,�,k ∈ C

M×1 is assumed to be distributed
as CN (0, βj,�,kI) where βj,�,k is the large-scale path-loss co-
efficient.3 In addition, the channel vectors are assumed to be
asymptotically orthogonal [1]. The transmit power μ�,k is set
according to the statistics-aware power control scheme in [8],
i.e., μ�,k � ω/β�,�,n, where ω is a design parameter chosen so
that the transmit powers of all users satisfy a power constraint.
Users whose channels are severely attenuated are denied ser-
vice. Assuming reciprocity at the BS, for DL transmission,
the BS employs ĥ�,�,k, which is an estimate of h�,�,k, in an
MF precoder. If d�,k ∈ C is the data symbol transmitted to
user (�, k), the received symbol at user (j,m) can be written
as

d̂j,m =
1

M

(
L−1∑
�=0

hT
�,j,m

K−1∑
k=0

ĥ∗�,�,kd�,k + ηj,m

)
(2)

where (·)∗ denotes the complex conjugate and ηj,m is zero-
mean additive white Gaussian noise at the user terminal with
variance σ2. The data symbols d�,k are assumed to have zero
mean, unit variance, and take values from a given constella-
tion.

3. IMPACT OF PILOT CONTAMINATION IN THE

DOWNLINK

We compare here the MSE performance of channel estimates
obtained from TM and SP pilots, and also compare the latter
with its CRLB. In addition, we evaluate the DL SINR at the
user terminal when these channel estimates are employed in
an MF precoder at the BS.

3.1. Time-Multiplexed Pilots

In the case of TM pilots, each user transmits a pilot of length
τ ≥ K symbols for channel estimation followed by UL data.
Assuming that all the pilot transmissions are synchronized,
the LS estimate of the channel of user (j,m) can be easily
found as [1, 2]

ĥTM
j,j,m = hj,j,m +

∑
��=j

�∈Lj(r)

hj,�,m +wj,m (3)

where r is the pilot reuse factor in [8], Lj (r) is the subset
of the L cells that use the same pilots as cell j, wj,m �

3In this paper, for the sake of clarity and simplicity, shadowing is not
taken into account. However, the analysis and the algorithms hold if each
user is associated with the strongest BS. Moreover, the conclusions made for
i.i.d. channels are also applicable in the case of correlated channels.

Wjφφφ
∗
j,m/τ , and φφφj,m is the orthogonal pilot sequence trans-

mitted by user (j,m) such that φφφH
j,mφφφ�,k = τδm,k where

δm,m denotes the Kronecker delta function. It can be seen
from (3) that the channel estimate of user (j,m) is contami-
nated by the channel vectors of users in neighboring cells that
use the same set of pilots. The normalized MSE of the chan-
nel estimate in (3) can then be obtained as

MSETM
j,m � 1

M
E

{
‖ĥTM

j,j,m − hj,j,m‖2
}
=
∑
��=j

�∈Lj(r)

βj,�,m +
σ2

τ

(4)

where ‖ · ‖ denotes the Euclidean norm of a vector. The DL
SINR at user (j,m), when the channel estimate in (3) is used
in an MF precoder at the BS and when M → ∞, can be
written as [1]

SINRTM−dl
j,m =

β2
j,j,m∑

��=j
�∈Lj(r)

β2
�,j,m

. (5)

3.2. Superimposed Pilots

In the case of SP pilots, the users transmit the pilot sym-
bol at a reduced power alongside the data [16], i.e., s�,k =
ρx�,k + λp�,k where p�,k ∈ C

Cu×1 is the pilot sequence
transmitted by user (�, k), and λ2 and ρ2 are the fractions of
transmit powers allocated for transmitting the pilots and data,
respectively, such that ρ2 + λ2 = 1.4 The pilot sequences
p�,k ∈ C

Cu×1 are taken from the columns of an orthogo-
nal matrix P, such that PHP = CuICu

. For the rest of the
paper, we assume that the number of users in the L cells is
smaller than Cu, thereby allowing each user to be assigned a
unique pilot sequence. In deriving the DL SINR, for the sake
of clarity and simplicity, we restrict our attention to the non-
iterative channel estimation method described in [15,16]. The
least-squares (LS) estimate5 of the channel of user (j,m) can
be found to be [15, 16]

ĥSP
j,�,k = hj,�,k −Δhj,�,k (6)

Δhj,�,k � − ρ

Cuλ

L−1∑
n=0

K−1∑
p=0

hj,n,px
T
n,pp

∗
�,k −

Wjp
∗
�,k

Cuλ
(7)

In addition, each user in the system is assigned a different
pilot sequence such that pH

�,kpn,p = Cuδ�,nδk,p. From (7),
the normalized MSE of the channel estimate in (6) can be

4We assume that UL transmissions in the L cells are synchronized. For
example, if L = 7, then the synchronization is limited to the first tier of
interfering cells. This requirement on synchronization is equivalent to TM
pilots that are reused with a pilot reuse factor r = 3 [8].

5 We restrict ourselves to the LS method for the sake of convenience.
While, the linear minimum mean-squared error criterion can be used to obtain
the estimator, it does not offer any benefit in the asymptotic performance.



SINRSP−dl
j,m = β2

j,j,m

(
ρ2K

Cuλ2

L−1∑
�=0

β2
�,j,m +

1

M

(
ρ2K

Cuλ2

L−1∑
�=0

L−1∑
n=0

K−1∑
p=0

β�,j,mβ�,n,p +
L−1∑
�=0

K−1∑
k=0

β�,j,mβ�,�,k + σ2

))−1

(11)

obtained as

MSESP
j,m � 1

M
E
{
‖hSP

j,j,m − hj,j,m‖2
}

=
ρ2

Cuλ2

L−1∑
�=0

K−1∑
k=0

βj,�,k +
σ2

λ2Cu
. (8)

The first term in (8) is due to the interference that results from
transmitting data alongside the pilots and the second term is
due to the additive noise at the receiver.

The CRLB6 of the channel estimate is found in [17] to be

CRLB (hj,j,m) =

(
βj,j,m +

Cu

σ2

)−1

≈ Mσ2

Cu
. (9)

The approximation in (9) is valid when σ2/Cu � βj,j,m.
Therefore, we have the relation

MSESP
j,m ≥ 1

M
CRLB (hj,j,m) =

σ2

Cu
. (10)

The DL SINR, when the channel estimate in (6) is used in
an MF precoder, can be written as (11) (shown at the top of
the page) and it is derived in [17]. The expression for the DL
SINR, when M → ∞, can then be written as +1

SINRSP−dl
j,m =

β2
j,j,m

ρ2K
Cuλ2

L−1∑
�=0

β2
�,j,m

. (11)

In [16], we have shown that ρ2 and λ2 can be chosen to max-
imize a lower bound on the UL sum rate and obtained them
as

ρ2opt =

(
1 +

√
M + LK

Cu

)−1

(12)

λ2
opt = 1− ρ2opt =

(
1 +

√
Cu

M + LK

)−1

. (13)

Substituting (12) and (13) into (8), the normalized MSE of
the channel estimate can be rewritten as

MSESP
j,m

∣∣∣∣
ρopt,λopt

=
1√

(M + LK)Cu

L−1∑
�=0

K−1∑
k=0

βj,�,k+
σ2

λ2
optCu

.

(14)
Inspecting (14), it can be seen that unlike MSETM

j,m, MSESP
j,m

decreases at a rate proportional to
√
M and achieves its CRLB

6In deriving the CRLB, the assumptions on the statistics of the channel
and data vectors made in Section 2 are used.

asymptotically, when optimized values of ρ2 and λ2 are em-
ployed. This reduction in MSE also results in an increasing
SINR in the DL. Substituting (12) and (13) into (11), the DL
SINR with optimized values of ρ2 and λ2 can be written as

SINRSP−dl
j,m

∣∣∣∣
ρopt,λopt

≈
√
Cu (M + LK)β2

j,j,m

K
L−1∑
�=0

β2
�,j,m

. (15)

It can be seen from the above equation that the DL SINR in-
creases without bound at a rate proportional to

√
M .7 This

behavior is in contrast to SINRTM−dl
j,m which saturates when

M → ∞ due to pilot contamination.
The unbounded increase in DL SINR can be attributed to

using progressively smaller values of ρ2 with increasing an-
tenna array gain. When M increases, the larger array gain
allows for a user to employ a smaller value of ρ2 without sac-
rificing the UL rate. Since, from the denominator of (11), the
amount of interference caused by a user employing SP pilots
is proportional to ρ2, employing smaller values of ρ2 leads
to a corresponding reduction in the DL interference and an
increase in the DL SINR.

4. SIMULATION RESULTS

In this section, we compare the MSE, DL bit-error rate (BER),
DL throughput, and DL SINR of a massive MIMO system
that employs the channel estimate obtained from SP pilots
to a system that employs the channel estimate obtained from
TM pilots. These methods are simulated in hexagonal cells
of radius 1km in two scenarios. Scenario 1: Users are dis-
tributed uniformly in the cell. Scenario 2: Users in both the
reference and interfering cells are equally spaced on a circle
of radius 800m with the BS in the center. Our simulations
are performed for L = 7 cells with K = 5 users per cell.
The path-loss coefficient is set to 3. The signal-to-noise ra-
tio (SNR), i.e., ω/σ2 is set to 10dB, and ω is set to 1. The
power allocation parameters ρ and λ are computed from (12)
and (13), respectively. The UL and DL durations, i.e., Cu and
Cd, respectively, are both chosen as 100 symbols. The sim-
ulations in Scenario 1 are performed for 2 × 104 realizations
of user locations with 100 realizations of channel and data for
each realization of user location. Similarly, the simulations in
Scenario 2 are performed for 2 × 104 realizations of channel
and data for fixed user location. The solid and dashed lines in

7In practice, the ceiling on the DL SINR will depend on the reuse factor
of SP pilots. For example, if L = 7, the ceiling on the DL SINR is equivalent
to that obtained when TM pilots are reused with pilot reuse factor r = 3 [8].
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the plots represent simulated and theoretical curves, respec-
tively. The UL and DL throughput and BER is averaged over
the users in the center cell. A 4-quadrature amplitude mod-
ulation (QAM) constellation is employed for computing the
BER.

In Fig. 1, it can be seen that the proposed method offers
a uniform quality of service over its users since SINRSP−dl

j,m

is concentrated around its mean with very short tails, whereas
SINRTM−dl

j,m has heavier tails, implying there are users with
both very high and very low SINRs. In addition, it can be
seen that the probability with which SINRSP−dl

j,m is higher
than SINRTM−dl

j,m increases with M . As a result, it can be
seen in Fig. 2 that the proposed method offers a significantly
lower BER that decreases with M . In Fig. 3, the DL rate when
SP pilots are employed is observed to be significantly higher
than when TM pilots are employed. Furthermore, the DL rate

offered by the former method increases without bound in M
whereas the latter method saturates at a significantly smaller
value. In Fig. 4, it can be seen that MSESP

j,m decreases with
increasing M and achieves its CRLB asymptotically, whereas
MSETM

j,m remains constant with increasing M .

5. CONCLUSION

We have shown that SP pilots offer a superior performance in
the DL when compared to TM pilots and data. It is shown that
the fractions of transmit power allocated to pilots and data,
when optimized to maximize the UL sum rate, results in a
DL SINR that increases without bound at a rate proportional
to

√
M , thereby significantly mitigating the impact of pilot

contamination on the DL SINR performance. In addition, it
is shown that the MSE of the channel estimate obtained from
SP pilots achieves its CRLB asymptotically in M .
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ABSTRACT

In massive multiple-input multiple-output (MIMO) systems, super-
imposed (SP) and time-multiplexed (TM) pilots exhibit a comple-
mentary behavior, with the former and latter schemes offering a
higher throughput in high and low inter-cell interference scenarios,
respectively. Based on this observation, in this paper, we propose
an algorithm for partitioning users into two disjoint sets comprising
users that transmit TM and SP pilots. This selection of user sets is
accomplished by minimizing the total inter-cell and intra-cell inter-
ference, and since this problem is found to be non-convex, a greedy
approach is proposed to perform the partitioning. Based on simula-
tions, it is shown that the proposed method is versatile and offers an
improved performance in both high and low-interference scenarios.

Index Terms— Massive MIMO, pilot decontamination, super-
imposed pilots, hybrid system, pilot selection

1. INTRODUCTION

Channel training and estimation is a critical component of any co-
herent transceiver. The same holds true for massive multiple-input
multiple-output (MIMO) systems, which have been touted as a po-
tential candidate for fifth generation wireless communication sys-
tems [1–3]. Existing schemes for channel training in a time-division
duplexing (TDD) massive MIMO system employ time-multiplexed
pilots and data (henceforth referred to as time-multiplexed (TM) pi-
lots), wherein a subset of the symbols in the uplink (UL) time slot are
reserved for pilot transmission. Maintaining high transmission effi-
ciency necessitates the reuse of pilot sequences across cells, which
leads to a phenomenon called ‘pilot contamination’ that limits the
UL and downlink (DL) transmission efficiency [1,4,5]. Methods for
mitigating pilot contamination utilize additional information about
pilot transmissions, such as asymptotic orthogonality of user chan-
nels, non-overlapping user angle spread at the base station (BS), co-
ordination between BSs, forward error correction (FEC) code di-
versity, pilot assignment, power control, and pilot reuse to assign
unique signatures to users in order to improve their channel separa-
bility [6–15].

Superimposed (SP) pilots have recently been introduced as an
alternative pilot structure for massive MIMO [16, 17]. Since super-
imposed pilots do not require a separate set of symbols for transmit-
ting pilots, they offer a larger set of orthogonal pilots and therefore,
do not need to be reused as often as TM pilots. This allows SP pilots
to offer superior UL and DL throughput in high interference scenar-
ios, when compared to its TM counterpart [17,18]. However, in low
inter-cell interference scenarios, TM pilots are superior since the in-
terference from data that is transmitted alongside SP pilots results in
a ceiling on its throughput.

In this paper1, we utilize the complementary behavior of TM
and SP pilots to develop an approach for selecting the type of pilot
that is transmitted by a particular user. In order to perform this se-
lection, we propose a novel framework that is based on minimizing
the total inter-cell and intra-cell interference. Based on simulations,
we show that the hybrid system offers a performance that is robust
to interference when compared to systems that employ only TM or
SP pilots.

2. SYSTEM MODEL

We consider a TDD massive MIMO system with L cells and K users
per cell. Each cell has a BS with M � K antennas. The number of
symbols over which the channel is coherent C is divided into Cu and
Cd symbols for the UL and DL time slots, respectively. The channel
is assumed to be static within the coherence block and realizations
are assumed to be independent between coherence blocks. Using the
tuple (�, k) to denote user k in cell �, the received signal in the UL
at the j’th BS Yj ∈ C

M×Cu can be written as

Yj =

L−1∑
�=0

K−1∑
k=0

√
μ�,khj,�,ks

T
�,k +Wj (1)

where (·)T denotes the transpose, s�,k ∈ C
Cu×1 and μ�,k are the

transmitted symbol and the UL transmit power, respectively, of
user (�, k), Wj ∈ C

M×Cu is the matrix corresponding to additive
white Gaussian noise at the BS with each column mutually inde-
pendent of the other columns and distributed as CN (

0, σ2IM
)
,

hj,�,k ∈ C
M×1 is the channel vector between user (�, k) and

BS j. The channel vector hj,�,k is assumed to be distributed as
CN (0, βj,�,kIM ) with βj,�,k denoting the large-scale path-loss co-
efficient.2 The parameter μ�,k is chosen using the statistics-aware
power control scheme [11], i.e., μ�,k � ω/βj,�,k where ω is a
design parameter chosen such that each user satisfies its power con-
straint. When this power control scheme is employed, the effective
path-loss coefficient between the user and the BS can be written as
β̄j,�,k � μ�,kβj,�,k. In the rest of the paper, we drop the over-bar in
β̄j,�,k.

If a matched filter (MF) based precoder is used in the DL and if
d�,k is the symbol transmitted by BS � to its k’th user, the estimate

1This paper is a condensed version of our submitted journal paper [19].
2We do not consider shadowing in this paper. However, the framework

and the algorithm are valid in the presence of shadowing, provided each user
is associated with its strongest BS.



of the data at user (j,m) can be written as

d̂j,m =
1

M

(
L−1∑
�=0

hT
�,j,m

K−1∑
k=0

ĥ∗
�,�,kd�,k + ηj,m

)
(2)

where ĥ�,�,k is an estimate of h�,�,k, (·)∗ denotes the complex con-
jugate, and ηj,m is the additive noise at the user terminal that is dis-
tributed as CN (

0, σ2
)
.

3. EXISTING CHANNEL TRAINING SCHEMES

In this section, we briefly review TM and SP pilots and their UL and
DL signal-to-interference-plus-noise ratio (SINR) performance.

3.1. Time-multiplexed Pilots

When TM pilots are employed, each user in a cell transmits a τ ≥ K
length orthogonal pilot followed by UL data. Assuming that all pilot
transmissions are synchronized, the least squares (LS) estimate of
the channel in the UL can be found as [1, 17]

ĥTM
j,j,m = hj,j,m +

∑
� �=j

�∈Lj(r)

hj,�,m +wj,m (3)

where Lj(r) is the set of cells that use the same pilots as cell j,
wj,m = Wjφφφ

∗
j,m/τ , φφφj,m is the pilot sequence transmitted by user

(j,m), and (·)∗ denotes the complex conjugate. From (3), it can be
seen that the estimate of the channel is contaminated by the channel
vectors of the users in the neighboring cells that use the same pilots.
The UL and DL SINRs when this channel estimate is used in an MF-
based detector and precoder, respectively, and when M → ∞ can
be obtained as [1]

SINRTM−ul
j,m =

β2
j,j,m∑

��=j
�∈Lj(r)

β2
j,�,m

(4)

SINRTM−dl
j,m =

β2
j,j,m∑

��=j
�∈Lj(r)

β2
�,j,m

. (5)

3.2. Superimposed Pilots

When SP pilots are employed, each user in the cell transmits pilots
at a reduced power alongside the data, i.e., sj,m = ρxj,m + λpj,m,
where xj,m ∈ C

Cu×1 and pj,m ∈ C
Cu×1 are the data and pilot

vectors transmitted by user (j,m), respectively, with transmit pow-
ers ρ2 and λ2 chosen such that ρ2 + λ2 = 1. The pilot vectors are
taken from the columns of an orthogonal matrix P ∈ C

Cu×Cu . The
LS estimate of the channel when the users transmit SP pilots can be
written as [16, 17]

ĥSP
j,�,k = hj,�,k +

ρ

Cuλ

L−1∑
n=0

K−1∑
p=0

hj,n,px
T
n,pp

∗
�,k −

Wjp
∗
�,k

Cuλ
.

(6)
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Fig. 1. Frame structure of a hybrid system with users employing TM
and SP pilots.

It has been shown in [17] that the values of ρ and λ can be chosen to
maximize a lower bound on the UL sum rate as

ρ2 =

(
1 +

√
M + LK

Cu

)−1

(7)

λ2 = 1− ρ2 =

(
1 +

√
Cu

M + LK

)−1

. (8)

Then, the UL and DL SINR of SP pilots, when M → ∞, can be
obtained as [17–19]

SINRSP−ul
j,m =

λ2
j,mρ2j,mβ2

j,j,m

1
Cu

L−1∑
�=0

K−1∑
k=0

ρ2�,kμ�,kβ2
j,�,k

(9)

SINRSP−dl
j,m =

√
Cu (M + LK)β2

j,j,m

L−1∑
�=0

L−1∑
k=0

β2
�,j,m

(10)

and the corresponding rates in the UL and DL can be written as

RSP−ul
j,m =

Cu

C
log2

(
1 + SINRSP−ul

j,m

)
(11)

RTP−dl
j,m =

Cd

C
log2

(
1 + SINRSP−dl

j,m

)
. (12)

In the rest of the paper, for the sake of clarity and convenience, we
use the non-iterative method for channel estimation described in [16,
17]. With suitable modifications, the approach can be extended to the
case when iterative methods are used.

4. PILOT SELECTION

With the hybrid system, a user transmits either TM or SP pilots. As
shown in Fig. 1, users in UTM transmit TM pilots for τ symbols
followed by UL data. Users in USP maintain radio silence for τ
symbols and then transmit SP pilots and data. In this paper, given a
set of K users per cell and the path-loss coefficients βj,�,k, ∀ j, �, k,
we aim at partitioning the users into disjoint sets UTM and USP by
minimizing the total inter-cell and intra-cell interference.

The received signal at BS j for the proposed pilot system can be
written as

Yj = YTM
j +YSP

j +Wj (13)



where YTM
j and YSP

j are the received signals from the users in UTM

and USP, respectively. From Fig. 1, YTP
j and YSP

j can be written
as

YTM
j �

L−1∑
�=0

K−1∑
k=0

(�,k)∈UTM

hj,�,k

[
φφφT
�,k,
√
pux

T
�,k

]
(14)

YSP
j �

L−1∑
�=0

K−1∑
k=0

(�,k)∈USP

hj,�,k

[
01×τ , ρx

T
�,k + λpT

�,k

]
(15)

where the users in UTM transmit data at power pu. Using the LS
estimates of the channels for the users in UTM and USP, which can be
obtained similar to (3) and (6), respectively, the UL and DL SINRs of
users in UTM and USP, when M →∞, can be obtained as [1,17,18]

SINRTM−ul
j,m =

β2
j,j,m∑

��=j
�∈Lj(r)

(�,m)∈UTM

β2
j,�,m

(16)

SINRTM−dl
j,m =

β2
j,j,m∑

� �=j
�∈Lj(r)

(�,m)∈UTM

β2
�,j,m

(17)

SINRSP−ul
j,m ≈ β2

j,j,m

1
(Cu−τ)λ2

L−1∑
�=0

K−1∑
k=0

(�,k)∈USP

β2
j,�,k

(18)

SINRSP−dl
j,m ≈ β2

j,j,m

ρ2

(Cu−τ)λ2

L−1∑
�=0

K−1∑
k=0

(�,k)∈USP

β2
�,j,m

(19)

where the approximations in (18) and (19) have been made assuming
that the users in UTM do not interfere with the users in USP.3 4 Since,
by design, the users in USP do not interfere with the transmission of
UTM, the transmissions of both sets of users can be considered to be
independent of each other. In addition, for the sake of simplicity, it
is assumed that M is large enough such that the above expressions
are valid.

In order to obtain an approach to partition the users into UTM

and USP, we define the following terms. Let ITM−ul
j,m and ITM−dl

j,m

be the total interference in the UL and DL, respectively, caused by
user (j,m) when assigned to UTM. Similarly, let ISP−ul

j,m and ISP−dl
j,m

be the total interference in the UL and DL, respectively, caused by
user (j,m) when assigned to USP. Then, from the denominators of
(16), (17), (18), and (19), ITM−ul

j,m , ITM−dl
j,m , ISP−ul

j,m , and ISP−dl
j,m can

be obtained as [19, Section IV.A]

ITM−ul
j,m =

∑
� �=j

K−1∑
k=0

�∈Lj(r)

(�,k)∈UTM

β2
�,j,kδm,k =

∑
��=j

�∈Lj(r)

(�,m)∈UTM

β2
�,j,m (20)

3In this paper, we assume for the sake of simplicity that pu is small
enough with respect to the transmit powers of the users in USP. This does
not affect the throughput of the users in UTM, since their UL and DL SINRs
are independent of pu. In the absence of this assumption, the BS will have to
estimate and remove YTP

j before estimating the channels of users in UTM.
4Moreover, it can be seen from the simulation results that the hybrid sys-

tem outperforms the existing schemes despite using these approximate ex-
pressions when selecting the pilots.

ITM−dl
j,m =

∑
n�=j

∑
�

K−1∑
k=0

n,�∈Lj(r)

(n,k)∈UTM

β2
n,�,kδj,�δm,k =

∑
n �=j

n∈Lj(r)

(n,m)∈UTM

β2
n,j,m (21)

ISP−ul
j,m =

1

(Cu − τ)λ2

L−1∑
�=0

K−1∑
k=0

(�,k)∈USP

β2
�,j,m (22)

ISP−dl
j,m =

ρ2

(Cu − τ)λ2

L−1∑
�=0

K−1∑
k=0

(�,k)∈USP

β2
�,j,m = ρ2ISP−ul

j,m . (23)

If ξul and ξdl are weights such that ξul + ξdl = 1, then the total cost
due to inter-cell and intra-cell interference can be expressed as

I (UTM,USP) �
L−1∑
�=0

K−1∑
k=0

(
TTM
�,k 1{(�,k)∈UTM}

+ T SP
�,k1{(�,k)∈USP}

)
(24)

where TTM
�,k and T SP

�,k are the total costs incurred when user (�, k) is
assigned to UTM and USP, respectively, and can be written as

TTM
�,k � ξulITM−ul

�,k + ξdlITM−dl
�,k (25)

T SP
�,k � ξulISP−ul

�,k + ξdlISP−dl
�,k . (26)

Using (24) as the objective function, the sets UTM and USP can be
obtained as the solution of the following optimization problem

(UTM,USP) = arg min
UTM⊆U
USP⊆U

I (UTM,USP)

subject to UTM ∪ USP = U
UTM ∩ USP = ∅ (27)

where U is the set of all users in the system and ∅ is the null set.
However, this optimization problem is combinatorial in nature and
requires a search over 2|U| combinations. Alternatively, a greedy
approach can be used to partition U into UTM and USP. At each
step, given UTM and USP, a user

(
�̃, k̃

)
in UTM is chosen as(

�̃, k̃
)
= arg max

(�,k)∈UTM

TTM
�,k . (28)

This user is added to USP if

I
(U ′

TM,U ′
SP

) ≤ I (UTM,USP) (29)

where U ′
TM = UTM\

(
�̃, k̃

)
and U ′

SP = USP ∪
(
�̃, k̃

)
. The algo-

rithm is initialized with UTM = U and is terminated when either
UTM is empty or when (29) is no longer satisfied. The approach
detailed above is summarized in Algorithm 1.

5. SIMULATION RESULTS

In this section, we compare the bit error rate (BER) and throughput
of the hybrid system with systems employing TM and SP pilots. The
simulations are performed with hexagonal cells of 1km diameter in
two scenarios (i) Scenario 1: The users are uniformly distributed in
the cells; (ii) Scenario 2: the users in both the reference and inter-
fering cells are in a fixed configuration and are equally spaced on a
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Fig. 2. Sum Rate in the UL over users in the first tier of cells vs.
user radius in Scenario 2
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Fig. 3. Sum Rate in the DL over users in the first tier of cells vs.
user radius in Scenario 2

Algorithm 1 Greedy algorithm to select UTM and USP

Data: βj,�,k, ∀j, � = 0, . . . , L− 1, k = 0, . . . ,K − 1
Initialize: UTM ← U , USP ← ∅

1: Compute
(
�̃, k̃

)
as in (28)

2: Set U ′
TM ← UTM\

(
�̃, k̃

)
and U ′

SP ← USP ∪
(
�̃, k̃

)
3: if UTM �= ∅ and if I (U ′

TM,U ′
SP) ≤ I (UTM,USP) then

4: UTM := U ′
TM, USP := U ′

SP

5: Return to Step (1).
6: else

7: STOP
8: end if

Table 1. UL and DL performance of TM, SP, and hybrid systems in
Scenario 1

UL
Sum
Rate

DL
Sum
Rate

Total
Rate

BER in the
UL

BER in the
DL

Hybrid
System

47.72 86.46 134.19 1.31× 10−2 1.52× 10−5

TM
Pilots

51.06 66.30 117.36 2.96× 10−2 3.66× 10−2

SP Pilots 35.40 75.60 111.00 2.69× 10−2 4.77× 10−5

circle with the BS in the center. The radius of this circle is varied
from 0.2 to 0.9km in the simulation. The number of cells in the sys-
tem is set to L = 19 cells with M = 600 antennas and K = 5
users per cell. However, the optimization is performed over 7 cells
which consists of the central and first tier of cells. In addition, the
BER and throughput is measured over the users in the central and
first tier of cells. The number of symbols in the UL and DL, i.e., Cu

and Cd are set to 40 symbols. The values of ρ and λ are computed
from (7) and (8), respectively. The signal-to-noise ratios (SNRs) in
the UL and DL, i.e., ω/σ2 are set to 10dB, where ω is the design
parameter in the statistics-aware power control scheme and is set to
1. In addition pu for the users in UTM is set to 0.1. For the hybrid
system, the parameters ξul and ξdl are both set to 0.5. The results in
Scenario 1 are generated by averaging over 103 realizations of user
locations. For each realization of user locations, the throughput and

BER is averaged over 100 realizations of channel and data vectors.
The results in Scenario 2 are obtained by averaging over 104 real-
izations of channel and data. Gaussian signaling and 4-quadrature
amplitude modulation (QAM) are used to compute the throughput
and BER, respectively.

In Figs. 2 and 3, the UL and DL sum rates, respectively, for
the systems employing TM and SP pilots, and the hybrid system are
plotted against the user radius in the cell. As can be observed from
the figures, the UL and DL throughputs of TM pilots are higher than
that of SP pilots in the range of radius [0.2, 0.6]. Similarly, the UL
and DL throughputs of SP pilots are higher than that of TM pilots
in the range [0.8, 1]. Therefore, in these two ranges, there is a clear
choice of UTM and USP for the partitioning algorithm. However, in
the range [0.6, 0.8], the behavior of the greedy algorithm is depen-
dent on the parameters ξul and ξdl, and since both parameters are
equal,the algorithm attempts to strike a balance between the UL and
DL sum rates and offers a performance that is in between TM and
SP pilots. In addition, since Algorithm 1, is greedy, the UL and DL
performance of the resulting partition is non-smooth across different
user radius.

In Table 1, the throughput and BER in Scenario 1 are detailed
for TM and SP pilot-based systems as well as the proposed hybrid
system. The proposed hybrid system offers roughly 14.34% higher
total throughput when compared to the existing methods. In addi-
tion, the proposed method offers a higher throughput in the DL than
TM pilot-based methods. However, this improved DL performance
comes at a cost of lower throughput in the UL, but the hybrid system
allows the DL rate to be traded-off against the UL rate through the
parameters ξul and ξdl.

6. CONCLUSION

We have proposed an algorithm, for TDD massive MIMO systems,
that minimizes the total inter-cell and intra-cell interference by se-
lecting the type of pilot that a user transmits. By means of simula-
tions, it is shown that the proposed scheme offers a performance that
is robust with respect to the user location in the cell. However, the
objective function, that is described in this paper, is non-convex and
requires cooperation between BSs. Obtaining a distributed solution
to solve this optimization problem is a potential direction for future
research.
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Superimposed Pilots Are Superior for Mitigating
Pilot Contamination in Massive MIMO
Karthik Upadhya, Student Member, IEEE, Sergiy A. Vorobyov, Senior Member, IEEE,

and Mikko Vehkapera, Member, IEEE

Abstract—In this paper, superimposed pilots are introduced as
an alternative to time-multiplexed pilot and data symbols for mit-
igating pilot contamination in massive multiple-input multiple-
output (MIMO) systems. We propose a non-iterative scheme for
uplink channel estimation based on superimposed pilots and derive
an expression for the uplink signal-to-interference-plus-noise ratio
(SINR) at the output of a matched filter employing this channel
estimate. Based on this expression, we observe that power control
is essential when superimposed pilots are employed. Moreover, the
quality of the channel estimate can be improved by reducing the
interference that results from transmitting data alongside the pi-
lots, and an intuitive iterative data-aided scheme that reduces this
component of interference is also proposed. Approximate expres-
sions for the uplink SINR are provided for the iterative data-aided
method as well. In addition, we show that a hybrid system with
users utilizing both time-multiplexed and superimposed pilots is
superior to an optimally designed system that employs only time-
multiplexed pilots, even when the non-iterative channel estimate
is used to build the detector and precoder. We also describe a
simple approach to implement this hybrid system by minimizing
the overall inter- and intracell interference. Numerical simulations
demonstrating the performance of the proposed channel estimation
schemes and the superiority of the hybrid system are also provided.

Index Terms—Massive MIMO, pilot contamination, superim-
posed pilots.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-
tems, proposed in [1], have received significant interest

in recent years as a candidate for fifth-generation mobile com-
munication technologies [2]–[4]. These systems are a variation
of multi-user MIMO (MU-MIMO) and have a large number of
base station (BS) antennas that result in an improved spectral
efficiency through spatial multiplexing [5], [6]. Under favorable
propagation conditions [1], significant gains in throughput can
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be achieved by employing simple linear processing at the BS
[7], [8]. In addition, large numbers of antennas result in an im-
proved uplink (UL) energy-efficiency [9] and render the system
performance resilient to hardware impairments [10].
However, all the above mentioned benefits of a massive

MIMO communication system hinge on the assumption that
the BS has access to accurate estimates of the channel state
information (CSI). For systems that employ either frequency
division duplexing (FDD) or time division duplexing (TDD),
the channel estimates are obtained using orthogonal pilot se-
quences. In FDD systems, each antenna at the BS transmits a
pilot sequence that is orthogonal to the pilot sequences trans-
mitted by the other antennas. Since the number of orthogonal
pilot sequences required becomes proportional to the number
of BS antennas, FDD is considered impractical for channel es-
timation in massive MIMO [5], [11]. Moreover, since the CSI
corresponding to each antenna is estimated by the users, it has
to be fedback from the users to the BS, consuming additional
bandwidth. Consequently, massiveMIMO systems are typically
assumed to employ TDD with full frequency-reuse and utilize
channel reciprocity to obtain CSI. In these systems, each user in
a cell is assigned a different pilot sequence and these pilots are
time-multiplexed with data in each coherence block. When us-
ing time-multiplexed pilots and data, the requirement for high
spectral efficiency necessitates sharing of pilot sequences be-
tween adjacent cells, resulting in the channel estimates of the
users in a cell being corrupted by the channel vectors of users
in the adjacent cells. This phenomenon called ‘pilot contamina-
tion’ [12] introduces interference in both the UL and downlink
(DL), degrading the overall performance of the system.
Existing methods to mitigate pilot contamination for mas-

sive MIMO are designed for the case wherein the pilots are
time-multiplexed with the data, henceforth referred to as time-
multiplexed pilots. In [13], it has been observed that the eigen-
vectors of the autocorrelation matrix of the received data corre-
spond to the channel vectors of the desired and interfering users,
and a method for channel estimation has been developed based
on this observation. Pilot decontamination has been performed
in [14] by projecting the contaminated channel estimate on an
interference-free subspace spanned by the channel vectors of
the desired users, whereas [15] derives asymptotic conditions
for separability between the subspaces of the desired and inter-
fering users. In [16], a coordinated method for pilot allocation
has been proposed for separating desired and interfering users
in correlated channels. A pilot decontamination method based
on the array processing model has been proposed in [17] for use
in parametric channels with a finite number of discrete paths.
In [18], a resource allocation approach has been proposed for

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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optimizing the number of users scheduled in each cell in order
to minimize the effect of pilot contamination. A common theme
for the approaches described above, except for [16] and [18], is
that they focus on decontaminating the channel estimate at the
receiver, which in this case is the BS. However, since pilot con-
tamination results from interfering pilot transmissions, there is a
scope for better separating the desired and interfering users by
optimizing the pilot transmissions at the user terminal as well.
In this paper, we propose using superimposed pilots as an

alternative to, and in combination with, time-multiplexed pi-
lots in massive MIMO systems. Methods for channel estimation
based on pilots that are embedded in data, such as superim-
posed pilots, have been extensively studied for MIMO systems
[19]–[24]. However, these papers have focused on embedded
and superimposed pilots in the context of accommodating a loss
in signal-to-noise ratio (SNR) in exchange for a reduced pilot
transmission overhead [20], [21]. Particularly, scenarios with
high user-mobility, wherein it is impractical to allocate dedi-
cated symbols for training, have been of interest for employing
superimposed pilots. In the context ofmulti-cellmassiveMIMO,
provided that the number of users in the system is smaller than
the number of symbols in the UL, superimposed pilots allow for
each user in the system to be assigned a unique pilot sequence,
enabling the receiver to estimate the channel vectors of both the
desired and interfering users. In addition, these pilots mitigate
pilot contamination by time-averaging over long sequences and
offer a higher efficiency due to a reduced transmission overhead.
We obtain expressions for the signal-to-interference-plus-

noise ratio (SINR) at the output of a matched filter (MF)-based
detector when a non-iterative least-squares (LS)-based chan-
nel estimate is employed for channel estimation. Based on the
SINR expression, we highlight the need for power control when
superimposed pilots are employed in a massive MIMO sys-
tem.Moreover, we discuss the shortcomings of the non-iterative
channel estimator and propose an intuitive low-complexity it-
erative channel estimation scheme for superimposed pilots.1 In
addition, we introduce the concept of a hybrid system and show
by means of theoretical arguments that the hybrid system is
superior to its counterpart that employs only time-multiplexed
pilots, even when the non-iterative channel estimator is used to
obtain the channel estimate from superimposed pilots. A simple
approach to design and implement this hybrid system is also de-
tailed. Although the use of superimposed pilots requires some
coordination between the BSs in assigning pilot sequences to the
users and estimating their path-loss coefficients, these are mi-
nor impediments compared to the performance improvements
provided by the proposed scheme.
The article in the existing literature that is closest to this paper

is [26], wherein superimposed pilots have been employed in the
context of multi-cell multiuserMIMO systems. However, unlike
[26], the focus of our paper is to demonstrate the superiority
of superimposed pilots when used in conjunction with time-
multiplexed pilots in a hybrid system. The theoretical results
and simulations that have been obtained are in line with this
objective.
In Section II, the system model for the massive MIMO

UL is described. In Section III, time-multiplexed pilots are

1The work in this paper is a significant extension of our relevant conference
paper [25]. In addition to a detailed exposition, we have included additional
results that demonstrate the superiority of massive MIMO systems that use
superimposed pilots instead of time-multiplexed pilots.

described and the pilot contamination problem is detailed.
Section IV introduces the superimposed pilot scheme and
describes the non-iterative method for channel estimation
and Section V discusses the iterative data-aided scheme. In
Section VI, the concept of a hybrid system that employs
both time-multiplexed and superimposed pilots is introduced
and in Section VII, a simple approach for implementing
this hybrid system is discussed. Section VIII presents sim-
ulation results demonstrating the effectiveness of employing
superimposed pilots for pilot decontamination. Section IX
concludes the paper. Some of the proofs are given in Appendix.

Notation: Lower case and upper case boldface letters de-
note column vectors and matrices, respectively. The notations
(·)∗, (·)T , (·)H , and (·)−1 represent the conjugate, transpose,
Hermitian transpose, and inverse, respectively. The notation
CN (μμμ,Σ) stands for the complex normal distributionwithmean
μμμ and covariance matrix Σ and E {·} is used to denote the ex-
pectation operator. The notation IN denotes anN ×N identity
matrix, and ‖ · ‖ and ‖ · ‖F denote the Euclidean norm of a
vector and Frobenius norm of a matrix, respectively. Upper case
calligraphic letters denote sets, and∅ denotes the empty set. The
notation 1{S} represents the indicator function over the set S,
whereas Card (S) is used to represent its cardinality. The nota-
tion δn,m denotes the Kronecker delta function, and η(·) stands
for an element-by-element decision function that replaces each
element of the input vector with the constellation point that is
closest in Euclidean distance to that element. The big O nota-
tion f(x) = O(g(x)) implies that |f(x)|/|g(x)| is bounded as
x → ∞.

II. SYSTEM MODEL

We consider a TDD massive MIMO UL with L cells and K
single-antenna2 users per cell. Each cell has a BS withM � K
antennas. The number of symbols C, over which the channel is
coherent, is assumed to be divided intoCu andCd , which are the
number of symbols in the UL and DL time slots, respectively.
The matrix of received measurements Yj ∈ CM×Cu at BS j
can be written as

Yj =

L−1∑
�=0

K−1∑
k=0

√
μ�,khj,�,ks

T
�,k +Wj (1)

where μ�,k denotes the power with which the vector of symbols
s�,k ∈ CCu ×1 are transmitted by user k in cell �,Wj ∈ CM×Cu

is the additive white Gaussian noise at BS j with each column
distributed as CN (0, σ2IM ). Moreover, the columns ofWj are
mutually independent of each other. The vector hj,�,k ∈ CM×1

represents the channel response between the antennas at BS j,
and user k in cell �, and is assumed to be distributed as3

hj,�,k ∼ CN (0, βj,�,kIM ) (2)

where βj,�,k denotes the large-scale path-loss coefficient which
depends on the user location in the cell. In addition, the chan-
nel vectors hj,�,k are assumed to be mutually independent of
each other ∀j, �, k. The aforementioned statistics of the channel

2For training and channel estimation, users with T > 1 antennas can be
treated as T separate single-antenna users.
3While, for the sake of simplicity, an environment with rich scattering is

assumed, the conclusions made in this paper are independent of the channel
distribution and only require the channel vectors of any pair of users to be
asymptotically orthogonal.
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vector correspond to the non-line-of-sight scenario with rich
scattering [1]. By virtue of their zero mean and mutual indepen-
dence, the channel vectors are asymptotically orthogonal and
the following equation holds almost surely [1]

lim
M→∞

hH
j,�,khm,n,p

M
= βj,�,k δj,m δ�,n δk,p , ∀ j, k, �,m, n, p.

(3)
Moreover, hj,�,k is assumed to be constant for the duration ofC
symbols, and βj,�,k is constant for a significantly longer duration
which depends on the user mobility. For the sake of simplicity,
the effects of shadowing are not taken into account in this paper.4

The transmitted symbols s�,k contain both pilots and data. The
pilots could either be time-multiplexed or superimposed pilots,
and the elements of the data vector x�,k are assumed to be inde-
pendent and identically distributed (i.i.d) random variables with
zero-mean and unit variance and take values from an alphabet
χ, which is a realistic assumption.

III. TIME-MULTIPLEXED PILOTS AND THE PILOT
CONTAMINATION PROBLEM

With time-multiplexed pilots, each user in a cell transmits a
τ ≥ K length orthogonal pilot sequence for channel estimation
followed by Cu − τ symbols of uplink data. In order to mini-
mize the overhead incurred, it is necessary to reuse these pilot
sequences in the adjacent cells. However, this pilot-reuse results
in the channel estimates of the desired users being contaminated
by the channel vectors of users in adjacent cells, causing inter-
ference and in turn, a loss in spectral efficiency.
It is assumed here that the transmission of the pilot sequences

by the users in the L cells are synchronized, which corresponds
to the worst-case scenario for pilot contamination.5 Consider
a matrix Φ ∈ Cτ×τ whose columns {φφφ1 , . . . ,φφφτ } are the or-
thogonal pilot sequences that are transmitted by the users, i.e.,
φφφH
n φφφp = τδn,p . If φφφb� , k is the pilot sequence transmitted by
user k of cell �, where b�,k ∈ {1, . . . , τ} is the index of the
transmitted pilot, and if each pilot sequence is reused once ev-
ery r � τ/K cells [18], the LS estimate of the channel of user
m in cell j can be obtained as [1]

ĥTP
j,j,m � 1

τ
√
pu

Y
(p)
j φφφ∗

bj ,m
= hj,j,m +

L−1∑
�=0
� �=j

�∈Lj (r)

hj,�,m

+
1

τ
√
pu

W
(p)
j φφφ∗

bj ,m
(4)

where the superscript TP indicates that the estimates are com-
puted when using time-multiplexed pilots, the superscript p in-
dicates that the observations are made during pilot transmission,
and Lj (r) is the subset of the L cells that use the same set of
pilots as cell j. In addition, it is assumed in (4) without loss
of generality that the transmit powers are same for all users
employing time-multiplexed pilots, i.e., μ�,k = pu , ∀�, k, and

4The algorithms and analysis in this paper remain the same in the presence of
shadowing, provided that the users are allocated to the strongest BSs. However,
the geometric interpretations that are made based on the location of the user in
the cell will no longer be valid.
5No additional improvement in the UL performance can be gleaned by sepa-

rating the pilot and data transmissions across cells [1], [9], [18].

any variation in the transmit power of an individual user is ab-
sorbed into the corresponding path-loss coefficient β. It can be
observed from (4) that the estimates of the channel vectors of
the users in cell j are contaminated by the channel vectors of the
users in the remaining Card (Lj (r)− 1) cells. WhenM → ∞,
the UL SINR of userm in cell j, at the output of anMF that uses
the channel estimate in (4) for detection, can be written as [1]

SINRTP−ul
j,m =

β2
j,j,m∑

� �=j
�∈Lj (r)

β2
j,�,m

. (5)

The corresponding throughput of the user using Gaussian
signaling in the UL can then be expressed as [1]

RTP−ul
j,m =

(Cu − τ)

C
log2

(
1 + SINRTP−ul

j,m

)
. (6)

From the above equation, it can be observed that the rate per
user is a function of both the overhead τ as well as the loss in
SINR due to pilot contamination. A larger value of r would
reduce the effect of pilot contamination and increase the SINR
at the cost of a reduced transmission efficiency (Cu − τ)/C.

IV. SUPERIMPOSED PILOTS

With superimposed pilots, the pilot symbols are transmit-
ted at a reduced power alongside the data symbols, and in its
simplest version, the pilot and data symbols are transmitted
alongside each other for the entire duration of the uplink data
slot Cu . If the total number of users in the system is smaller
than the number of symbols in the uplink, i.e.,KL ≤ Cu ,6 then
with superimposed pilots, each user can be assigned a unique
orthogonal pilot p�,k ∈ CCu ×1 . The pilots are taken from the
columns of a matrix P ∈ CCu ×Cu such that PHP = CuICu

,
and therefore pH

�,kpn,p = Cuδ�,n δk,p . If ρ�,kx�,k + λ�,kp�,k is
the transmitted vector from user k in cell �, then the received sig-
nal at the j’th BSYj ∈ CM×Cu , when using the superimposed
pilot scheme, can be written as

Yj =

L−1∑
�=0

K−1∑
k=0

hj,�,k (ρ�,kx�,k + λ�,kp�,k )
T +Wj (7)

where λ2
�,k and ρ2�,k are the fractions of the transmit power

reserved for the pilot and data symbols, respectively, and the
total transmitted power μ�,k is given as μ�,k = λ2

�,k + ρ2�,k .

A. Non-Iterative Channel Estimation

Treating the data symbols of all users as additive noise, the
channel estimate of user k in cell � can be obtained at the j’th
BS using the LS criterion [26]

ĥj,�,k � argmin
h

‖Yj − λ�,kh pT
�,k‖2F . (8)

6For example, using the orthogonal frequency division multiplexing (OFDM)
parameters in long-term evolution (LTE) systems as in [1], i.e., Cu = 7 OFDM
symbols, Nsmooth = 14 subcarriers, and assuming the pilots are reused over
L = 7 hexagonal cells, the maximum number of supported users in the L
cells is CuNsmooth = 98 users. Therefore, the number of users per cell is
CuNsmooth /L = 14 users. However, note that the value of Cu = 7 has been
chosen to allow user velocities of 350 km/h [27]. For lower user speeds and
with cell sectoring, larger number users can be supported and the assumption
KL ≤ Cu will easily be satisfied.
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Solving (8) yields

ĥj,�,k = Yj

(
λ2
�,k pH

�,kp�,k

)−1
λ�,kp

∗
�,k =

1

Cuλ�,k
Yjp

∗
�,k

= hj,�,k +
1

Cuλ�,k

L−1∑
m=0

K−1∑
n=0

ρm,nhj,m ,nx
T
m,np

∗
�,k

+
1

Cuλ�,k
Wjp

∗
�,k . (9)

In order to estimate the data from the received observations, it is
necessary to remove the term corresponding to the transmitted
superimposed pilot λj,mhj,j,mpT

j,m from the observation vector

in (7). Using λj,m ĥj,j,mpT
j,m as an estimate for this term, the

estimate of xj,m can then be obtained from the observationYj

using an MF and a decision operation as follows

x̃T
j,j,m =

1

Mρj,mβj,j,m
ĥH
j,j,m

(
Yj − λj,m ĥj,j,mpT

j,m

)
(10)

x̂j,j,m = η (x̃j,j,m ) . (11)

The SINR of user m in cell j, at the output of an MF that
employs the channel estimate in (9), is derived in Appendix A
and is given in (12) (shown at the bottom of the page). The SINR
in (12), whenM → ∞, can be written as

SINRSP−ul
j,m =

λ2
j,m ρ2j,mβ2

j,j,m

1
Cu

L−1∑
�=0

K−1∑
k=0

ρ2�,kμ�,kβ2
j,�,k

. (13)

The corresponding per-user rate in the uplink when using Gaus-
sian signaling is given as7

RSP−ul
j,m =

Cu

C
log2

(
1 + SINRSP−ul

j,m

)
. (14)

B. Power Control and Choice of Parameters λj,m and ρj,m

From (13), it can be seen that the SINR of a user is dependent
on the product of the transmit powers and large-scale fading
coefficients of the remaining LK − 1 users in addition to the
product of its own transmit power and large-scale fading co-
efficient. This dependence results in a situation similar to the
near-far problem in code division multiple access (CDMA) sys-
tems, wherein users that have larger values of large-scale fading
coefficient β swamp users that have smaller values of β. There-
fore, it becomes necessary to use power control to provide a
uniform user experience.

7In calculating the SINR, we have neglected the correlation between the
signal and interference components. Therefore, the calculated SINR and the
corresponding rate are approximations.

While the parameters μ�,k , ρ�,k , and λ�,k can be optimized
by maximizing the sum-rate of all the users, i.e.,

max
μ� , k ,ρ� , k ,λ� , k

{
L−1∑
�=0

K−1∑
k=0

RSP−ul
�,k

}
(15)

the optimization problem is in general non-convex and requires
coordination between the BSs. As an alternative, a suboptimal
solution that does not involve coordination between the BSs
is obtained here for the parameters μ�,k , ρ�,k , and λ�,k . This
suboptimal solution will be shown to maximize a lower bound
on the sum-rate, and it is as follows.
The received signal in (7) can be equivalently written as

Yj =

L−1∑
�=0

K−1∑
k=0

√
μ�,khj,�,k

(
ρ�,k√
μ�,k

xT
�,k +

λ�,k√
μ�,k

pT
�,k

)
+Wj

=

L−1∑
�=0

K−1∑
k=0

h̄j,�,k

(
ρ̄�,kx�,k + λ̄�,kp�,k

)T
+Wj (16)

where

h̄j,�,k � √
μ�,khj,�,k ∼ CN

(
0, β̄j,�,kIM

)
(17)

β̄j,�,k � βj,�,k . μ�,k (18)

ρ̄�,k �

√
ρ2�,k
μ�,k

> 0 (19)

λ̄�,k �

√
λ2
�,k

μ�,k
> 0 (20)

λ̄
2
�,k + ρ̄2�,k = 1. (21)

From (16), it can be seen that a system having arbitrary values
of βj,�,k , μ�,k , ρ�,k , and λ�,k , can be reduced into an equiv-
alent system with parameters β̄j,�,k , ρ̄�,k , and λ̄�,k , such that
0 ≤ ρ̄�,k , λ̄�,k ≤ 1. Substituting (18) – (21) into (12), an equiv-
alent expression for the SINR, as shown in (22) (shown at the
bottom of the next page) can be obtained.
To obtain the parameter μ�,k , we propose using the statistics-

aware power-control approach detailed in [18], wherein user
m in cell j transmits at a power μj,m = ω/βj,j,m where ω
is a design parameter. The parameter ω is chosen such that
the transmitted power from a user satisfies a maximum power
constraint, and users with severely low SINRs that would need
a transmit power larger than this constraint would be denied
service. This power control policy results in an identical received
power ofω at the j’th BS for all the users in cell j. In addition, as
mentioned in [18], the ratio 0 ≤ βj,�,k /β�,�,k ≤ 1 is the relative
strength of the interference received at BS j from a user in cell
�. This ratio is at most 1, when the user is at the edge of the j’th
cell, and reduces to zero as its distance from BS j increases.

SINRSP−ul
j,m =

⎛⎜⎜⎝L−1∑
�=0

K−1∑
k=0

ρ2�,kμ�,kβ
2
j,�,k

Cuλ
2
j,m ρ2j,mβ2

j,j,m

+
1

M

⎛⎜⎜⎝ L−1∑
�=0

K−1∑
k=0

{� �=j,k �=m}

βj,�,kμ�,k

ρ2j,mβj,j,m
+

L−1∑
�=0

K−1∑
k=0

{� �=j,k �=m}

L−1∑
n=0

K−1∑
p=0

{n �=�,p �=k}

ρ2n,pβj,�,kβj,n,pμ�,k

Cuλ
2
j,m ρ2j,mβ2

j,j,m

⎞⎟⎟⎠
⎞⎟⎟⎠

−1

(12)
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Therefore, setting μ�,k = ω/β�,�,k and using the definitions of
β̄j,�,k , ρ̄�,k , and λ̄�,k , and the inequality 0 ≤ βj,�,k /β�,�,k ≤ 1,
the following equations can be obtained

β̄j,j,m = βj,j,m . μj,m = ω (23)

β̄j,�,k = βj,�,k . μ�,k ≤ β�,�,kμ�,k = ω ∀ � �= j (24)

ρ2j,mβj,j,m = ρ̄2j,mω (25)

λ2
j,mβj,j,m = λ̄

2
j,mω (26)

ρ2�,kβj,�,k ≤ ρ2�,kβ�,�,k = ρ̄2�,kω ∀ � �= j (27)

λ2
�,kβj,�,k ≤ λ2

�,kβ�,�,k = λ̄
2
�,kω ∀ � �= j. (28)

Substituting the above equations into (22), a lower bound on
the SINR, as shown in (29) (shown at the bottom of the page),
can be obtained.
However, the maximization of the lower bound on the SINR

and hence, a lower bound on the sum rate, is still a non-convex
problem in the parameters ρ̄�,k and λ̄�,k and requires coordi-
nation between the BSs. To circumvent this problem, we re-
strict the parameters ρ̄�,k and λ̄�,k such that ρ̄�,k = ρ̄,∀ �, k and
λ̄�,k = λ̄, ∀ �, k. The choice of this restriction is motivated by
the observation from (23) that the statistics-aware power control
scheme results in the same large-scale path loss coefficient for
all the desired users in the cell, irrespective of their locations.
As a result, from the BS’s perspective, each of its users are
identical, and therefore, there is no benefit in assigning differ-
ent values of ρ̄�,k to different users. More importantly, such a
restriction renders the choice of ρ̄opt to depend only on L, K,
Cu , and M as will be shown next. Setting ρ̄�,k = ρ̄,∀ �, k and
λ̄�,k = λ̄, ∀ �, k in (29), we obtain

SINRSP−ul
j,m ≥

(
LK

Cu (1− ρ̄2)
+

1

M

(
LK − 1

ρ̄2

+
(LK − 1)2

Cu (1− ρ̄2)

))−1

. (30)

Differentiating the right hand side of (30) with respect to ρ̄2

and setting the resulting expression to zero, the value of ρ̄2 that
maximizes the lower bound on SINRSP−ul

j,m and the UL sum rate
can be obtained as

ρ̄2opt =

⎛⎜⎝1 +

√√√√ LK
Cu

+ (LK−1)2

MCu

LK−1
M

⎞⎟⎠
−1

≈
(
1 +

√
M + LK

Cu

)−1

(31)

and the optimal value of λ̄
2
can be obtained as

λ̄
2
opt = 1− ρ̄2opt ≈

(
1 +

√
Cu

M + LK

)−1

(32)

where the approximations in (31) and (32) have been made
assuming LK � 1 in order to obtain simpler expressions.
Based on the fact established in this subsection that systems

using ρ, λ, β,h, and ρ̄, λ̄, β̄, h̄ are equivalent, we drop the over-
bar for ease of notation and adopt the former set of symbols in
the rest of the paper. In addition, we set μ�,k = ρ̄2�,k + λ̄

2
�,k =

1, ∀�, k.

C. Impact of Cu on the Performance of Superimposed Pilots

Using (13) and a fixed set of parameters r, τ , andK, the fol-
lowing theorem presents an important condition that guarantees
the superiority of methods based on superimposed pilots over
the LS estimator that is based on time-multiplexed pilots.

Theorem 1: With fixed values ofK, r, and τ and ifM → ∞,
there exists a UL duration κj,m beyond which a channel
estimator based on superimposed pilots outperforms the LS
based channel estimator that utilizes time-multiplexed pilots,
in terms of the SINR performance, in any channel scenario
{βj,�,m 0 ≤ j, � ≤ L− 1, 0 ≤ m ≤ K − 1}.

Proof: If κj,m is defined as the number of symbols in the
uplink such that (5) and (13) are equal, i.e.,

β2
j,j,m

1

κj ,m λ
2

j ,m ρ2
j ,m

L−1∑
�=0

K−1∑
k=0

ρ2�,kβ
2
j,�,k

=
β2
j,j,m∑

� �=j
�∈Lj (r)

β2
j,�,m

(33)

then it is evident from (13) and (33) thatCu > κj,m is a sufficient
condition for a method that is based on superimposed pilots to
outperform theLSmethod that employs time-multiplexed pilots.
In addition, κj,m is given as

κj,m �
1

λ
2

j ,m ρ2
j ,m

L−1∑
�=0

K−1∑
k=0

ρ2�,kβ
2
j,�,k∑

� �=j
�∈Lj (r)

β2
j,�,m

. (34)

This completes the proof. �
Remark 1: An important consequence of the above theorem

is that in scenarios with negligible pilot contamination, the LS
method based on superimposed pilots requires a large value
of Cu to outperform the LS method based on time-multiplexed

SINRSP−ul
j,m =

⎛⎜⎜⎝L−1∑
�=0

K−1∑
k=0

ρ̄2�,k β̄
2
j,�,k

Cu λ̄
2
j,m ρ̄2j,m β̄2

j,j,m

+
1

M

⎛⎜⎜⎝ L−1∑
�=0

K−1∑
k=0

{� �=j,k �=m}

β̄j,�,k

ρ̄2j,m β̄j,j,m
+

L−1∑
�=0

K−1∑
k=0

{� �=j,k �=m}

L−1∑
m=0

K−1∑
n=0

{m �=�,n �=k}

ρ̄2m,n β̄j,�,k β̄j,m ,n

Cu λ̄
2
j,m ρ̄2j,m β̄2

j,j,m

⎞⎟⎟⎠
⎞⎟⎟⎠

−1

(22)

SINRSP−ul
j,m ≥

⎛⎜⎜⎝L−1∑
�=0

K−1∑
k=0

ρ̄2�,k

Cu λ̄
2
j,m ρ̄2j,m

+
LK − 1

Mρ̄2j,m
+

L−1∑
�=0

K−1∑
k=0

{� �=j,k �=m}

L−1∑
m=0

K−1∑
n=0

{m �=�,n �=k}

ρ̄2m,n

MCuλ̄
2
j,m ρ̄2j,m

⎞⎟⎟⎠
−1

(29)
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pilots. As an example, consider the casewhen r = 1,βj,j,m = 1,

∀m, βj,�,m = β, ∀� �= j,m, and ρ2j,m = λ2
j,m , ∀ j,m. For such

a scenario, κj,m is given as

κj,m = 2K

(
1 +

1

(L− 1)β2

)
. (35)

Then, if the LS estimator based on superimposed pilots is re-
quired to maintain superiority over the LS estimator employing
time-multiplexed pilots, Cu must scale inversely with β2 . This
dependence onCu is evident from the expression for the channel
estimation error, which is given as

Δhj,j,m � hj,j,m − ĥj,j,m = − 1

Cuλj,m

×
(

L−1∑
�=0

K−1∑
k=0

ρ�,khj,�,kx
T
�,k +Wj

)
p∗
j,m . (36)

Remark 2: We build upon the discussion in [1] on grouping
users based on their coherence times. While such a grouping
does not offer any performance benefits to users when employ-
ing the approach in [1], the use of superimposed pilots offers
low-mobility users an increase in throughput, by minimizing
the channel estimation error resulting from transmitting the data
alongside the pilots. This improvement in performance is a di-
rect consequence of Theorem 1.

Remark 3: The type of pilot transmitted by a user can also
be chosen based on the coherence time. While users with high-
mobility or low pilot contamination would find it sufficient to
use time-multiplexed pilots, users with low-mobility who suffer
from significant pilot contamination due to their proximity to
the cell-edge or due to shadowing would significantly benefit
from employing superimposed pilots.

Remark 4: Superimposed pilots require coordination be-
tween BSs when assigning pilot sequences and synchronizing
transmissions. In practical cellular networks, the cells are fairly
large and it can be assumed that the interference is restricted to
the first tier of cells and interference from the second and higher
tiers of cells can be neglected. Therefore, it is reasonable to
assume that practical deployments of superimposed pilots will
require pilot assignment over only the first tier of cells, implying
that coordination is limited to only this first tier. This overhead
is not very different from that required by time-multiplexed
pilots in the presence of pilot reuse. The coordination and syn-
chronization requirements of superimposed pilot-based systems
that allocate pilots over the first tier of cells are similar to that
of time-multiplexed pilot-based systems that have a pilot reuse
factor of r = 3 [18].
From (36), it can be seen that the error in the channel estimate

includes interference resulting from transmitting data alongside
the pilots. Hence, the quality of the channel estimate can be
improved by eliminating the interference from the transmitted
data through iterative data-aided schemes, thereby increasing
the robustness of the proposed method with respect to Cu .

V. ITERATIVE DATA-AIDED CHANNEL ESTIMATION

In the iterative approach to channel estimation developed in
this section, the estimated channel and data vectors of both the
desired and interfering users are used in feedback in order to
eliminate the first term in (36). In addition, to minimize error

propagation between the channel estimates of different users,
the iteration is started from the user with the highest SINR
and is progressed in the decreasing order of the SINRs of the
users. It has to be noted that the objective of this section is
to demonstrate that iterative methods for channel estimation
with superimposed pilots provide a significantly better SINR
performance than their non-iterative counterparts, and hence
we restrict ourselves to a simple iterative algorithm. However,
there is scope for developing improved iterative algorithms in
the future.

A. Algorithm

For the sake of clarity and without loss of generality, we
replace the two indices k, � with a single index m that lies in
the range 0 ≤ m ≤ N − 1, where N � KL. The index m is
used to index the users in all the L cells. In addition, we drop
the index j and implicitly assume that the channel estimation is
performed at the j’th BS. Then, (7) can be rewritten as

Y =
N−1∑
m=0

hm (ρmxm + λmpm )T +W. (37)

Since for large M , the SINRs of the users are proportional
to the users’ path-loss coefficients, the users are arranged
in the decreasing order of their path-loss coefficients, i.e.,
β0 > β1 > . . . > βN−1 .8 Then, using an estimate of
ρmhmxT

mp∗
m for each user as a correction factor to minimize

the interference from other users, the corresponding channel
estimate of userm can be written as

ĥ(i)
m =

1

Cuλm

⎡⎢⎢⎣Y −
m−1∑
k=0

k∈U ( i )
m

ρk ĥ
(i)
k

(
x̂
(i)
k

)T

−
N−1∑
k=m
k∈U ( i )

m

ρk ĥ
(i−1)
k

(
x̂
(i−1)
k

)T ⎤⎥⎥⎦p∗
m (38)

where ĥ(0)
m = 0, ∀ m and U (i)

m is the set of users whose esti-
mated data is used in feedback in the i’th iteration to estimate the
channel vector of userm. The approach to obtain U (i)

m has been
detailed in Appendix C, and involves selecting users such that
the interference power, described in the next subsection, does not
increase with each iteration. The channel estimate in the above
equation is a modified version of the LS estimator defined in (9)
with an added correction factor. Utilizing the resulting channel
estimate in an MF and decision operation, similar to (10) and
(11), the estimate of the data is obtained as follows(

x̃(i)
m

)T
=

1

Mρmβm

(
ĥ(i)
m

)H (
Y − λm ĥ(i)

m pT
m

)
(39)

x̂(i)
m = η

(
x̃(i)
m

)
(40)

where x̂(0)
m = 0, ∀ m = 0, . . . , N − 1.

8It is assumed that the BSs have access to the exact values of the path-
loss coefficients βm and that there is no false-ordering. This assumption is
reasonable since for largeM , the path-loss coefficients can be computed at the
BS with negligible error by averaging the power of the channel coefficients over
the entire array.
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Remark 5: If the matrixP, whose columns are the superim-
posed pilots, is chosen asP = blkdiag{P0 , . . . ,PL−1}, where
the �’th blockP� ∈ CK×K is comprised of the orthogonal pilot
sequences used by the K users in cell �, then the latency intro-
duced when the non-iterative method is employed is the same
as that for time-multiplexed pilots. However, when the iterative
method is employed, the channel and the data vectors of the
users are required and therefore, the uplink data in the entire
slot will have to be aggregated before estimating the channel,
which introduces a latency of Cu symbols.

Remark 6: From (9), the non-iterative method for channel
estimation requiresMCu operations per user, whereas the MF
and decision operations in (10) and (11) require M and Cu

operations per user, respectively.
For the iterative method with ν iterations, the channel esti-

mator, matched filter, and decision operations have a combined
complexity of O(νMCu ) +O(νM) +O(νCu ).

B. Interference Power at the BS

Let e(i)m � xm − x̃
(i)
m be the error in the estimate of the data

symbols of user m obtained from the MF in the i’th iteration.
Let Δx

(i)
m � xm − x̂

(i)
m be the corresponding error vector after

the decision operation and let Δh
(i)
m � hm − ĥ

(i)
m be the as-

sociated error in the channel estimate. If α(i)
n is the variance

of the elements of Δx
(i)
n and assuming that the elements of

e
(i)
m are i.i.d. circular complex-Gaussian random variables with
zero mean and variance I(i)m , an approximate expression for the
interference power I(i)m can be written as

I(i)m ≈ 1

β2
m

⎛⎜⎝ 1

Mρ2m

N−1∑
k=0
k �=m

βkβm +
σ2βm

Mρ2m
+

1

M 2ρ2m
ψ(i)
m

⎞⎟⎠
(41)

where the expression for ψ(i)
m is given in (42) at the bottom of

this page and ψ(0)
m = 0, ∀m. The detailed derivation of I(i)m can

be found in Appendix B.
In deriving (41), the following simplifying assumptions have

been made in order to obtain a closed form expression:
S1) e

(i)
m is independent of xk andW, ∀ k, i.

S2) Δx
(i)
m is independent of xk ,W, and hk , ∀ k, i.

S3) Δx
(i)
m is independent of Δx

(p)
k , ∀p �= i,m �= k and the

elements of Δx
(i)
m are i.i.d.

S4) Δh
(i)
m is independent of xk ,W, and Δx

(p)
k , ∀ k, p.

In scenarios with low interference and with largeM , only a
few of the received symbols will be erroneous. As a result, the

elements of Δx
(i)
m are sparse with the few non-zero elements

restricted to locations that correspond to the erroneous symbols.
Moreover, the vector e(i)m represents the error in the estimated
data and in such low-interference scenarios, the elements of
e
(i)
m take small values. Therefore, the simplifications (S1), (S2),
and (S3) are reasonably accurate for these scenarios. Although
the expression for Δh

(i)
m , (given in (82) in Appendix B) is ex-

plicitly dependent on xk and Δx
(i)
m , we neglect the correlation

between these terms since Δh
(i)
m is inversely proportional to

Cu , and the simplification (S4) is fairly accurate when Cu is
large with respect to N and when scenarios with low interfer-
ence are considered. Since e(i)m is assumed to be a zero-mean
random variable, Δx

(i)
k is also a zero-mean random variable,

provided the constellation points in χ and their probability den-
sity functions are symmetric about the origin. This is true since
by definition, Δx

(i)
k and e(i)m are related to each other through

the following equation

Δx
(i)
k = xk − η

(
xk − e(i)m

)
. (43)

From (43), an expression for the variance of the elements of
Δx

(i)
k , i.e., α

(i)
k can be found as

α
(i)
k � E

{∣∣∣[Δx
(i)
k

]
n

∣∣∣2} =

∫
|Δx|2 p

Δx
( i )
k

(Δx)dΔx

=

∫
x∈χ

∫
|x− η (x− e)|2 p

e
( i )
k ,xk

(e, x) de dx

=

∫
x∈χ

∫
|x− η (x− e)|2 p

e
( i )
k

(e) pxk
(x) de dx (44)

where p
e
( i )
k

(·), p
Δx

( i )
k

(·), and pxk
(·) are the probability density

functions of the elements of e(i)k , Δx
(i)
k , and xk , respectively,

and p
e
( i )
k ,xk

(·) is the joint density function of the random vari-
ables e(i)k and xk . The latter has been written as the product
of their individual distributions in the final expression of (44),
thanks to (S1).

Important example of α(i)
m : When the elements of xm are

uniformly distributed and take values from a unit-power P -
quarternary amplitude modulation (QAM) constellation, then
under the assumption that the symbol errors in Δx

(i)
k are dom-

inated by the closest neighboring symbols, the expression for

ψ(i)
m

∣∣∣∣
i≥ 1

=
M 2

Cuλ
2
m

⎡⎣ ∑
k∈U ( i )

m ,k<m

ρ2k

⎧⎨⎩β2
kα

(i)
k +

1

M

N−1∑
n=0

βnβkα
(i)
k +

(
1 + α

(i)
k

)
M 2

ψ
(i)
k

⎫⎬⎭+
∑

k /∈U ( i )
m

ρ2k

{
β2
k +

1

M

N−1∑
n=0

βnβk

}

+
∑

k∈U ( i )
m ,m≤ k≤N

ρ2k

⎧⎨⎩β2
kα

(i−1)
k +

N−1∑
n=0

1

M
βnβkα

(i−1)
k +

(
1 + α

(i−1)
k

)
M 2

ψ
(i−1)
k

⎫⎬⎭+
σ2

M

(
N−1∑
n=0

βn

)⎤⎦ . (42)
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Fig. 1. Frame structure of a hybrid system with users employing time-
multiplexed and superimposed pilots.

α
(i)
m can be written as

α(i)
m =

⎧⎪⎪⎨⎪⎪⎩
24

√
P
(√

P + 1
)Q
⎛⎝√ 3

(P −1)

I
(i)
m

⎞⎠ , i ≥ 1

1, i = 0

(45)

where Q (·) is the Q-function. The detailed derivation of the
above expression can be found in Appendix D.

VI. HYBRID SYSTEM

One of themain advantages of superimposed pilots over time-
multiplexed pilots is that it does not require a separate set of
symbols for pilot transmission. This property can be used to
construct a hybrid system that contains two disjoint sets of users,
with the users in one of the sets employing time-multiplexed
pilots, and the users in the other set employing superimposed
pilots. The following theorem shows that this hybrid system has
a higher throughput and supports a larger number of users than
a system that employs only time-multiplexed pilots.

Theorem 2: In a system that employs time-multiplexed pilots
and is designed to maximize the UL and DL sum-rate,9 letK be
the optimal number of users per cell, L be the total number of
cells in the system, τ > 0 be the optimal number of symbols used
for pilot training, r be the optimal pilot-reuse factor, andCu − τ
and Cd be the number of data symbols in the UL and DL slots,
respectively. Then, withM → ∞, there exists a hybrid system,
that uses both time-multiplexed and superimposed pilots, which
is capable of supporting Cu − τ additional users and offers a
higher sum-rate in the UL than the optimal system that employs
only time-multiplexed pilots.

Proof: Consider the frame structure in Fig. 1 , wherein there
are two sets of users UTP and USP . The users in the set UTP

employ time-multiplexed pilots, with parameters selected using
approaches such as in [18]. The users in the set USP maintain
radio silence during the pilot training phase of the users in UTP ,
i.e., for τ symbols in the frame, and transmit orthogonal pilots
superimposed with data during the uplink data phase of Cu − τ
symbols. Since these users maintain radio silence during the
pilot training phase of τ symbols, they do not affect the quality
of the channel estimates of the users in UTP . As a result, under
the assumption of asymptotic orthogonality of the channels,

9Such as the scheme described in [18].

there is no interference from the users in USP to those in UTP .
Therefore, the per-cell sum-rate in the UL for the users in UTP

remains unchanged and can be found from (6) to be

Rul
j (UTP) =

(Cu − τ)

C

K−1∑
k=0

k∈UT P

log2

⎛⎜⎜⎜⎝1 +
β2
j,j,k∑

� �=j
�∈Lj (r)

β2
j,�,k

⎞⎟⎟⎟⎠ .

(46)

Assuming, for the sake of simplicity, that all the users in USP

are located in the j’th cell, the sum-rate of the users in USP can
be found using (13) and (14) as

Rul
j (USP) =

(Cu − τ)

C

∑
m∈US P

log2 (1 + SINRm (USP)) (47)

SINRm (USP) �
β2
j,j,m∑

k∈US P

ρ2
j , k β

2
j , j , k

(Cu −τ )ρ2
j ,m λ

2

j ,m

. (48)

In obtaining the above expression, it has been assumed that the
transmit power pu of the users in UTP is small enough such
that the interference to the users in USP can be neglected.10

Therefore, from (46) and (48), the combined rate Rul
j (USP) +

Rul
j (UTP) is strictly greater than Rul

j (UTP). In addition, since
the data slot is made up of Cu − τ symbols, it is possible to
allocateCu − τ orthogonal pilots and therefore, the set USP can
contain a maximum of Cu − τ users. This concludes the proof.
�
In the above theorem, given a system with users employing

time-multiplexed pilots, we have shown that additional users
employing superimposed pilots can always be added to the sys-
tem, resulting in a hybrid system that offers a higher throughput.
In the following section, we utilize the concept of the above

theorem to partition a given set of users employing time-
multiplexed pilots into two disjoint subsets UTP and USP that
contain users transmitting time-multiplexed pilots and super-
imposed pilots, respectively. There are two main benefits of
performing such a partition: (i) there is an overall improvement
in the throughput as a result of the reduced inter-cell interfer-
ence; and (ii) there is a reduction in the number of users that use
time-multiplexed pilots, thereby allowing for more aggressive
pilot reuse since r is a function of the number of users employing
time-multiplexed pilots [18].

VII. A SIMPLE IMPLEMENTATION OF THE HYBRID SYSTEM

Given a set of K users per cell in L cells with channel gains
βj,�,k , ∀j, � = 1, . . . , L, and k = 1, . . . ,K, the problem of par-
titioning users into disjoint sets UTP and USP can be accom-
plished by minimizing the overall UL inter-cell and intra-cell
interference. This choice of objective function is motivated by
Theorem 1, wherein it is observed that users at the cell edge
cause significant pilot contamination and benefit from being
assigned superimposed pilots, whereas users that are close to
the BS cause negligible interference and could be assigned
time-multiplexed pilots that are potentially shared with users
in neighboring cells.

10This assumption is valid since the SINR and the rate of the users in UTP

are independent of the transmit power pu when M → ∞. It has to be noted
that this assumption has been made for the sake of simplicity and the theorem
is valid even if this assumption does not hold.
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A. Framework

If the users in UTP transmit pilots with unit power and data
at a power pu , then the received signal from the hybrid system
in the UL phase at BS j can be written as

Yj = YTP
j +YSP

j +Wj (49)

whereYTP
j andYSP

j are the received signals from the users in
UTP and USP , respectively. From Fig. 1,YTP

j andYSP
j can be

written as

YTP
j �

L−1∑
�=0

K−1∑
k=0

(�,k)∈UT P

hj,�,k

[
φφφT
�,k ,

√
pux

T
�,k

]
(50)

YSP
j �

L−1∑
�=0

K−1∑
k=0

(�,k)∈US P

hj,�,k

[
01×τ , ρx

T
�,k + λpT

�,k

]
(51)

where the tuple (�, k) is used to denote user k in cell l.
If user (j,m) is a member of UTP , then the LS estimate of its

channel can be written as [1]

ĥj,j,m =
1

τ
Yjb

TP
j,mhj,j,m +

∑
� �=j

�∈Lj (r)
(�,m )∈UT P

hj,�,m +
1

τ
Wjb

TP
j,m

(52)

where bTP
j,m �

[
φφφH
j,m ,0(1×(Cu −τ ))

]T
. If M � K, the SINR in

the UL when using the channel estimate in (52) can be obtained
similar to (5) as

SINRTP−ul
j,m ≈

β2
j,j,m∑

� �=j
�∈Lj (r)

(�,m )∈UT P

β2
j,�,m

(53)

where the approximation in (53) is made for the sake of sim-
plicity and is valid whenM is sufficiently large.
If user (j,m) is a member of USP , then the LS estimate of its

channel can be written as

ĥj,j,m =
1

(Cu − τ)λ
Yjb

SP
j,m

= hj,j,m +
ρ

(Cu − τ)λ

L−1∑
�=0

K−1∑
k=0

(�,k)∈US P

hj,�,kx
T
�,kp

∗
j,m

+
√
pu

L−1∑
�=0

K−1∑
k=0

(�,k)∈UT P

hj,�,kx
T
�,kp

∗
j,m

(Cu − τ)λ
+Wjb

SP
j,m (54)

where bSP
j,m �

[
0(1×τ ) ,p

H
j,m

]T
. Since it can be seen from (53)

that the UL SINR of the users in UTP is independent of the
UL transmit power pu , we assume that pu is small enough with
respect to the transmit powers of the users inUSP . As a result, the
users in USP do not experience significant interference during
the data transmission phase of the users in UTP and result in the
transmissions of USP and UTP becoming independent of each

other.11 Then (54) simplifies as

ĥj,j,m ≈ hj,j,m +
ρ

λ

L−1∑
�=0

K−1∑
k=0

(�,k)∈US P

hj,�,kx
T
�,kp

∗
j,m

(Cu − τ)
+Wjb

SP
j,m .

(55)
Then the SINR in the UL for the users in USP can be obtained
from (13) as

SINRSP−ul
j,m ≈

β2
j,j,m

1

(Cu −τ )λ
2

L−1∑
�=0

K−1∑
k=0

(�,k)∈US P

β2
j,�,k

(56)

where, similar to (53), the approximation in (56) is made for the
sake of simplicity and is valid whenM is sufficiently large.

B. Algorithm to Obtain UTP and USP .

The goal in this subsection is to obtain an algorithm for parti-
tioning users into the sets UTP and USP by minimizing the total
UL inter-cell and intra-cell interference. In order to accomplish
this, we quantify the amount of interference caused by a user
that is assigned to either of the sets UTP or USP .
Let ITP−ul

j,m or ISP−ul
j,m be the contributions of user (j,m) to

the total UL inter/intra-cell interference power when assigned
to UTP or USP , respectively. If users (j,m) and (�, k) are mem-
bers of UTP , then from the denominator of (53), the amount
of interference that user (j,m) causes to user (�, k) in the UL
is β2

�,j,k δm,k . Likewise, from (56), if both users are members
of USP , then the amount of interference that user (j,m) causes
to user (�, k) in the UL is β2

�,j,m /
(
(Cu − τ)λ2

)
. Therefore,

ITP−ul
j,m and ISP−ul

j,m can be obtained as

ITP−ul
j,m =

∑
� �=j

K−1∑
k=0

�∈Lj (r)
(�,k)∈UT P

β2
�,j,k δm,k =

∑
� �=j

�∈Lj (r)
(�,m )∈UT P

β2
�,j,m (57)

ISP−ul
j,m =

1

(Cu − τ)λ2

L−1∑
�=0

K−1∑
k=0

(�,k)∈US P

β2
�,j,m . (58)

From the above equations, the total cost due to UL inter/intra-
cell interference can be expressed as

I (UTP ,USP) =

L−1∑
�=0

K−1∑
k=0

(
ITP−ul
�,k 1{(�,k)∈UT P }

+ ISP−ul
�,k 1{(�,k)∈US P }

)
(59)

Using (59) as the objective function, the sets UTP and USP

can be obtained as the solution of the following optimization
problem

(UTP ,USP) = arg min
UT P ⊆U
US P ⊆U

I (UTP ,USP)

subject to UTP ∪ USP = U
UTP ∩ USP = ∅ (60)

11This assumption ismade for the sake of clarity and simplicity. In the absence
of this assumption, the BS will have to estimate and remove YTP

j from Yj

before estimating the channels of the users in USP .
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Algorithm 1: Greedy algorithm to select UTP and USP .
Data: βj,�,k , ∀j, � = 0, . . . , L− 1, k = 0, . . . ,K − 1
Initialize: UTP ← U , USP ← ∅

1: Compute
(
�̃, k̃
)
as in (61)

2: Set U′
TP ← UTP\

(
�̃, k̃
)
and U′

SP ← USP ∪
(
�̃, k̃
)

3: If UTP �= ∅ and if I (U′
TP ,U′

SP) ≤ I (UTP ,USP) then
4: UTP := U′

TP , USP := U′
SP

5: Return to Step (1).
6: else
7: STOP
8: end if

where U is the set of all users in the L cells. However, the
optimization problem in (60) is combinatorial in nature with
2Card(U) possible choices for UTP and USP , making it computa-
tionally hard to obtain the optimal solution. A workaround is to
employ a greedy approach to partition U into UTP and USP . At

each step of this algorithm, given UTP and USP , a user
(
�̃, k̃
)

in UTP is chosen as(
�̃, k̃
)
= arg max

(�,k)∈UT P

ITP−ul
�,k . (61)

Setting U′
TP = UTP\

(
�̃, k̃
)
and U′

SP = USP ∪
(
�̃, k̃
)
, user(

�̃, k̃
)
is added to USP if

I (U′
TP ,U′

SP) ≤ I (UTP ,USP) . (62)

The algorithm is initialized with UTP = U and is terminated
when (62) is no longer satisfied or when UTP is empty. The
approach described above is summarized in Algorithm 1.
The complexity of the greedy algorithmused for designing the

hybrid system can be obtained as follows. The terms ITP−ul and
ISP−ul require a maximum of Card (U) operations to compute,
and therefore, computing I (UTP ,USP) requires Card (U)2 op-
erations. Assuming that the greedy algorithm runs till the con-
dition UTP = ∅ is satisfied, then an upper bound on the compu-
tational complexity of the greedy algorithm is Card (U)3 oper-
ations. Moreover, an overhead of 2Card (U) data transmissions
is required for sending the large-scale path-loss coefficients to
a central node and receiving the sets UTP and USP .
It has to be noted that Algorithm 1 is sub-optimal, but it is

useful for illustrating the concept of the hybrid system. Parti-
tioning algorithms that offer superior performance compared to
Algorithm 1 with lower coordination overhead are left as topics
for future research.

VIII. SIMULATION RESULTS

We compare the UL SINR and UL bit-error rate (BER) per-
formance of the LS-based and (in some examples) eigenvalue
decomposition (EVD)-basedmethods that use time-multiplexed
pilots to the performance of the channel estimator that uses
superimposed pilots, at the output of a MF that employs
these channel estimates. Two scenarios are considered for this
comparison.

Fig. 2. The UL SINR of a user in the reference BS vs.M in Scenario 2. The
values of ρ and λ are computed from (31) and (32), respectively, and since they
are approximations, they result in a non-smooth SINR behavior for the iterative
methods. The solid and dashed lines represent simulated and theoretical curves,
respectively.

Scenario 1:The users are uniformly distributed in hexagonal
cells of radius 1 km with the BS at the center. In addition,
users are located at a distance of at least 100m from the BS.
Scenario 2: Users in both the reference and interfering cells
are in a fixed configuration and are equally spaced on a circle
of a given radius with the BS in the center. The size of the
hexagonal cell is 1 km and unless otherwise specified, the
users are on a circle of radius 800 m.
Unless otherwise specified, the following parameters are used

in both scenarios. The channel estimation methods are tested
with L = 7 cells and K = 5 users per cell. A P -QAM con-
stellation is employed and the path-loss coefficient is assumed
to be 3. The simulations for the superimposed pilots-based it-
erative channel estimation scheme have been performed for 4
iterations. The number of symbols in the uplink time slot Cu is
set to 100, and for computing the rate, C is set to 200 symbols.
The values of ρ and λ are computed from (31) and (32), respec-
tively, and ω is set to 1, where ω is the design parameter in the
statistics-aware power control scheme. The signal-to-noise ratio
(SNR), i.e., ω/σ2 is set to 10 dB. The methods based on time-
multiplexed pilots have been simulated with r = 1 and pu = 1.
In addition, the chosen channel estimation methods have been
observed to perform better with the statistics aware-power con-
trol scheme, and therefore, this power control scheme has been
employed for both time-multiplexed and superimposed pilots.
The plots in Scenario 1 are generated by averaging over 104 re-
alizations of user locations across the cell. For each realization
of user location, the channel vectors are generated and 200 bits
are transmitted per user. The BER is computed by counting the
bit errors for all the users in the reference cell. Similarly, the
plots in Scenario 2 are generated for a fixed user location by av-
eraging over 104 channel realizations with 200 bits transmitted
per user for each realization.
Fig. 2 shows the variation of the UL SINR of an arbitrary

user with respect to M in Scenario 2, whereas in Fig. 3, the
approximate rate of an arbitrary user, calculated using 16-QAM
constellation, is plotted for the same scenario. We compute the
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Fig. 3. Approximate per-user UL rate obtained using a 16-QAM constellation
vs. M in the reference BS in Scenario 2. The maximum UL rate that can be
achieved with the 16-QAM constellation, with half the symbols in a coherence
block used for UL transmission, is 2 bps/Hz.

Fig. 4. Cumulative distribution of the UL SINR in dBs for users in Scenario
1 with M = 300 antennas. The black line indicates SINRs with probability
≥ 0.95.

achievable rate for 16-QAM signaling, modeling a practical
scenario where highly mobile users are requesting moderate-
to-high data rates. The SINR when the proposed method is
employed, is seen to linearly increase in the number of anten-
nas, whereas the SINR performance is observed to saturate for
the LS-based method that uses time-multiplexed pilots. This
trajectory of the proposed method could be potentially main-
tained using techniques such as adaptive modulation and cod-
ing, thereby implying that the effects of pilot contamination can
be eliminated.
In Fig. 4, the cumulative distribution of the UL SINR in

Scenario 1 is plotted. The interference power is averaged over
100 channel and data realizations for each realization of user lo-
cation.While theLS-basedmethod employing time-multiplexed
pilots offers a higher SINR than the LS method employing
superimposed pilots with a probability of approximately 0.6,
the latter method can be seen to offer a significantly higher
minimum SINR compared to the former method. Moreover, the

Fig. 5. BER in the UL vs. K in Scenario 1 withM/K = 50 and Cu = 70
symbols.

users employing superimposed pilots have a smaller variation in
their SINR than those employing time-multiplexed pilots. This
is because the SINR of a user when superimposed pilots are
employed is limited by the interference from the other users
in the same cell, and the statistics-aware power control scheme
renders the intra-cell interference power independent of the user
location within the cell. The iterative method based on super-
imposed pilots is observed to offer a remarkably higher SINR
performance with respect to its non-iterative counterpart and the
LS-based method employing time-multiplexed pilots.
In Fig. 5, the BER is plotted against the number of users per

cell in Scenario 1, with K ranging from 1 to 10 and Cu = 70
symbols. Since L = 7 cells, K = 10 implies that the superim-
posed pilot-based system cannot support any new users without
sharing pilots across cells. The ratio M/K is set to 50. While
the non-iterative channel estimator based on superimposed pi-
lots performs better in the UL at lower values of K than the
estimators based on time-multiplexed pilots, the non-iterative
estimator performs poorly at higher values ofK. This is because
the data transmitted alongside the pilots causes self-interference
and this interference power increases with the number of users
in the system. Therefore, it is necessary to resort to iterative
techniques to mitigate this additional interference and it can be
seen that the iterative methods offer a better performance than
methods based on time-multiplexed pilots when LK is close
to Cu .
In Fig. 6, the users are distributed as in Scenario 2 and the

distance of the users from the BS is varied between 0.2 and
0.9 km. For the chosen range of user distance, the total rate in
the UL is plotted against the corresponding received signal-to-
interference ratio (SIR). The received SIR of an arbitrary user
m in cell j is defined as

SIRRx
j � ω∑

� �=j

∑
k

β2
j,�,k

. (63)

We assume L = 19 hexagonal cells, i.e., a central cell with two
tiers of interfering cells. Each cell hasM = 1000 antennas,K =
5 users, and the value of Cu is chosen as 40 symbols. Although
L is set to 19, the optimization described in Algorithm 1 and
the computation of the performance metrics is performed over
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Fig. 6. UL sum rate vs. SIRRx
j in Scenario 2 withM = 1000 antennas.

7 cells which consist of the central and the first tier of cells. The
value of ω for users in USP is set to 10 and pu for the users
in UTP is set to 1. The data symbols are Gaussian distributed
and the sum rate in Fig. 6 is obtained by averaging over 103

realizations of the channel and data symbols.
In Fig. 6, high and low values of SIR correspond to users

located close to the BS and at the cell-edge, respectively. It
can be observed that channel estimation methods based only
on superimposed pilots (even the non-iterative formulation) are
better in high interference scenarios, i.e., when the interfering
users are at the cell-edge, whereas time-multiplexed pilots are
better in low-interference scenarios. This behavior is a direct
consequence of Theorem 1 since higher interference scenarios
have smaller values of κ, resulting in superimposed pilots out-
performing time-multiplexed pilots. However, at smaller values
of user radius, the impact of pilot contamination is low but the
self-interference in superimposed pilots resulting from transmit-
ting the data alongside the pilots leads to a poorer performance
compared to methods based on time-multiplexed pilots. In ad-
dition, it can be seen that the hybrid system adapts to the level
of inter and intra-cell interference and offers a performance that
is resilient to the location of the user within the cell.

IX. CONCLUSION AND DISCUSSION

We have proposed superimposed pilots as a superior alterna-
tive to time-multiplexed data and pilots for uplink channel esti-
mation in massive MIMO. In the limit of an infinite number of
antennas, a hybrid system using both superimposed pilots and
time-multiplexed data and pilots offers a higher UL rate and
supports larger number of users than the optimal system that
utilizes only time-multiplexed data and pilots. The resilience to
pilot contamination can be significantly improvedwith superim-
posed pilots through the use of an iterative data-aided channel
estimation scheme that utilizes the data symbols of both the
desired and interfering users in the feedback loop. Computer
simulations in both a realistic scenario, in which users are dis-
tributed uniformly over the entire cell, and a high-interference
scenario, in which users are concentrated at the cell edge, show
that channel estimation methods using superimposed pilots
offer a significant performance improvement over those that
use time-multiplexed pilots.

The objective of this paper is to advocate superimposed pilots
for practical use in massive MIMO systems by showing their
superiority through theoretical and simulation based investiga-
tions. In standard MIMO communications, superimposed pilots
are typically argued to be useful only for the scenario with high
user mobility, and therefore, have not found practical applica-
tion. On the contrary, in massive MIMO, superimposed pilots
in a hybrid system provide superior performance in general.
Therefore, there is a strong reason for superimposed pilots to
make their way to practical use.
The proposed iterative data-aided channel estimation scheme

and the greedy algorithm for partitioning users are suboptimal
algorithms for corresponding non-convex problems. Algorithms
that offer performance close to the optimal at low computational
complexities and overheads are of interest for future research.
Moreover, the downlink performance of superimposed pilots is
another topic of practical importance, which we have partially
addressed in [28].

APPENDIX A

Uplink SINR of the Non-Iterative Channel Estimation Method

Using the notation described in SectionV-A, (7) can be rewrit-
ten as

Y =
N−1∑
m=0

hm (ρmxm + λmpm )T +W (64)

From (9), the estimation error of the channel estimate can be
obtained as

Δhm � hm − ĥm = − 1

Cuλm

(
N−1∑
k=0

ρkhkx
T
k +W

)
p∗
m .

(65)

From (10) and (65), the estimate of the received data after MF
with the estimated channel can be written as

x̃T
m =

1

Mρmβm
ĥH
m

(
Y − λm ĥmpT

m

)
=

1

Mρmβm

(
hH
m −ΔhH

m

)
×
(

N−1∑
k=0

hk (ρkxk + λkpk )
T +W

− λm (hm −Δhm )pT
m

)
= gT + iT (66)

where g and i are the signal and interference components of the
matched filtered signal, respectively, which can be written as

g � ‖hm‖2
Mβm

xm (67)

i �
5∑

n=1

in (68)

i1 �
N−1∑
n=0
n �=m

hH
mhn

Mρmβm
(λnpn + ρnxn ) +

(
hH
mW

)T
Mρmβm

(69)

i2 � λm

Mρmβm
hH
mΔhmpm (70)
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i3 � − 1

Mβm
ΔhH

mhmxm (71)

i4 � − 1

Mρmβm

N−1∑
n=0
n �=m

ΔhH
mhn (λnpn + ρnxn)−

(
ΔhH

mW
)T

Mρmβm

(72)

i5 � − λm

Mρmβm
‖Δhm‖2pm . (73)

The average interference power can be found as

E
{
‖i‖2

}
= E

⎧⎨⎩
∥∥∥∥∥

5∑
n=1

in

∥∥∥∥∥
2
⎫⎬⎭ . (74)

Then, using the definitions of in , ∀ n in (69) – (73) and the
definition of Δhm in (65), the following expressions can be
easily obtained

E
{
‖i1‖2

}
≈ Cu

Mρ2mβm

N−1∑
n=0
n �=m

βnμn (75)

E
{
‖i2‖2 + ‖i3‖2 + ‖i4‖2

}
≈

N−1∑
n=0
n �=m

N−1∑
k=0
k �=n

ρ2kβnβkμn

Mλ2
mρ2mβ2

m

+
N−1∑
n=0

ρ2nμnβ
2
n

λ2
mρ2mβ2

m

+
N−1∑
n=0
n �=m

N−1∑
p=0
p �=m

n �=p

ρ2nρ
2
pβpβn

Cuρ2mλ2
mβ2

m

(76)

E
{
‖i5‖2

}
≈

N−1∑
n=0
n �=m

N−1∑
p=0
p �=m

n �=p

ρ2nρ
2
pβnβp

Cuλ
2
mρ2mβ2

m

(77)

E
{(

iH3 + iH4
)
i5
}
≈ −

N−1∑
p=0
p �=m

N−1∑
n=0
n �=m

n �=p

ρ2nρ
2
pβnβp

Cuλ
2
mρ2mβ2

m

(78)

where the approximation errors in (75) – (78) are proportional
to either N/M , N/Cu , or Cu/M . In addition, the remaining
terms of the form iHn ip , ∀ n �= p in the expansion of (74) are
proportional to N/M or N/Cu . If M is large with respect to
N and Cu , then the approximation errors and terms that are
proportional to N/M and N/Cu can be neglected. Similarly,
error terms that are proportional to N/Cu can also be dropped,
and if σ2 � Cu , then the effect of noise can also be neglected.
Then, substituting (75) – (78) into the expansion of (74), the
interference power is obtained as

E
{
‖i‖2

}
≈

N−1∑
n=0

ρ2nμnβ
2
n

λ2
mρ2mβ2

m

+

N−1∑
n=0
n �=m

Cuβnμn

Mρ2mβm

+
N−1∑
n=0
n �=m

N−1∑
k=0
k �=n

ρ2kβnβkμn

Mλ2
mρ2mβ2

m

. (79)

Using (79), the SINR can be obtained as

SINRSP−ul
m �

E
{
‖g‖2

}
E {‖i‖2}

=
Cu

N−1∑
n=0

ρ2
n μn β 2

n

λ
2

m ρ2
m β 2

m

+
N−1∑
n=0
n �=m

Cu βn μn

M ρ2
m βm

+
N−1∑
n=0
n �=m

N−1∑
k=0
k �=n

ρ2
k βn βk μn

Mλ
2

m ρ2
m β 2

m

.

(80)

It completes the derivation of (12).

APPENDIX B

Interference Power of the Iterative Method

To derive the SINR, using the definition of Δx
(i)
m � xm −

x̂
(i)
m , the channel estimate in (38) can be simplified as

ĥ(i)
m = hm +

1

Cuλm

⎛⎝∑
k

ρkhkx
T
k −

∑
k∈Uj ,k<m

ρk ĥ
(i)
k

(
x̂
(i)
k

)T

−
∑

k∈Uj ,m≤ k≤N

ρk ĥ
(i−1)
k

(
x̂
(i−1)
k

)T
+Wj

⎞⎠p∗
m

(81)

where

Δh(i)
m = − 1

Cuλm

⎛⎝ ∑
k∈Uj ,k<m

ρk

{
hk

(
Δx

(i)
k

)T
+Δh

(i)
k xT

k

− Δh
(i)
k

(
Δx

(i)
k

)T}
+

∑
k∈Uj ,m≤ k≤N

ρk

{
hk

(
Δx

(i−1)
k

)T
+ Δh

(i−1)
k xT

k − Δh
(i−1)
k

(
Δx

(i−1)
k

)T}

+
∑
k /∈Uj

ρkhkx
T
k +W

)
p∗
m . (82)

The received symbols after MF in (39) are then given as

x̂T
m =

1

Mρm

(
hH
m −

(
Δh(i)

m

)H)(N−1∑
k=0

hk (ρkxk + λkpk )
T

+ W − λm

(
hm −Δh(i)

m

)
pT
m

)

=
1

M
‖hm‖2xT

m +

7∑
k=1

aTk (83)
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where

a1 � 1

Mρm

N−1∑
k=0
k �=m

hH
mhk (ρkxk + λkpk ) (84)

a2 � 1

Mρm

(
hH
mW

)T
(85)

a3 � λm

Mρm
hH
mΔh(i)

m pm (86)

a4 � − 1

M

(
Δh(i)

m

)H
hmxm (87)

a5 � − 1

Mρm

N−1∑
k=0
k �=m

(
Δh(i)

m

)H
hk (ρkxk + λkpk ) (88)

a6 � − 1

Mρm

((
Δh(i)

m

)H
W

)T

(89)

a7 � − λm

Mρm

∥∥∥Δh(i)
m

∥∥∥2 pm . (90)

Under the assumption that the interference power at each of the
received symbols is the same, the average interference power of
them’th user at the j’th cell is given as

I(i)m =
1

Cu
E

⎧⎨⎩
∥∥∥∥∥

7∑
k=1

ak

∥∥∥∥∥
2
⎫⎬⎭ ≈ 1

Cu

[
E

{
5∑

k=1

‖ak‖2
}]

(91)

where the terms a6 , a7 , and aHp aq , ∀p, q have been dropped.
Further, it can be shown straightforwardly that

E
{
‖a1‖2

}
=

Cu

Mρ2m

N−1∑
k=0
k �=m

βkβm (92)

E
{
‖a2‖2

}
=

Cuσ
2βm

Mρ2m
. (93)

Moreover,E
{
‖a3‖2

}
,E
{
‖a4‖2

}
, andE

{
‖a5‖2

}
can be writ-

ten as

E
{
‖a3‖2

}
=

λ2
m

M 2ρ2m
E

{
hH
mΔh(i)

m pT
mp∗

m

(
Δh(i)

m

)H
hm

}
=

Cuλ
2
m

M 2ρ2m
E

{(
Δh(i)

m

)H
hmhH

mΔh(i)
m

}
(94)

E
{
‖a4‖2

}
=

1

M 2
E

{(
Δh(i)

m

)H
hmxT

mx∗
mhH

mΔh(i)
m

}
=

1

M 2
E
{
xT
mx∗

m

}
E

{(
Δh(i)

m

)H
hmhH

mΔh(i)
m

}
=

Cu

M 2
E

{(
Δh(i)

m

)H
hmhH

mΔh(i)
m

}
(95)

and

E
{
‖a5‖2

}
=

1

M 2ρ2m

N−1∑
�=0
� �=m

N−1∑
k=0
k �=m

E

{(
Δh(i)

m

)H
h�h

H
k Δh(i)

m

}

× E
{
(ρ�x� + λ�p�)

H (ρkxk + λkpk )
}

=
Cu

M 2ρ2m
E

⎧⎪⎨⎪⎩
(
Δh(i)

m

)H ⎛⎜⎝N−1∑
k=0
k �=m

hkh
H
k

⎞⎟⎠Δh(i)
m

⎫⎪⎬⎪⎭ . (96)

Summing up (94), (95), and (96), we obtain

E

{
5∑

k=3

‖ak‖2
}

=
Cu

M 2ρ2m

× E

{(
Δh(i)

m

)H (N−1∑
k=0

hkh
H
k

)
Δh(i)

m

}
. (97)

Now, let ψ(i)
m be defined as the second term in (97), i.e.,

ψ(i)
m

∣∣
i≥ 1

� E

{(
Δh(i)

m

)H (N−1∑
n=0

hnh
H
n

)
Δh(i)

m

}
. (98)

Using (82) and the simplifications (S1) to (S4), (98) can be
simplified to obtain (42). Substituting (92), (93), (97), and (42)
into (91), I(i)m can be obtained as

I(i)m ≈ 1

Mρ2m

N−1∑
k=0
k �=m

βkβm +
σ2βm

Mρ2m
+

1

M 2ρ2m
ψ(i)
m . (99)

It completes the derivation of (41).

APPENDIX C

Choice of the Set of Users U (i)
m

Let S be a set of the KL users in the system and let P (S)
be its power set. In addition, for the sake of clarity, let the
additional argument U (i)

m be added to the functions I(i)m and ψ(i)
m

in this section. Now, the optimal set U (i)
m can be obtained by

solving the following optimization problem

U (i)
m = arg min

U∈P(S)

{
I(i)m (U)

}
. (100)

Substituting (41) into (100) yields

U (i)
m = arg min

U∈P(S)

{
ψ(i)
m (U)

}
. (101)

Now, ψ(i)
m (U) can be rewritten as

ψ(i)
m (U) = c+

N−1∑
n=0

{
ξn1{n /∈U} + ε(i)n (U)1{n∈U ,n<m}

+ ε(i−1)
n (U)1{n∈U ,n≥m}

}
(102)
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where c, ξn , and ε
(i)
n (U) are defined as

c � Mσ2

Cuλ
2
m

(
N−1∑
k=0

βk

)
(103)

ξn � M 2ρ2n
Cuλ

2
m

{
β2
n +

1

M

N−1∑
k=0

βkβn

}
(104)

ε(i)n (U) � M 2ρ2n
Cuλ

2
m

{
β2
nα

(i)
n +

N−1∑
k=0

1

M
βkβnα

(i)
n

+

(
1 + α

(i)
n

)
M 2

ψ(i)
n (U)

⎫⎬⎭ . (105)

It can be seen from (102) that the optimization problem (101)
is separable over the user indices, implying that the decision to
include user n in U (i)

m is independent of the other N − 1 users.
Therefore, the channel and data estimates of user n are used in
the i’th iteration if the following condition is satisfied

n ∈ U (i)
m iff ψ(i)

m

∣∣
n∈U ( i )

m
< ψ(i)

m

∣∣
n /∈U ( i )

m
. (106)

From (102) and (106), the set U (i)
m is obtained as

U (i)
m =

{
n ∈ N ε(i)n (U) < ξn when n < m

and ε(i−1)
n (U) < ξn when n ≥ m

}
. (107)

Equivalently, using (104) and (105), the above expression sim-
plifies to

U (i)
m =

{
n ∈ N α(i)

n < γ(i)
n when n < m

and α(i−1)
n < γ(i−1)

n when n ≥ m
}

(108)

where

γ(i)
n �

{
β2
n + 1

M

N−1∑
k=0

βnβk −
ψ

( i )
n

∣∣
n ∈U( i )m

M 2

}
{
β2
n + 1

M

N−1∑
k=0

βnβk +
ψ

( i )
n

∣∣
n ∈U( i )m

M 2

} . (109)

If xm takes values from the P -QAM constellation, then substi-
tuting (45) into (108), the set U (i)

m can be obtained as

U (i)
m =

{
n ∈ N I(i)n < f (i)

n when n < m

and I(i)n < f (i−1)
n when n ≥ m

}
(110)

where f (i)
n is defined as

f (i)
n � 3

P − 1
Q2

⎛⎝√
P
(√

P + 1
)
γ
(i)
n

24

⎞⎠ . (111)

However, since the decision rules are based on approximate
SINR expressions, it is worth commenting that the reliability
of the decision rule in (108) decreases with increasing user and

iteration indices. Alternatively, a fixed and conservative decision
rule can be used to obtain U as follows

Ufixed =
{
m ∈ N I(2)m ({m}) < I(2)m (∅) = I(1)m (∅)

}
.

(112)

The decision rule in (112) results in a set Ufixed that is computed
at the beginning of the first iteration and is left unchanged for
the subsequent iterations.

APPENDIX D

Derivation of α(i)
m for a P -QAM constellation

For P -QAM constellation and i ≥ 1, the integral over xm in
(44) reduces to a summation, which can be written as

α(i)
m =

∑
x∈χ

∫
|x− η (x− e)|2 p

e
( i )
m

(e) pxm
(x) de. (113)

Since theP symbols are equally likely, pxm
(x) = 1/P, ∀ x and

under the assumption that the errors x− η (x− e) are domi-
nated by the closest neighboring symbols, the above equation
reduces to

α(i)
m =

1

P

∑
x∈χ

d2xkxQ

⎛⎝ dx

2√
I
( i )
m

2

⎞⎠ (114)

where dx is the distance between the symbol x and its closest
neighbor and kx is the number of symbols at a distance of dx
from x. The Q-function in the above equation results from the
assumption on the statistics of e(i)m . For a unit-power P -QAM
constellation, dx =

√
6/P − 1, ∀x [29]. In addition, it can be

easily verified that kx = 2 for the 4 corner symbols, kx = 3
for the (

√
P − 2)4 symbols on the outer edges, and kx = 4 for

the remainingP − 4
√
P + 4 symbols. Substituting these values

into (114) yields

α(i)
m

∣∣
i≥ 1

=
24

√
P
(√

P + 1
)Q
⎛⎝√ 3

(P −1)

I
(i)
m

⎞⎠ . (115)

Moreover, since Δx
(0)
�,m = x�,m , the value of α

(0)
m is 1. It com-

pletes the derivation of (45).
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Abstract

In this paper, we investigate the downlink throughput performance of a massive multiple-input

multiple-output (MIMO) system that employs superimposed pilots for channel estimation. The compo-

nent of downlink (DL) interference that results from transmitting data alongside pilots in the uplink

(UL) is shown to decrease at a rate proportional to the square root of the number of antennas at the BS.

The normalized mean-squared error (NMSE) of the channel estimate is compared with the Bayesian

Cramér-Rao lower bound that is derived for the system, and the former is also shown to diminish with

increasing number of antennas at the base station (BS). Furthermore, we show that staggered pilots

are a particular case of superimposed pilots and offer the downlink throughput of superimposed pilots

while retaining the UL spectral and energy efficiency of regular pilots. We also extend the framework

for designing a hybrid system, consisting of users that transmit either regular or superimposed pilots, to

minimize both the UL and DL interference. The improved NMSE and DL rates of the channel estimator

based on superimposed pilots are demonstrated by means of simulations.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) communication systems employ base stations

(BS) with a large number of antennas and have garnered significant interest in recent years as

a candidate for future fifth generation (5G) cellular systems [1]–[5]. These systems promise

a logarithmic increase in the uplink (UL) spectral and energy efficiency, with respect to the

number of antennas at the BS, when the exact channel state information is assumed to be

available for designing the detector [6]. In practice, the channel state information (CSI) has to

be obtained at the BS using orthogonal pilot sequences that are transmitted by the users. These

orthogonal sequences typically occupy a portion of the time-frequency resource dedicated for

pilot transmission (henceforth referred to as regular pilots (RP)). The overhead for obtaining the

CSI increases linearly in the number of orthogonal pilot sequences transmitted, and therefore, in

order to limit this overhead, pilot sequences are shared/reused across cells in multi-cell systems.

This sharing results in inter-cell interference in both the UL and downlink (DL), which is known

as pilot contamination [7]. Pilot contamination diminishes the promised gains of massive MIMO

systems and hence is considered a major impediment [8]. Approaches for pilot decontamination

have garnered significant interest in recent years and they primarily rely on separating the users

based on properties such as asymptotic orthogonality between user channels, non-overlapping

angle of arrivals of the signal at the BS, and pilot reuse [9]–[14].

Superimposed pilots (SP) have been extensively studied for channel estimation in MIMO

systems [15]–[19], especially in the context of rapidly changing channels in which reserving a

set of symbols for pilot transmission would be impractical. Recently, in [20], SPs have been

studied as an alternative pilot structure to mitigate/avoid pilot contamination in massive MIMO.

SPs have also been investigated for use in massive MIMO systems in [21], [22]. In [21], the

authors derive expressions for the UL spectral and energy efficiency of SP and compare them

with those for RP. In [22], the authors have considered the case when the number of symbols

in the UL time-slot is larger than the number of users in the system.

In [20], approximate expressions have been derived for the UL signal-to-interference-plus-

noise ratio (SINR) and rate at the output of a matched filter (MF) that employs the least-squares

(LS)-based channel estimate in an iterative and non-iterative way. The expressions have been

derived under the condition that the total number of users in the system is smaller than the number

of symbols in the UL time-slot. The importance of power control for a system employing SP
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has been highlighted and the fractions of power that should be assigned to pilots and data,

respectively, in order to maximize an approximation on the UL per cell rate, have been derived.

It has been found that with increasing number of antennas at the BS, the optimal fraction of

the power assigned to the data would decrease proportional to the square root of the number

of antennas at the BS. In addition, a hybrid system that employs both RP and SP has been

introduced to minimize the total UL interference, and shown to be superior to a system that is

optimized for maximal spectral efficiency [11] but employs only RP.

In this paper, we provide additional important theoretical results with regard to SP for

massive MIMO systems through performance metrics such as the normalized mean-squared

error (NMSE) of the channel estimate and especially the DL rate. In particular, the following

are the contributions of this paper.

• Closed-form expressions for the DL achievable rate are derived when the channel estimates

obtained from SP are employed in a MF precoder at the BS.

• We discuss the relationship between staggered pilots and SP and derive the DL rate for the

former scheme.

• We derive expressions for the NMSE and compare it against the Bayesian Cramér-Rao

lower bound (CRLB) that we also derive for the system.

• The hybrid system described in [20], which consists of users that transmit both RP and SP,

is extended to the DL and is designed by minimizing both the UL and DL interference.

• Simulations are carried out to validate the MSE and DL performance of SP and the hybrid

system.

Some initial results, for the CRLB and approximate DL rate, have been reported in [23] without

detailed derivations. In addition, some results for the hybrid system, with approximate UL and

DL rates, have been reported in [24].

The paper is organized as follows. In Section II, we briefly review the system model for the

UL and introduce the system model for the DL. In Section III, the DL rate is derived when the

channel estimates are employed in an MF precoder. In addition, the expressions for the MSE

and the corresponding CRLB of the channel estimate are derived for a system that employs

SP. These metrics are then compared with the corresponding metrics that are obtained for a

system employing RP. In Section IV, staggered pilots are shown to be a particular case of SP

and the DL rate for this scheme is derived. In Section V, the framework for the hybrid system

proposed in [20] is extended to include the downlink. Using simulations, Section VI discusses
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the performance of the hybrid system and compares the MSE and DL performance of RP and

SP. Section VII concludes the paper. Some of the lengthy proofs and derivations are detailed in

the appendix.

Notation : Lower case and upper case boldface letters denote column vectors and matrices,

respectively. The notations (·)∗, (·)T , (·)H , and (·)−1 represent the conjugate, transpose, Hermitian

transpose, and inverse, respectively. The Kronecker product is denoted by ⊗. The notation

CN (μμμ,Σ) stands for the complex normal distribution with mean μμμ and covariance matrix Σ

and E {·} denotes the expectation operator. The notation IN is used to denote an N ×N identity

matrix and ‖ · ‖ denotes the Euclidean norm of a vector. Upper case calligraphic letters denote

sets and 1{S} represents the indicator function over the set S, while δn,m denotes the Kronecker

delta function. The empty set is denoted by ∅, whereas the symbols ∪ and \ stands for the

union and the relative complement operations, respectively. The operator �x� returns the largest

integer smaller than x. The trace of matrix A is represented as trace {A}.

II. SYSTEM MODEL

We consider a time-division duplexing (TDD) massive MIMO system with L cells and K

single-antenna users per cell. Each cell has a BS with M antennas. In the UL phase, the users

transmit Cu symbols, which include both data and pilots. Using the tuple (�, k) to denote user

k in cell �, the matrix of received symbols Y j ∈ C
M×Cu at BS j can be written as

Y j =
L−1∑
�=0

K−1∑
k=0

√
μ�khj�ks

T
�k +W j (1)

where hj�k ∈ C
M is the channel response between BS j and user (�, k), s�k ∈ C

Cu is the vector

of symbols transmitted by user (�, k) with power μ�k, and W j ∈ C
M×Cu is the matrix of additive

white Gaussian noise at BS j with each column distributed as CN (0, σ2I) and being mutually

independent of the other columns. The channel vectors hj�k are assumed to be distributed as

CN (0, βj�kI) where βj�k denotes the large-scale path-loss coefficient. In addition, the channel

is assumed to be constant during the coherence time, i.e., C symbols whereas βj�k is constant

for a significantly longer duration than C symbols.

The symbol s�k is dependent on the nature of the pilot transmitted in the UL. For example,

when RP is employed, a part of s�k is reserved for pilots and the remaining part is used for data

transmission. Whereas, when SP is employed, the whole of s�k contains both pilots and data.
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Assuming channel reciprocity, if the BS � uses the precoder g�k and if d�k ∈ C is the data

symbol transmitted to user (�, k) by BS �, then the received symbol at user (j,m) can be written

as

d̂jm =
√
γ

L−1∑
�=0

hH
�jm

K−1∑
k=0

√
ν�kg�kd�k + wjm (2)

where γ is the DL SNR of user (j,m) and is assumed to be same in all the cells, and wj,m is

zero-mean unit-variance additive Gaussian noise at the user terminal. The symbols d�k, ∀ (�, k)

are assumed to be distributed as d�k ∼ CN (0, 1) and are statistically independent of the channel

vectors h and the UL symbols s. The parameter ν�k = q�k/E {‖g�k‖2} normalizes the average

transmit power to user (�, k) to be q�k [11], [25].

We assume that all pilot transmissions are synchronized. This assumption is common in

massive MIMO literature [6], [13], [26] since such a system is easy to analyze mathematically.

However, in practice, network-wide synchronization may be infeasible. Local synchronization

may be achieved using the cyclic prefix of the orthogonal frequency-division multiplexing

(OFDM) symbols and the methods developed herein will suppress coherent interference from

only the synchronized users [26]. For the purposes of this work, we assume that asynchronous

cells are distant enough such that the effects of the interference resulting from them is negligible.

III. EFFECT OF PILOT CONTAMINATION ON THE DOWNLINK

In TDD massive MIMO, under the assumption of channel reciprocity, the precoder for data

transmission in the DL is designed using the channel estimate that is obtained from UL training.

Therefore, the throughput in the DL depends on the quality of the channel that has been estimated

in the UL. In this section, the quality of the channel estimate obtained from both RP and SP

transmission schemes are quantified through the normalized MSE and the latter is compared

with the CRLB. In addition, the closed form expressions for the DL achievable rate at the user

terminal are derived and compared when the channel estimates are used in an MF precoder.

A. Regular Pilots

With RP, each user transmits a τ ≥ K length pilot sequence for channel estimation followed

by UL data. Let the length-τ pilot sequences be taken from the columns of a scaled unitary

matrix Φ ∈ C
τ×τ such that ΦHΦ = τIτ . These orthogonal pilot sequences are distributed

across rRP � �τ/K� cells, where rRP is assumed to be a positive integer. In other words, the
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No Transmission
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Fig. 1. Pilot structure of RP when Φ is block diagonal with each block containing the orthogonal pilots in a cell. Each of the

shaded blocks in the figure correspond to a block in the block diagonal matrix. The horizontal axis represents the Cu symbols in

the UL slot. The vertical axis represents user indexes. Therefore, from the figure, we see that users in L1

(
rRP

)
which includes

cell 1, cell rRP + 1 etc., transmit pilots in the first τ symbols whereas users in the other cells remain silent.

pilot sequence φφφ�k that is transmitted by user (�, k) is reused at every rRPth cell. The pilot

structure as well as reuse is depicted in Fig 1. Assuming that all the pilot transmissions are

synchronized, the LS estimate of the channel can be easily found as [7], [20]

ĥ
RP

jjm = hjjm +
∑

�∈Lj(rRP)\j

√
μ�m

μjm

hj�m +wjm (3)

where wjm = W jφφφ
∗
jm/
(
τ
√
μjm

)
and Lj(r

RP) is the subset of the L cells that use the same

pilot sequences as cell j. The normalized MSE of the channel estimate ĥ
RP

jjm is defined as

NMSERP
jm�

E

{
‖ĥ

RP

jjm − hjjm‖2
}

E {‖hjjm‖2}
=

1

βjjm

⎛⎝ ∑
�∈Lj(rRP)\j

μ�m

μjm

βj�m +
σ2

τμjm

⎞⎠ . (4)

The first term in (4) is the estimation error due to pilot contamination from users in the

neighboring cells which employ the same pilots as user (j,m).
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If Cd symbols are transmitted from the BS to the user terminals in the DL phase, then the

rate in the downlink for user (j,m) can be expressed as [7]

RRP−dl
jm =

Cd

C
log2

(
1 + SINRRP−dl

jm

)
(5)

where C = Cu + Cd is the smallest channel coherence time of all the users in the system, and

SINRRP−dl
jm is the DL SINR at user (j,m). If the channel estimate in (3) is used in an MF

precoder, then [27]

SINRRP−dl
jm =

νjmβ
2
jjm∑

�∈Lj(rRP)\j

μjm

μ�m
ν�mβ2

�jm + 1
M

L−1∑
�=0

K−1∑
k=0

ν�k
μ�k

( ∑
n∈L�(rRP)

μnkβ�jmβ�nk+
σ2β�jm

τ

)
+ 1

M2γ

(6)

where

ν�k =
q�k

E {‖g�k‖2}
=

q�k
M

⎛⎝ ∑
n∈L�(rRP)

μnk

μ�k

β�nk +
σ2

τμ�k

⎞⎠−1 . (7)

The estimation error due to pilot contamination limits the asymptotic (M → ∞) DL SINR of

user (j,m) to [7]

SINRRP−dl
jm =

ν̃jmβ
2
jjm∑

�∈Lj(rRP)\j
ν̃�mβ2

�jm

. (8)

where ν̃�k = Mν�k. Note that ν̃�k is independent of M .

B. Superimposed Pilots

When employing SP, the estimate of the channel is obtained from pilots that are transmitted

at a reduced power alongside the data. The LS estimate of the channel can be written as [20]

ĥ
SP

j�k =
∑

n∈Lj(rSP)

√
μnk

μ�k

hjnk +
ρ

Cuλ

L−1∑
n=0

K−1∑
p=0

√
μnp

μ�k

hjnpx
T
npp

∗
�k +

W jp
∗
�k

Cuλ
√
μ�k

(9)

where pjm ∈ C
Cu and xjm ∈ C

Cu are, respectively, the pilot and data vectors transmitted by

user (j,m), rSP � �Cu/K� is a positive integer representing the number of cells over which

SP are reused, Lj

(
rSP
)

is the subset of the L cells that use the same pilot sequences as cell

j. In addition, the pilots are taken from the columns of a scaled unitary matrix P ∈ C
Cu×Cu

such that PHP = CuICu , and therefore, pH
�kpnp = Cuδ�nδkp. The parameters λ2 > 0 and ρ2 > 0

are the fractions of the UL transmit power reserved for pilots and data, respectively, such that

λ2 + ρ2 = 1. Moreover, in (9), it is assumed that every user in the system uses the same value

of λ and ρ.
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Fig. 2. Pilot structure of SP when P is block diagonal. Users transmit orthogonal pilots and data on top of each other and the

number of pilots covers the entire UL slot.

Similar to (4), the normalized MSE for the channel estimate obtained from SP is defined as

NMSESP
jm�

E

{
‖ĥ

SP

jjm − hjjm‖2
}

E {‖hjjm‖2}

=
1

βjjm

⎛⎝ ∑
�∈Lj(rSP)\j

μ�m

μjm

βj�m +
ρ2

Cuλ2

L−1∑
�=0

K−1∑
k=0

μ�k

μjm

βj�k +
σ2

λ2Cuμjm

⎞⎠ . (10)

The first error term in (10) results from reusing pilots every rSP cells, whereas the second error

term results from transmitting pilots alongside data. As in the case of RP, both the errors lead to

interference in the DL phase. Under the assumption that the interference from outside the rSP

contiguous cells which contain the reference BS can be neglected, the CRLB for the channel

estimate can be derived as (the derivation is in Appendix C)

CRLB (hjjm) =
M

Cu

σ2 + 1
μjmβjjm

≈ Mσ2

Cu

(11)

where the approximation is valid when σ2/Cu � μjmβjjm. Therefore, we have the relation,

NMSESP
jm ≥ 1

Mβjjm

CRLB (hjjm) ≈
σ2

βjjmCu

. (12)
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The Bayesian CRLB is a lower bound on the MSE of a minimum mean-squared error (MMSE)

channel estimator, and its value in (11) is the MSE of an MMSE estimator when ρ = 0 or all

the power is allocated to the pilots. In addition, the approximation in (11) is the MSE of the LS

estimator when ρ = 0.

The NMSE in (10) is parameterized by both ρ2 and λ2. However, the CRLB is loose for non-

zero values of ρ2 and an estimator will attain this bound only when ρ2 = 0, i.e., when all the

power is allocated to the pilots. Nevertheless, the CRLB is a standard and useful benchmark to

evaluate the performance of the proposed method. For example, in the same context of massive

MIMO, the performance of a semi-blind channel estimation method is also compared against

the CRLB in [28]. We will also see in Section VI that the CRLB in (11) is achieved1 by the

estimator in (9) when M → ∞.

A lower bound on the DL ergodic capacity can be obtained for superimposed pilots using a

similar approach as in [27]. Rewriting (2) as

d̂jm =
√
γνjmE

{
hH

jjmgjm

}
djm +

√
γνjm

(
hH

jjmgjm − E
{
hH

jjmgjm

})
djm

+
√
γ
∑∑
(�,k)�=(j,m)

√
ν�kh

H
�jmg�kd�k + wjm , (13)

and noting that the first term is uncorrelated with the subsequent terms, a lower bound on the

ergodic capacity can be computed as [29]

RSP−dl
jm =

Cd

C
E
{
log2

(
1 + SINRSP−dl

jm

)}
(14)

where

SINRSP−dl
jm =

νjm|E
{
hH

jjmgjm

}
|2∑L−1

�=0

∑K−1
k=0 ν�kE

{
|hH

�jmg�k|2
}
− νjm|E

{
hH

jjmgjm

}
|2 + 1

γ

. (15)

In (14) and (15), the expectation outside the logarithm is with respect to the user locations

whereas the inner expectation is with respect to the channel and noise vectors. In addition, these

expressions are valid for any combining scheme. However, to obtain closed-form expressions

for precoders such as zero-forcing (ZF) or MMSE, we require the channel estimation error

to be independent of the estimate. But, as outlined in [21], the LS channel estimate and the

estimation error when SP is employed are not Gaussian. As a result, even if a linear minimum

mean-squared error (LMMSE) channel estimate were to be employed, it would only result in

1In fact, it is the approximation in (11) that is achieved by the estimator.
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the estimation error being uncorrelated with the estimate but not independent of it. This renders

it difficult/impossible in general to obtain closed-form expressions for precoders such as ZF and

MMSE. We will therefore obtain a closed form expression for the SINR for MF precoding and

numerically evaluate (14) and (15) in Section VI for methods such as ZF. Setting g�k = ĥ��k,

the DL SINR for the MF precoder has been obtained in Appendix A as

SINRSP−dl
jm =νjmβ

2
jjm

⎛⎝ ∑
�∈Lj(rSP)\j

μjm

μ�m

ν�mβ
2
�jm +

1

M

L−1∑
�=0

K−1∑
k=0

ν�kβ�jm

μ�k

⎛⎝ ∑
n∈L�(rSP)

μnkβ�nk +
σ2

Cuλ2

⎞⎠
+

ρ2

Cuλ2

L−1∑
�=0

K−1∑
k=0

ν�k
μ�k

(
μjmβ

2
�jm +

1

M

L−1∑
n=0

K−1∑
p=0

μnpβ�npβ�jm

)
+

1

M2γ

)−1
(16)

where

ν�k =
q�k

E {‖g�k‖2}
=

q�kμ�k

M

⎛⎝ ∑
n∈L�(rSP)

μnkβ�nk +
L−1∑
n=0

K−1∑
p=0

μnp
ρ2

Cuλ2
β�np +

σ2

Cuλ2

⎞⎠−1 . (17)

In [20], the optimal values of ρ2 and λ2 were computed by maximizing an approximation

of the UL sum-rate which was obtained assuming that Cu ≥ LK. However, since in practice

Cu ≤ LK, the results obtained in [20] do not necessarily hold. In this paper, we obtain the

optimal values of ρ2 and λ2 by maximizing an achievable lower bound on the channel capacity

when Cu ≤ LK.

Proposition 1. The values of ρ2 and λ2 that maximize the achievable rate in the UL are

ρ2opt =
(
1 +

√
Mκ
)−1

(18)

λ2
opt =

(
1 +

1

κ
√
M

)−1
(19)

where

κ �

√
α1 +

α2

M
+ α4

M
+ α6

M

α3 + α4 + α5

(20)

α1 �
N−1∑
k=0

μ2
kβ

2
k

μ0(Cu − 1)
, α2 �

N−1∑
k=0

N−1∑
n=0

μkμnβkβn

μ0(Cu − 1)
; α3 �

N−1∑
k=0

μkdkCu

(Cu − 1)
(21)

α4 �
N−1∑
k=0

μkekCu

Cu − 1
+

σ4

μ0Cu

; α5 �
∑
k∈P0

σ2μk

μ0

βk ; α6 �
N−1∑
k=0

σ2

Cu

μk

μ0

βk . (22)

Proof. The achievable rate in the UL as well as expressions for ρ2opt and λ2
opt are derived in

Appendix B.
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Remark 1: Note that the exact expressions for achievable rate for SP when LK ≥ Cu have

been derived earlier in [21] (c.f. Theorem 1 and Corollary 1). However, Theorem 1 in [21]

underestimates the UL rate since it treats the pilot that is transmitted alongside data in each

UL symbol as interference, whereas Corollary 1 over-estimates the rate since it assumes that

the pilots are perfectly removed. On the other hand, in the expression for the UL rate derived

in Appendix B, we side-step this issue by multiplying the received observations with a unitary

matrix that relegates all the interference resulting from transmitting pilots alongside data to a

single symbol. This symbol can then be discarded since we are anyway interested in only a

lower bound on the ergodic capacity. The remaining Cu − 1 symbols of the reference user are

free of interference from the UL pilot of that user, and therefore, standard methods can be used

to calculate the UL throughput in these symbols.

Substituting (18) and (19) into (10), the expression for the NMSE becomes

NMSESP
j,m

∣∣∣∣
ρopt,λopt

=
1

βjjm

⎛⎝ 1√
MκCu

L−1∑
�=0

K−1∑
k=0

μ�k

μjm

βj�k +
∑

�∈Lj(rSP)\j

μ�m

μjm

βj�m

+

(
1 +

1√
Mκ

)
σ2

Cuμjm

)
. (23)

Thus, with optimized values of ρ2 and λ2, the component of the NMSESP
j,m resulting from

transmitting data alongside pilots reduces proportional to the square root of the number of

antenna elements. This behavior is in contrast to (4), wherein NMSERP
j,m is independent of M .

Consequently, the reduction in the NMSE also leads to a higher DL throughput, as shown below.

Substituting (18) and (19) into (16), the expression for the DL SINR becomes

SINRSP−dl
jm =

νjmβ
2
jjm∑

�∈Lj(rSP)\j

μjm

μ�m
ν�mβ2

�jm + t1√
MκCu

+ t2
M

(24)

where

t1 =
L−1∑
�=0

K−1∑
k=0

ν�k
μjm

μ�k

β2
�jm (25)

t2 =
L−1∑
�=0

K−1∑
k=0

ν�kβ�jm

μ�k

⎛⎝ ∑
n∈L�(rSP)

μnkβ�nk +

(
1 +

1√
Mκ

)
σ2

Cu

⎞⎠
+

L−1∑
�=0

L−1∑
k=0

L−1∑
n=0

K−1∑
p=0

μnpν�kβ�npβ�jm√
Mμ�kκCu

+
1

Mγ
. (26)
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From the above expression, it can be observed that t1/
√
M , which is the component of

interference from users that do not share a pilot with user (j,m), decreases proportional to

the square root of M . Since Cu � K, more orthogonal pilot sequences are available when SPs

are employed in comparison with RP. As a result, SP can be reused over a larger number of

cells, i.e., rSP > rRP. Therefore, we have the following result.

Proposition 2. If rSP > rRP, the ceiling of SINRSP−dl
jm when M → ∞ is higher than that of

SINRRP−dl
jm .

Proof. When M → ∞ (16) becomes

SINRSP−dl
jm =

ν̃jmβ
2
jjm∑

�∈Lj(rSP)\j

μjm

μ�m
ν̃�mβ2

�jm

. (27)

Therefore, comparing (8) and (27), the denominator of (27) is smaller than that of (8) when

rSP > rRP. Here ν̃jm = limM→∞Mνjm and is independent of M .

The values of ρ2 and λ2 can be computed in practice in a designated BS in the network. The

remaining BSs transmit the large-scale path-loss coefficients to this BS. While the transmission

of these coefficients requires overhead, the large-scale statistics of the channel is valid for one

to two orders of magnitude longer than the channel coherence time [30], [31]. In addition, since

these coefficients are only scalars, we expect that this overhead is negligible.

IV. STAGGERED PILOTS AS A PARTICULAR CASE OF SUPERIMPOSED PILOTS

When transmitting staggered pilots [32], [33], the users in each cell stagger2 their pilot

transmissions so that the users of no two cells within the rSP cells, which share the Cu UL pilots,

are transmitting UL pilots simultaneously, i.e., if the users in a particular cell are transmitting UL

pilots, the users in the remaining rSP − 1 cells transmit data. This pilot structure is depicted in

Fig. 3 Let Y n be the observation at BS j when the users in the nth cell (where 0 ≤ n ≤ rSP−1)

transmit UL pilots. Note that the index j has been dropped from Y n for the sake of simplicity

of notation. Then, Y n ∈ C
M×τ can be written as

Y n �
∑

�∈Ln(rSP)

∑
k

√
μ�kpphj�kφφφ

T
nk +

∑
�/∈Ln(rSP)

∑
k

√
μ�kpdhj�k (x

n
�k)

T +W n (28)

2To achieve the staggered pilot frame structure, we assume that the BSs coordinate the UL pilot transmissions of their users.
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Fig. 3. Pilot structure of staggered pilots. In contrast with RP, the pilot transmissions cover the entire UL slot, as with SP.

However, in contrast with SP, a particular user does not transmit pilots and data simultaneously.

where φφφn,k ∀n, k are the orthogonal pilot sequences described in Subsection III-A, pp and pd are

the powers at which the pilots and the data, respectively, are transmitted, and xn
�,k ∈ C

τ is the

vector of data symbols transmitted by user (�, k) in the nth block. We then have the following

proposition.

Proposition 3. The UL in a system that employs staggered pilots in (28) is a particular case of

superimposed pilots if pp = μλ2Cu/τ , pd = μρ2 and P =
√

Cu

τ
blkdiag {ΦΦΦ0, . . . ,ΦΦΦL−1}.

An important conclusion of Proposition 3 is that staggered pilots are capable of achieving the

downlink throughput of SP while maintaining the UL spectral efficiency of RP. Indeed, utilizing

the same approach used to derive (16), a lower bound on the DL ergodic capacity when the

channel estimate obtained from staggered pilots is employed in a MF precoder can be obtained

as

RST−dl
jm =

Cd

C
log2

(
1 + SINRST−dl

jm

)
(29)
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where

SINRST−dl
jm = νjmβ

2
jjm

⎛⎝ ∑
�∈Lj(rSP)\j

ν�m
μjm

μ�m

β2
j�m +

1

M

L−1∑
�=0

K−1∑
k=0

ν�kβ�jm

μ�k

⎛⎝ ∑
n∈L�(rSP)

μnkβ�nk +
σ2

ppτ

⎞⎠
+

pd
τpp

L−1∑
�=0

K−1∑
k=0

ν�k
μ�k

⎛⎝μjmβ
2
�jm1{j /∈L�(rSP)} +

1

M

∑
n/∈L�(rSP)

K−1∑
p=0

μnpβ�jmβ�np

⎞⎠+
1

M2γ

⎞⎠−1 (30)

and

ν�k =
q�k

E {‖g�k‖2}
=

q�k
M

⎛⎝ ∑
n∈L�(rSP)

μnk

μ�k

β�nk +
pd
τpp

∑
n/∈L�(rSP)

K−1∑
p=0

μnp

μ�k

β�np +
σ2

τppμ�k

⎞⎠−1 . (31)

Therefore, staggered pilots can achieve the DL performance of RP with a reuse factor rSP

with an overhead equivalent to that of RP with pilot-reuse factor rRP. As a result, similar to

Proposition 2, we have

Proposition 4. If rSP > rRP, the ceiling of SINRST−dl
jm when M → ∞ is higher than that of

SINRRP−dl
jm .

The concept described in this section can be further demonstrated by a simple example.

Consider a system with two users A and B. Without loss of generality, it is assumed that the

large-scale path-loss between the BS and users A and B are unity. In the UL phase, let user B

transmit data with power ρ2 ≥ 0 when user A transmits its pilot at unit power. In the DL phase,

user B receives interference at a power ρ2 from the DL transmission to user A. Thus, increasing

the number of antennas M at the BS increases the array gain at the BS, allowing for user B to

transmit with a smaller power ρ2, thereby reducing the interference it sees in the DL.

V. EXTENSION OF HYBRID SYSTEM TO DL

Using the DL SINR analysis in Section III, we extend the hybrid system in [20] to include the

DL as well. The hybrid system consists of two sets of users URP and USP that transmit RP and

SP, respectively. As shown in Fig. 4, users in URP obtain channel estimates in the UL using RPs,

transmitted over τ symbols, and use these estimates to detect data using a spatial filter. However,

users in USP maintain radio silence during the pilot training phase of the users in URP, i.e., for

τ symbols in the frame, and transmit orthogonal pilots superimposed with data during the UL

data phase of Cu − τ symbols. By this construction, users in USP effectively transmit the zero

vector for the τ training symbols and since the zero vector is orthogonal to all other vectors,
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Fig. 4. Frame structure of a hybrid system with users employing RP and SP pilots.

the users in USP can be viewed as having orthogonal pilots, thus not affecting the performance

of any user in URP.

Employing the channel estimates obtained from URP and USP in a MF precoder and combiner,

the SINR in the UL (see [20]) and DL from users in URP and USP when M � K 3 can be

obtained as

SINRRP−ul
jm =

β2
jjm∑

(�,m)∈URP\j
β2
j�m

(32)

SINRRP−dl
jm =

ν̃jmβ
2
jjm∑

(�,m)∈URP\j̃
ν�mβ2

�jm

(33)

SINRSP−ul
jm ≈

β2
jjm

1
(Cu−τ)λ2

∑
�

∑
k

(�,k)∈USP

β2
j�k

(34)

SINRSP−dl
jm ≈

ν̃jmβ
2
jjm

ρ2

(Cu−τ)λ2

∑
�

∑
k

(�,k)∈USP

ν̃�mβ2
�jm

(35)

3 Since this section is devoted to designing a suboptimal algorithm to partition users into those that use RP and SP, we rely on

approximate asymptotic expressions (33) – (35), for the sake of simplicity, since the problem is anyway solved sub-optimally.
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where the approximations in (34), and (35) reflect on the assumption that the users in URP and

USP do not interfere with each other. This assumption is valid if the UL transmission power of

the users in URP is significantly smaller than those in USP. This assumption is made for the sake

of simplicity and clarity only. In the absence of this assumption, the BS will have to estimate and

remove the interference from the users in URP before estimating the channel vectors of the users

in USP. In addition, for the sake of simplicity, we assume that rRP = 1 and that the interference

from the cells other than the ones adjacent to the reference cell are negligible. Furthermore, the

UL transmit powers μ�k are subsumed into the coefficients βj�k.

In [20], the objective of the hybrid system design has been defined as to partition the users

into disjoint sets URP and USP by minimizing the overall UL interference. Using (33) and (34),

we extend here the objective to jointly minimize the UL and DL interference.

Let IRP−ul
jm or IRP−dl

jm , respectively, be the contributions of user (j,m) to the total UL and

DL inter/intra-cell interference power when assigned to URP. Similarly, let ISP−uljm or ISP−dljm ,

respectively, be the contributions of user (j,m) to the total DL inter/intra-cell interference power

when assigned to USP. If users (j,m) and (�, k) are members of URP, then from the denominator

of (32), the amount of interference that user (j,m) causes to user (�, k) in the UL is β2
�jkδm,k.

Similarly, from (33), the amount of interference that user (j,m) causes to user (�, k) in the DL

is β2
n�kδj,�δm,k, ∀n �= �, n ∈ Lj (r) , (n, k) ∈ URP. Likewise, from (34) and (35), if both users

are members of USP then the amount of interference that user (j,m) causes to user (�, k) in

the UL and DL is β2
�jm/ ((Cu − τ)λ2) and ρ2β2

njm/ ((Cu − τ)λ2) , ∀n �= j, n = 0, . . . , L − 1,

respectively. Therefore, IRP−ul
jm , IRP−dl

jm , ISP−uljm , and ISP−dljm can be obtained as

IRP−ul
jm =

∑
��=j

∑
k

�∈Lj(r)
(�,k)∈URP

β2
�jkδm,k =

∑
��=j

�∈Lj(r)
(�,m)∈URP

β2
�jm (36)

IRP−dl
j,m =

∑
n �=j

∑
�

∑
k

n,�∈Lj(r)
(n,k)∈URP

β2
n�kδj,�δm,k =

∑
n �=j

n∈Lj(r)
(n,m)∈URP

β2
njm (37)

ISP−uljm =
1

(Cu − τ)λ2

∑
�

∑
k

(�,k)∈USP

β2
�jm (38)

ISP−dljm =
ρ2

(Cu − τ)λ2

∑
�

∑
k

(�,k)∈USP

β2
�jm = ρ2ISP−uljm . (39)
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Let ξul > 0 and ξdl > 0 be the weights for the interference powers in the UL and DL,

respectively, such that ξul + ξdl = 1. Then, the total cost due to inter/intra-cell interference can

be expressed as

I (URP,USP) =
L−1∑
�=0

K−1∑
k=0

(
TRP
�k 1{(�,k)∈URP} + T SP

�k 1{(�,k)∈USP}
)

(40)

where TRP
�k and T SP

�k are the costs incurred when user (�, k) is assigned to URP and USP,

respectively, and are defined as

TRP
�k � ξulIRP−ul

�k + ξdlIRP−dl
�k (41)

T SP
�k � ξulISP−ul�k + ξdlISP−dl�k . (42)

Minimizing (40) over the possible choices of URP and USP, the optimal sets URP and USP can

be obtained as the solution of the following optimization problem

(URP,USP) = arg min
URP⊆UUSP⊆U

I (URP,USP)

subject to URP ∪ USP = U

URP ∩ USP = ∅ (43)

where U is the set of all users in the L cells. However, obtaining the solution to the optimization

problem in (43) is combinatorial in nature with 2card{U} possible choices for URP and USP. A

simple greedy algorithm to partition the users by minimizing only the overall UL interference

has been devised in [20], and it can be straightforwardly extended to jointly minimize both the

UL and DL interference powers.

VI. SIMULATION RESULTS

A. Downlink and Channel Estimation Performance

We compare the DL throughput and MSE performance of systems that employ the LS-based

channel estimates obtained from RP to the performance of the massive MIMO systems that

obtain channel estimates from SP and staggered pilots.

Unless otherwise specified, the simulation parameters are as follows. The users are uniformly

distributed in hexagonal cells and are at a distance of at least 100m from the BS. The inter-BS

separation is 2km. The channel estimation methods are tested with L = 91 cells and K = 5 users

per cell. Both the SP and staggered pilots have reuse factors rSP = 7. The path loss coefficient
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Fig. 5. Cumulative distribution of DL throughput for M = 100 antennas. The black line indicates rates with probability ≥ 0.95.

The DL rates for SP and staggered pilots that have a probability ≤ 0.05 are significantly higher than those of RP with rRP = 1.

is assumed to be 3. The number of symbols in the UL and DL, i.e., Cu and Cd, respectively, are

both chosen as 35 symbols. The values of ρ and λ are computed from (18) and (19), respectively,

and are used for both SP and staggered pilots. The UL transmit power μ�k is chosen based on the

statistical channel-inversion power-control scheme [11], i.e., μ�k = ω/β��k where ω is a design

parameter. The signal-to-noise ratio (SNR) in the UL and DL, i.e., ω/σ2 and γ, respectively, is

set to 10dB. The plots are generated by averaging over 104 realizations of user locations across

the cell. For the sake of simplicity, the effects of shadowing are not taken into account in this

paper, but the conclusions are valid provided the users associate themselves with the strongest

BS.

In Fig. 5, the cumulative distribution of the DL rate of an arbitrary user in the reference BS

is plotted for SP, RP, and staggered pilots for M = 100 antennas. The values of pilot reuse ratio

for RP are rRP = 1, rRP = 3, and rRP = 7 in the plot. It can be observed that rates obtained

from the channel estimate based on SP and staggered pilots are significantly higher than those

obtained from RP with rRP = 1. Furthermore, it has to be noted that no additional UL overhead

is required by staggered pilots and SP to achieve this DL throughput. However, while RP with

rRP = 3 offers comparable performance to staggered pilots with rSP = 7, it has to be noted

that, in addition to the increased UL overhead, pilot reuse with RP comes with the additional

requirement that all users transmit their UL pilots simultaneously. This requirement will result in
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pilot reuse capable of being implemented across only a few cells in the network, and therefore,

the remaining cells can benefit from using either SP or staggered pilots.

In Fig. 6, the DL sum rate of staggered, RP, and SP is plotted against the number of antennas

M when the channel estimates are used in an MF precoder. The DL rate ceiling of SP and

staggered pilots is significantly higher than that of RP with rRP = 1. Moreover, the DL rate of

staggered pilots is close to that of RP with rRP = 7 and SP achieves this rate asymptotically. The
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key difference between SP and staggered pilots is that in the former, the strongest interference

seen by a particular user in the reference cell is due to the remaining users of that cell, which

results from transmitting data alongside pilots. However, in the latter case, this component of

interference is absent. Since the strongest component of the interference has been removed in the

case of staggered pilots, they are capable of achieving a rate close to that of RP with rRP = 7. In

addition, SP and staggered pilots have the same ceiling on the achievable rate, which is evident

from the values of the achievable rate for large M .

In Fig. 7, the DL sum rates are plotted when the channel estimates are used in a ZF precoder

which is given as

gjm = Ĥj

(
Ĥ

H

j Ĥj

)−1
em (44)

where Ĥj =
[
ĥjj0, . . . , ĥjj,K−1

]
and em is the mth column of IK . The parameter ν�k is chosen

to constrain the instantaneous transmit power to 1. The sum rates are obtained numerically with

L = 7 and K = 5. It can be observed that the behavior of SP and RP is similar to that in Fig. 6,

whereas the gap between staggered pilots and SP/RP is significantly higher than that in Fig. 6.

In Fig. 8, the MSE of the channel estimate is plotted against M . Similar to the behavior in

Fig. 6, the MSE of the channel estimate obtained from SP and staggered pilots asymptotically

approaches the MSE of the estimate from RP with rRP = 7. In addition, since we have assumed
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TABLE I

UL AND DL PERFORMANCE OF RP, SP, AND HYBRID SYSTEMS

UL Sum Rate (bps/Hz) DL Sum Rate(bps/Hz) Total Rate(bps/Hz)

Hybrid System 48.12 84.94 133.07

RPs (rRP = 1) 50.42 65.85 116.27

SPs 35.30 75.02 110.32

that the interference from second and subsequent tiers of cells are negligible when deriving the

CRLB, the interference from these cells results in a gap between the MSE of SP and the CRLB.

In the absence of this component of the interference, it can be seen that the MSE of the channel

estimate attains the CRLB asymptotically as M → ∞.

B. Hybrid System

The hybrid system is simulated with L = 19 hexagonal cells, i.e., a central cell with two tiers

of interfering cells. Each cell has K = 5 users and the values of Cu and Cd are both chosen

as 40 symbols. Although L is set to 19, the partitioning of users and the computation of the

performance metrics is performed over 7 cells which consist of the central and the first tier of

cells. The weights ξul and ξdl are both set to 0.5. The value of ω for the users in USP is set to

10 and μ for the users in URP is set to 1.

For obtaining Figs. 9 and 10, the users are assumed to be distributed uniformly on a circle

around the BS. Then, the sum rates in the UL and DL are plotted in the figures against the

radius of the circle around the BS. As can be observed in Figs. 9 and 10, when the user radius

is smaller than 0.6, RP are superior both in the UL and DL. However, SP are superior both in

the UL and DL, when the user radius is larger than 0.8. Therefore, for user radius in the ranges

[0, 0.6] the greedy algorithm chooses RP and it chooses SP in the range [0.8, 1]. However, in the

range [0.6, 0.8], RP offer a better performance in the UL but a poorer performance in the DL,

with respect to SP. Therefore, the choices of URP and USP are determined by ξul and ξdl. Since

for these simulations ξul and ξdl are both chosen as 0.5, the greedy algorithm attempts to strike

a balance between the UL and DL throughputs and offers a total throughput that is in between

that of the systems that employ only RP or SP. In addition, since the algorithm is greedy, the
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Fig. 9. Sum rate in the UL over users in the first tier of cells vs. user radius. The algorithm assigns users RP and SP in scenarios

with low and high interference, respectively.
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Fig. 10. Sum rate in the DL over users in the first tier of cells vs. user radius. The non-smooth nature of the DL rate of the

hybrid system in the range of user radius [0.6, 0.8] is due to the suboptimal nature of the greedy algorithm.

variation of this throughput with respect to the user radius is non-smooth in nature, as can be

seen in the figures.

Table I details the UL and DL performance of a system with users transmitting RP, SP, and

a hybrid of both, when the users are uniformly distributed across the cells. The hybrid system
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offers roughly 14.44% higher total rate than the system that employs only RP. Moreover, both

SP and the hybrid system offer a significantly higher throughput in the DL, albeit at the cost

of a lower UL throughput than when compared with RP. However, the hybrid system enables

controlling the trade-off between the UL and DL throughputs using the weights ξul and ξdl.

It has to be noted that there is an important difference between the results in Section VI-B

and those in [20], [24]. In the latter, the computed rates are approximate for finite M , since the

correlation between the signal and interference components have been ignored and approximated

to be zero. However, using the approach in Appendix A, the signal and interference terms are

uncorrelated and both the UL and DL rates shown in Figs. 9 and 10, and Table I are lower

bounds on the achievable rates.

VII. CONCLUSION

We have shown that SPs offer a significantly better asymptotic MSE and DL performance

than RPs. This improvement is attributed to utilizing the array gain of the antenna for reducing

the fraction of UL power allocated to data in favor of allocating a larger fraction of power for

pilot transmission. We have also shown that staggered pilots are a particular case of SPs and

therefore, offer a DL performance similar to that of SPs, while offering the same UL spectral and

energy efficiency as RPs. Furthermore, we have shown that higher asymptotic DL throughput

offered by SPs and staggered pilots are at the same or lower UL transmission overhead than

RPs. We have also extended the hybrid system to partition the users into two disjoint sets of

users that use RPs and SPs by minimizing both the UL and DL interference. We show, by means

of simulation, that the hybrid system offers a higher throughput than when only RPs or SPs are

employed.
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APPENDIX A

Downlink SINR for Channel Estimate Based on SP Pilots

For MF precoding, g�k = ĥ��k. Then,

E
{
hH

jjmgjm

}
= Mβjjm (45)

E
{
|hH

�jmg�k|2
}
= M2β2

�jm

μjm

μ�m

1{k=m,j∈L�(rSP)} +M
∑

n∈L�(rSP)

μnk

μ�k

β�jmβ�nk

+M
L−1∑
n=0

K−1∑
p=0

ρ2

Cuλ2

μnp

μ�k

β�npβ�jm +
M2ρ2

Cuλ2

μjm

μ�k

β2
�jm +

Mσ2

Cuλ2μ�k

(46)

1

ν�k
=

E {‖g�k‖2}
q�k

=
M

q�k

⎛⎝ ∑
n∈L�(rSP)

μnk

μ�k

β�nk +
L−1∑
n=0

K−1∑
p=0

ρ2

Cuλ2

μnp

μ�k

β�np +
σ2

Cuλ2μ�k

⎞⎠ (47)

Substituting (45) to (47) into (15), the SINR can be obtained as

SINRSP−dl
jm =νjmβ

2
jjm

⎛⎝ ∑
�∈Lj(rSP)\j

μjm

μ�m

νjmβ
2
�jm +

1

M

L−1∑
�=0

K−1∑
k=0

ν�kβ�jm

μ�k

⎛⎝ ∑
n∈L�(rSP)

μnkβ�nk +
σ2

Cuλ2

⎞⎠
+

ρ2

Cuλ2

L−1∑
�=0

K−1∑
k=0

ν�k
μ�k

(
μjmβ

2
�jm +

1

M

L−1∑
n=0

K−1∑
p=0

μnpβ�npβ�jm

)
+

1

M2γ

)−1
(48)

This completes the derivation of (16).

APPENDIX B

Calculation of ρ2opt and λ2
opt

Equation (1) can be written as

Ỹ j =
L−1∑
�=0

K−1∑
k=0

√
μ�khj�k (λp�k + ρx̃�k)

T + W̃ j (49)

where x̃�k ∼ CN (0, I). The receiver applies the following linear invertible transformation to the

received observation

Y j �
1√
Cu

Ỹ jP
∗ =

L−1∑
�=0

K−1∑
k=0

√
μ�khj�k

(
λ
√

Cue�k + ρx�k

)T
+W j (50)

where e�k = PHp�k/Cu has ones in locations corresponding to the column index of p�k in P

and zeros elsewhere, x�k = PHx̃�k/
√
Cu, and W j = W̃PH/

√
Cu. Note that the distributions

of x�k and W j are unchanged since P /
√
Cu is a unitary matrix. Therefore, from the perspective

of calculating the achievable rate, both (49) and (50) are equivalent. We simplify notation by
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dropping the subscript j and replacing the tuple (�, k) with a single index k such that 0 ≤ k ≤
N − 1, where N � LK − 1. Defining yt as the tth vector of received observations and xnt as

the tth element of xn, yt for 0 ≤ t ≤ Cu − 1 can be written as

yt =
∑
k∈Pt

λ
√

μkCuhk +
N−1∑
k=0

ρ
√
μkhkxkt +wt (51)

where Pt = {k ∈ {0, . . . , LK − 1} | pk = pt} is the set of all users that transmit their pilot in

symbol t, and Pt = ∅ for t ≥ LK.

Without loss of generality, let user 0 be the reference user, and let this user transmit its pilot

in symbol 0 in (51). The LS estimate of the channel of user 0 can then be written as

ĥ0 =
1

√
μ0

√
Cuλ

y0 =
∑
k∈P0

√
μk

μ0

hk +
N−1∑
k=0

ρ√
Cuλ

√
μk

μ0

hkxk0 +
wt√
Cuμ0λ

. (52)

Then, the output of the MRC when t ≥ 1 is

x̂0t = ĥ
H

0 yt = ρ
√
μ0E

{
ĥ

H

0 h0

}
x0t + ρ

√
μ0

(
ĥ

H

0 h0 − E

{
ĥ

H

0 h0

})
x0t +

∑
k∈Pt

λ
√

μkCuĥ
H

0 hk

+
N−1∑
k=1

ρ
√
μkĥ

H

0 hkxkt + ĥ
H

0 wt . (53)

Since x0t when t ≥ 1 is independent of xn0 for all 0 ≤ n ≤ LK − 1 , x0t is independent of ĥ0.

As a result, in (53), the first term is uncorrelated with the remaining terms. Then, (53) can be

written as x̂0t = st + it where

st � ρ
√
μ0E

{
ĥ

H

0 h0

}
x0t (54)

it � ρ
√
μ0

(
ĥ

H

0 h0 − E

{
ĥ

H

0 h0

})
x0t +

∑
k∈Pt

λ
√

μkCuĥ
H

0 hk +
N−1∑
k=1

ρ
√
μkĥ

H

0 hkxkt + ĥ
H

0 wt .

(55)

Defining Ψ(x) = log2 (1 + x), a lower bound on the ergodic capacity for user 0 in symbol t

can be obtained as [29]

R0t = Ψ

(
E {|st|2}
E {|it|2}

)
. (56)

Since s � E {|st|2} is independent of t for t ≥ 1 and since log2 (1 + 1/x) is convex in x, an

achievable lower bound on the capacity can be obtained using Jensen’s inequality as

R0 =
1

Cu

Cu−1∑
t=0

Ψ

(
s

E {|it|2}

)
≥ 1

Cu

Cu−1∑
t=1

Ψ

(
s

E {|it|2}

)
≥ Cu − 1

Cu

Ψ

⎛⎜⎜⎝ s

1
Cu−1

Cu−1∑
t=1

E {|it|2}

⎞⎟⎟⎠ (57)
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where, in the first inequality, the throughput in symbol 0 in which user 0 transmits both pilot and

data is ignored. Jensen’s inequality is applied in the second inequality to render the right-hand

side independent of t. Now,

i � 1

Cu − 1

Cu−1∑
t=1

E
{
|it|2
}
=

N−1∑
k=0

ρ2μkE

{
|ĥ

H

0 hk|2
}
− ρ2μ0

∣∣∣E{ĥH

0 h0

}∣∣∣2
+

1

Cu − 1

Cu−1∑
t=1

∑
k∈Pt

μkλ
2CuE

{
|ĥ

H

0 hk|2
}
+ E

{
|ĥ

H

0 wt|2
}

≤ Cu

Cu − 1

N−1∑
k=0

μkE

{
|ĥ

H

0 hk|2
}
− ρ2μ0

∣∣∣E{ĥH

0 h0

}∣∣∣2 + E

{
|ĥ

H

0 wt|2
}

(58)

where, to obtain the inequality, we have used the property that
Cu−1⋃
t=1

Pt = Ω\P0 ⊂ Ω with Ω �

{0, . . . , N − 1} being the set of all users, and that Cu/(Cu − 1) > 1. Using (52), E
{
|ĥ

H

0 hk|2
}

in (58) can be obtained as

E

{
|ĥ

H

0 hk|2
}
=

⎧⎪⎨⎪⎩vk k /∈ P0

M2β2
k
μk

μ0
+ vk k ∈ P0

(59)

where

vk � M2ρ2
(

ck
Cuλ2

+
1

Mρ2
dk +

1

Mρ2λ2
ek

)
(60)

ck �
μk

μ0

β2
k +

1

M

N−1∑
n=0

μn

μ0

βnβk , dk �
∑
n∈P0

μn

μ0

βnβk , ek �
βkσ

2

μ0Cu

(61)

Substituting (60) into (58) and noting that wt is independent of ĥ0, we obtain

i ≤ M2ρ2
[
ρ2

λ2
α1 +

ρ2

Mλ2
α2 +

λ2

ρ2
α3

M
+

1

ρ2λ2

α4

M
+

1

ρ2
α5

M
+

1

λ2

α6

M
+ α7

]
(62)

where

α1 =
N−1∑
k=0

μ2
kβ

2
k

μ0(Cu − 1)
, α2 =

N−1∑
k=0

N−1∑
n=0

μkμnβkβn

μ0(Cu − 1)
; α3 =

N−1∑
k=0

μkdkCu

(Cu − 1)
(63)

α4 =
N−1∑
k=0

μkekCu

Cu − 1
+

σ4

μ0Cu

; α5 =
∑
k∈P0

σ2μk

μ0

βk ; α6 =
N−1∑
k=0

σ2

Cu

μk

μ0

βk (64)

α7 =
∑

k∈P0\0

μ2
k

μ0

β2
k +

Cu

Cu − 1

N−1∑
k=0

μk

(
ck
Cu

+
1

M
dk

)
. (65)
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Given that s = E {|st|2} = μ0ρ
2M2β2

0 , substituting (62) into (57), a lower bound on the UL

ergodic capacity is obtained as

R0 =
Cu − 1

Cu

Ψ

(
μ0β

2
0

ρ2

λ2α1 +
ρ2

Mλ2α2 +
λ2

ρ2
α3

M
+ 1

ρ2λ2
α4

M
+ 1

ρ2
α5

M
+ 1

λ2
α6

M
+ α7

)
(66)

which is maximized when the denominator inside Ψ(·) is minimized. To obtain ρ2opt, we set

λ2 = 1− ρ2 in (66), differentiate the denominator with respect to ρ2, and set the result to zero.

We then get,

ρ2opt =
(
1 +

√
Mκ
)−1

, λ2
opt =

(
1 +

1

κ
√
M

)−1
. (67)

where

κ �

√
α1 +

α2

M
+ α4

M
+ α6

M

α3 + α4 + α5

. (68)

APPENDIX C

CRLB for Channel Estimates Obtained From SP Pilots

To derive the CRLB, the received signal when using SP pilots can be written as [20]

Y = Hd (ρXd + λP d) +H i (ρX i + λP i) +W (69)

where Hd � [hj,j,0, . . . ,hj,j,K−1] are the channel vectors of the desired users and

Xd � [xj,0, . . . ,xj,K−1]
T are the data symbols from the desired users. Similarly, H i ∈

C
M×(rSP−1)K and X i ∈ C

Cu×(rSP−1)K are the data and channel vectors, respectively, of the

interfering users. The subscript j has been dropped from Hd, H i, Xd, X i, and W for notational

convenience. In addition, the UL transmit power μ�k for each user is assumed to be absorbed

into βj�k. The vectorized form of (69) can be written as

y = vec (Y ) = (ICu ⊗Hd) (ρxd + λpd) + (ICu ⊗H i) (ρxi + λpi) +w

=
(
(ρXd + λP d)

T ⊗ IM

)
hd +

(
(ρX i + λP i)

T ⊗ IM

)
hi +w (70)

where the over-bar denotes the vec operation, i.e., x � vec(X) and the property vec (AB) =

(Im ⊗A) b =
(
BT ⊗ In

)
a has been used.
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For the set of unknown parameters θθθ �
{
xd,xi,hd,hi

}
, the Fischer information matrix can

be defined as [34]

J (θθθ) = EY ,θθθ

{[
∂ ln p (Y , θθθ)

∂θθθ∗

] [
∂ ln p (Y , θθθ)

∂θθθ∗

]H}

= Eθθθ {JθθθθθθH}+ Eθθθ

{[
∂lnp (θθθ)

∂θθθ∗

] [
∂lnp (θθθ)

∂θθθ∗

]H}
. (71)

where

JθθθθθθH � EY θθθ

{[
∂lnp (Y | θθθ)

∂θθθ∗

] [
∂lnp (Y | θθθ)

∂θθθ∗

]H ∣∣∣∣∣ θθθ
}

. (72)

Using (70), JθθθθθθH can be written as

JθθθθθθH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jxd
JH

xd
Jxd

JH
xi

Jxd
JH
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Jxd

JH
hi

Jxi
JH

xd
Jxi

JH
xi

Jxi
JH

hd
Jxi

JH
hi

Jhd
JH

xd
Jhd

JH
xi

Jhd
JH

hd
Jhd

JH
hi

Jhi
JH

xd
Jhi

JH
xi

Jhi
JH

hd
Jhi

JH
hi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(73)

where

Jxd
� ρ

σ
(ICu ⊗Hd)

H , Jxi
� ρ

σ
(ICu ⊗H i)

H (74)

Jhd
� 1

σ

(
(ρXd + λP d)

T ⊗ IM

)H
, Jhi

� 1

σ

(
(ρX i + λP i)

T ⊗ IM

)H
. (75)

Using (73) to (75), the first term in (71) can be expressed as

Eθθθ [JθθθθθθH ] =
Mρ2

σ2
blkdiag

[
ICu ⊗Dd , ICu ⊗Di ,

Cu

Mρ2
IMK ,

Cu

Mρ2
IM(N−K)

]
(76)

where Dd � diag {βj,j,0, . . . , βj,j,K−1} is the diagonal matrix containing the path-loss coefficients

of the desired users and Di is the diagonal matrix containing the path-loss coefficients of the

interfering users. The second term in (71) can be found as

Eθθθ

{[
∂lnp (θθθ)

∂θθθ∗

] [
∂lnp (θθθ)

∂θθθ∗

]H}
= blkdiag

[
Γxd

, Γxi
, (IM ⊗Dd)

−1 , (IM ⊗Di)
−1] (77)

where

Γxd
� Exd

{[
∂ ln pxd

(xd)

∂x∗d

] [
∂ ln pxd

(xd)

∂x∗d

]H}
(78)

Γxi
� Exi

{[
∂ ln pxi

(xi)

∂x∗i

] [
∂ ln pxi

(xi)

∂x∗i

]H}
. (79)
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Therefore, the CRLB for the parameter Hd and the channel vector hj,j,k are given as

CRLB (Hd) = trace

{(
Cu

σ2
IKM + (IM ⊗Dd)

−1
)−1}

(80)

CRLB (hj,j,m) = trace

{(
Cu

σ2
IM +

1

βj,j,m

IM

)−1}
=

M
Cu

σ2 + 1
βj,j,m

. (81)

This completes the derivation of (11).
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Covariance Matrix Estimation for Massive MIMO
Karthik Upadhya , Student Member, IEEE and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—We propose a novel pilot structure for covariance
matrix estimation in massive multiple-input multiple-output sys-
tems in which each user transmits two pilot sequences, with the sec-
ond pilot sequence multiplied by a random phase shift. The covari-
ance matrix of a particular user is obtained by computing the sam-
ple cross-correlation of the channel estimates obtained from the two
pilot sequences. This approach relaxes the requirement that all the
users transmit their uplink pilots over the same set of symbols. We
derive expressions for the achievable rate and the mean-squared er-
ror of the covariance matrix estimate when the proposed method
is used with staggered pilots. The performance of the proposed
method is compared with existing methods through simulations.

Index Terms—Covariance estimation, massive multiple-input
multiple-output (MIMO), pilot contamination, staggered pilots.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is a
variation of multiuser MIMO (MU-MIMO) that has a

large number of antennas at the base station (BS), which sig-
nificantly improves the spectral efficiency through spatial mul-
tiplexing [1]–[4] at a low cost of simple linear processing at the
BS [1], [5], [6]. However, in practice, the BS needs to obtain
channel state information using pilots, which have to be reused
in different cells, thereby causing pilot contamination [1]. It has
been argued that pilot contamination, in independent and iden-
tically distributed (i.i.d) Rayleigh fading, puts a fundamental
limit on the asymptotically achievable rate in massive MIMO
systems [1], and pilot decontamination algorithms have been
designed in many works (see [7]–[12] to mention just a few).
It has been recently shown in [13] that the ceiling on the uplink

(UL) and downlink (DL) rates due to pilot contamination can
be eliminated under certain loose conditions on the covariance
matrices of the users. However, this method requires estimates
of the covariance matrix at the BS, which have to be obtained
from observations that are made in the presence of pilot con-
tamination. In [14], two methods have been developed wherein
the users are assigned unique pilots specifically for estimating
the covariance matrices. In [15], a method for jointly perform-
ing pilot allocation and estimating the covariance matrix has
been proposed. A method for estimating a low-rank covariance
matrix has also been proposed in [16]. A common theme in all
the earlier works is that they require/assume that the users in
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all cells transmit their UL pilots simultaneously, which can be
infeasible in practice.
In this letter, we develop a method for estimating the users’

covariance matrices using a pair of pilot sequences, with the
second pilot sequence multiplied by a random phase shift. The
quality of the covariance estimate obtained through the proposed
method using staggered pilots is quantified using expressions for
its mean-squared error (MSE). The achievable rate is analyzed
numerically when the covariance matrices are estimated and
used with staggered and regular pilots.

Notation: A vector is denoted as a and a matrix as A. The
notations (·)T , (·)∗, (·)H , (·)−1 , blkdiag {·}, trace (·), �x� rep-
resent the transpose, conjugate, conjugate transpose, matrix in-
verse, block diagonal matrix, matrix trace, and largest integer
smaller than x, respectively, whereas CN (μ,Σ) stands for the
complex Gaussian distribution with mean μ and covariance
matrix Σ.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a massive MU-MIMO system with L cells each
havingM antennas at the BS and containingK users. Denoting
a user u in cell c as (c, u), the channel vector between user
(c, u) and BS j is represented as hjcu ∈ CM and is distributed
as CN (0,Rjcu ). The channel is assumed to be constant for
C symbols and the second-order statistics Rjcu are assumed
to be constant for τs blocks each containing C symbols. The
coherence time of the channel is divided intoCu andCd symbols
for the UL and DL time-slots, respectively.
In [13] and [17], it was shown that the UL and DL rates

increase asymptotically in M when the data are estimated us-
ing a linear minimum MSE (LMMSE) or zero-forcing pre-
coder/combiner that is designed using the LMMSE channel
estimate. If ĥjcu is the least-square (LS) estimate of the chan-
nel, the channel estimate obtained using the LMMSE criterion
can be written as

ĥLMMSE
jcu = E

{
hjcuh

H
jcu

}
E
{
ĥjju ĥ

H
jju

}−1

ĥjju

= RjcuQ
−1
ju ĥjju (1)

whereQju � E
{
ĥjju ĥ

H
jju

}
andRjcu � E

{
hjcuh

H
jcu

}
.

Utilizing (1), the corresponding multicell LMMSE combin-
ing vector is

vju =

(
L−1∑
�=0

K−1∑
k=0

ĥLMMSE
j�k

(
ĥLMMSE
j�k

)H
+ Zj

)−1

ĥLMMSE
jju

(2)
where Zj �

∑L−1
�=0

∑K−1
k=0 (Rj�k −Rj�kQ

−1
jk Rj�k ) + σ2IM .

From (1) and (2), it can be observed that obtaining the LMMSE
estimate of the channel and data requires the covariancematrices
Rj�k , ∀ �, k andQjk , ∀ k. In practice,Rj�k has to be estimated
in the presence of pilot contamination, which complicates the

1070-9908 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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estimation problem since the estimate R̂j�k is contaminated by
the covariance matrices of users in adjacent cells that employ
the same pilot.
Existing methods for covariance matrix estimation employ

regular pilots for both channel and covariance matrix estima-
tion wherein the channel and covariance matrix estimates are
obtained by dedicating a part of the time–frequency resource for
pilot transmission. Under the assumption that the pilot trans-
mission from all the cells are synchronized1, and that every
cell transmits the same pilots, the received observations at BS
j during pilot transmission in the nth coherence block can be
written as

Y
(n)
j =

L−1∑
�=0

K−1∑
k=0

√
μh

(n)
j�kφφφ

T
k +W

(n)
j (3)

where Y(n)
j ∈ CM×τ are the received observations, φφφk ∈ Cτ

is the pilot sequence transmitted by user k, μ is the uplink
transmit power, andW(n)

j ∈ CM×τ is the additive noise at the
BS with each element i.i.d as CN (0, σ2). Assuming that the
pilots φφφk are taken from the columns of a scaled unitary matrix
Φ ∈ Cτ×τ with ΦHΦ = τIτ , the LS estimate of the channel
can be obtained as

ĥ
(n)
jcu=

1

τ
√
μ
Y

(n)
j φφφ∗

u = h
(n)
jcu +

∑
� �=j

h
(n)
j�u +

W
(n)
j φφφ∗

m

τ
√
μ

. (4)

Since Qju = E{ĥjju ĥ
H
jju}, its estimate can be obtained from

the sample mean of ĥ(n)
jju over NQ coherence blocks as

Q̂ju =
1

NQ

NQ −1∑
n=0

ĥ
(n)
jju

(
ĥ
(n)
jju

)H
. (5)

However, as mentioned earlier, estimating individual covari-
ance matrices Rj�k , ∀�, k is challenging, since channel obser-
vations are made in the presence of pilot contamination. In [14],
Rj�k is estimated indirectly through Qj�,−k � Qjk −Rj�k ,
which is the sum covariance matrix of the channels of all the
interfering users using the same pilot as user (�, k). Q̂j�,−k is
estimated separately usingNR unique orthogonal pilots for each
k and then subtracted from Q̂jk to obtain R̂j�k , i.e.,

R̂j�k = Q̂jk − Q̂j�,−k . (6)

When M is larger than NQ and NR , the resulting estimates
of R̂j�k and Q̂jk have to be regularized in order to ensure
full-rank and positive (semi) definiteness [14]. For a massive
MIMO system with L cells and K users per cell, estimating
both Rj�k , ∀�, k and Qjk using this approach would require
LKNR +KNQ UL training symbols. In addition, utilizing
unique pilots for estimating Q̂j�,−k implicitly assumes and re-
quires that the users in all the L cells transmit UL pilots si-
multaneously. While such an assumption is common in massive
MIMO literature, it may not be practically feasible since it re-
quires that the BSs coordinate the UL pilot transmissions of
their users.

III. PROPOSED PILOT STRUCTURE AND METHOD FOR
ESTIMATING COVARIANCE MATRICES

In the proposed approach, we assume that the L cells are
divided into T subsets with the tth subset containing Lt

1Pilots that are transmitted simultaneously by the users in all cells are hence-
forth referred to as regular pilots.

contiguous cells. Here, Lt is chosen such that 1 ≤ Lt ≤
�Cu/2K�. The Lt cells within each of the T subsets are as-
sumed to be able to coordinate their UL pilot transmissions,
whereas the cells in two different subsets transmit pilot and
data asynchronously. LetM : {1, . . . , L} → {1, . . . , T} be the
mapping between a cell and its corresponding subset, and let
t = M� .
User (�, k) transmits the symbol vector s(n)�k � ρx

(n)
�k + λp

(n)
�k

in the UL in the nth coherence block, where p(n)
�k ∈ CCu is the

UL pilot, x(n)
�k ∈ CCu is the UL data, and ρ2 and λ2 are the

fractions of power with which data and pilots are transmitted,
respectively. Then, we assume that the pilot sequence p(n)

�k is
comprised of two subsequences and can be written as

p
(n)
�k �

[
pT
�k , e

jθt , n pT
�k

]T
(7)

where {θt,n}Nn=1 are N realizations of a random variable Θt .
The random variable Θt is assumed to be independent of the
channel and data vectors and distributed such that {Θt}Tt=1

are mutually independent and E
[
ejΘ t
]
= 0, ∀t. In addition,

we also assume that θt,n , ∀t, n are known to all the L BSs,
and that the subsequence p�k is chosen from the columns of a
scaled unitary matrixP, whereP is such thatPHP = KICu /2 .
Also, since Cu ≥ 2LtK, each user in the Lt cells from subset
t can be assigned a unique pilot p�k . It has to be noted that
the symbol vector s(n)�k can either contain regular,2 staggered,
or superimposed pilots depending on the contents of p�k and
x
(n)
�k . With staggered pilots, the users in different cells stagger
their UL pilot transmissions [18], [19], and with superimposed
pilots, the users transmit UL pilots alongside data [11].
Let Y(n,p)

j ∈ CM×Cu/2 for p = 1, 2 be the received obser-
vations at BS j when the first and second pilot subsequences are
transmitted in thenth coherence block. Then,Y(n,p)

j , ∀p = 1, 2
can be written as

Y
(n,p)
j =

L−1∑
�=0

K−1∑
k=0

√
μhj�k

(
s
(n,p)
�k

)T
+W

(n,p)
j (8)

where s(n,p)�k and W
(n,p)
j are the transmitted symbols and ad-

ditive noise at the BS during the transmission of the pth pilot
subsequence.
Dropping the index n, for an arbitrary user u in cell c at BS j,

consider the cross-correlation between the LS estimates of the
channel obtained from the first and second pilot subsequences,
that is,

R
j,ĥ

( 1 )
c u ĥ

( 2 )
c u

� E

[{
Y

(1)
j

(
λ2pT

cup
∗
cu

)−1
λp∗

cu

}
×
{
Y

(2)
j

(
λ2pT

cup
∗
cu

)−1
λe−jΘMc p∗

cu

}H
]
. (9)

Substituting (8) and the definition of scu into (9), we obtain

R
j,ĥ

( 1 )
c u ĥ

( 2 )
c u

= E
[{

hjcu +α(1)
cu + ε(1)cu +w

(1)
j

}
×
{
hjcu+e−jΘMc α(2)

cu +e−jΘMc ε(2)cu +e−jΘMc w
(2)
j

}H ]
= Rjcu

(10)

2Note that with regular pilots, users in all the L cells transmit pilots simulta-
neously and the condition Cu ≥ 2LtK does not apply.
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where, for p = 1, 2, we have

α(p)
cu � ρ

Kλ

∑
�∈Tc

K−1∑
k=0

hj�k

(
x
(p)
�k

)T
p∗
cu (11)

ε(p)cu � 1

Kλ

∑
�∈T\c

K−1∑
k=0

hj�k

(
z
(p)
�k

)T
p∗
cu (12)

w
(p)
j � W

(p)
j p∗

cu/ (Kλ
√
μ) . (13)

Here, Tc = {� | M� = Mc} is the set of cells that are in the
same subset as cell c and T\c is its complement, z�k is the vector
of symbols (either pilots or data) transmitted asynchronously
by a user3 in T\c . In (10), ejΘMc decorrelates the channel esti-
mation errors resulting from the transmissions from the users
in T\c , which in turn causes the cross-correlation of the channel
estimates to become equal toRjcu .
Using the result in (10), an estimate ofRjcu can be obtained

by the sample cross-correlation of both the channel estimates
averaged over N coherence blocks, i.e.,

R̂jcu =
1

N

N∑
n=1

ĥ
(n,1)
jcu

(
ĥ
(n,2)
jcu

)H
(14)

where
ĥ
(n,1)
jcu = Y

(n,1)
j

(
λ2pT

cup
∗
cu

)−1
λp∗

cu (15)

ĥ
(n,2)
jcu = Y

(n,2)
j

(
λ2pT

cup
∗
cu

)−1
λe−jθMc , n p∗

cu . (16)
It is straightforward to show that the sample cross-correlation

converges in probability to the true correlation, i.e., R̂jcu
P−−−→

N→∞
Rjcu .

However, for a finite N , the estimate R̂jcu is not necessarily
Hermitian symmetric. Therefore, this matrix can be regular-
ized by approximating it with a positive semidefinite matrix.
Thus, we approximate R̂jcu with the positive semidefinite ma-
trix closest in Frobenius norm, which can be easily shown to
be R̂PSD

jcu � UD + UH , where D + is a diagonal matrix that
contains only the positive eigenvalues of the symmetric part
of R̂jcu , i.e., R̂

sym
jcu � (R̂jcu + R̂H

jcu )/2, and U contains the
corresponding eigenvectors.
In order to estimate the channel covariance matrix of a user

(c, u) at an arbitrary BS j, the BS requires only the knowledge of
{θMc ,n}

N
n=1 and the symbol and subcarrier indices inwhich user

(c, u) transmits its UL pilots. As a result, unlike in [14] and [15],
the proposed method does not require that all the users transmit
pilots simultaneously.4 In fact, as will be shown in Section V,
the proposed method performs well even when Lt = 1, ∀t, i.e.,
when none of theBSs coordinate theULpilot/data transmissions
of their users.

IV. ESTIMATING COVARIANCE MATRICES USING
STAGGERED PILOTS

The proposed method in Section III can be employed with
either regular, superimposed, or staggered pilots. However, we
will restrict our attention in this section to staggered pilots since
it is a particular case of superimposed pilots and provides an

3If a cell in T\c is transmitting in the DL, each BS antenna is treated as a user.
4The proposed method does not require the users in different cells to transmit

UL pilots over the same set of UL symbols. However, note that we are still
assuming symbol-level synchronization over all the cells.

additional degree of freedom by allowing the pilot and data
powers to be varied [18]–[20]. The estimated channel will be
used in a regularized zero-forcing combiner for data detection,
which is given as

vcu =

(
σ2

μ
I+

K−1∑
k=0

ĥLMMSE
cck

(
ĥLMMSE
cck

)H)−1

ĥLMMSE
ccu . (17)

For covariance matrix estimation using staggered or regu-
lar pilots, each user transmits two K length pilot sequences
within a coherence block, with the second pilot sequence
multiplied by a random phase shift. For each pilot sequence,
P = blkdiag {Φ, . . . ,Φ} , where Φ ∈ CK×K . A lower bound
on the capacity for user (0, u) can be obtained as

R � η1Ψ

(
su
īu

)
+ η2Ψ

(
su

ĩu

)
(18)

where Ψ(x) � log2 (1 + x), and

η1 � (L− 1)K

Cuτs
(τs +N) ; η2 �

(
1−LK

Cu
− NLK

Cuτs

)
(19)

su � ρ2 |E
{
vH
0uh00u

}
|2 (20)

īu �
L−1∑
�=0

K−1∑
k=0

θ�E
{
|vH

0uh0�k |2
}
− ρ2 |E

{
vH
0uh00u

}
|2

+
σ2

μ
E
{
‖v0u‖2

}
+

(
λ2 − ρ2

)
(|T0 | − 1)

∑
T0 �c �=0

K−1∑
k=0

E
{∣∣vH

0uh0ck

∣∣2}
(21)

ĩu �
L−1∑
�=0

K−1∑
k=0

θ�E
{
|vH

0uh0�k |2
}
+

σ2

μ
E
{
‖v0u‖2

}
− ρ2 |E

{
vH
0uh00u

}
|2 . (22)

Here, θ� �
(
ρ21{�∈T0 } +max

{
ρ2 , λ2

}
1{�/∈T0 }

)
. The deriva-

tion of (18) is detailed in [21]. Defining Ejcu � Rjcu − R̂jcu ,
the MSE expressions of the covariance matrix estimates can be
obtained in a straightforward manner as

E
{
‖Ejcu‖2F

}
=

1

N

M−1∑
r=0

M−1∑
s=0

(grgs + frs) (23)

where

frs�
∑

Tc �� �=c

K−1∑
k=0

ρ4

K2λ4
| [R�k ]rs |2 +

∣∣∣∣∣∣ 1

Kλ2

∑
�∈T\c

K−1∑
k=0

[R�k ]rs

∣∣∣∣∣∣
2

(24)

gr � [Rcu ]rr +
∑

Tc �� �=c

K−1∑
k=0

ρ2

Kλ2
| [R�k ]rr |2

+
∑
�∈T\c

K−1∑
k=0

1

Kλ2
| [R�k ]rr |2 +

σ2

Kλ2μ
. (25)

V. SIMULATION RESULTS

We compare the normalized MSE of the channel estimate
and the achievable rate of the proposed method with that in
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Fig. 1. Normalized MSE of channel estimate of an average user vs. N .

Fig. 3. MSE of the estimated covariance matrix of an average user vs. N .

[14].5 Both the methods are simulated for one tier of L = 7
hexagonal cells with the BSs separated by 300 m. The perfor-
mance of the methods are evaluated for the users in the central
cell. The SNR at the receiver is 78.6− 37.6 log10 d, where d
is the distance from the BS in meters. The channel statistics
are assumed to be constant over τs = 25 000 coherence blocks.
The received paths from a user are assumed to be uniformly
distributed over an angular spread of 20◦, with mean angle
of arrival given by the geographical locations of the users. In
all the plots, the performance metrics are plotted against N .
Then, N = NQ ensures that the same number of coherence
blocks are utilized for estimating the covariance matrix for both
the proposed method and [14]. For the method in [14], NR

is chosen as NR = NQ/10. The normalized MSE is defined

as E
{
‖ĥLMMSE

jcu − hjcu‖2/trace {Rjcu}
}
. For the proposed

method, ρ2 = λ2 = 1.
In Figs. 1–3, the performance of the proposed method is com-

pared with that in [14]. In order to compare only the covariance
matrix estimates, the proposed method utilizes staggered pilots
for N coherence blocks and regular pilots for the remaining
τs −N blocks. Consequently, Q̂ju is estimated for the pro-
posed method as Q̂ju =

∑L−1
�=0 R̂j�u + (σ2/Kμ)I. Note that

we have used the same simulation setup as in [14] in which
Cu = 100 symbols, each BS has M = 100 antennas and con-
tains K = 10 users in its cell, which are equispaced on a circle
of radius 120 m from the BS. In addition, for staggered pilots
Lt is chosen as 7, and for the sake of simplicity, Lt = 1 is

5The code that reproduces the results in this section is available at
https://github.com/karthikupadhya/covarianceEstimation-massiveMIMO.

Fig. 2. Achievable rate in the UL vs. N .

Fig. 4. Achievable rate in the UL vs. N .

simulated using regular pilots, although the proposed method
would still work if the pilot and data transmissions of different
cells would overlap. From Fig. 3, it can be seen that the MSE
of the covariance matrix is significantly lower for the proposed
method. Consequently, in Figs. 1 and 2, the MSE and sum-rate
performance of the proposed method is significantly better than
the method in [14], despite not requiring all users to transmit
the pilots over the same set of symbols.
In Fig. 4, K = 5 users are uniformly distributed across the

entire cell. Each BS has M = 50 antennas and the UL time
slot has Cu = 100 symbols. With the LMMSE method, the
sum-rate with regular pilots is marginally higher than that for
staggered pilots. However, the proposed method offers a higher
throughput in comparison with the method in [14]. Note that
the pre-log factor contributes to the small difference between
the achievable rates of the LMMSE and estimated covariance
matrices.

VI. CONCLUSION

We proposed a novel pilot structure for estimating the co-
variance matrix in the presence of pilot contamination, which
has the advantage of not requiring simultaneous UL pilot trans-
missions. Using the proposed method along with staggered pi-
lots, we showed that the proposed method offers a higher UL
throughput and lower MSE than existing schemes.
The performance of the proposed method could be further

improved by optimizing ρ and λ, which we leave as a problem
for future research.
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Abstract—Millimeter-wave (mmWave) multiple-input
multiple-output (MIMO) links are sensitive to abrupt changes
in the channel due to blockage and node mobility. We
propose to estimate the channel by overlaying pilot and data
transmissions. The data transmission is performed over the
signal subspace of the channel matrix, while the training,
for estimating the parameters of newly appearing paths, is
performed over the null-space of the channel matrix. A sparse
Bayesian learning-based approach is employed for jointly
estimating the channel and data at the receiver. Simulations
are used to validate the performance of the proposed method
in abruptly changing channel scenarios.

Index Terms—mmWave, massive MIMO, channel tracking,
blockage

I. INTRODUCTION

Millimeter-wave (mmWave) multiple-input multiple-
output (MIMO) systems are affected by blockages and
abrupt variations in the channel [1], [2]. Resuming
communication after blockage requires re-estimating the
channel, leading to an increased overhead and added latency.

There is some prior work on studied channel tracking
for mmWave MIMO systems. Methods in [3]–[6] rely on
models for the temporal variation of the channel to perform
beam selection and switching. However, these methods have
been developed for analog beamforming and cannot be
extended easily to systems that employ hybrid beamforming.
In addition, these methods cannot be applied in scenarios in
which accurate knowledge of the temporal variation of the
channel is not available. Approaches for channel tracking
using compressive sensing with hybrid beamforming have
been described in [7]–[9], but these methods require the
channels to vary slowly between subsequent training blocks.

In this paper, we propose a method to track abrupt changes
in the channel by overlaying pilot and data transmissions.
Overlaid pilot and data transmissions have been previously
used in conventional sub-6 GHz MIMO for channel estima-
tion in rapidly time-varying channel scenarios [10]. However,
unlike conventional sub-6 GHz MIMO, wherein overlaying
pilots and data simply involves transmitting pilots alongside
data at a reduced power, in mmWave systems, we propose
transmitting the data in the signal-space of the channel and
the pilots, for identifying new paths, in the null-space of the
channel. A data-aided channel estimation method based on
the sparse Bayesian learning (SBL) framework is developed

for jointly estimating the channel and the data. The proposed
method is validated using simulations.

Notation: The transpose, conjugate, and conjugate trans-
pose are denoted by (·)T , (·)∗, and (·)H . The Kronecker
product of A and B is A⊗B, the Kronecker delta function
is δ (·), I is the identity matrix, vec (A) is the vectorization
operator, span {A} represents the column space of A, and
1{S} denotes the indicator function over the set S.

II. SYSTEM MODEL

We consider a narrowband mmWave MIMO system with
NBS antennas at the base station (BS) and NMS antennas
at the mobile station (MS). The BS (MS) is assumed to
have NRF

BS (NRF
MS) RF chains such that NRF

BS � NBS

(NRF
MS � NMS). Without loss of generality, we consider the

downlink, where 1 ≤ Ds ≤ min
{
NRF

BS , N
RF
MS

}
data streams

are transmitted from the BS to the MS. The data transmission
interval is assumed to be divided into M blocks with K
data symbols per block.1 The channel is assumed to remain
constant within each of these data blocks, but may change
across different blocks. If at the kth instant of the mth block,
Wm,k ∈ C

NMS×NRF
MS is chosen as the combining matrix at

the MS, fm,k ∈ C
NBS is the precoded vector of symbols

transmitted by the BS, and Hm ∈ C
NMS×NBS is the channel

matrix, then the received vector of symbols can be written
as

ym,k = WH
m,kHmfm,k +WH

m,kqm,k (1)

where qm,k ∈ C
NMS is the additive noise distributed as

CN (0, σ2I).
We assume that the BS and MS use a one-dimensional

uniform linear array (ULA). The channel matrix Hm is as-
sumed to be composed of L distinct paths with the parameters
α�,m ∈ C, φ�,m ∈ R and θ�,m ∈ R representing the complex
gain, angle of arrival (AoA), and angle of departure (AoD)
of the �th path. If aMS(·) and aBS(·) are the steering vectors
corresponding to the MS and BS, the channel matrix Hm

can be written as

Hm =
L−1∑
�=0

α�,maMS(φ�,m)aBS(θ�,m)H . (2)

1Each data symbol can be assumed to be a sub-carrier of an orthogonal
frequency division multiplexing (OFDM) symbol dedicated for tracking the
channel. Therefore a data block consists of K OFDM symbols.
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A compact representation of the channel in (2) can be ob-
tained by defining the matrices ABSm

∈ C
NBS×L, AMSm

∈
C

NMS×L, and Dm ∈ C
L×L. The columns of ABSm are the

steering vectors {aBS (θ�,m)}L−1
�=0 and the columns of AMSm

are {aMS (φ�,m)}L−1
�=0 . The diagonal matrix Dm has diagonal

elements {α�,m}L−1
�=0 . Then, (2) can be rewritten as

Hm = AMSm
DmA

H

BSm
(3)

Since mmWave channels are sparse [1], the channel can
be estimated by formulating a corresponding sparse re-
covery problem under the assumption that φ and θ are
drawn from a quantized grid, with GMS and GBS points,
as in [11]. Then, given the matrices ABS ∈ C

NBS×GBS

and AMS ∈ C
NMS×GMS , whose columns are aBS (θ) and

aMS (φ), and the sparse matrix Dm ∈ C
GMS×GBS , the

channel matrix can be written as

Hm = ABSDmAH
MS (4)

where ‖vec (Dm) ‖0 � GBSGMS.

III. EXISTING APPROACH FOR CHANNEL ESTIMATION

In the channel estimation methods proposed in [11], [12],
the BS transmits MBS training symbols for channel esti-
mation while the MS makes MMS measurements for each
transmitted training symbol. The BS designs its training pre-
coding matrix F ∈ C

NBS×MBS such that [F]i,j = ejξ, where
ξ is chosen randomly from the set of NQ quantized angles
{0, 2π/NQ, . . . , 2π(NQ − 1)/NQ}. In a similar manner, the
MS generates its combining matrix W ∈ C

NMS×MMS . Then,
the received observations at the MS can be written as [12]

Y = WHHF+Q (5)

where Q is the matrix corresponding to the additive white
noise at the MS and the subscript m is been dropped for the
initial channel estimation block. Vectorizing the observation
matrix and using (4), (5) becomes

y = vec (Y) =
(
FT ⊗WH

)
vec (H) + q

=
(
FTA∗BS ⊗WHAMS

)
d+ q (6)

where d � vec (D), and q � vec (Q). Since the vector d is
sparse, its estimate d̂ can be obtained from the observations y
using a sparse-recovery algorithm. Then, the non-zero values
of d̂ and their locations are fed back to the BS for designing
the precoding and combining matrices, and the subsequent
symbols are used for data transmission.

IV. CHANNEL ESTIMATION USING OVERLAID DATA AND
TRAINING

The approach described in Section III is susceptible to
abrupt changes in the channel due to blockage and node-
mobility. As an alternative, we propose simultaneous data
and pilot transmission so that the BS and MS have the
latest channel state information and can use alternative path-
clusters to maintain the communication link in the event that
the LOS path or the dominant NLOS cluster is blocked.

Fig. 1. Frame structure of proposed channel estimation approach.

A. Channel Mobility Model

To model abrupt changes, we propose a generic channel
model which may be useful for mmWave MIMO systems.
We associate each of the L paths with a state S� ∈ {0, 1},
which indicates whether the path is blocked or visible to the
MS. Defining S � {S�, ∀ � = 1, . . . , L} as the set containing
the states of the L paths, the channel matrix can be written
as

H (S) =
L−1∑
�=0

α�S�aMS(φ�)aBS(θ�)
H . (7)

In addition, we define a change point τ at which the states
of some of the L paths change. If S0 and S1 are the state
vectors before and after the τ th block, the channel in the mth
block can be written as

Hm = H (S0)1{m<τ} +H (S1)1{m≥τ} . (8)

We consider two abrupt changes in the channel in which the
LOS path becomes blocked or visible, which are represented
by the state of the LOS path being toggled from active to
inactive (or inactive to active).

B. The Approach

In the kth symbol interval of the mth data block, the
BS transmits a linear combination of the pilot and data
vectors ρdF

d
msm,k + ρtf

t
m,k as shown in Fig. 1. The data

vector sm,k, with symbols drawn from the constellation χ,
is precoded using the matrix Fd

m and is linearly combined
with the training vector f tm,k. The fraction of the normalized
power reserved for data ρ2d and training ρ2t is chosen such
that ρ2d + ρ2t = 1. In addition, if NRF-T

MS RF chains at the
MS are reserved for training, the receive combining matrix
in the kth symbol of the mth block can be written as
Wm,k =

[
Wd

m,Wt
m,k

]
, where Wt

m,k ∈ C
NMS,N

RF-T
MS and

Wd
m ∈ C

NMS,N
RF
MS−NRF-T

MS are the RF combining matrices
corresponding to training and data. Since the analog training
precoders f tm,k and combiners Wt

m,k cannot be changed for
every transmitted symbol [13], they are changed at the same
rate as the one during the initial channel training.

If Ĥm is the current estimate of the channel, the received
vector of symbols in (1) can be written as

ym,k = WH
m,k

(
Ĥm +ΔHm

) (
ρdF

d
msm,k + ρtf

t
m,k

)
+WH

m,kqm,k (9)

where ΔHm � Hm−Ĥm. The singular-value decomposition
(SVD) of Ĥm is Ĥm = ÛΣ̂V̂H , where Û � [Us,Un],
V̂ � [Vs,Vn], and Σ̂ is the diagonal matrix containing the
singular values of Ĥ. Us and Vs are the matrices of the
left and right singular vectors corresponding to the signal
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space, while Un and Vn correspond to the null space. Given
Û and V̂, the optimal precoder and combiner pair for data
transmission is

{
Fd

m = Vs,W
d
m = Us

}
.

MmWave MIMO transceivers have large arrays and form
narrow beams during data transmission. From (3), the left
and right signal subspaces of the channel are spanned by the
vectors {aBS (θ�,m)}L−1

�=0 and {aMS (φ�,m)}L−1
�=0 . For arrays

that have a large number of elements N , we have the property
[14]

1

N
a (θ1)

H
a (θ2) ≈ δ (θ1, θ2) . (10)

As a result, a new path that has a different AoA and
AoD pair, when compared with paths that form the cur-
rent channel estimate, will have steering vectors that are
almost orthogonal to the vectors {aBS (θ�,m)}L−1

�=0 and
{aMS (φ�,m)}L−1

�=0 . Therefore, this new path will lie in
the null-space of the channel. To estimate the parame-
ters of these new paths, the training precoder and com-
biner pairs are chosen such that f tm,k ∈ span {Vn} ∀ k and

span
{
Wt

m,k

}
⊂ span {Un} ∀ k.

To keep the notation simple, we drop the subscript m and
assume implicitly that the channel and data correspond to the
mth block. Then, from (9), the received observations at the
output of Wd and Wt

k at the MS are given as

yd �
(
Wd
)H (

Ĥ+ΔH
) (

ρdF
dsk + ρtf

t
k

)
+
(
Wd
)H

qk

= ρdΣ̂sk +
(
Wd
)H
ΔH

(
ρdF

dsk + ρtf
t
k

)
+
(
Wd
)H
qk (11)

yt �
(
Wt

k

)H (
Ĥ+ΔH

) (
ρdF

dsk + ρtf
t
k

)
+
(
Wt

k

)H
qk

=
(
Wt

k

)H
ΔH

(
ρdF

dsk + ρtf
t
k

)
+
(
Wt

k

)H
qk . (12)

If the new path that constitutes ΔH has a different AoA and
AoD pair than the paths that constitute Ĥ, (11) and (12) can
be written as

yd = ρdΣ̂sk +
(
Wd
)H

qk (13)

yt = ρt
(
Wt

k

)H
ΔHf tk +

(
Wt

k

)H
qk . (14)

The channel and data estimation problems are decoupled
if the data is transmitted in the column-space, while the
training sequence is transmitted in the null-space of the
channel. Since mmWave transceivers use quantized analog-
phase shifters with only a few RF chains, exact orthogonality
between the training and data precoders/combiners cannot
be achieved. This results in crosstalk between the channel
and data estimates, necessitating joint channel and data
estimation.

C. Data-Aided Sparse Channel Estimation
For data-aided estimation, we use the sparse Bayesian

learning (SBL) based approach [15], wherein sparse recovery
is performed by assuming a sparsifying prior on the channel
beamspace. From (1) and (9), we can write

yk = WH
k Hfk +WH

k qk

=
(
fTk ⊗WH

k

)
(A∗BS ⊗AMS) vec (D) +WH

k qk

= ψψψk (sk)d+ ek (15)

where ψψψk (sk) �
(
fTk A∗BS ⊗WH

k AMS

)
and ek � WH

k qk.
Stacking the K received observations of a block,

y �
[
yT
1 , . . . ,y

T
K

]T
= ψψψ (S)d+ e (16)

where ψψψ (S) �
[
ψψψT

1 (s1) , . . . ,ψψψ
T
K (sK)

]T
and e �[

eT1 , . . . , e
T
K

]T
. We assume a Bayesian prior on d,

i.e., d ∼ CN (0,Γ), where Γ � diag (γγγ) and γγγ �
(γ1, . . . , γGBSGMS

). The value of γp determines the amplitude
of the pth element of d, with the amplitude approaching 0
when γp → 0. Then, the ML estimate of γγγ and S is

{γγγML,SML} = argmax
γγγ,S

log (p (y;γγγ,S)) . (17)

The channel and data are estimated using the expectation-
maximization (EM) algorithm. The E-step at the rth iteration
is given as

Q
(
γγγ,S|γγγ(r),S(r)

)
= Ed|γγγ(r),S(r) {log (p (y;γγγ,S))}

= −trace
(
ψψψH (S)C−1ψψψ (S) Σ̃(r)

)
− log detΓ

+ 2�
{
yHC−1ψψψ (S)μμμ(r)

}
− trace

{
Γ−1Σ̃(r)

}
(18)

where

Σ̃(r) = Σ(r) +μμμ(r)
(
μμμ(r)
)H

(19)

Σ(r) =
(
Γ(r)

)−1

+ψψψH (S)C−1ψψψ (S) (20)

μμμ(r) = Σ(r)ψψψH (S)C−1y (21)

C�E
{
eeH

}
=diag

{
σ2WH

1 W1, . . . , σ
2WH

KWK

}
. (22)

The derivation of these expressions have been omitted for the
sake of brevity. The initial values of Γ and S are chosen as
Γ(0) = I and S(0) = S̃, where S̃ is the estimate of the data
obtained at the output of the RF combiner Wd. The M-step
is then given as{

γγγ(r+1),S(r+1)
}
= argmax

γγγ,S
Q
(
γγγ,S|γγγ(r),S(r)

)
. (23)

From (18) and (23), the optimization over the parameters γγγ
and S is separable. Thus, the optimal values of γγγ(r+1) and
S(r+1) can be obtained separately as

γγγ(r+1) = diag
{
Σ̃(r+1)

}
(24)

s
(r+1)
k = arg min

sk∈χ

{
−trace

(
ψψψH

k (sk)C
−1ψψψk (sk) Σ̃

(r)
)

+2�
{
yHC−1ψψψk (sk)μμμ

(r)
}}

∀k . (25)

At the end of every J th data block, the MS returns the
location and values of the non-zero entries of d̂ back to the
BS using a side channel, as in [12].

D. Implementation with Hybrid Architecture

The precoding and combining vectors f tk and Wt
k are

obtained by projecting f̃ tk and W̃t
k, which are obtained by

setting random phase shifts in the analog phase-shifters,
onto the left and right null spaces of the estimated channel
matrix. Then, using the channel state information Ĥ =
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Fig. 2. Plot of average rate when the LOS path is blocked.
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Fig. 3. Plot of average rate when the LOS path becomes visible.

ABSD̂AH
MS = ÛΣ̂V̂H at both the BS and MS, the pre-

coding and combining matrices are chosen as

Fd = Vs (26)

f tk = VnV
H
n f̃ tk (27)

Wd = Us (28)

Wt
k = UnU

H
n W̃t

k (29)

To implement the proposed method with the hybrid ar-
chitecture, NRF-T

BS < NRF
BS and NRF-T

MS < NRF
MS RF chains

are reserved for training at the transmitter and receiver. The
precoding matrices for data and training are obtained by
solving the following problems{[

Fd
RF

]

,
[
Fd

BB

]
}
=arg min

Fd
RF∈Acan,Fd

BB

∥∥Fd−Fd
RFF

d
BB

∥∥2
F

subject to
∥∥∥Fd

RF

[
Fd

BB

]
∗,p

∥∥∥2= 1 ∀p (30){[
Ft

RF,k

]

,
[
f tBB,k

]
}
=arg min

Ft
RF,k∈Acan,f tBB,k

∥∥f tk−Ft
RF,kf

t
BB,k

∥∥2
F

subject to
∥∥Ft

RF,kf
t
BB,k

∥∥2 = 1 . (31)

where Acan is the set of candidate codebook vectors which
satisfy the unit modulus and quantized phase-shift constraints
[11]. A similar optimization problem can also be formulated
for the combining vectors at the MS. The optimization
problem can be solved using orthogonal matching pursuit as
in [16]. Then, the BS sends the indices of the vectors in Acan

and the values of
[
Fd

BB

]

and

[
f tBB,k

]

to the MS using a

side channel to construct the measurement matrix ψψψ (·).

V. SIMULATION RESULTS

We compare the average rate achieved by the existing
method without channel tracking [12] with the proposed
method in two scenarios. The average rate is calculated for
a 16-QAM constellation. In both scenarios, the channel is
composed of one LOS path and two NLOS clusters each
containing P = 20 paths with a cluster width of 0.3 radians
(17◦) and path-loss coefficient that is 10 dB lower than
that of the LOS path. SLOS and SNLOS denote the state
of the LOS and NLOS paths and the state of these paths
changes at the τ = 10th block. For both methods, the initial
channel is estimated using the SBL-based sparse recovery
algorithm with MBS = 12 training symbols and MMS = 6

measurements per training symbol. The BS is equipped with
NBS = 32 antennas and NRF

BS = 4 RF chains, and the
MS is equipped with NMS = 16 antennas and NRF

MS = 2
RF chains. The number of grid points for AoA and AoD
quantization are set as GMS = 16 and GBS = 32. For
training, NRF-T

BS = NRF-T
MS = 1 RF chain is reserved at

the BS and MS. The data transmission is performed over
M = 20 blocks with K = 484 data symbols per block, at
SNR of −10dB. For the proposed method ρd is set to 0.8
and the feedback interval J is set to 1, whereas for the case
where there is no channel tracking, all the transmit power is
allocated for data transmission. In addition, we assume that
the LOS path is attenuated by 20 dB when blocked.

In Fig. 2, the average rate is plotted for the LOS path
blockage scenario. Both SLOS and SNLOS are 1 when m <
τ , whereas SLOS becomes 0 when m ≥ τ . While both the
proposed and existing methods suffer a loss in throughput due
to blockage, the proposed method estimates the parameters
of the remaining clusters in the channel without the need for
a separate channel training interval. In addition, the higher
SNR during data transmission leads to a lower mean-squared
error for the channel estimate and a corresponding higher
throughput, since the channel and data are estimated jointly.

Fig. 3 shows results for the scenario when SNLOS = 1 and
SLOS = 0 when m < τ , whereas for m ≥ τ , the LOS path is
no longer blocked. While both Figs. 2 and 3 represent abrupt
changes to the channel, the latter change is not detrimental
and results in the availability of the stronger LOS path. As
a result, the rate achieved by the proposed method increases
when m ≥ τ since it estimates the parameters of the LOS
path and orients the beam in that direction. However, the
method without tracking identifies the new LOS path only
during the subsequent channel training interval.

VI. CONCLUSION

We have proposed an approach for channel tracking in
mmWave MIMO systems that involves overlaying the train-
ing and data transmissions. The proposed approach uses the
SBL framework and is capable of tracking abrupt changes
in the channel without requiring any prior information on
the temporal variation of the channel. The overlaid channel
training has been simulated in two extreme scenarios and
is shown to be capable of tracking abrupt changes in the
channel.
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ABSTRACT

Millimeter wave (mmWave) multiple-input multiple-output
(MIMO) transceivers employ narrow beams to obtain a large
array-gain, rendering them sensitive to changes in the angles
of arrival and departure of the paths. Since the singular vec-
tors that span the channel subspace are used to design the
precoder and combiner, we propose a method to track the
receiver-side channel subspace during data transmission using
a separate radio frequency (RF) chain dedicated for channel
tracking. Under certain conditions on the transmit precoder,
we show that the receiver-side channel subspace can be esti-
mated during data transmission without knowing the structure
of the precoder or the transmitted data. The performance of
the proposed method is evaluated through simulations.

Index Terms— Massive MIMO, channel subspace track-
ing, mmWave communication.

1. INTRODUCTION

Channel estimation and tracking is essential for realizing
high bandwidth communication links for millimeter-wave
(mmWave) multiple-input multiple-output (MIMO) systems
[1–3]. Since mmWave transceivers employ large number of
antennas, channel estimation requires a large communication
overhead. Channel tracking algorithms minimize this over-
head by using the temporal correlation of the channel to nar-
row the search range of the unknown parameters. Further-
more, in mmWave transceivers that employ hybrid precod-
ing and combining, the analog phase-shifters/switches have
a non-negligible settling time when their values are changed,
adding to the estimation/tracking overhead [4–6].

Several methods for mmWave channel tracking have been
recently proposed. In [7], the precoding and combining
matrices have been optimized to minimize the Cramér-Rao
lower bound when the angle-of-arrivals (AoAs) and angle-
of-departures (AoDs) lie in a confidence interval around the
previously estimated values. However, this method requires
the receiver to know the precoding matrices used at the trans-
mitter for channel estimation. The methods in [5, 8, 9] track a
single AoA and AoD with low overhead, but they have been

This research was supported in part by the Academy of Finland grant
No. 299243

designed for analog beamforming and extensions to hybrid
architecture are not straightforward.

In this paper, we propose a low-overhead method to track
the channel subspace at the receiver during data transmis-
sion under the assumption that the receiver has extra radio
frequency (RF) chains dedicated for training. The subspace
is estimated using the angular distribution of the energy of
the received signal. Therefore, this method can be viewed
as a generalization of beam-training methods which use the
energy of the received signal to select/track the beam. The
channel subspace estimation during data transmission results
in a significantly lower overhead for the following reasons:
(i) tracking the receiver-side channel does not require dedi-
cated pilot transmission and (ii) the settling time of the phase
shifters/switches when using different transmission beams for
estimating the channel is subsumed within data transmission.
The tracking performance of the proposed method is demon-
strated by means of simulations.

Notation: Vector and matrix are denoted as a and A, re-
spectively, I is the identity matrix, span {A} is the column
space of A. The diagonal elements of A are denoted by
diag (A) and diag (a) is a diagonal matrix with the values of
a on its diagonal. Subspace dimension is denoted as dim {·},
rank {A} is the rank of A, and vec (A) is the vectorization
of A. Operations (·)T , (·)∗, (·)H , and (·)† are the transpose,
conjugate, Hermitian transpose, and pseudo-inverse respec-
tively, while ⊗ is the Kronecker product, ‖x‖0 is the number
of non-zero elements in x, and ‖x‖2 is the �2 norm. Com-
plex Gaussian distribution of independent variables with zero
mean and variance σ2 is denoted as CN

(
0, σ2I

)
.

2. SYSTEM MODEL AND INITIAL CHANNEL

ESTIMATION

Consider a system with an AP having NAP antennas with
NRF

AP RF chains. The AP communicates with a user equip-
ment (UE) having NUE antennas and NRF

UE RF chains. Out
of the NRF

UE RF chains at the UE, NRF−T
UE RF chains are al-

located for training at the receiver during data transmission.
Likewise, NRF−T

AP out of NRF
AP RF chains at the AP are re-

served for training. We assume that Ns data streams are trans-



mitted from the AP to the UE and the channel is estimated in
the downlink (DL). If the AP uses the precoder F ∈ C

NAP×Ns

and UE uses the combiner W ∈ C
NUE×Ns , the received ob-

servation vector at the UE can be written as

y = WHHFs+WHq (1)

where s ∈ C
Ns is the transmitted data vector and q ∈ C

NUE is
the additive noise vector distributed as CN

(
0, σ2I

)
. The pre-

coder F consists of the analog FRF ∈ C
NAP×NRF

AP and digital
FBB ∈ C

NRF
AP×Ns precoders such that F = FRFFBB. Simi-

larly, the combiner W is the product of WRF ∈ C
NUE×NRF

UE

and WBB ∈ C
NRF

UE×Ns .
The channel is assumed to be composed of P paths, and

the AP and UE employ one-dimensional uniform linear arrays
(ULA). If αp, φp, and ψp denote the path gain, AoA, and AoD
of the pth path, respectively, the channel matrix from the AP
to UE can be written as

H =

P−1∑
p=0

αpaUE (φp) a
H
AP (ψp) = AUEDAH

AP (2)

where aUE (·) and aAP (·) are the steering vectors at the UE
and AP, respectively, AAP � [aAP (ψ0) , . . . ,aAP (ψP−1)],
AUE � [aUE (φ0) , . . . ,aUE (φP−1)], and D �
diag

(
[α0, . . . αP−1]

T
)

. In addition, we define matri-

ces ÃAP ∈ C
NAP×PAP and ÃUE ∈ C

NUE×PUE that contain
the steering vectors corresponding to PAP ≤ P unique AoDs
at the AP and PUE ≤ P unique AoAs at the UE, respectively.

Assuming that the AoAs and AoDs are on a grid with
GUE and GAP points, respectively, the channel matrix H can
be approximated as

H ≈ ĀUED̄ĀH
AP (3)

where ĀAP� [aAP (ψ0) , . . . ,aAP (ψGAP−1)]∈C
NAP×GAP ,

ĀUE � [aUE (φ0) , . . . ,aUE (φGUE−1)] ∈ C
NUE×GUE , and

D̄ ∈ C
GUE×GAP is a sparse matrix with non-zero locations

corresponding to the AoA and AoD pairs.
Initial channel training is performed in the DL, wherein

the UE estimates the channel and feeds back the channel pa-
rameters to the AP [2, 10]. For estimating the channel dur-
ing initial access, the AP transmits MAP training symbols.
For each of the MAP symbols, the UE makes MUE mea-
surements. Therefore, the total overhead for initial chan-
nel estimation is J = MAPMUE symbols. The AP de-
signs its training precoding matrix F ∈ C

NAP×MAP such that
[F]i,j = ejξ with ξ randomly chosen from the set of NQ quan-
tized phase shifts {0, 2π/NQ, . . . , 2π (NQ − 1) /NQ} [10].
The elements of the combining matrix W ∈ C

NUE×MUE are
also chosen randomly. The J received observations can be
written as

Y = WHHF+Q ≈ WHĀUEDĀH
APF+Q (4)

where Q �
[
WH

0 q0, . . . ,W
H
J−1qJ−1

]
. Vectorizing the re-

ceived observation matrix, we obtain

y = vec (Y) =
(
FT Ā∗AP ⊗WHĀUE

)
d+ q (5)

where d = vec
(
D̄
)

and q = vec (Q). Since d is a sparse
vector, its elements can be estimated from (5) by solving the
following optimization problem

d̂ = min
d

‖d‖0 subject to ‖y −Ψd‖2 ≤ ε (6)

where Ψ � FT Ā∗AP ⊗WHĀUE. Then, the estimate of the
channel can be obtained as Ĥ = ĀUEd̂Ā

H
AP and used to

design the precoding and combining matrices Fd and Wd.

3. CHANNEL SUBSPACE TRACKING

3.1. Proposed Approach

We consider channel estimation in the DL. The channel is as-
sumed to remain constant for M = MAPMUE blocks, each
containing N symbols. To index a given block, we either use
the single index � or the pair of indexes m ∈ {1, . . . ,MAP}
and n ∈ {1, . . . ,MUE}, where � and (m,n) are related to
each other as � = (m − 1)MUE + n. The AP and UE
use precoder Fm and combiner Wn in block (m,n). If
sm,n [k] ∈ C

Ns is the data transmitted in the DL in symbol k
of block (m,n), the received observation can be written as

ym,n [k] = WH
n HFmsm,n [k] +WH

n qm,n [k] (7)

where the precoding and combining matrices
Fm ∈ C

NAP×Ns and Wn ∈ C
NUE×NRF

UE consist of both the
training and data RF chains and are written, respectively, as
Wn �

[
Wd,Wt

n

]
and Fm �

[
Fd,Ft

m

]
. The phase-shifters

corresponding to Fd and Wd are assumed to remain constant
for the entire duration of the M blocks, whereas the phase-
shifters corresponding to training remain constant within a
block and are changed across each data block.

Computing the autocorrelation of the received observa-
tions in the (m,n)th block, we obtain

Rm,n � E
{
ym,n [k]y

H
m,n [k]

}
= WH

n HFmFH
mHHWn + σ2WH

n Wn (8)

where the expectation is taken only over sm,n [k]. It has to be
noted that Rm,n is computed within a single coherence block
and the averaging is performed only over the received data.
Therefore, unlike the matrices estimated in [11, 12], Rm,n is
not an estimate of the second order statistics of the channel.
Defining F � [F1, . . . ,FMAP ], the sum of the autocorrelation
matrices obtained for a given combining matrix Wn, when
MAP different precoding matrices are employed, can be writ-
ten as

Rn �
MAP∑
m=1

Rm,n = WH
n XWn + σ2MAPW

H
n Wn (9)



where X � HFFHHH .
Let r be the rank of the channel matrix H, Σs ∈ C

r×r

be the diagonal matrix containing the non-zero singu-
lar values, and Us ∈ C

NUE×r and Vs ∈ C
NAP×r be the

matrices consisting of the left and right singular vec-
tors corresponding to the signal space of the channel ma-
trix H. Then, we have H = UsΣsV

H
s . In addition,

from (2), we have H = AUEDAH
AP. Therefore, we

have span {Vs} ⊆ span {AAP} = span
{
ÃAP

}
and

span {Us} ⊆ span {AUE} = span
{
ÃUE

}
.

Consider now the term X = UsΣsV
H
s FFHVsΣsU

H
s .

We then have the following proposition

Proposition 1. span {X} = span {Us} if and only if F is
chosen such that VH

s F has full row-rank.

Proposition 1 is intuitive and its proof is relatively
straightforward, and is therefore, omitted because of the space
limitation. The proposition implies that the basis vectors of
the space span {Us} can be obtained without knowing F pro-
vided F is chosen such that the AP transmits data/training
symbols in the directions of all the AoDs of the channel. In
Section 3.2, an algorithm for estimating ÃUE, which is a ba-
sis for span {Us}, from Rn is described. Note that Rn is
obtained at the output of the analog precoder. Therefore, the
proposed method obtains the subspace of the full-dimension
channel matrix from a reduced-dimension observation space.

3.2. Receiver-side Channel Subspace Estimation

Using the fact that the matrix AAP can have repeated columns
when multiple paths have the same AoA with different AoDs,
the channel model in (2) and its quantized version can be re-
written using ÃAP as

H = AUED̃ÃH
AP ≈ ĀUEĎÃH

AP (10)

where D̃ ∈ C
P×PAP is a non-diagonal matrix containing the

path gains and Ď ∈ C
GUE×PAP is the corresponding matrix

when only the AoAs are quantized. The tall matrix Ď has
sparse columns such that the locations of the non-zero entries
correspond to the AoAs of the received paths.

Substituting (10) into (9), and defining G �
ÃH

APFF
HÃAP, (9) can be approximated as

Rn≈WH
n ĀUEĎGĎHĀH

UEWn+σ2MAPW
H
n Wn . (11)

Vectorizing (11) and defining qn � σ2MAPvec
(
WH

n Wn

)
and Ψn �

((
ĀH

UEWn

)T ⊗WH
n ĀUE

)
, we obtain

rn = vec (Rn) = Ψnvec
(
ĎGĎH

)
+ qn . (12)

Stacking the columns rn in a long vector, we finally obtain

r�

⎡⎢⎣ r1
...

rMUE

⎤⎥⎦=
⎡⎢⎣ Ψ1

...
ΨMUE

⎤⎥⎦ vec (ĎGĎH
)
+

⎡⎢⎣ q1

...
qMUE

⎤⎥⎦ . (13)

Since Ď has sparse columns, the matrix ĎGĎH and its vec-
torized version has sparse entries. In fact, it is straightforward
to show that the diagonal values of ĎGĎH are sufficient to
obtain the support of the AoAs if ÃH

APF has full row-rank.
Therefore, the problem of receiver-side channel subspace es-
timation can be solved efficiently using any of the multiple
available sparse recovery methods.

3.3. Choice of Ft
m and Wt

n

Note that span {Vs} ⊆ span
{
ÃAP

}
. Then, the condition

that the matrix VH
s F is full row-rank is satisfied when F is

chosen such that span {Vs} ⊆ span
{
ÃAP

}
⊆ span {F}.

However, since subspace estimation is performed during data
transmission, NRF

AP − NRF−T
AP RF chains at the AP and

NRF
UE −NRF−T

UE RF chains at the UE will be utilized for data
transmission, implying that Fd and Wd in Fm and Wn are
fixed. As a result, only the components Ft

m and Wt
n in Fm

and Wn are variable.
The analog phase shifters can be set to random values,

as in Section 2, allowing for parameter estimation in the en-
tire angular range [0, π] provided MAP is sufficiently large.
However, Ft

m has to be chosen under the additional constraint
that the training sequence does not interfere with the received
data. Therefore, denoting the matrix containing random phase
shifts as F̄t

m, the training precoder can be obtained by project-
ing F̄t

m on the space that is orthogonal to the column-space
of Fd [13]

Ft
m = Π⊥FdF̄

t
m (14)

where Π⊥Fd �
[
I− Fd

(
FdHFd

)−1

FdH
]

is the projection

matrix onto the space orthogonal to the columns space of Fd.
The resulting Ft

m can be implemented in a hybrid architecture
using methods such as in [14].

3.4. Updating Wd

After estimating a basis for span {Us} from X, the objective
is to design the receive combiner using this basis. If B is
any basis for the space span {Us}, note that there exists a
matrix P with full column rank such that Us = BP. Then,
the receive combiner can be chosen to satisfy the zero-forcing
condition (Wd)HHFd = I, which will result in Wd being
obtained as1

Wd = BP† (15)

where P � BHHFd.
As described in Section 3.1, the estimated angular support

ÂUE is an estimate of the basis of span {Us}. In order to es-
timate P, setting B = ÂUE as the combiner, the received ob-
servations can be expressed as Y = ÂH

UEHFdS+ ÂH
UEQ.

1Note that if Fd is known at the receiver, the condition
(Wd)HHFd = I can be satisfied at the receiver without channel
state information at the transmitter by choosing Wd as in (15).
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Fig. 1. Plot of the average achievable rate vs block index at
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Fig. 2. Plot of the average achievable rate vs σφ at SNR = 0
dB and σψ = 0 at the � = 50th block.

Using an NRF
AP length orthogonal pilot sequence S, the

least-squares (LS) estimate of P can be obtained as

P̂ = Y
(
SHS

)−1
SH = P+ ÂH

UEQ
(
SHS

)−1
SH . (16)

Then, the receive combining matrix can be obtained from
(15) as Wd = ÂUEP̂

†. The resulting digital receive com-
biner Wd in is realized using the NRF

UE −NRF−T
UE RF chains.

Then, the corresponding baseband and RF combiners, Wd
BB

and Wd
RF, can be easily obtained using the approach in [14].

4. SIMULATION RESULTS

We evaluate here the performance of the proposed method
in a time-varying channel in which only AoAs vary with
time. The performance of the proposed method are compared
with the receiver-side tracking method described in [7, Sec-
tion IV.C]. We consider a system with NAP = 64 anten-
nas, NUE = 32 antennas, NRF

AP = NRF
UE = 4 RF chains,

and analog phase shifters with 7-bit phase shifts. At the UE,
NRF−T

UE = 1 RF chains are reserved for training, whereas at
the AP, all the RF chains are used for data transmission. For
initial channel estimation, MAP = 12 and MUE = 3 symbols
are used. However, for channel subspace estimation during
data transmission, MAP = 1 and MUE = 20 data blocks are
employed. The number of data symbols in a data block N is
chosen as 256, thereby implying that the channel is constant
for a frame of MUEN = 20 · 256 = 5120 symbols. The
AoDs and AoAs are quantized into grids with GAP = 128
and GUE = 64 grid points.

The channel is assumed to consist of a line-of-sight (LOS)
path with AoA φ = 90◦ (the broad-side of the array) and a
non-LOS (NLOS) cluster with AoA φ = 45◦. The NLOS
cluster has 100 paths within an angular spread of 10◦ and
10 dB lower power than the LOS path. The angles of the
paths change in every block and the angular difference be-
tween blocks is distributed as N

(
0, σ2

φ

)
for the AoAs and

N
(
0, σ2

ψ

)
for the AoDs. The AoDs are assumed to be

static implying that σψ = 0, whereas σφ is varied from 0.1◦

to 2◦. The path amplitudes vary according to the Gauss-
Markov model with forgetting factor η = 0.8, i.e., if α�

p

is the path amplitude of the pth path in the �th block, then
α�+1
p = ηα�

p + (1− η)u�+1 where u� ∼ CN (0, 1).
In Fig. 1, the average achievable rate is plotted for differ-

ent data blocks, at 0 dB SNR and σφ = 2◦. The achievable
rate is almost constant for the proposed method despite the
large value of σφ. In Fig. 2, the average achievable rate at
50th block is plotted against σφ at 0 dB SNR. In can be seen
that the proposed method offers almost constant throughput
in both slowly and rapidly varying channel scenarios. In both
Figs. 1 and 2, the proposed method offers a throughput close
to that of the method in [7] despite a significantly lower over-
head.

If τs symbols are required for the phase-shifter val-
ues to settle after they are changed, and if ÂUE has P̂UE

columns, the proposed method requires an overhead of
�P̂UE/N

RF
UE� (τs +Ns) symbols to estimate P. However, the

method in [7] requires an overhead of Ns�r/NRF
UE�τs sym-

bols, in addition to the knowledge of F, to estimate the chan-
nel. As an example, if �r/NRF

UE� = �P̂UE/N
RF
UE� = 1,

τs = 64 symbols (as in [15]), and Ns = 4 streams, the train-
ing overhead is 70 symbols for the proposed method and 256
symbols for the method in [7].

5. CONCLUSION

We have developed a method for tracking the channel-
subspace at the receiver with negligible overhead, and derived
conditions on the transmit precoder under which the channel
subspace can be tracked without knowing the transmit pre-
coder or data. The proposed method is particularly useful in
scenarios wherein the AoAs vary significantly faster than the
AoDs, which is the case with handheld devices communicat-
ing with a fixed AP. We have shown by simulations that the
proposed method is capable of tracking rapidly varying chan-
nels.
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