
gnisaercni na ees nac ew ,sraey tsal eht nI
-egral gnivlos rof smhtirogla eht ot tseretni

emas eht tA]...[.melborp noitazimitpo elacs
eht fo noitacfiitsuj fo elyts nredom eht ,emit

deliated a semussa sdohtem laciremun
esac-tsrow rieht fo sisylana ytixelpmoc

fo noitacfiitnedi ni pleh nac sihT .roivaheb
enilno(noitatnemelpmi fo edom larutan rieht
sniatnoc siseht desoporp ehT[.)eniflfo susrev

detareleccA wen fo tnempoleved]eht
xevnoc a gniziminim rof sdohteM tneidarG

ehT .mroF etisopmoC ni noitcnuf
desab si sisylana ytixelpmoc gnidnopserroc

secneuqes gnitamitse eht fo tnairav a no
semehcs desoporp eht ,revoeroM .euqinhcet

eht fo egdelwonk iroirp a na deen ton od
eht fo tneidarg eht rof tnatsnoc ztihcspiL

yehT .noitcnuf evitcejbo eht fo trap htooms
dna ylgnorts gniziminim rof sa desu eb nac
meht fo emoS .noitcnuf xevnoc ylgnorts-non

eulav eht fo esaerced enotonom a erusne nac
taht eveileb I]...[.noitcnuf evitcejbo eht fo

yrev sniatnoc hcihw ,siseht tnellecxe na si siht
 .stluser lanigiro dna gnitseretni

 voretseN iiruY rosseforP

-o
tl

a
A

D
D

79

1
/

 8
10

2

 +e
gcci

a*GM
FTSH

9 NBSI 4-6228-06-259-879)detnirp(
 NBSI 1-7228-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
scitsuocA dna gnissecorP langiS fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 a
er

ol
F

na
il

uI
 i

ah
i

M
 n

oi
ta

zi
mi

tp
O

el
ac

s-
eg

ra
L

ro
f

s
mh

ti
ro

gl
A

de
ta

re
le

cc
A

gn
it

cu
rt

sn
o

C
 y

ti
sr

ev
i

n
U

otl
a

A

 8102

 scitsuocA dna gnissecorP langiS fo tnemtrapeD

detareleccA gnitcurtsnoC
elacs-egraL rof smhtiroglA

 noitazimitpO
 snoitacilppA dna ,smhtiroglA ,krowemarF

 aerolF nailuI iahiM

y
3

x
3

x
2

x
1

y
2

v
2

v
1

v
3

 LAROTCOD
 SNOITATRESSID

�������	
��
�����
�����	����������� �
���������������
�����	�������

���������
����
�����������	
������������

�����
�����
��������

���������������
�����	���������������	
��
�����
�����	�����������

�	�������	� �
�������
 ����
����!

�����������
���	��������"�
��	�!�������������#

��������������
$���%�����&��'���
�� � !(��)�)* !!�#���*�)��# � +,- . �/-01

�%	�
�����)�	��������"�
��	�!

�/-01����2�-- �/-01���$�����31

�/-01����	���03 ����
	�

��	��
����
������4���$�����������	������
���������������&�
������
$��������&�������	�����
����
������������������
��	�����������������������&����5$����������������������
$������������������
��� �

��	��
�%
$���
��������������������
���
�$�
	����������� �

���
��������������%

���������

������4�&����%
	�������$�%�����������������)�6���
�&�
���
��������� �
���
$����������
������������������

������
$������������
�����������%
�����)�6��������
����	��	��� �
����	�����&������(�%$�
��%
����
���
���
�&�
��������	
��4�$����
$��������
���$���������
�������� �

�6����������
�����������������7�����������
������������4�
���������������������7������������
�����	����������
������������������������ �

�����������������������
�����	����������
�������������
���$�����
��������8�6�����7����������� �
�����8�6�����7�����	��
�����%

��������������������	�������������������
�$������������
����%� �
�
������&����9�:��;�
����������
��:�����������
�����
���������������������������7�����	����� �
��������
���
�������:���6���
����
$�����������������������������
$���
�������������
������< �

�6%���������������������
������
������9����������
;������������������������������������%
������<��
��
��������
������<�

������
$���
������������%��4�
�������������������������$������%$�
���&������ �
��������	
��������������&��������������')8���)�69')8;��������������
��

����������
��������
���� �
����
��������
������<������������������������=���%
����������������
���%��4�
������������������ �
����	��&�����
$�&�������$����������:����')8�	�����
��%
�������8�6�����������
����
�������� �

�8�6������4�&����%
	����������
���%
	����������������$�����
����
$������������������������� �
�6��������$������
������&�����4�����	��������
��������������:������%�����������������<���
���
��������	�����:������
�����������6%��
�$����
����������$����������������
��4����
���:����� �

������

��6��
$������������������������������&���������7�%���	�����7������������	��&��� �
	�������������������������
������������������������&�������������
��
���
$�
��&����������������� �

�
�����	��
������������	
����
�����
���&���������������%

�������:������&������6�
����� �
�	������!��&�����������������
���9�:�;�
����������
��:�������>&������(�	��
�
����������������� �

�6�������&������������������������	��
���9�)!��;�������	
��	��

������)
�	����
�������
�����%
��
�����������������
����������
$�����:������%��
�����	�
���%�����<�����)�� �

���������������������������	�����4������
�
��������
���������������������������6�������������� �
����������������������
�&����
������	��%��&�%

����������
���$��
�
��������������	����
�������
� �
�����<����������������������5
��������
����
�
����������
�&�����8�6������
����%��
���$�%�����$�� �

���������
����������:������������&�����
�
�����������������	���'�6�����������
���������4����� �
����������������%
���&�%���������������	����
�������
���	��
�������������%
�����<�������
$��������� �

�6����������������

����<��
����������
��:������������7��������������&����5$��������������������
����
�4�������
������&������(������������
����������������
�����	��
���)!����
��������
��

�
�������
���	��%��&�%

�����������������
�������������������	
��������������������
�?�@11/�0@�1A,�/+, �-�+11/�0@�1A,�/+,

�?3,?�,,+- �1?,?�,,+-

������
�B ������
�B �/-01

�301 C(D!�C(*'.<6���..C���� �-�+11/�0@�1A,�/+,

Preface

The research work that has led to this doctoral thesis has been carried out
in the Department of Signal Processing and Acoustics at Aalto University,
Finland. The research on the topic of ultrasound image reconstruction was
conducted in collaboration with the IRIT UMR CNRS 5505 Laboratory at
Université Paul Sabatier Toulouse 3, France.
This work has been partially supported by the Academy of Finland under

Grant 299243, the Aalto ELEC Doctoral School, the CIMI Labex, Toulouse,
France under Grant ANR-11-LABX-0040-CIMI, and the Erasmus+ Mobil-
ity Programme.
I wish to thank all who have contributed, either directly or indirectly, to

the completion of this dissertation.

Otaniemi, October 23, 2018,

Mihai Iulian Florea

5

Preface

6

Contents

Preface 5

Contents 7

List of Publications 11

Author’s Contribution 13

List of Abbreviations 15

List of Symbols 17

1. Introduction 23
1.1 Large-scale Optimization 23
1.2 Motivation . 24
1.3 Objectives and Scope . 25
1.4 Contributions . 26

1.4.1 Large-scale Convex Optimization Algorithms . . 26
1.4.2 Ultrasound Image Reconstruction 27

1.5 Author’s Independent Contribution 28
1.6 Thesis Structure . 28

2. Augmenting the Estimate Sequence 31
2.1 The Large-scale Composite Problem Class 31
2.2 Complexity Bounds . 32
2.3 Convergence Guarantees 33
2.4 The Estimate Sequence . 35

2.4.1 A Substitute Convergence Guarantee 35
2.4.2 Nesterov’s Estimate Sequences 36

2.5 The Augmented Estimate Sequence 39
2.6 Parabolae . 40

2.6.1 Parabolic Estimate Functions 41
2.6.2 Composite Parabolae 42

7

Contents

2.7 The Gap Sequence . 42

3. Constructing ACGM 45
3.1 A Design Pattern for First-order Accelerated Algorithms . 45

3.1.1 Line-search . 48
3.2 Design Choices . 48

3.2.1 Upper Bounds . 49
3.3 ACGM for Non-strongly Convex Objectives 51

3.3.1 Lower Bounds . 51
3.3.2 Formulating ACGM 52
3.3.3 Extrapolated Form 56

3.4 ACGM for Objectives with Arbitrary Strong Convexity . . 59
3.4.1 Strong Convexity Transfer 59
3.4.2 Lower Bounds . 61
3.4.3 Generalizing ACGM to Arbitrary Strong Convexity 62

3.5 Monotone ACGM . 74
3.5.1 Upper Bounds . 74
3.5.2 Formulating Monotone ACGM 74
3.5.3 Extrapolated Form 77

4. Analysis of ACGM 83
4.1 Revisiting the Estimate Sequence 83
4.2 Worst-case Convergence Guarantees 86
4.3 Wall-clock Time Units . 89

4.3.1 Standard WTU . 90
4.3.2 Generalized WTU 93

4.4 ACGM among its Class of Algorithms 95
4.4.1 Uniting Nesterov’s FGM and FISTA 95
4.4.2 Standard WTU Worst-case Analysis 96
4.4.3 Theoretical Superiority of ACGM 99

5. Simulations 103
5.1 Non-monotone ACGM Benchmark 103

5.1.1 l1-regularized Image Deblurring 103
5.1.2 Logistic Regression with Elastic Net 106

5.2 Monotone ACGM Benchmark 109
5.2.1 Benchmark Setup 109
5.2.2 Non-strongly Convex Problems 111
5.2.3 Strongly Convex Problems 114

6. Ultrasound Image Reconstruction 117
6.1 Background . 117

6.1.1 Pulse-echo Ultrasound 118
6.1.2 Previous Work . 118

6.2 Notation . 119

8

Contents

6.3 Discrete Convolution . 120
6.3.1 Definitions . 120
6.3.2 Adjoint Expressions 122

6.4 Ultrasound Image Formation Models 125
6.4.1 Prototype Mixture Model 125
6.4.2 Axially Variant Kernel Model 128

6.5 Optimizing ACGM for Linear Inverse Problems 130
6.6 Experimental Results . 131

6.6.1 Prototype Mixture Model 131
6.6.2 Axially Variant Kernel Model 135

7. Conclusions 139

References 141

Publications 147

9

Contents

10

List of Publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I Mihai I. Florea and Sergiy A. Vorobyov. A Robust FISTA-like Algo-
rithm. In IEEE International Conference on Acoustics, Speech and Signal
Processing, New Orleans, USA, pp. 4521–4525, Mar. 2017.

II Mihai I. Florea and Sergiy A. Vorobyov. An Accelerated Composite Gra-
dient Method for Large-scale Composite Objective Problems. Accepted
for publication in IEEE Transactions on Signal Processing, May 2018.

III Mihai I. Florea and Sergiy A. Vorobyov. A Generalized Accelerated
Composite Gradient Method: Uniting Nesterov’s Fast Gradient Method
and FISTA. Submitted to IEEE Transactions on Signal Processing, Oct.
2018.

IV Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov.
Restoration of Ultrasound Images using Spatially-variant Kernel Decon-
volution. In IEEE International Conference on Acoustics, Speech and
Signal Processing, Calgary, Canada, pp. 796–800, Apr. 2018.

V Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov.
An Axially Variant Kernel Imaging Model Applied to Ultrasound Image
Reconstruction. IEEE Signal Processing Letters, vol. 25, no.7, pp. 961–
965, Jul. 2018.

11

List of Publications

12

Author’s Contribution

Publication I: “A Robust FISTA-like Algorithm”

The main author proposed the idea, derived the theoretical results, and
performed the simulations with input from the co-author.

Publication II: “An Accelerated Composite Gradient Method for
Large-scale Composite Objective Problems”

The main author proposed the idea, derived the theoretical results, and
performed the simulations with input from the co-author.

Publication III: “A Generalized Accelerated Composite Gradient
Method: Uniting Nesterov’s Fast Gradient Method and FISTA”

The main author proposed the idea, derived the theoretical results, and
performed the simulations with input from the co-author.

Publication IV: “Restoration of Ultrasound Images using
Spatially-variant Kernel Deconvolution”

The main author proposed the idea, derived the theoretical results, and
performed the simulations with input from the co-authors.

13

Author’s Contribution

Publication V: “An Axially Variant Kernel Imaging Model Applied to
Ultrasound Image Reconstruction”

The main author proposed the idea, derived the theoretical results, and
performed the simulations with input from the co-authors.

14

List of Abbreviations

1D 1 Dimensional
2D 2 Dimensional
3D 3 Dimensional
4D 4 Dimensional
AA Adaptive Accelerated (method)
ACGM Accelerated Composite Gradient Method
AESP Augmented Estimate Sequence Property
AI Axially Invariant (deconvolution result)
AMGS Accelerated Multistep Gradient Scheme
AV Axially Variant (deconvolution result)
AWGN Additive White Gaussian Noise
B-mode Brightness mode
BACGM Border-case ACGM
BMACGM Border-case Monotone ACGM
CDM Coordinate Descent Method
CPU Central Processing Unit
dB decibel
DFT Discrete Fourier Transform
EN Elastic Net (problem)
ES Estimate Sequence
ESP Estimate Sequence Property
FGM Fast Gradient Method
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FISTA-BT FISTA with BackTracking (line-search)
FISTA-CP FISTA Chambolle-Pock
GPU Graphics Processing Unit
i.i.d. independent identically distributed
ISD Image Space Distance
ISDUB Image Space Distance Upper Bound
L1LR l1-regularized Logistic Regression
LASSO Least Absolute Shrinkage and Selection Operator (problem)
LCE Lipschitz Constant Estimate

15

List of Abbreviations

LSSC Line-Search Stopping Criterion
MACGM Monotone ACGM
MC Monotone Condition
MFISTA Monotone FISTA
MFISTA-CP Monotone FISTA-CP
MHz megahertz
mm milimeter
MOS Monteiro-Ortiz-Svaiter (method)
NNLS Non-Negative Least Squares
PPU Parallel Processing Unit
PSF Point-Spread Function
RF Radio-Frequency
RHS Right-Hand Side
RR Ridge Regression (problem)
scAPG strongly convex Accelerated Proximal Gradient (method)
SD Standard Deviation
TRF Tissue Reflectivity Function
UMA Uniform Memory Access
WTU Wall-clock Time Unit

16

List of Symbols

1X Membership function of set X

A Real valued matrix, often a model matrix, that is multiplied
with x in a number of optimization problems

a 2D image
ā 2D image padded with zeros
Ak Convergence guarantee (k ≥ 0)
Ãk Scaled Ak
Ak+1 Subexpression used in Theorem 4 (k ≥ 0)
ak+1 Estimate sequence weight and convergence guarantee in-

crement (k ≥ 0)
bk Auxiliary point extrapolation factor if the monotone condi-

tion passes (k ≥ 0)
b′
k Auxiliary point extrapolation factor if the monotone condi-

tion fails (k ≥ 0)
Bk+1 Subexpression used in Theorem 4 (k ≥ 0)
BX Asymptotic convergence rate of Algorithm X expressed in

WTU
C Process that computes the new parameters from the old

state. Subscripts denote the output parameters.
C1(k) Discrete full convolution with kernel k operator
C2(k) Discrete valid convolution with kernel k operator
C(k̄) Discrete circular convolution with kernel k̄ operator
Ck+1 Subexpression used in Theorem 4 (k ≥ 0)
C(1)k+1 Subexpression used in Theorem 4 (k ≥ 0)
C(2)k+1 Subexpression used in Theorem 4 (k ≥ 0)
cq Center row of prototype kernel q

CX Proportionality constant of the lower bound on the worst-
case convergence rate of Algorithm X expressed in WTU

Df Set of TRFs
dk Difference term in Monotone ACGM (k ≥ 0)
diag(x) Diagonal matrix (linear operator) with the entries of x

17

List of Symbols

e(p, q) Standard basis vector image with the value of the pixel at
(p, q) equal to 1 and all others equal to 0

E(γk, Ak, Lk+1) Expression of an upper bound on ak+1 (k ≥ 0)
F Discrete Fourier Transform operator
f0 Ultrasound central frequency in MHz
F∞,1
Lf

(Rn) Class of problems where the objective is non-strongly convex
differentiable with Lipschitz gradient (Lipschitz constant
Lf) and the number of variables is n

fs Ultrasound sampling frequency in MHz
F (x) Composite objective
f(x) Smooth part of composite objective F

f ′(x) Smooth part of composite objective F incorporating all the
strong convexity of Ψ

G Set of all generalized parabolae
Gk+1 Reduced composite gradient (k ≥ 0)
gL(y) Composite gradient at point y with step size L

H Set of all hyperplanes
H Hessian operator
H Spatially varying kernel convolution operator
Hk Highest upper bound that can be placed on weighted objec-

tive value AkF (xk) for k ≥ 0

Hk Lower bound on Hk for k ≥ 0 that is based on Wk for k ≥ 1

I(a, b, c) Exception index set containing indices from 1 to c outside
the range from a to b

I(x) Sum softplus function
ih Output image row
In Identity matrix of size n

K Total number of iterations
k Current iteration index
k̃ Number of consecutive iterations, starting at k = 0, for

which no backtracks occur
k Convolution kernel
k̄ Convolution kernel padded with zeros
k(ih) Kernel at row ih
k(i, q) Kernel at row i next to the qth prototype center
kq qth prototype kernel
L Validation rule for Lipschitz constant estimate candidates
L0 Initial estimate of the Lipschitz constant
L3 Objective Hessian Lipschitz constant
Lf Smooth part f gradient Lipschitz constant
Lf ′ f ′ gradient Lipschitz constant
Lk+1 Lipschitz constant estimate for f (k ≥ 0)
L′
k+1 Lipschitz constant estimate for f ′ (k ≥ 0)

18

List of Symbols

lk(x) Linear function part of Nesterov’s newer estimate sequence
variant (k ≥ 0)

l̃k(x) Lower linear model on the objective derived from lk
Lu Worst-case Lipschitz constant estimate
L(x) Element-wise logistic function
m Number of rows in matrix A
m1 Placeholder for index 1

mM Full convolution of a and k result height
mN Valid convolution of a and k result height
mp Height of the padded TRF
mr Height of the padding boundary / kernel axial radius
mt Height of the TRF
n Number of optimization variables
n Independent identically distributed additive white Gaus-

sian noise
n1 Placeholder for index 1

nk Number of prototype kernels
Nk+1 Line search residual (k ≥ 0)
nM Full convolution of a and k result width
nN Valid convolution of a and k result width
np Width of the padded TRF
nr Width of the padding boundary / kernel lateral radius
nt Width of the TRF
N (μ, σ2) Standard Gaussian distribution with mean μ and standard

deviation σ

O(.) Order (limiting factor) of the function argument
P Padding operator
P Set of all parabolae
Pf,y(x) Abbreviated hyperplane expression at point x,

parametrized by function f and control point y
Pm Operator that pads every column of the input image inde-

pendently
P(mt, mr) 1D padding operator with input size mt and boundary mr

Pn Operator that pads every row of the input image indepen-
dently

proxτΨ(x) Proximal map of regularizer Ψ applied to vector x with step
size τ

PΨ Set of all composite parabolae based on Ψ

q Composite objective inverse condition number
Qf,γ,y(x) Abbreviated parabola expression at point x, parametrized

by function f , curvature γ, and control point y
qk Local inverse condition number (k ≥ 0)
qu Worst-case local inverse condition number
R Set of real numbers

19

List of Symbols

R Rotation operator
rd Lipschitz constant estimate decrease coefficient
Rf,Ψ,L,y(x) Relaxed supporting generalized parabola of objective

F = f +Ψ at point y using inverse step size L

Rk+1 Residual describing the tightness of lower bound wk+1 on
objective F (k ≥ 0)

R
n Set of n real valued vectors

ru Lipschitz constant estimate increase coefficient
Sk+1 Subexpression used in Theorem 4 (k ≥ 0)
sk+1 Subexpression used in Theorem 4 (k ≥ 0)
S(p, q) Operator that circularly shifts a matrix by p− 1 rows and

q − 1 columns
T Total WTU cost incurred up to iteration k ≥ 0

t0 Compound input parameter of ACGM in extrapolated form
tLSSCc LSSC mis-prediction correction cost in WTU
tMC
c MC mis-prediction correction cost in WTU

tLSSCd LSSC mis-prediction detection cost in WTU
tMC
d MC mis-prediction detection cost in WTU

tF WTU cost of one call to F (x)

tf WTU cost of one call to f(x)

Tf,Ψ,L(y) Proximal gradient operator of objective f +Ψ with step size
L at point y

tg WTU cost of one call to ∇f(x)

tk+1 Vertex extrapolation term in ACGM (k ≥ 0)
tp WTU cost of one call to proxτΨ(x)
tT WTU cost of one call to Tf,Ψ,L(y)

tΨ WTU cost of one call to Ψ(x)

Uk Accuracy criterion upper bound / ISDUB estimate (k ≥ 1)
u∗
k+1 Optimal value of uk+1(x) (k ≥ 0)

uk+1(x) Local upper bound on the objective (k ≥ 0)
v Vertex of parabola ψ

vk Estimate function vertex (k ≥ 0)
Vk+1 Subexpression used in Theorem 4 (k ≥ 0)
W Window operator parametrized by the top-left (i1, j1) and

bottom-right coordinates (i2, j2) of the crop rectangle as well
as the size of the input image (ma, na)

Wk Global lower bound incorporated in the estimate function
(k ≥ 1)

wk+1(x) Global lower bound on the objective used to update the
estimate function (k ≥ 0)

WL,H Shorthand for W(mL, mH , nL, nH , mN , nN) where indices
L, H ∈ {1, k, a, M, N}

Ws(i1, i2) Shorthand forW(i1, i2, 1, ns, ms, ns) where index s ∈ {t, p}
x Vector of optimization variables / TRF to be recovered

20

List of Symbols

X∗ Set of optimal points
x∗ Optimal point
x−1 Artificial iterate equal to x0
x0 Starting point of the algorithm
x̃k Cached value of Axk (k ≥ 0)
xk+1 Main iterate (k ≥ 0)
y Observed radio-frequency image
ỹk Cached value of Ayk (k ≥ 0)
Yk+1 Subexpression used in Theorem 4 (k ≥ 0)
yk+1 Auxiliary point (control point) used in generating upper

bound uk+1 (k ≥ 0)
ȳk+1 Vertex of the parabola component within the upper bound

generated by yk+1

Z Zero padding operator parametrized in the same way asW
z0 Artificial point equal to x0
zk+1 Result of applying a proximal gradient step at yk+1 (k ≥ 0)
ZL,H Shorthand for Z(mL, mH , nL, nH , mN , nN) where indices

L, H ∈ {1, k, a, M, N}
Zs(i1, i2) Shorthand for Z(i1, i2, 1, ns, ms, ns) where index s ∈ {t, p}
αFGM
k Coefficient used in Nesterov’s original FGM formulation

βk Auxiliary point extrapolation factor (k ≥ 0)
γ Curvature of parabola ψ

Γk Augmented estimate sequence gap (k ≥ 0)
γk Estimate function curvature (k ≥ 0)
Δk Gap sequence term (k ≥ 0)
Δ̄k Normalized Δk
θ(i, q) Kernel blending factor at row i next to the qth prototype
θk,i Coefficient of the gradient at iterate xi used during iteration

k ≥ 0

λ1 l1-norm regularization factor
λ2 Squared l2-norm regularization factor
λk Scalar term part of Nesterov’s original estimate sequence

definition (k ≥ 0)
μ Strong convexity of composite objective F

μf Strong convexity parameter of smooth part f

μf ′ Strong convexity parameter of f ′

μx Lateral coordinate of the kernel center
μz Axial coordinate of the kernel center
μΨ Strong convexity parameter of regularizer Ψ
ξk+1 A subgradient of Ψ at xk+1 related to the composite gradient
ξ′
k+1 A subgradient of Ψ′ at xk+1 related to the composite gradi-

ent
ρμ,σ(x) Normalized Gaussian window with mean μ and standard

deviation σ at x

21

List of Symbols

σ1 Minimal standard deviation
σ2 Maximal standard deviation
σmax(A) Largest singular value of A
σx(ih) Lateral standard deviation at row ih
σX(x) Indicator function of set X

σz Axial standard deviation
τ Proximal operator / proximal gradient step size
τFISTA−CP Theoretically optimal step size of FISTA-CP
τk+1 Step size of ACGM (k ≥ 0)
Tτ (x) Shrinkage operator with step size τ

φ Data fidelity term
φk Normalized estimate function (k ≥ 0)
Ψ′ Regularizer Ψ with all strong convexity removed
ψ∗ Optimal value of parabola ψ

ψ∗
k Optimum value of ψk

ψ′∗
k Optimum value of ψ′

k

ψk(x) Estimate function (k ≥ 0)
ψ′
k(x) Augmented estimate function (k ≥ 0)

Ψ(x) Simple regularizer part of composite objective F

ψ(x) Generic parabola
ψ̄x,τ (z) Parabola within the definition of the proximal operator, with

vertex x and step size τ

ωk Coefficient of vertex vk in the auxiliary point update
ΩM Line-search overhead of methodM
∞ Positive infinity
∇ Gradient
∇x Gradient with respect to x
X̂ Current candidate quantity (scalar or vector) X

Xk Quantity X at the beginning of iteration k

Xk+1 New value of quantity X generated during iteration k

|.| Absolute value
‖.‖2 Euclidean norm
(.)+ Negative values are truncated to zero (maximum between

argument and zero)
(.)T Matrix transpose / linear operator adjoint
(.)H Hermitian adjoint
(.)∗ Complex element-wise conjugate
⊕c Circular sum applied to the set {1, ..., c}
�c Circular difference applied to the set {1, ..., c}
� Discrete circular convolution
∗1 Discrete full convolution
∗2 Discrete valid convolution
⊗ Kronecker product
� Hadamard (element-wise) product

22

1. Introduction

1.1 Large-scale Optimization

Numerous signal processing applications in compressive sensing, medical
imaging, geophysics, bioinformatics, and many other areas are currently
empowered by large-scale optimization methods (see [1–3], and references
therein). Due to their size, these applications can be modeled as large-scale
optimization problems for which simple operations such as the first-order
derivative of objective function are computationally tractable but complex
operations such as Hessian inversion are not [4]. When these problems are
additionally convex, algorithms employing calls to first-order operations
(first-order methods) are able to obtain arbitrarily precise estimates of the
optimal value given a sufficient number of iterations.
Among large-scale applications, a broad range of problems, including the

most common constrained smooth optimization problems, many inverse
problems [5], and several classification and reconstruction problems in
imaging [6] have a composite structure whereby the objective is a sum
of a smooth function f with Lipschitz gradient (Lipschitz constant Lf)
and a simple function Ψ, that may embed constraints by including the
indicator function of the feasible set. By simple function, we mean here
that the proximal operator of Ψ is exact (for treatment of inexact oracles
see, e.g., [7–9]) and has a negligible cost compared to other operations.
While many specialized methods have been introduced to tackle composite
problems that have additional structure, such as sparsity (e.g., [10–13]),
only small number of methods are applicable to the entire problem class.
These methods follow the black-box oracle model [14], which assumes

that the exact structure of the objective function is not known to the
optimization algorithm (outside the assumptions of the problem class)
and algorithms can only obtain information on the problem by calling
oracle functions. Apart from generality and theoretical simplicity, this
model is well suited for software libraries. Optimization algorithms can be

23

Introduction

implemented as methods that take as arguments callback oracle functions.
Solving a particular problem reduces to providing an implementation of
the oracle functions.

1.2 Motivation

Nesterov has demonstrated that first-order methods can be accelerated,
when he proposed his breakthrough Fast Gradient Method (FGM) [15].
FGM was constructed using the simple mathematical machinery of the
estimate sequence [16]. The estimate sequence is a collection of estimate
functions, each being a scaled version of a function that incorporates a
global lower bound while having an optimal value that is a local upper
bound on the objective function. The local upper bounds tighten as the
algorithm progresses, thereby providing a guarantee of convergence.
Using the estimate sequence, the design process of FGM is straightfor-

ward and, by exploiting the structure of smooth problems, simultaneously
produces state-of-the art convergence guarantees. FGM converges for
non-strongly convex objectives at an optimal rate O(1/k2) and for strongly
convex objectives at a near-optimal rate O((1 − √q)−k), where k is the
iteration index and q is the inverse condition number of the objective [16].
However, FGM requires that the objective be continuously differentiable
with Lipschitz gradient, the Lipschitz constant be known in advance, and
the problem be unconstrained.
To address the demand for fast algorithms applicable to composite prob-

lems, which can have non-differentiable objectives and simple constraints,
as well as to alleviate the need to know Lf in advance, Nesterov has intro-
duced the Accelerated Multistep Gradient Scheme (AMGS) [17] that relies
on composite gradients to overcome the limitations of FGM. This algorithm
adjusts an estimate of Lf at every step (a process often called “line-search”
in the literature [5, 18]) that reflects the local curvature of the function.
The information collected by AMGS to estimate Lf is reused to advance
the algorithm. However, AMGS requires line-search to complete before
proceeding to the next iteration. This increases the per-iteration complex-
ity of AMGS to at least twice that of FGM. Consequently, the theoretical
convergence guarantees of AMGS, while being better than FGM when
measured in iterations, are in fact considerably inferior to FGM in terms
of computational complexity (see Subsection 4.4.2 for a detailed analysis).
The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [5] de-

couples the advancement phase from the adjustment phase, stalling the
former phase only during backtracks. However, FISTA has a fixed O(1/k2)

provable convergence rate even when the objective is strongly convex,
and its line-search strategy cannot decrease the Lf estimate. Similar algo-
rithms to FISTA have been collectively analyzed in [19], but none overcome

24

Introduction

these drawbacks.
A strongly convex generalization of FISTA, which we designate by FISTA-

Chambolle-Pock (FISTA-CP), was introduced in [6]. It has the same con-
vergence guarantees as FGM in both the non-strongly and the strongly
convex cases. The monograph [6] hints at but does not explicitly state
any line-search strategy. Two recent works also seek to overcome the
drawbacks of backtracking FISTA in the strongly convex case.
The first work [20] introduces a family of methods with two notable

members. One is the Monteiro-Ortiz-Svaiter (MOS) method, which can be
regarded as a simplification of Nesterov’s AMGS obtained by discarding
the line-search procedure. MOS has better convergence guarantees than
AMGS but it cannot surpass FISTA-CP. The other member is the Adap-
tive Accelerated (AA) method, which is obtained from MOS by adding an
estimate sequence based acceleration heuristic that increases empirical
performance on the applications studied in [20] but weakens the theoret-
ical convergence guarantees, making them poorer than those of AMGS
(see also Subsection 4.4.2). The two restart heuristics proposed in [20] are
altogether incompatible with the convergence analysis.
The second work [21] proposes a strongly convex Accelerated Proximal

Gradient (scAPG) method, which can be regarded as a line-search extension
of FISTA-CP applicable to problems where the smooth part f is strongly
convex. The convergence guarantees however do not apply outside this
scenario.
Thus, a multitude of methods have already been proposed to tackle

composite problems with specific additional structure, but none of them
successfully combine the strengths of FGM, AMGS, and FISTA.

1.3 Objectives and Scope

The first objective of this work is to develop an algorithm that is applicable
without modification to the entire class of composite problems. For many
composite problems, a global Lipschitz constant may be difficult to compute
or may be far larger than local values. Therefore, this new method should
be able to dynamically estimate the local Lipschitz constant and use this
estimate to increase the speed of convergence. In the worst case, the
convergence rate should be no poorer than FGM.
Moreover, this method should also be able to produce a sequence of iter-

ates with monotonically decreasing objective function values. Monotonicity
prevents divergence in algorithms that employ proximal operators without
a closed form expression or other kinds of inexact oracles [6, 22]. Even
when dealing with exact oracles, monotonicity leads to a more stable and
predictable convergence rate.
Existing methods applicable to composite problems are surprisingly

25

Introduction

similar in form. However, apart from Nesterov’s methods, the convergence
analysis of each method seems independent of all others. A second objective
is to provide a unifying convergence analysis for a large subset of the
existing algorithms, preferably involving the estimate sequence or a notion
derived from it.
Aside from difficulties in analysis, a major limiting factor of existing

algorithms is the lack of a consistent design philosophy. The introduction
of each method, with the notable exception of Nesterov’s FGM, is not
accompanied by a derivation. The absence of a derivation hinders the
improvement and adaptation of an optimization method beyond its original
scope. Therefore, the third objective of this thesis is to provide a simple
and clear design framework for fast large-scale optimization algorithms.

1.4 Contributions

The contributions of this work span two previously unrelated fields.

1.4.1 Large-scale Convex Optimization Algorithms

1. We give a new interpretation of Nesterov’s first-order accelerated op-
timization algorithms and formulate a generic design pattern for these
algorithms based on local upper bounds and global lower bounds. The
global lower bounds are incorporated in the estimate functions whereas
the local upper bounds are employed separately.

2. Nesterov’s estimate sequence can be relaxed to produce an augmented
estimate sequence. Augmentation renders the estimate sequence invari-
ant to the tightness of the global lower bounds.

3. When these lower bounds take the form of generalized parabolae (hy-
perplanes or quadratic functions with Hessians equal to multiples of
the identity matrix), the augmented estimate sequence property can
be insured by maintaining a non-increasing (Lyapunov property) gap
sequence.

4. We provide, using the above design pattern and the gap sequence, a
step-by-step derivation of our Accelerated Composite Gradient Method
(ACGM), a versatile first-order scheme for the class of large-scale prob-
lems with a composite objective structure, which has the convergence
guarantees of FGM in both the non-strongly and strongly convex cases.
ACGM is equipped with an explicit adaptive line-search procedure that
is decoupled from the advancement phase at every iteration. Therefore,
ACGM does not require a priori knowledge of the Lipschitz constant and

26

Introduction

can converge when the Lipschitz property holds only locally.

5. We further showcase the flexibility and power of our framework by
endowing ACGM with monotonicity alongside its adaptive line-search
procedure.

6. ACGM is derived in a form related to the estimate sequence and can
be brought to an equivalent form based on extrapolation that is more
similar to FISTA and FISTA-CP.

7. With its variety of forms, ACGM encompasses FGM, FISTA, and FISTA-
CP, along with their variants, while surpassing all these methods in
terms of flexibility and usability.

8. We introduce the wall-clock time unit (WTU), a complexity measure that
accounts for variations in per-iteration complexity of black-box optimiza-
tion algorithms. WTU more accurately reflects the actual performance of
such algorithms on practical applications.

9. When analyzed using the standard form of the WTU, ACGM has the
best provable convergence rate among its class of algorithms both in the
strongly and non-strongly convex cases.

10. We corroborate the theoretical findings with simulation results. Specif-
ically, we show that our method surpasses the state-of-the-art when
measured using both standard WTU and the most common form of gen-
eralized WTU. ACGM is particularly well suited for certain ultrasound
image reconstruction problems, which can be effectively cast as strongly-
convex large-scale composite problems.

1.4.2 Ultrasound Image Reconstruction

1. We propose two models based on spatially varying kernel convolution
that accurately reflect the physics of ultrasound image formation.

2. Both models are linear and may be implemented as a matrix. However,
the matrix forms do not scale because their complexity is proportional to
the square of the number of pixels in the image. Therefore, we provide
efficient matrix-free implementations of the model operators that entail
the same computational cost as spatially invariant convolution.

3. The reconstruction problem is ill-posed and can only be addressed by
employing first-order operations. The most computationally demanding

27

Introduction

of these is the gradient of a data fidelity term. For both linear models,
the data fidelity gradient expression includes calls to both the model op-
erator and its adjoint. We provide matrix-free expressions for the adjoint
operators of our models that are of equal complexity to the corresponding
forward models. Our derivations are based on fundamental (and to our
knowledge novel) theoretical results on discrete convolution.

4. By optimizing ACGM for this reconstruction problem, we are able to
approximately half its per-iteration complexity.

5. We confirm using simulation results that reconstruction with ACGM
and our models is tractable even for large images and produces results
superior to those obtained using the spatially invariant model.

1.5 Author’s Independent Contribution

This thesis summarizes the contents of five academic works (Publications
I-V). These works comprise three publications in international journals
with a review process (Publications II, III, and V) and two international
conference publications (Publications I and IV). Two of these journal arti-
cles (Publications II and V) and both conference papers have undergone
peer-review and have been published. One journal article (Publication III)
has been submitted for publication and is currently under review. The au-
thor of this thesis is the main author of all above mentioned works and has
undertaken the theoretical studies, including algorithm development, as
well as the numerical simulations therein. The co-authors have supervised
the main author, by helping with research planning, the writing as well as
the revising of the thesis and the associated academic works.

1.6 Thesis Structure

This thesis contains seven chapters, which provide a unified view of the
results described in the attached Publications I-V. Chapter 1 briefly de-
scribes the background and scope of this thesis, along with the author’s
contributions. In Chapter 2, we introduce the class of large-scale compos-
ite problems and use the theoretical worst-case performance bounds on
this class to derive the estimate sequence, its augmentation, and the gap
sequence. In Chapter 3, we develop from the fundamental structure of the
composite problem class a design pattern for first-order algorithms. Using
this pattern and the gap sequence, we derive the Accelerated Composite
Gradient Method (ACGM). In Chapter 4, we provide a convergence analy-

28

Introduction

sis for ACGM and discuss the theoretical relationship between our method
and the competing methods. For a more realistic comparison, we introduce
the wall-clock time unit (WTU), and use it to demonstrate the theoretical
superiority of ACGM within its class. We support the theoretical results
in Chapter 4 using an extensive simulation benchmark in Chapter 5. We
discuss the reconstruction of ultrasound images in Chapter 6 and argue
why ACGM is particularly well suited for this application. Chapter 7
concludes the thesis.

29

Introduction

30

2. Augmenting the Estimate Sequence

When designing optimization algorithms, it is necessary to assume that
not all information on a problem is available beforehand. Otherwise, the
problem would be uniquely identifiable and the most accurate and efficient
method that can be used to address it would consist of an algorithm that
simply outputs the solution of that problem. The lack of complete informa-
tion means that the available a priori information defines a collection of
problems that share a common structure, which we call a problem class. It
is in the context of such a problem class that we design numerical schemes
and measure their performance [16].

2.1 The Large-scale Composite Problem Class

In this work, we consider the class of problems that have the following
structure:

min
x∈Rn

F (x)
def
= f(x) + Ψ(x), (2.1)

where x is a vector of n optimization variables. The problem is large-
scale [4] in the sense that first-order operations such as function gradients
are computationally tractable to compute and manipulate in memory
whereas second-order operation such as Hessians are intractable. The
composite objective F has a non-empty set of optimal points X∗. Function
f : Rn → R is convex differentiable on Rn with Lipschitz gradient (Lip-
schitz constant Lf > 0) and strong convexity parameter μf ≥ 0. The
Lipschitz constant Lf may not be known to the optimization algorithm.
The regularizer Ψ : Rn → R ∪ {∞} is a proper lower semicontinuous con-
vex function with strong convexity parameter μΨ. This implies that F

has a strong convexity parameter μ = μf + μΨ. The regularizer Ψ embeds
constraints by being infinite outside the feasible set. Unlike f , Ψ need not
be differentiable. However, its proximal map, given by

proxτΨ(x)
def
= argmin

z∈Rn

(
Ψ(z) +

1

2τ
‖z − x‖22

)
, (2.2)

31

Augmenting the Estimate Sequence

for all x ∈ Rn and τ > 0 can be computed with complexity O(n).
Apart from the above a priori information, the problem is treated by the

algorithm as a black box [14]. Additional information on the problem can
only be obtained by querying a number of oracle functions. The term oracle,
alluding to the Oracle of Delphi in Ancient Greece, designates an abstract
entity that has complete information on the problem but can only reveal a
limited amount upon request, with each request bearing a cost.
The oracle functions pertaining to composite problems comprise f(x),

∇f(x), Ψ(x), and proxτΨ(x), with arguments x ∈ Rn and τ > 0.
Note that coordinate descent methods (CDMs) (e.g., [23,24]) violate the

aforementioned oracle model by additionally assuming that the objective is
separable and therefore parts of ∇f(x) can be computed independently of
all others. CDMs require a much larger number of iterations to converge
compared to first-order methods and need to compensate by utilizing
functional primitives of very low cost. Although CDMs show promise in
a number large-scale applications with differentiable objectives [24], we
exclude them from our analysis due to their reliance on additional problem
structure.

2.2 Complexity Bounds

Throughout this work, we will assume that an optimization algorithm
produces an iterate sequence {xk+1}k≥0 of increasingly accurate (according
to some criterion) estimates of an optimal point x∗. By their very nature,
iterations cannot be performed in parallel, even if computations within an
iteration can be parallelized. The processing speed of computer systems has
recently reached a saturation level, with virtually all advances in computer
design revolving around parallelism [25]. Individual iterations may benefit
from parallelization, but serial computational requirements, along with
the synchronization and communication overhead, place a lower limit on
the latency of an iteration (e.g., given by Amdahl’s law [25]). Therefore, to
keep the overall running time of the algorithm within practical limits, only
a small number of iterations K � n can be performed.
A natural means of defining the accuracy criterion is in the form of a

simple upper bound Uk at every iteration k on the distance from the current
iterate to the optimal set, namely

inf
x∗∈X∗ ‖xk − x

∗‖22 ≤ Uk, k ≥ 0. (2.3)

For the upper bounds to measure convergence, they must monotonically
converge to zero. Monotonicity is required by our assumption on the
increasing accuracy of the iterate sequence. Note that monotonicity applies
only to the upper bounds, not to the actual distance between the iterates
and the optimal set. Convergence to zero means that, for an arbitrarily

32

Augmenting the Estimate Sequence

low accuracy ε > 0, there must be an iteration k such that Ui < ε for
all i ≥ k. However, in almost all applications, several digits of accuracy
are required for at most an order of thousands of iterations. Hence, for
the upper bounds to be of practical importance, they should belong to a
complexity class O(1/kp), p ≥ 1 (sub-linear), O(e−k) (linear), or better.

2.3 Convergence Guarantees

Nesterov has derived in [16] the following result applicable to the class
of non-strongly convex differentiable problems with Lipschitz gradient
F∞,1
Lf

(Rn). This class consists of problems that take the form of

min
x∈Rn

F (x) = f(x), (2.4)

where n, x, and f have the same properties as in the composite problem
class, with the exception that μf is always 0.

Theorem 1. For any scheme that produces at every iteration k ≥ 0 the
sequence of parameters {θk,i}0≤i≤k and a new iterate, given by

xk+1 = x0 +
k∑
i=0

θk,i∇f(xk),

there exists a function f(x) such that

‖xk − x∗‖22 ≥
1

8
‖x0 − x∗‖22,

for all x∗ ∈X∗ as long as k ≤ n−1
2 .

Proof. The reasoning is based on information theoretical arguments. Nes-
terov provides in [16] an ill-conditioned quadratic objective f where, for
any problem, a coordinate system is imposed such that the starting point
x0 is the origin. Each gradient adds exactly one to the dimensionality of
the linear span of all previous iterates. The lower bound gives the distance
to that subspace. See [16] for a detailed analysis.

The bound on the iterate convergence in Theorem 1 can be shown to hold
for more sophisticated full gradient schemes due to the limited amount of
information revealed by gradient calls [16].
Every problem in F∞,1

Lf
(Rn) is a composite problem that includes two

additional assumptions: Ψ(x) = 0 for all x ∈ Rn and μ = μf = 0. Therefore,
F∞,1
Lf

(Rn) is a subset of the composite problem class and the lower bounds
in Theorem 1 apply to composite problems as well.
However, the result in Theorem 1 effectively invalidates our previous

accuracy criterion in (2.3). Note that the eventual convergence of iterates
on composite problems has been proven in [26] for a variant of FISTA

33

Augmenting the Estimate Sequence

but such a result is not of practical importance. The number of iterations
required even for several digits of accuracy is prohibitive (as argued by
Theorem 1), regardless of the computing power of the system on which
the algorithm runs. Thus, we need to devise a different accuracy criterion
for our problem class. The following result, obtained in [16], leads to an
alternative.

Theorem 2. Under the same assumptions as in Theorem 1, we have that

F (xk)− F (x∗) ≥ max

{
3Lf

32(k + 1)2
,
μ

2

(
1−√q

1 +
√

q

)2k
}
‖x0 − x∗‖22,

for all x∗ ∈X∗. Here, q is the inverse condition number given by q = μ
Lf

.

Proof. For μ = 0, the ill-conditioned quadratic objective f in the proof of
Theorem 1 produces the bound on the objective value decrease. When
μ > 0, f(x) + μ

2‖x‖22 is used in the same way. See [16] for a complete
exposition.

Theorem 2 compels us to express the convergence rate of first-order
schemes on composite problems in a similar manner, i.e. using the image
space distance (ISD), which is the distance between the composite objec-
tive values at the iterates and the optimal value. We therefore define a
convergence guarantee (provable convergence rate) as the decrease rate of
a theoretical upper bound on this ISD.
The upper bounds provided by Nesterov for FGM in [16] contain, apart

from the domain space term in Theorem 2, the initial ISD. Given that our
current aim is to provide a generic framework that applies to FGM and its
variants, we include the weighted initial ISD in our upper bounds. Thus,
we formulate the image space distance upper bound (ISDUB) as

Ak(F (xk)− F (x∗)) ≤ A0(F (x0)− F (x∗)) +
γ0
2
‖x0 − x∗‖22, (2.5)

for all x∗ ∈ X∗ and k ≥ 0. Here, the convergence guarantees are given
by the sequence {Ak}k≥0. Convergence guarantees are only meaningful if
positive. However, in algorithms which allow x0 to be infeasible, A0 must
be zero. The assumption of increasingly accurate iterates implies that
the convergence guarantees are monotonically increasing. Therefore, the
convergence guarantees obey A0 ≥ 0, Ak > 0 for all k ≥ 1, and Ak+1 > Ak
for all k ≥ 0.
The right-hand side of (2.5) is a weighted sum between the initial ISD

and the corresponding domain space term, with weights given by A0 and
γ0, respectively. The possibility of A0 being zero is what motivates us to
write the ISDUB expression (2.5) in a form in which the objective value at
the current iterate is weighted by the convergence guarantee, which differs
from the bounds formulated in Theorem 2. We impose no restrictions on
the weights in (2.5), apart from A0 ≥ 0 and γ0 > 0. The positivity of γ0 is

34

Augmenting the Estimate Sequence

required by Theorem 2 and also holds significance in our interpretation
of the estimate sequence, along with its augmented variant, as we shall
demonstrate in the sequel.

2.4 The Estimate Sequence

2.4.1 A Substitute Convergence Guarantee

The ISDUB expression in (2.5) can be rearranged to take the form

AkF (xk) ≤ Hk, k ≥ 0, (2.6)

where

Hk
def
= (Ak −A0)F (x∗) + A0F (x0) +

γ0
2
‖x0 − x∗‖22, k ≥ 0 (2.7)

is the highest upper bound that can be placed on weighted objective values
AkF (xk) to satisfy (2.5). The value of Hk depends on the optimal point
x∗, which is an unknown quantity. Note that for non-strongly convex
objectives, x∗ may not be unique. Without loss of generality, we will fix x∗

to be an arbitrary element ofX∗ throughout the remainder of this work.
The estimate sequence (ES) provides a computable, albeit more stringent,

replacement for Hk. It is obtained as follows. The convexity of the objective
implies the existence of a sequence {Wk}k≥1 of convex global lower bounds
on F , namely

F (x) ≥ Wk(x), x ∈ Rn, k ≥ 1. (2.8)

By substituting the optimal value terms F (x∗) in (2.6) with Wk(x
∗), we

obtain Hk, a lower bound on Hk, given by

Hk
def
= (Ak −A0)Wk(x

∗) + A0F (x0) +
γ0
2
‖x∗ − x0‖22, k ≥ 0. (2.9)

Note thatH0 does not depend on F (x∗) andH0 is the same asH0. Therefore,
it is not necessary to define W0, which explains why we have k ≥ 1 in (2.8).
For k ≥ 1, Hk is difficult to enforce as an upper bound on AkF (xk), partly
because of its dependence on x∗. However, Hk can be viewed as the value
of an estimate function at x∗. The estimate functions ψk(x), k ≥ 0 can be
thus be modeled as functional extensions of Hk, namely

ψk(x)
def
= (Ak−A0)Wk(x)+A0F (x0)+

γ0
2
‖x−x0‖22, x ∈ Rn, k ≥ 0. (2.10)

We define the estimate sequence as the collection of estimate functions
{ψk(x)}k≥0.
The first estimate function ψ0 is given by

ψ0(x) = A0F (x0) +
γ0
2
‖x− x0‖22, x ∈ Rn. (2.11)

35

Augmenting the Estimate Sequence

Substituting (2.11) in definition (2.10) gives a simple and general form for
estimate functions, stated as

ψk(x) = (Ak −A0)Wk(x) + ψ0(x), x ∈ Rn, k ≥ 0. (2.12)

The estimate function optimum value, given by

ψ∗
k

def
= min

x∈Rn
ψk(x), k ≥ 0, (2.13)

is guaranteed to be lower than Hk, since

ψ∗
k = min

x∈Rn
ψk(x) ≤ ψk(x

∗) = Hk, k ≥ 0. (2.14)

As such, ψ∗
k provides the sought after computable replacement of Hk. Thus,

it suffices to maintain the estimate sequence property (ESP), given by

AkF (xk) ≤ ψ∗
k, k ≥ 0, (2.15)

to satisfy the ISDUB expression in (2.5). The proof follows from the above
definitions as

AkF (xk)
(2.15)
≤ ψ∗

k

(2.14)
≤ ψk(x

∗) = Hk
(2.8)
≤ Hk, k ≥ 0. (2.16)

2.4.2 Nesterov’s Estimate Sequences

As we have seen in Subsection 2.4.1, the construction of the estimate
sequence follows analytically from the ISDUB expression in (2.5). However,
at this stage, the relationship between the estimate functions and the
objective is not clear. By contrast, Nesterov has derived the estimate
sequence starting from the properties of finite objectives and has extended
the definition to composite objectives in a similar form to (2.10).

Nesterov’s original estimate sequence
The estimate sequence defined in [16] for F∞,1

Lf
(Rn) is actually a pair of

sequences, {φk(x)}k≥0 and {λk}k≥0, that satisfy the following: λk ≥ 0 for
k ≥ 0, lim

k→∞
λk = 0, and

φk(x) ≤ (1− λk)F (x) + λkφ0(x), x ∈ Rn. (2.17)

According to this definition, estimate functions φk(x) are arbitrarily accu-
rate approximate global lower bounds on the objective F . The estimate
sequence property is defined as

F (xk) ≤ φ∗
k

def
= min

x∈Rn
φk(x), k ≥ 0. (2.18)

This property states that the optimal values of the estimate functions,
themselves global lower bounds on the estimate functions, are also local
upper bounds on the objective at the iterates.
However, when designing optimization schemes, the assumptions on

sequence {λk}k≥0 need to be stricter.

36

Augmenting the Estimate Sequence

Lemma 1. To produce a valid optimization algorithm, we must have in
Nesterov’s definition of the estimate sequence (2.17) that λ0 = 1 as well as
λk > 0 and λk < λk+1 for all k ≥ 0.

Proof. For k = 0, (2.17) reduces to

(1− λ0)φ0(x) ≤ (1− λ0)F (x), x ∈ Rn. (2.19)

We assume that in (2.19) we have λ0 �= 1. Then, by dividing both sides of
(2.19) by the non-zero (1− λ0), we have that the initial estimate function
φ0(x) is a global lower bound on F . The estimate sequence property (2.18)
gives

F (x0) ≤ φ∗
0 = min

x∈Rn
φ0(x) ≤ min

x∈Rn
F (x) = F (x∗) ≤ F (x0), (2.20)

meaning that x0 ∈X∗, which precludes the need for a numerical scheme.
Combining (2.17) and (2.18), we obtain (see also Lemma 2.2.1 in [16])

that
F (xk)− F (x∗) ≤ λk(φ0(x

∗)− F (x∗)). (2.21)

If for a certain k̃ ≥ 0we have λk̃ = 0 then (2.21) implies that F (xk̃) = F (x∗),
meaning that xk̃ ∈X∗. Again, this contradicts our fundamental assump-
tion of imperfect information on the problem class.
Moreover, (2.21) states that the sequence {λk}k≥0 determines the conver-

gence guarantees of the optimization scheme. For such a method to make
meaningful progress at every iteration, it is necessary to have λk < λk+1

for all k ≥ 0.

Canonical form
Lemma 1 allows us to perform the following substitution:

λk
def
=

A0

Ak
, φk(x)

def
=

1

Ak
ψk(x), k ≥ 0, x ∈ Rn. (2.22)

To avoid confusion between the two forms of the estimate sequence, we
denote the terms φk(x) from now on as normalized estimate functions and
ψk(x) as estimate functions.
The estimate sequence definition becomes

ψk(x) ≤ (Ak −A0)F (x) + ψ0(x), x ∈ Rn, k ≥ 0, (2.23)

with the convergence guarantees satisfying Ak > 0 and Ak+1 > Ak for all
k ≥ 0 with lim

k→∞
Ak = ∞. Therefore, at every iteration k ≥ 1, there exists

Wk(x), a global lower bound on F , such that

ψk(x) = (Ak −A0)Wk(x) + ψ0(x), x ∈ Rn, k ≥ 1. (2.24)

The existence and computability of φ∗
k implies that the lower bounds Wk(x)

are convex. Note that Nesterov’s estimate function expression in canonical

37

Augmenting the Estimate Sequence

form (2.24) matches the one in (2.12). Moreover, the estimate sequence
property in [16], given by

F (xk) ≤ φ∗
k, k ≥ 0 (2.25)

is made equivalent to (2.15) by scaling with Ak, which are positive in this
context for all k ≥ 0.
Nesterov’s original estimate sequence only differs from the canonical

form in (2.12) by not accommodating infeasible start due to the implicit
assumption A0 > 0. It also does not place any restriction of the initial esti-
mate function apart from the estimate sequence property (2.15). However,
when designing FGM for F∞,1

Lf
(Rn) in [16], ψ0(x) is also set according to

(2.11).

Nesterov’s newer variant
Nesterov has addressed the infeasible start issue in [17] with an updated
estimate sequence definition, given by

ψk(x) = lk(x) + (Ak −A0)Ψ(x) + ψ0(x), x ∈ Rn, k ≥ 0, (2.26)

where lk(x) is a linear function. In [17], l0(x) is set to 0 for all x ∈ Rn. At
every iteration, the estimate sequence is updated as

ψk+1(x) = ψk(x) + ak+1 l̃k+1(x), x ∈ Rn, k ≥ 0, (2.27)

where l̃k+1 is a lower linear model of the function at xk+1, given by

l̃k+1(x) = f(xk+1) + 〈∇f(xk+1),x− xk+1〉 , x ∈ Rn, k ≥ 0, (2.28)

and weight ak+1 increments the convergence guarantees as

Ak+1 = Ak + ak+1, k ≥ 0. (2.29)

It follows by induction that in [17] every linear function lk for k ≥ 1 is
given by

lk(x) =
k∑
i=1

ak l̃i(x) = (Ak −A0)wk(x), x ∈ Rn, (2.30)

where

wk(x) =

k∑
i=1

ai l̃i(x)

k∑
i=1

ai

, x ∈ Rn, k ≥ 1, (2.31)

is a weighted average of lower linear models, each a global lower bound on
objective F . Therefore wk is itself a global lower bound on f . We set Wk for
each k ≥ 1 as

Wk(x) = wk(x) + Ψ(x), x ∈ Rn, (2.32)

38

Augmenting the Estimate Sequence

and obtain a global lower bound on F . From (2.32), we again obtain the
canonical form in (2.12). The estimate sequence property is the same as
in (2.15) and the initial estimate function is also given by (2.11), although
the results derived in [17] apply also to non-standard Euclidean norms,
which is beyond the scope of our work. We leave the generalization of our
framework to such norms as an open topic for future research.
In the context of [17], A0 is always zero, which is more restrictive

than in our model and incompatible with Nesterov’s original estimate
sequence definition. Moreover, the newer variant no longer takes into
account strong convexity. The latter restriction is imposed because many
other problem classes (e.g., [27,28]) do not involve strong convexity and
the form in (2.26) generalizes easily to address them. For that matter,
(2.26) was actually first introduced for the class of differentiable objectives
(Ψ = 0) with Lipschitz continuous Hessians [28] under the assumption
ψ0 = A0F (x0) + 2L3‖x− x0‖32 with A0 = 1, where L3 is the Hessian Lip-
schitz constant. Nonetheless, the fact that even a partially restricted
variant of the estimate sequence can be applied to such a wide array of
problem classes demonstrates the versatility and fundamental nature of
the estimate sequence.

2.5 The Augmented Estimate Sequence

Recall that the estimate sequence property in (2.15) produces a gap be-
tween ψ∗

k and Hk, shown in (2.16). This allows us to introduce the more
relaxed augmented estimate sequence (AES) {ψ′

k(x)}k≥0 defined, using the
notation and conventions from Subsection 2.4.1, as

ψ′
k(x)

def
= ψk(x) + Hk −Hk, k ≥ 0. (2.33)

We expand definition (2.33) as

ψ′
k(x) = ψk(x) + (Ak −A0)(F (x∗)−Wk(x

∗)), k ≥ 0. (2.34)

Augmentation therefore consists only of adding a non-negative constant
(due to the lower bound property of Wk) to the estimate function, thus
preserving its shape.
The augmented estimate sequence property (AESP) is given by

AkF (xk) ≤ ψ′∗
k , k ≥ 0. (2.35)

This property can be used to derive the provable convergence rate because,
along with definitions (2.9), (2.10), and (2.33), it implies that

AkF (xk) ≤ ψ′∗
k = ψ∗

k+Hk−Hk = Hk+(ψ∗
k−ψk(x

∗)) ≤ Hk, k ≥ 0. (2.36)

The augmented estimate sequence property (2.35) can alternatively be
written as

AkF (xk) ≤ ψ′
k(x), x ∈ Rn, k ≥ 0. (2.37)

39

Augmenting the Estimate Sequence

Substituting (2.12) and (2.33) in (2.37) gives

AkF (xk) ≤ (Ak −A0)(Wk(x)−Wk(x
∗) + F (x∗)) + ψ0(x), x ∈ Rn, k ≥ 0.

(2.38)
By expanding the initial estimate function as in (2.11) and rearranging
terms we obtain

Ak(F (xk)− F (x∗)) ≤ (Ak −A0)(Wk(x)−Wk(x
∗))

+A0(F (x0)− F (x∗)) +
γ0
2
‖x− x0‖22, x ∈ Rn, k ≥ 0.

(2.39)

The benefits of augmentation are now clearer. For instance, by setting
x = x∗ in (2.39) we obtain the ISDUB property (2.5). This confirms
that the estimate sequence optimum is a valid upper bound, as already
demonstrated in (2.36). Moreover, the form in (2.39) is more robust than
(2.15). Independently adding arbitrary constant terms toWk for every k ≥ 1

does not alter (2.39). This characteristic is inherited by the gap sequence,
which we introduce in the sequel.

2.6 Parabolae

We define a parabola as a quadratic function ψ : Rn → R whose Hessian is
a positive multiple of the identity matrix, namely

ψ(x)
def
= ψ∗ +

γ

2
‖x− v‖22, x ∈ Rn, (2.40)

where γ > 0 gives the curvature, v ∈ Rn is the vertex, and ψ∗ ∈ R is the
optimal value. We denote the set of all parabolae as P.
In this work, we define a hyperplane as a linear function h : Rn → R and

the set of hyperplanes as H. A generalized parabola is a function whose
Hessian is a non-negative multiple of the identity matrix. Therefore, a
generalized parabola is either a parabola or a hyperplane. The generalized
parabola set is given by G def

= P ∪H.
Parabolae constitute an important building block in our analysis because

the Lipschitz gradient and the strong convexity properties can be defined
in terms of parabolic upper bounds and generalized parabolic lower bounds.
To simplify notation, we define two abbreviated expressions, hyperplane
Pf,y(x) and generalized parabola Qf,γ,y(x), as

Pf,y(x)
def
= f(y) + 〈∇f(y),x− y〉 , (2.41)

Qf,γ,y(x)
def
= Pf,y(x) +

γ

2
‖x− y‖22, (2.42)

for any x,y ∈ Rn and γ > 0. Using this notation, we illustrate the upper
and lower bounds for f resulting from the definition of Lipschitz gradient
and strong convexity as

Qf,μf ,y(x) ≤ f(x) ≤ Qf,Lf ,y(x), x,y ∈ Rn. (2.43)

40

Augmenting the Estimate Sequence

Moreover, parabolae can be combined to create new bounds. The simplest
way of constructing new lower and upper bounds from simple bounds such
as the ones in (2.43) is by weighted averaging. The following result shows
that these new bounds retain their basic properties and, as we shall see,
can determine the structure of the estimate functions.

Lemma 2. Let ψ1, ψ2 be generalized parabolae with curvatures γ1 and γ2,
respectively. Then, for any α1, α2 ≥ 0, α1ψ1+α2ψ2 is a generalized parabola
with the curvature given by α1γ1 + α2γ2.

Proof. By definition

ψ1, ψ2 ∈ G ⇔ Hψ1(x) = γ1In, Hψ2(x) = γ2In, (2.44)

with γ1 ≥ 0 and γ2 ≥ 0. The Hessian is a linear operator, therefore

H(α1ψ1 + α2ψ2) = α1Hψ1 + α2Hψ2
(2.44)
= α1(γ1In) + α2(γ2In)

= (α1γ1 + α2γ2)In.
(2.45)

Because α1γ1 + α2γ2 ≥ 0 we have that α1ψ1 + α2ψ2 ∈ G. See [16] for more
details.

2.6.1 Parabolic Estimate Functions

When the objective is non-strongly convex, the only available simple global
convex lower bounds are hyperplanes. If we further assume that new
bounds are obtained only by weighted averaging simple bounds, Wk become
linear in (2.10) for all k ≥ 0. The initial estimate function, given by (2.11),
is a generalized parabola. Lemma 2, combined with the general form of
the estimate function in (2.10), implies that when Wk are linear, every
estimate function ψk(x) is a generalized parabola with the curvature given
by γ0. The existence of ψ∗

k in this case is conditioned by γ0 > 0.
Conversely, once we assume that γ0 > 0 and that all lower bounds Wk

are generalized parabolae, the estimate functions become parabolae. Since
augmentation consists of adding a constant factor, every estimate function
has the same curvature and vertex as its augmented counterpart. We write
the estimate functions and the augmented estimate functions in parabolic
form (2.40) with vertex vk and curvature γk for all k ≥ 0 as

ψk(x) = ψ∗
k +

γk
2
‖x− vk‖22, (2.46)

ψ′
k(x) = ψ′∗

k +
γk
2
‖x− vk‖22. (2.47)

From (2.34), we have that

ψ′∗
k = ψ∗

k + (Ak −A0)(F (x∗)−Wk(x
∗)). (2.48)

The initial estimate function (2.11) does not contain a lower bound term,
hence v0 = x0.

41

Augmenting the Estimate Sequence

2.6.2 Composite Parabolae

For a given function Ψ, we also define the family of composite parabolae
PΨ = {ψ +Ψ | ψ ∈ P}. Composite parabolae are closely connected to the
proximal operator oracle function. Specifically, for any x ∈ Rn and step
size τ > 0, let

ψ̄x,τ (z)
def
=

1

2τ
‖z − x‖22, z ∈ Rn. (2.49)

Function ψ̄x,τ is obviously a parabola. The proximal operator proxτΨ
therefore returns the unique optimum point of the composite parabola
ψ̄x,τ +Ψ.
Furthermore, the proximal operator can compute the optimum of any

composite parabola, since by substituting γ
def
= 1/τ and v def

= x, the defini-
tion of ψ̄x,τ is equivalent to that of a parabola.

2.7 The Gap Sequence

A sufficient condition for the preservation of the augmented estimate
sequence property (2.35) across iterations is that the augmented estimate
sequence gap, defined as

Γk
def
= AkF (xk)− ψ′∗

k , k ≥ 0, (2.50)

is non-increasing.
When the lower bounds Wk are generalized parabolae, we have that

ψ(x∗) (2.46)= ψ∗
k +

γk
2
‖x∗ − x0‖22, (2.51)

ψ(x∗) (2.34)= (Ak −A0)Wk(x
∗) + A0F (x0) +

γ0
2
‖x∗ − vk‖22, (2.52)

for all k ≥ 0. Combining the two forms of the estimate function gives

(Ak −A0)Wk(x
∗)− ψ∗

k =
γk
2
‖x∗ − vk‖22 −

γ0
2
‖x∗ − x0‖22 −A0F (x0), (2.53)

for all k ≥ 0. Therefore, the augmented estimate sequence gap can be
written as

Γk
(2.48)
= Ak(F (xk)− F (x∗)) + (Ak −A0)Wk(x

∗) + A0F (x∗)− ψ∗
k

(2.53)
= Ak(F (xk)− F (x∗)) +

γk
2
‖vk − x∗‖22

−A0(F (x0)− F (x∗))− γ0
2
‖x0 − x∗‖22, k ≥ 0. (2.54)

We introduce the gap sequence {Δk}k≥0 in the form of

Δk
def
= Ak(F (xk)− F (x∗)) +

γk
2
‖vk − x∗‖22, k ≥ 0. (2.55)

42

Augmenting the Estimate Sequence

The augmented estimate sequence gaps can be expressed more succinctly
as

Γk = Δk −Δ0, k ≥ 0. (2.56)

Hence, the variation of the two sequences is identical, with the only differ-
ence being that the augmented estimate sequence gap is constrained to be
zero initially. The sufficient condition becomes

Δk+1 ≤ Δk, k ≥ 0. (2.57)

The benefits of the augmented estimate sequence now become evident.
We have replaced the estimate sequence property with a gap sequence
that has a simple closed form. The gap sequence is an example of a Lya-
punov (non-increasing) function, widely used in the convergence analysis
of optimization schemes (e.g., [29–31]).

43

Augmenting the Estimate Sequence

44

3. Constructing ACGM

3.1 A Design Pattern for First-order Accelerated Algorithms

The augmented estimate sequence property (AESP) in (2.35) constitutes a
sufficient condition for an algorithm to have the convergence guarantees at
every iteration k ≥ 0 given by Ak as in (2.6). However, it does not provide
a means of computing iterates.
The design procedure we propose in this work is in line with the deriva-

tion found in [16]. We strive here for generality and rely, as much as
possible, on fundamental arguments.
An optimization algorithm essentially employs at every iteration k a

generator for xk+1. We devise this generator to ensure that xk+1 obeys the
AESP for any algorithmic state. The AESP is an upper bound property of
F (xk+1), which needs to be satisfied before xk+1 is computed. Therefore,
F (xk+1) has to be substituted with a simple upper bound. Since we don’t
know how to compute xk+1 at this point, we need to define this upper
bound as a function over the entire domain, which we denote as uk+1(x),
that should be a local upper bound on the objective at xk+1, namely

F (xk+1) ≤ uk+1(xk+1), k ≥ 0. (3.1)

We want to have the best convergence guarantees available. The ISDUB
expression (2.6) implies that the values of F (xk+1) should be as low as
possible. The simplest way to ensure this, and at the same time to provide
a means of computing xk+1, is by setting xk+1 to be the optimal point of
uk+1(x), that is

xk+1 = argmin
x∈Rn

uk+1(x), k ≥ 0. (3.2)

Methods that employ this technique are often denoted as majorization
minimization (MM) algorithms (see, e.g., [32,33] and references therein).
The Lipschitz gradient property of f implies the existence, for a given

control point yk+1 ∈ Rn, of a unique upper bound on f(x) in the form of

45

Constructing ACGM

Qf,Lf ,yk+1(x) (see (2.43)). Regularizer Ψ is potentially unbounded above
but, due to its simplicity, it is practical to consider it to be its own upper
bound. Thus, an obvious choice for uk+1(x) would be

uk+1(x) = Qf,Lf ,yk+1(x) + Ψ(x), k ≥ 0. (3.3)

The upper bound in (3.3) takes the form of a composite parabola whose op-
timum point can be readily obtained using the proximal operator. However,
it depends on the global Lipschitz constant Lf , which poses two problems.
First, this constant may not be known to the algorithm, either because it is
intractable to compute or because a closed form expression of the smooth
part f may not be available. Second, the path taken by the algorithm could
traverse a region where the curvature of the objective is far lower than
Lf would seem to indicate. Both problems can be alleviated by computing
at every iteration k a Lipschitz constant estimate (LCE) that we denote
by Lk+1. Therefore, the LCEs not only allow the algorithm to convergence
when a value of Lf is not available, but may increase convergence speed
even when Lf is known.
Although algorithmic prerequisites compel us to depart from the obvious

choice in (3.3), upper bounds uk+1(x) can still be fully determined by yk+1

and Lk+1 in the most common design scenarios, as we will show throughout
this chapter.
Alongside the iterates, the algorithm must update the estimate sequence.

The shape of the estimate functions is the same as their augmented coun-
terparts and in the following we only consider the estimate sequence.
Every new estimate function ψk+1(x) contains a global lower bound term
Wk+1(x). The μf strong convexity of f and the μΨ strong convexity of Ψ
ensure the existence of a multitude of simple global lower bounds on F ,
each obtained by combining a simple (generalized parabolic) lower bound
on f with a (generalized parabolic or Ψ itself) simple lower bound on Ψ. We
denote the new simple lower bound at every iteration k by wk+1(x). Unlike
uk+1(x), wk+1(x) may not be defined in terms of a single point due to the
subdifferentiability of Ψ.
Setting the estimate function lower bound Wk+1(x) to wk+1(x) would

mean discarding the information revealed by past oracle calls used to
compute wi(x) for i ∈ {1, ..., k}. Note that indexing starts at 1 instead of 0
because W0 is not used and assumed null. The most computationally effi-
cient means of incorporating past information in Wk+1(x) is by weighted
averaging all simple lower bounds computed by the algorithm up until iter-
ation k. Among the weighting strategies, by far the least computationally
demanding (as we shall demonstrate in the sequel) consists of

46

Constructing ACGM

Wk+1(x) =

k+1∑
i=1

aiwi(x)

k+1∑
i=1

ai

, x ∈ Rn, (3.4)

where the weight at each iteration k, ak+1, is given by

ak+1 = Ak+1 −Ak, k ≥ 0. (3.5)

The sequence of convergence guarantees is increasing which implies that
ak+1 > 0 for all k ≥ 0. Therefore, the weighting in (3.5) produces in (3.4)
valid global lower bounds on the objective F .
The minimalistic quality of this strategy can also be easily shown. Ap-

plying the weighting described in (3.4) and (3.5) in (2.12) produces an
estimate function expression comprising the initial estimate function plus
a weighted sum of all previous lower bounds, that is

ψk(x) =
k∑
i=1

aiwi(x) + ψ0(x), k ≥ 1. (3.6)

The estimate sequence update at iteration k simply becomes

ψk+1(x) = ψk(x) + ak+1wk+1(x), k ≥ 0. (3.7)

Convergence guarantees accumulate past weights and alleviate the need
to store these weights individually across iterations. Thus, the state of
the algorithm at the beginning of iteration k (the old state) is given by
the iterate xk, estimate function ψk, convergence guarantee Ak, and LCE
Lk. At every iteration, the algorithm needs to compute the auxiliary point
yk+1 and the new LCE Lk+1 to determine the upper bound uk+1(x) which,
in turn, can be used to generate the new iterate xk+1. It also needs to
calculate the new weight ak+1 and the global lower bound wk+1(x) to create
a new estimate function ψk+1 according to (3.7). The new convergence
guarantee Ak+1 is obtained according to (3.5). The bounds uk+1(x) and
wk+1(x) may be correlated and are computed together at this stage. This
basic structure of first-order algorithms for composite problems with a
provable convergence rate is summarized in Algorithm 1.
Here, C is a process that computes the new parameters from the old state

of the algorithm. The subscripts denote which parameters it outputs. Thus,
the design process of a particular algorithm reduces to the derivation of C.

47

Constructing ACGM

Algorithm 1 A basic structure for first-order accelerated algorithms
1: for k = 0, . . . , K − 1 do
2: Lk+1, ak+1, uk+1(x), wk+1(x) = CL,a,u,w(xk, ψk, Ak, Lk)
3: Ak+1 = Ak + ak+1

4: xk+1 = argmin
x∈Rn

uk+1(x)

5: ψk+1(x) = ψk(x) + ak+1wk+1(x)

6: end for

3.1.1 Line-search

An algorithm that overestimates the local Lipschitz constant remains
valid, albeit slow, but underestimation may invalidate the convergence
guarantees. Consequently, an algorithm must employ a validation rule
L that determines whether a candidate LCE L̂k+1 is sufficiently large or
not. A very simple estimation strategy consists of gradually decreasing
candidates by multiplying once at the beginning of every iteration with
rd < 1 until an iteration is reached when the validation rule no longer
holds. This step can be omitted for computational reasons, in which case we
consider that rd = 1. The candidate is then increased during that iteration
by successively multiplying with ru > 1 until the candidate passes the
validation rule. In this context, the validation rule becomes a line-search
stopping criterion (LSSC). The last valid candidate LCE is set as Lk+1

and the search at the next iteration starts from there. The above process
is often referred to in the literature as an Armijo-type [34] backtracking
line-search strategy. Each increase of a candidate constitutes a “backtrack”
because it results in a smaller step size.
Line-search involves only the upper bound uk+1(x) (uniquely determined

by yk+1 and Lk+1) and the new iterate xk+1. Consequently, LSSC function
L is parameterized by candidates x̂k+1, ŷk+1 and L̂k+1 . The structure of a
backtracking line-search first-order method is outlined in Algorithm 2.
Algorithm 2 takes as input the initial estimate function ψ0 (parametrized

by the starting point x0 ∈ Rn, the initial weight A0 ≥ 0, and the initial
curvature γ0 > 0), the total number of iterations K ≥ 1, and, if the
Lipschitz constant is not known in advance, an initial estimate L0 > 0.

3.2 Design Choices

We proceed with the design of ACGM based on the framework found in
Algorithm 2. To maintain the augmented estimate sequence property
(2.35), we enforce the stronger Lyapunov property of the gap sequence
(2.57). However, the first and most important step in the design process is
the selection of upper bounds uk+1(x) and lower bounds wk+1(x).

48

Constructing ACGM

Algorithm 2 A basic structure for first-order accelerated algorithms em-
ploying backtracking line-search
1: for k = 0,...,K-1 do
2: L̂k+1 := rdLk
3: loop
4: âk+1, ûk+1(x), ŵk+1(x) := Ca,u,w(xk, ψk, Ak, L̂k+1)

5: x̂k+1 := argmin
x∈Rn

ûk+1(x)

6: if L(x̂k+1, ŷk+1, L̂k+1) then
7: Break from loop
8: else
9: L̂k+1 := ruL̂k+1

10: end if
11: end loop
12: xk+1 := x̂k+1, Lk+1 := L̂k+1, ak+1 := âk+1

13: wk+1(x) := ŵk+1(x)

14: Ak+1 = Ak + ak+1

15: ψk+1(x) = ψk(x) + ak+1wk+1(x)

16: end for

3.2.1 Upper Bounds

As we have seen in Section 3.1, the obvious choice of the upper bound in
(3.3) has to account for the LCE. The resulting bound takes the form of

uk+1(x) = Qf,Lk+1,yk+1(x) + Ψ(x), k ≥ 0. (3.8)

Note that even if the value of Lf is known beforehand, (3.3) may be a looser
bound on F than (3.8) and may provide less information on the problem
thereby slowing down the algorithm. Hence, we prefer (3.8) in the design
of our algorithm.
Parabola Qf,Lk+1,yk+1(x) can be written in canonical form (2.40) for all

k ≥ 0 as

Qf,Lk+1,yk+1(x) = f(yk+1) + 〈∇f(yk+1),x− yk+1〉+
Lk+1

2
‖x− yk+1‖22

= f(yk+1)−
1

2Lk+1
‖∇f(yk+1)‖22 +

Lk+1

2
‖x− ȳk+1‖22 ,

(3.9)

where
ȳk+1 = yk+1 −

1

Lk+1
∇f(yk+1), k ≥ 0. (3.10)

The canonical form (3.9) can be used to express the optimum point of

49

Constructing ACGM

uk+1(x) in (3.8). We have that

argmin
x∈Rn

uk+1(x) = argmin
x∈Rn

(
uk+1(x)− u∗

k+1

)
= argmin

x∈Rn

(
Ψ(x) +

Lk+1

2
‖x− ȳk+1‖22

)
= prox 1

Lk+1
Ψ(ȳk+1), k ≥ 0. (3.11)

The iterate update in line 5 of Algorithm 2 becomes

xk+1 = Tf,Ψ,Lk+1(yk+1), k ≥ 0, (3.12)

where Tf,Ψ,L(y) denotes the proximal gradient operator of the objective
components f and Ψ using inverse step size L > 0, given by

Tf,Ψ,L(y) = prox 1
L
Ψ

(
y − 1

L
∇f(y)

)
, y ∈ Rn. (3.13)

The LCE Lk+1 must ensure that uk+1(x) is a local upper bound in the
sense of (3.1). Combining (3.1) with (3.12) gives an LCE validation rule in
the form of

F (xk+1) ≤ Qf,Lk+1,yk+1(xk+1) + Ψ(xk+1), k ≥ 0. (3.14)

The value Ψ(xk+1) appears on both sides of the equation. By subtracting it
we obtain the descent condition for f , written as

f(xk+1) ≤ Qf,Lk+1,yk+1(xk+1), k ≥ 0. (3.15)

Thus, the derivation of the upper bounds has given us not only an iterate
update rule that yields xk+1 but also a Lipschitz constant estimation rule
for Lk+1. Both quantities will play a role in the derivation of the lower
bounds as well.

Composite Gradient
To further simplify notation when dealing with the lower bounds and to
compare our method more easily to Nesterov’s FGM, we use Nesterov’s
composite gradient [17], defined as

gL(y)
def
= L(y − argmin

x∈Rn
(Qf,L,y(x) + Ψ(x)), y ∈ Rn, L > 0. (3.16)

We shall see later on that, in this work, the composite gradient need not
be parametrized by f and Ψ.
In FGM, new iterates are given by a gradient descent step as

xk+1 = yk+1 −
1

Lf
∇f(yk+1), k ≥ 0. (3.17)

50

Constructing ACGM

The composite gradient is therefore defined as a substitute for the gradient
in the iterate update (3.12), which becomes

xk+1 = yk+1 −
1

Lk+1
gLk+1(yk+1), k ≥ 0. (3.18)

The new iterate xk+1 satisfies the first-order optimality condition of local
upper bounds uk+1(x) in (3.8). This can be expressed as the existence of a
subgradient ξk+1 of regularizer Ψ at xk+1 such that

∇xQf,Lk+1,yk+1(xk+1) + ξk+1 = 0, k ≥ 0. (3.19)

Expanding the gradient over x term gives

∇f(yk+1) + Lk+1(xk+1 − yk+1) + ξk+1 = 0, k ≥ 0. (3.20)

Therefore ξk+1 is uniquely determined by

ξk+1 = Lk+1(yk+1 − xk+1)−∇f(yk+1), k ≥ 0. (3.21)

Substituting (3.21) in the composite gradient iterate update (3.18) yields

gLk+1(yk+1) = ∇f(yk+1) + ξk+1, k ≥ 0. (3.22)

The form in (3.22) explains the origin of the term composite gradient, as
the sum of the gradient of f at yk+1 and a particular subgradient of Ψ at
xk+1.

3.3 ACGM for Non-strongly Convex Objectives

For simplicity of exposition, we first construct our method for the non-
strongly convex case (μ = μf = μΨ = 0) and we later generalize the
analysis to arbitrary strong convexity.

3.3.1 Lower Bounds

The generation of xk+1 during iteration k ≥ 0 involves two oracle calls:
a call to ∇f at yk+1 and to proxτΨ with step size τ = 1/Lk+1 at point
ȳk+1. As shown in (3.22), this proximal gradient call yields ∇f(yk+1)

and ξk+1 ∈ ∂Ψ(xk+1). We aim to keep the number of oracle calls in our
algorithm to a minimum and we reuse these quantities when constructing
the lower bounds.
The convexity of f yields

f(x) ≥ f(yk+1) + 〈�f(yk+1),x− yk+1〉 , x ∈ Rn, k ≥ 0 (3.23)

and the subdifferentiability of Ψ gives

Ψ(x) ≥ Ψ(xk+1) + 〈ξk+1,x− xk+1〉
= Ψ(xk+1) + 〈ξk+1,x− yk+1〉+ 〈ξk+1,yk+1 − xk+1〉 , x ∈ Rn, k ≥ 0.

(3.24)

51

Constructing ACGM

Adding (3.23) and (3.24) together we obtain

F (x) ≥ f(yk+1) + Ψ(xk+1) + 〈ξk+1,yk+1 − xk+1〉
+
〈
gLk+1(yk+1),x− yk+1

〉
, x ∈ Rn, k ≥ 0.

(3.25)

The right-hand side (RHS) of (3.25) is a global lower bound on F . However,
the augmented estimate sequence property (2.35) and the local upper
bound property (3.1) are based on F (xk+1) whereas (3.25) contains f(yk+1).
The descent condition in (3.15) means that the line search residual, given
by

Nk+1
def
= Qf,Lk+1,yk+1(xk+1)− f(xk+1)

= f(yk+1)− f(xk+1) + 〈∇f(yk+1),xk+1 − yk+1〉

+
Lk+1

2
‖xk+1 − yk+1‖22, k ≥ 0, (3.26)

is non-negative. Furthermore, the backtracking line search procedure is
designed to reduce this residual as much as possible. Therefore, we can
subtract it from the RHS of (3.25) without significantly decreasing the
tightness of the lower bound. We thus obtain

F (x) ≥ F (xk+1) + 〈ξk+1 +∇f(yk+1),yk+1 − xk+1〉 −
Lk+1

2
‖xk+1 − yk+1‖22

+
〈
gLk+1(yk+1),x− yk+1

〉
, x ∈ Rn, k ≥ 0.

(3.27)
The difference between points yk+1 and xk+1 can be expressed using the
composite gradient. Subgradient expression (3.21) combined with (3.22)
gives

gLk+1(yk+1) = Lk+1(yk+1 − xk+1), k ≥ 0. (3.28)

Applying (3.28) and (3.22) in (3.27) produces a simple lower bound, given
by

F (x) ≥ F (xk+1) +
1

2Lk+1
‖gLk+1(yk+1)‖22

+
〈
gLk+1(yk+1),x− yk+1

〉
, x ∈ Rn, k ≥ 0,

(3.29)

which we denote as the relaxed supporting hyperplane property.
We have chosen auxiliary point yk+1 as the support in (3.24) for con-

venience. Choosing xk+1 instead does not alter the analysis, since the
difference between the two points can be expressed using (3.28).

3.3.2 Formulating ACGM

We proceed with the design of our method, ACGM, based on the basic
structure for first-order accelerated algorithms employing backtracking
line-search presented in Algorithm 2. The building blocks are:

1. The composite parabolic upper bounds in (3.8).

52

Constructing ACGM

2. The relaxed supporting hyperplane lower bounds from (3.29), written as

wk+1(x) = F (xk+1) +
1

2Lk+1
‖gLk+1(yk+1)‖22

+
〈
gLk+1(yk+1),x− yk+1

〉
, x ∈ Rn, k ≥ 0.

(3.30)

3. The Lyapunov property of the gap sequence in (2.57) .

The structure of the upper bounds implies that line 5 in Algorithm 2 is the
proximal gradient step (3.12). The local upper bound property of uk+1(x)

in (3.8) also gives a line-search stopping criterion (line 6 in Algorithm 2) in
the form of (3.15).
The lower bounds are hyperplanes. The weighting strategy (3.4) ensures

that all estimate function lower bounds are hyperplanes as well. Then, for
all k ≥ 0, the estimate function ψk along with its augmented variant ψ′

k

are parabolae with the curvature given by γ0, written as

ψk(x) = ψ∗
k +

γ0
2
‖x− vk‖22, ψ′

k(x) = ψ′∗
k +

γ0
2
‖x− vk‖22. (3.31)

Since estimate functions can be written in canonical parabolic form,
differentiating with respect to x the estimate sequence update in line 15 of
Algorithm 2 using lower bound (3.30) results in

γ0(x− vk+1) = γ0(x− vk+1) + ak+1gLk+1(yk+1), x ∈ Rn, k ≥ 0. (3.32)

This gives a vertex update rule in the form of

vk+1 = vk −
ak+1

γ0
gLk+1(yk+1), k ≥ 0. (3.33)

Next, we devise update rules for ak+1 and yk+1 in ACGM such that the
Lyapunov property (2.57) is guaranteed to hold for every k ≥ 0 and for any
algorithmic state. The following result provides a means of accomplishing
this.

Theorem 3. If at iteration k ≥ 0, the descent condition for f in (3.15) holds,
then

Δk+1 +Ak+1 + Bk+1 ≤ Δk,

where subexpressions Ak+1 and Bk+1 are, respectively, defined as

Ak+1
def
=

1

2

(
Ak+1

Lk+1
−

a2k+1

γ0

)
‖gLk+1(yk+1)‖22,

Bk+1
def
=

〈
gLk+1(yk+1), Akxk + ak+1vk −Ak+1yk+1

〉
.

Proof. All the definitions and results within the scope of this proof apply
for any k ≥ 0. Let the tightness of the lower bound wk+1(x) at x be denoted
by the residual Rk+1(x) as

Rk+1(x)
def
= F (x)− F (xk+1)−

1

2Lk+1
‖gLk+1(yk+1)‖22

−
〈
gLk+1(yk+1),x− yk+1

〉
, x ∈ Rn.

(3.34)

53

Constructing ACGM

From (3.29) we have that Rk+1(x) ≥ 0 for all x ∈ Rn. Therefore

AkRk+1(xk) + ak+1Rk+1(x
∗) ≥ 0. (3.35)

By expanding terms we obtain

AkF (xk) + ak+1F (x∗)−Ak+1F (xk+1)−
Ak+1

2Lk+1
‖gLk+1(yk+1)‖22

−
〈
gLk+1(yk+1), Akxk + ak+1x

∗ −Ak+1yk+1

〉
≥ 0.

(3.36)

This is equivalent to

Ak(F (xk)− F (x∗))−Ak+1(F (xk+1)− F (x∗)) ≥ Ak+1

2Lk+1
‖gLk+1(yk+1)‖22

+
〈
gLk+1(yk+1), Akxk + ak+1x

∗ −Ak+1yk+1

〉
.

(3.37)
To isolate the gap sequence terms, we add to both sides of (3.37) the
quantity

Vk+1
def
=

γ0
2
‖vk − x∗‖22 −

γ0
2
‖vk+1 − x∗‖22 (3.38)

to obtain

Δk+1 +
Ak+1

2Lk+1
‖gLk+1(yk+1)‖22

+
〈
gLk+1(yk+1), Akxk + ak+1x

∗ −Ak+1yk+1

〉
+ Vk+1 ≤ Δk.

(3.39)

Using (3.33) in (3.38) we obtain

Vk+1 =
γ0
2

(‖vk‖2 − ‖vk+1‖2) + γ0 〈vk+1 − vk,x∗〉

=
γ0
2
〈vk − vk+1,vk + vk+1〉 −

〈
gLk+1(yk+1), ak+1x

∗〉
=

1

2

〈
ak+1gLk+1(yk+1), 2vk −

ak+1

γ0
gLk+1(yk+1)

〉
−
〈
gLk+1(yk+1), ak+1x

∗〉
= −ak+1

2γ0
‖gLk+1(yk+1)‖22 +

〈
gLk+1(yk+1), ak+1vk − ak+1x

∗〉 . (3.40)

Substituting (3.40) in (3.39) and rearranging terms completes the proof.

A sufficient condition for (2.57) to hold is to have Ak+1 ≥ 0 and Bk+1 ≥ 0

for every k ≥ 0. Since ‖gLk+1(yk+1)‖22 is a non-negative quantity, Ak+1 ≥ 0

can be ensured for any possible algorithmic state if

Ak+1γ0 ≥ Lk+1a
2
k+1, k ≥ 0. (3.41)

However, the angle between Akxk + ak+1vk and gLk+1(yk+1) may be obtuse,
meaning that Bk+1 may be non-positive. Again, to account for this pos-
sibility without additional oracle queries, we impose Bk+1 = 0 by setting
auxiliary point yk+1 to be

yk+1 =
1

Ak+1
(Akxk + ak+1vk) , k ≥ 0. (3.42)

54

Constructing ACGM

Scale γ0 invariance
The weight condition in (3.41) as well as the auxiliary point update in
(3.42) and the vertex update in (3.33) are, respectively, equivalent for all
k ≥ 0 to

Ak+1

γ0
≥ Lk+1

(
ak+1

γ0

)2

, (3.43)

yk+1 =
1

Ak+1

γ0

(
Ak
γ0
xk +

ak+1

γ0
vk

)
, (3.44)

vk+1 = vk −
ak+1

γ0
gLk+1(yk+1). (3.45)

In addition, the Lipschitz constant estimation procedure, whereby the
validation rule corresponds to the descent condition in (3.15), and the
composite gradient expression in (3.28) do not depend on the weights and
convergence guarantees. Thus the behavior of the algorithm is not affected
by the scale of γ0. To reduce the overall computation cost, we set γ0 to 1.
To obtain the largest increase in the convergence guarantees, we enforce

equality in (3.41), namely

Lk+1a
2
k+1 = Ak+1, k ≥ 0. (3.46)

The equality in (3.46) can be recast as a quadratic equation in ak+1 in the
form of

Lk+1a
2
k+1 − ak+1 −Ak = 0, k ≥ 0. (3.47)

Given that Lk+1 > 0 and Ak ≥ 0, (3.47) has only one positive root ak+1. The
closed form expression of this root constitutes a weight update rule, given
by

ak+1 =
1 +

√
1 + 4Lk+1Ak
2Lk+1

, k ≥ 0. (3.48)

There is no need to compute the composite gradient explicitly. Instead,
by using the definition of the composite gradient in (3.18), the update rule
for the augmented estimate sequence vertices in (3.33) can be written in
terms of the iterates and the auxiliary points as

vk+1 = vk + ak+1Lk+1(xk+1 − yk+1), k ≥ 0. (3.49)

The weight update in (3.48), the auxiliary point update in (3.42), and
the upper bound expression in (3.8) leading to the iterate update in (3.12)
make up the parameter generation procedure Ca,u,w in the design pattern
given by Algorithm 2. By replacing them accordingly in Algorithm 2, along
with the LSSC in (3.15) and the vertex update in (3.49), we obtain the
ACGM algorithm for non-strongly convex objectives listed in Algorithm 3.

55

Constructing ACGM

Algorithm 3 ACGM for non-strongly convex objectives in estimate se-
quence form
ACGM(x0, L0, A0, ru, rd, K)
1: v0 = x0
2: for k = 0, . . . , K − 1 do
3: L̂k+1 := rdLk
4: loop
5: âk+1 :=

1+
√

1+4L̂k+1Ak

2L̂k+1

6: Âk+1 := Ak + âk+1

7: ŷk+1 :=
1

Âk+1
(Akxk + âk+1vk)

8: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
9: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1(x̂k+1) then
10: Break from loop
11: else
12: L̂k+1 := ruL̂k+1

13: end if
14: end loop
15: Lk+1 = L̂k+1, ak+1 = âk+1, Ak+1 = Âk+1

16: xk+1 = x̂k+1, yk+1 = ŷk+1

17: vk+1 = vk + ak+1Lk+1(xk+1 − yk+1)

18: end for

3.3.3 Extrapolated Form

ACGM exhibits an interesting property that alleviates the need to explicitly
maintain the vertices.

Lemma 3. The estimate sequence vertices can be obtained from the main
iterates through extrapolation, namely

vk+1 = xk +
Ak+1

ak+1
(xk+1 − xk), k ≥ 0. (3.50)

Proof. For ease of exposition, we accompany our analytical approach with
arguments from Euclidean geometry.
In the first iteration (k = 0), we have that v0 = x0. Since auxiliary point
y1 is a convex combination between v0 and x0, it is also equal to x0. The
composite gradient gL1(y1) then becomes

gL1(y1) = L1(y1 − x1) = −L1(x1 − x0). (3.51)

Vertex v1 is obtained from v0 = x0 by adding a multiple of the composite
gradient gL1(y1), as

v1 = v0 − a1gL1(y1)
(3.51)
= x0 + a1L1(x1 − y1) (3.46)= x1 +

A1

a1
(x1 − x0). (3.52)

56

Constructing ACGM

Figure 3.1(a) provides a visual proof of (3.52).
For subsequent (k ≥ 1) iterations, we have that

xk+1 − yk+1 = −
1

Lk+1
gLk+1(yk+1)

(3.46)
= −

a2k+1

Ak+1
gLk+1(yk+1) (3.53)

vk+1 − vk = −ak+1gLk+1(yk+1) (3.54)

Therefore
vk+1 − vk =

Ak+1

ak+1
(xk+1 − yk+1). (3.55)

From (3.42) we also have that

vk − xk =
Ak+1

ak+1
(yk+1 − xk). (3.56)

Adding together (3.55) and (3.56), we obtain the desired result. The ex-
trapolation rule also follows from the parallelism and proportion in (3.55)
combined with the collinearity and proportion in (3.56) using the Thales
intercept theorem, as shown in Figure 3.1(b).

�
��
�
��
�
�

�
�

�
�

�
�

�
�

�
�

���

� �
�
�

�
�

�
�

��
�
���

� �
�
�

(a) First iteration k = 0

��

�� ��

� �

�� ��

�� ��

� ���

����

��

����

����

��
��� �	

���
� �

��� �

�
�

	
�
�
�

�
	
�
��
� �

�
�
�
�

(b) Subsequent iterations k ≥ 1

Figure 3.1. Collinearity of yk+2, vk+1, xk+1, and xk follows from the Thales intercept
theorem

To bring our notation closer to that of FISTA and FISTA-CP, we define
the following sequence {tk}k≥0 as

tk
def
=

√
LkAk, k ≥ 0. (3.57)

For k ≥ 0 we have that

tk+1 =
√

Lk+1Ak+1
(3.46)
=

√
Ak+1

a2k+1

Ak+1 =
Ak+1

ak+1
. (3.58)

Therefore, tk+1 is the vertex extrapolation factor in Lemma 3.

57

Constructing ACGM

The extrapolation property in Lemma 3 extends to the auxiliary point
yk+1. To be able to use extrapolation in the first iteration, we further
define x−1

def
= x0. Using sequence {tk}k≥0, we can express this property

succinctly.

Proposition 1. At every iteration k ≥ 0, the new auxiliary point yk+1 can
be obtained from the previous two iterates through extrapolation as

yk+1 = xk + βk(xk − xk−1),

where
βk =

tk − 1

tk+1
.

Proof. For k = 0 we have x0 = x−1 so

y1 =
A0x0 + a1v0

A1
=

A0x0 + a1x0
A1

= x0 = x0 +
t0 − 1

t1
(x0 − x−1). (3.59)

Note that β0 can take any real value. We choose β0 =
t0−1
t1

merely to have
the same form for all k ≥ 0.
For k ≥ 1 we have

yk+1 = xk +
ak+1

Ak+1
(vk − xk). (3.60)

Applying Lemma 3 at k − 1 we obtain

yk+1 = xk +
ak+1

Ak+1
(xk−1 +

Ak
ak

(xk − xk−1)− xk)

= xk +
tk(xk − xk−1)− (xk − xk−1)

tk+1

= xk +
tk − 1

tk+1
(xk − xk−1). (3.61)

A simple qualitative visual proof of the extrapolation property can also be
found in Figure 3.1(a) for y2 and in Figure 3.1(b) for yk when k ≥ 3.

From definition (3.57) it is clear that for every k ≥ 0 it is not necessary
to maintain both Ak and tk simultaneously. Therefore, we can derive a
recursion rule for tk independently of Ak.

Proposition 2. The vertex extrapolation factors obey the following recur-
sion rule:

t2k+1 − tk+1 −
Lk+1

Lk
t2k = 0, k ≥ 0.

Proof. First, based on (3.57) and (3.46) we derive the following expressions
for all k ≥ 0:

LkAk = t2k, (3.62)

Lk+1ak+1 =
Ak+1

ak+1
= tk+1. (3.63)

58

Constructing ACGM

The convergence guarantee recursion rule (3.5) can be written as

Ak+1 − ak+1 −Ak = 0, k ≥ 0. (3.64)

Since all LCEs are positive we can write the above as

Lk+1Ak+1 − Lk+1ak+1 −
Lk+1

Lk
LkAk = 0, k ≥ 0. (3.65)

Substituting (3.62) and (3.63) in (3.65) completes the proof.

From the definition in (3.57), we have that tk+1 > 0 for all k ≥ 0. The
quadratic equation in Proposition 2 has only one positive root, whose
expression gives an update rule for tk+1 in the form of

tk+1 =
1 +

√
1 + 4

Lk+1
Lk

t2k

2
, k ≥ 0. (3.66)

Based on Propositions 1 and 2, we can formulate ACGM for non-strongly
convex objectives based on extrapolation, as listed in Algorithm 4. Algo-
rithms 3 and 4 differ in form but are theoretically guaranteed to produce
identical iterates.
Since convergence guarantee Ak is not longer maintained explicitly, it

can be obtained from tk as

Ak =
t2k
Lk
, k ≥ 0. (3.67)

3.4 ACGM for Objectives with Arbitrary Strong Convexity

We continue the design of ACGM, this time for any 0 ≤ μf < Lf and any
μΨ ≥ 0. The design process follows closely the one previously shown in
Section 3.3. While strong convexity poses new challenges, most of the
properties derived in Section 3.3 carry over to this scenario.

3.4.1 Strong Convexity Transfer

To simplify the derivations, we transfer all strong convexity from Ψ to f , as

f ′(x) = f(x) +
μΨ

2
‖x− x0‖22, (3.68)

Ψ′(x) = Ψ(x)− μΨ

2
‖x− x0‖22, (3.69)

for all x ∈ Rn. As we shall see later, the center of strong convexity can be
any point in Rn. We choose x0 only for convenience. Likewise, the analysis
can be performed with strong convexity transfered from f to Ψ. However,
(3.68) implies that f ′ has Lipschitz gradient with constant Lf ′ = Lf + μΨ

59

Constructing ACGM

Algorithm 4 ACGM for non-strongly convex objectives based on extrapo-
lation
ACGM(x0, L0, A0, ru, rd, K)
1: x−1 = x0
2: t0 =

√
L0A0

3: for k = 0, ..., K − 1 do
4: L̂k+1 := rdLk
5: loop

6: t̂k+1 :=
1+

√
1+4

L̂k+1
Lk

t2k

2

7: ŷk+1 := xk +
tk−1
t̂k+1

(xk − xk−1)

8: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
9: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1(x̂k+1) then
10: Break from loop
11: else
12: L̂k+1 := ruL̂k+1

13: end if
14: end loop
15: Lk+1 = L̂k+1, tk+1 = t̂k+1

16: xk+1 = x̂k+1

17: end for

and strong convexity parameter μf ′ = μ whereas from (3.69) it follows
that function Ψ′ does not have known strong convexity. Therefore, Ψ′ has
the same properties as Ψ in Section 3.3 and f ′ is only slightly altered,
which allows us to reuse many of the results obtained there. Naturally, the
transfer in (3.68) and (3.69) does not alter the objective function, that is

F (x) = f(x) + Ψ(x) = f ′(x) + Ψ′(x), x ∈ Rn, (3.70)

and gives rise to the following remarkable property.

Lemma 4. The gap between the smooth part and its parabolic upper bound
does not change with strong convexity transfer, namely

Qf ′,L+μΨ,y(x)− f(x) = Qf,L,y(x)− f ′(x), x,y ∈ Rn, L > 0.

Proof. By expanding, rearranging, and canceling out terms we get

Qf ′,L+μΨ,y = f ′(y) +
〈
�f ′(y),x− y

〉
+

L′
k+1

2
‖x− y‖22

= f(y) +
μΨ

2
‖y − x0‖22 + 〈�f(y) + μΨ(y − x0),x− y〉

+
Lk+1 + μΨ

2
‖x− y‖22 +

μΨ

2
‖x− x0‖22 −

μΨ

2
‖x− x0‖22

= f(y) + 〈�f(y),x− y〉+ Lk+1

2
‖x− y‖22 −

μΨ

2
‖x− x0‖22

= Qf,L,y(x) +
μΨ

2
‖x− x0‖22, x,y ∈ Rn, L > 0. (3.71)

60

Constructing ACGM

Subtracting (3.68) from (3.71) completes the proof.

Let L′
k+1

def
= Lk+1 + μΨ for all k ≥ 0. From Lemma 4 it follows that the

descent condition for f ′, given by

f ′(xk+1) ≤ Qf ′,L′
k+1,yk+1

(xk+1), k ≥ 0, (3.72)

is equivalent at every iteration k ≥ 0 to the corresponding condition for f ,
stated in (3.15).
By adding the equality in Lemma 4 and the objective invariance expres-

sion in (3.70), we obtain that the corresponding upper bounds are the same
as well, namely

uk+1(x) = Qf ′,L′
k+1,yk+1

+Ψ′(x) = Qf,Lk+1,yk+1 +Ψ(x), (3.73)

for all x ∈ Rn and k ≥ 0. Therefore, strong convexity transfer does not
change the iterate update, that is

xk+1 = Tf ′,Ψ′,L′
k+1

(yk+1) = Tf,Ψ,Lk+1(yk+1), k ≥ 0. (3.74)

3.4.2 Lower Bounds

In the strongly convex case, lower bounds can be constructed as a simple
generalization of the relaxed supporting hyperplanes in (3.29).
We define the relaxed supporting generalized parabola RL,y(x) at point
y using inverse step size L as

RL,y(x)
def
= F (Tf,Ψ,L(y)) +

1

2L
‖gL(y)‖22

+ 〈gL(y),x− y〉+
μ

2
‖x− y‖22, x ∈ Rn.

(3.75)

The relaxed supporting generalized parabola is invariant to strong convex-
ity transfer and, like the composite gradient, it need not be parametrized
by f and Ψ.

Proposition 3. If the descent condition in (3.15) holds at iteration k ≥ 0,
then the objective F is lower bounded as

F (x) ≥ RL′
k+1,yk+1

(x), x ∈ Rn.

Proof. From the strong convexity of f ′ we have a supporting parabola at
yk+1, given by

f ′(x) ≥ f ′(yk+1) +
〈
�f ′(yk+1),x− yk+1

〉
+

μ

2
‖x− yk+1‖22, (3.76)

for all x ∈ Rn and k ≥ 0. The definition of the composite gradient implies
the existence of a vector ξ′

k+1 ∈ δΨ′(xk+1) such that

gL′
k+1

(yk+1) = �f ′(yk+1) + ξ
′
k+1, k ≥ 0. (3.77)

61

Constructing ACGM

From the convexity of Ψ′ we have a supporting hyperplane at xk+1

Ψ′(x) ≥ Ψ′(xk+1) +
〈
ξ′
k+1,x− xk+1

〉
(3.77)
= Ψ′(xk+1) +

〈
gL′

k+1
(yk+1)−�f ′(yk+1),x− xk+1

〉
, (3.78)

for all x ∈ Rn and k ≥ 0. Lemma 4 implies that the line search residual for
f is the same as the one for f ′. Therefore

Nk+1 = Qf,Lk+1,yk+1(xk+1)− f(xk+1) = Qf ′,L′
k+1,yk+1

(xk+1)− f ′(xk+1),

(3.79)
for all k ≥ 0. The line search condition in (3.15) ensures that Nk+1 is
non-negative and negligibly small. We add together (3.76), (3.78), and the
residual Nk+1 in (3.79), rearrange terms along the lines of Subsection 3.3.1,
and we reach the desired result.

3.4.3 Generalizing ACGM to Arbitrary Strong Convexity

We construct ACGM in the strongly convex case using the same procedure
as outlined in Subsection 3.3.2. The only difference lies in the choice
of lower bounds. This time, the building blocks used in basic pattern
Algorithm 2 are:

1. The composite parabolic upper bounds in (3.8).

2. The relaxed supporting parabola lower bounds from Proposition 3, given
by

wk+1(x) = F (xk+1) +
1

2L′
k+1

‖gL′
k+1

(yk+1)‖22

+
〈

gL′
k+1

(yk+1),x− yk+1

〉
+

μ

2
‖x− yk+1‖22, x ∈ Rn, k ≥ 0.

(3.80)

3. The Lyapunov property of the gap sequence in (2.57) .

Using the same upper bounds as in Subsection 3.3.2 means that line 5 in
Algorithm 2 is the proximal gradient step (3.12) and line 6 in Algorithm 2
is also (3.15) (see Subsection 3.4.1) .
The lower bounds are now generalized parabolae. Hence, the reasoning

in Subsection 2.6.1 applies to ψk and ψ′
k, which are given by (2.46) and

(2.47), respectively, for all k ≥ 0. Substituting lower bound (3.80) in the
estimate sequence update in line 15 of Algorithm 2 and differentiating
with respect to x gives

γk+1(x− vk+1) = γk(x− vk)

+ak+1

(
gL′

k+1
(yk+1) + μ(x− yk+1)

)
, x ∈ Rn, k ≥ 0,

(3.81)

62

Constructing ACGM

which leads, by matching the coefficients of the polynomials on both sides
of (3.81), to the following curvature and vertex update rules for all k ≥ 0:

γk+1 = γk + ak+1μ, (3.82)

vk+1 =
1

γk+1

(
γkvk − ak+1(gL′

k+1
(yk+1)− μyk+1)

)
. (3.83)

The update in (3.82) implies by induction that the curvature can be
obtained directly from the convergence guarantees as

γk = γ0 +

(
k∑
i=1

ai

)
μ = (γ0 −A0μ) + Akμ, k ≥ 0. (3.84)

We proceed with the design of ACGM in the same way as in the non-
strongly convex case. We formulate update rules for ak+1 and yk+1 in
ACGM to ensure that (2.57) holds at every iteration k ≥ 0 for any algo-
rithmic state. Theorem 3 generalizes to arbitrary strong convexity as
follows.

Theorem 4. If at iteration k ≥ 0, the descent condition for f in (3.15) holds,
then

Δk+1 +Ak+1 + Bk+1 ≤ Δk,

where subexpressions Ak+1, Bk+1, and sk+1 are, respectively, defined as

Ak+1
def
=

1

2

(
Ak+1

L′
k+1

−
a2k+1

γk+1

)
‖gL′

k+1
(yk+1)‖22, (3.85)

Bk+1
def
=

1

γk+1

〈
gL′

k+1
(yk+1)−

μ

2(Akγk+1 + ak+1γk)
sk+1, sk+1

〉
, (3.86)

sk+1
def
= Akγk+1xk + ak+1γkvk − (Akγk+1 + ak+1γk)yk+1. (3.87)

Proof. As in the case of Theorem 3, we assume that k ≥ 0 throughout
the scope of this proof. When dealing with arbitrary strong convexity,
the residual describing the tightness of the lower bound wk+1(x) at x is
similarly given by

Rk+1(x)
def
= F (x)− F (xk+1)−

1

2L′
k+1

‖gL′
k+1

(yk+1)‖22

−
〈

gL′
k+1

(yk+1),x− yk+1

〉
− μ

2
‖x− yk+1‖22, x ∈ Rn.

(3.88)

We introduce the reduced composite gradient Gk+1 as

Gk+1
def
= gL′

k+1
(yk+1)− μyk+1. (3.89)

This simplifies the non-constant polynomial term in residual expression
(3.88) as 〈

gL′
k+1

(yk+1),x− yk+1

〉
+

μ

2
‖x− yk+1‖22

= 〈Gk+1 + μyk+1,x− yk+1〉+
μ

2
‖x‖22 +

μ

2
‖yk+1‖22 − μ 〈x,yk+1〉

= 〈Gk+1,x− yk+1〉+
μ

2
‖x‖22 −

μ

2
‖yk+1‖22. (3.90)

63

Constructing ACGM

Proposition 3 ensures that Rk+1(x) ≥ 0 for all x ∈ Rn. As in Theorem 3,
the central argument of the proof is built from the residual as

AkRk+1(xk) + ak+1Rk+1(x
∗) ≥ 0. (3.91)

Note that while (3.91) has the same form as (3.35), (3.91) is more general.
By expanding the residual expressions using (3.88) and (3.90), (3.91)

becomes

Ak(F (xk)− F (x∗))−Ak+1(F (xk+1)− F (x∗)) ≥ Ck+1, (3.92)

where the lower bound Ck+1 is defined as

Ck+1
def
= C(1)k+1 + 〈Gk+1, Akxk + ak+1x

∗ −Ak+1yk+1〉

+
Akμ

2
‖xk‖22 +

ak+1μ

2
‖x∗‖22 −

Ak+1μ

2
‖yk+1‖22,

(3.93)

where
C(1)k+1

def
=

Ak+1

2L′
k+1

‖gL′
k+1

(yk+1)‖22. (3.94)

Using the reduced composite gradient definition (3.89), we expand C(1)k+1 as

C(1)k+1 = Ak+1 +
a2k+1

2γk+1
‖Gk+1 + μyk+1‖22

= Ak+1 + C(2)k+1 +
a2k+1μ

γk+1
〈Gk+1,yk+1〉+

a2k+1μ
2

2γk+1
‖yk+1‖22, (3.95)

where

C(2)k+1
def
=

a2k+1

2γk+1
‖Gk+1‖22. (3.96)

Combining the vertex update in (3.83) with (3.89), we obtain that

ak+1Gk+1 = γkvk − γk+1vk+1. (3.97)

Substituting (3.97) in C(2)k+1 yields

C(2)k+1 =
1

2γk+1
‖γkvk − γk+1vk+1‖22 =

γ2
k

2γk+1
‖vk‖22 +

γk+1

2
‖vk+1‖22 − γk 〈vk,vk+1〉

=
γk+1

2
‖vk+1‖22 −

γ2
k

2γk+1
‖vk‖22 +

γk
γk+1

〈γkvk − γk+1vk+1,vk〉

(3.97)
=

γk+1

2
‖vk+1‖22 −

γk
2
‖vk‖22 +

γkγk+1 − γ2
k

2γk+1
‖vk‖22 +

aγk
γk+1

〈Gk+1,vk〉

(3.82)
=

γk+1

2
‖vk+1‖22 −

γk
2
‖vk‖22 +

μ

2γk+1
ak+1γk‖vk‖22 +

1

γk+1
〈Gk+1, ak+1γkvk〉 .

(3.98)

We also define coefficient Yk+1 as

Yk+1
def
= Ak+1γk+1 − a2k+1μ

(3.82)
= (Ak + ak+1)(γk + ak+1μ)− a2k+1μ

= Akγk+1 + ak+1γk. (3.99)

64

Constructing ACGM

Combining (3.95) and (3.98) in (3.93), rearranging terms, and applying
(3.99) yields

Ck+1 = Ak+1 + Vk+1 +
1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1, (3.100)

where Sk+1 and Vk+1 are, respectively, defined as

Sk+1
def
= Akγk+1‖xk‖22 + ak+1γk‖vk‖22 − Yk+1‖yk+1‖22, (3.101)

Vk+1
def
=

γk+1

2
‖vk+1‖22 −

γk
2
‖vk‖22 + 〈Gk+1, ak+1x

∗〉+ ak+1μ

2
‖x∗‖22. (3.102)

Applying (3.97) and (3.82) in (3.102), we obtain

Vk+1 =
γk+1

2
‖vk+1‖22 −

γk
2
‖vk‖22 + 〈γkvk − γk+1vk+1,x

∗〉+ γk+1 − γk
2

‖x∗‖22

=
γk+1

2
‖vk+1 − x∗‖22 −

γk
2
‖vk − x∗‖22. (3.103)

Therefore, (3.102) is merely the straightforward generalization of (3.38)
that handles arbitrary strong convexity.
Putting together (3.93), (3.100), and (3.103), we obtain

Δk+1 +Ak+1 +
1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1 ≤ Δk. (3.104)

For brevity, we define ωk+1 as

ωk+1
def
=

ak+1γk
Yk+1

. (3.105)

This quantity will be used later on in formulating a monotone variant of
ACGM. Residuals sk+1 and Sk+1 can thus be written as

sk+1 = Yk+1((1− ωk+1)xk + ωk+1vk − yk+1), (3.106)

Sk+1 = Yk+1

(
(1− ωk+1)‖xk‖22 + ωk+1‖vk‖22 − ‖yk+1‖22

)
. (3.107)

Residual Sk+1 can be expressed in terms of sk+1 using the following
identity

(1− ωk+1)‖xk‖22 + ωk+1‖vk‖22 = ((1− ωk+1)xk + ωk+1vk)
2

+(1− ωk+1)ωk+1‖xk − vk‖22.
(3.108)

The proof of (3.108) is obtained simply by rearranging terms. Using (3.106)
and (3.108) in (3.107) we obtain that

Sk+1 = Yk+1

(
((1− ωk+1)xk + ωk+1vk)

2 − ‖yk+1‖22
)
+ S

(1)
k+1

=

〈
1

Yk+1
sk+1 + 2yk+1, sk+1

〉
+ S

(1)
k+1, (3.109)

where S
(1)
k+1 is defined as

S
(1)
k+1

def
= Yk+1(1− ωk+1)ωk+1‖xk − vk‖22

=
ak+1Akγkγk+1

Akγk+1 + ak+1γk
‖xk − vk‖22. (3.110)

65

Constructing ACGM

The square term ‖xk − vk‖22 is always non-negative, hence

S
(1)
k+1 ≥ 0. (3.111)

Putting together (3.89), (3.109), and (3.111), we obtain that

1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1

≥ 1

γk+1

〈
Gk+1 +

μ

2

(
1

Yk+1
sk+1 + 2yk+1

)
, sk+1

〉

=
1

γk+1

〈
Gk+1 + μyk+1 +

μ

2Yk+1
sk+1, sk+1

〉

=
1

γk+1

〈
gL′

k+1
(yk+1) +

μ

2Yk+1
sk+1, sk+1

〉
. (3.112)

Combining (3.104) with (3.112) gives the desired result.

Theorem 4 implies that the Lyapunov property of the gap sequence in
(2.57) holds if, for any algorithmic state, Ak+1 ≥ 0 and Bk+1 ≥ 0. Again,
because the vectors in inner product Bk+1 may form an obtuse angle, we
enforce Bk+1 = 0 by setting sk+1 = 0, which leads to an update rule for the
auxiliary point in the form of

yk+1 =
1

Akγk+1 + ak+1γk
(Akγk+1xk + ak+1γkvk) , k ≥ 0. (3.113)

Inequality Ak+1 ≥ 0, by virtue of the non-negativity of ‖gL′
k+1

(yk+1)‖22,
becomes

Ak+1γk+1 ≥ a2k+1L
′
k+1, k ≥ 0. (3.114)

Now that we have derived the expressions for the auxiliary point in
(3.113) and the weights in (3.119), we can revert to original constituents f

and Ψ and the corresponding LCE Lk+1. The accumulated weight update
becomes

Ak+1γk+1 ≥ a2k+1(Lk+1 + μΨ), k ≥ 0, (3.115)

which, using (3.5) and (3.82), can be cast as a quadratic inequality in ak+1,
given by

(Lk+1 − μf)a
2
k+1 − (γk + Akμ)ak+1 −Akγk ≤ 0, k ≥ 0. (3.116)

Lemma 5. At every iteration k ≥ 0, we have that Lk+1 > μf .

Proof. We have seen in Subsection 3.4.1 that transferring strong convexity
between the two components f and Ψ does not alter the algorithm. This
transfer can occur in the opposite direction and function f(x)− μf

2 ‖x−x0‖22
has the LCE given by Lk+1 − μf . Therefore Lk+1 − μf > 0.

66

Constructing ACGM

From (3.115) and Lemma 5, taking into account that ak+1 > 0, Ak ≥ 0,
γk > 0 for all k ≥ 0, we obtain that

ak+1 ≤ E(γk, Ak, Lk+1), k ≥ 0, (3.117)

where expression E(γk, Ak, Lk+1) is given by

E(γk, Ak, Lk+1)
def
=

γk + Akμ +
√
(γk + Akμ)2 + 4(Lk+1 − μf)Akγk

2(Lk+1 − μf)
.

(3.118)
We choose the most aggressive accumulated weight update by enforcing

equality in (3.114). Thus, we obtain

(Lk+1 + μΨ)a
2
k+1 = Ak+1γk+1, (3.119)

which translates into an update rule for ak+1, given by

ak+1 = E(γk, Ak, Lk+1). (3.120)

The vertex update in (3.83) can be written without the composite gradient
for all k ≥ 0 as

γk+1vk+1 = γkvk − ak+1(L
′
k+1(yk+1 − xk+1)− μyk+1)

= γkvk + ak+1(Lk+1 + μΨ)xk+1 − ak+1(Lk+1 − μf)yk+1. (3.121)

By inserting in Algorithm 2 the process Ca,u,w comprising the weight up-
date in (3.120) and the iterate generator in (3.12), together with the LSSC
in (3.15) and the vertex update in (3.121), we obtain a variant of ACGM for
objectives with arbitrary strong convexity as listed in Algorithm 5. Note
that scale invariance applies here as well and we can assume that γ0 = 1.
However, Nesterov’s FGM does not make this assumption and for better
comparison with this method, we impose no restrictions on γ0 in ACGM at
this stage, besides positivity.

Extrapolated form
We show that ACGM can be written in an extrapolated form for strongly-
convex objectives as well. First, Lemma 3 generalizes without modification.

Lemma 6. When dealing with arbitrary strong convexity, the estimate
sequence vertices can be obtained from main iterates through extrapolation,
namely

vk+1 = xk +
Ak+1

ak+1
(xk+1 − xk), k ≥ 0.

Proof. This time, for the sake of brevity, we utilize only analytical argu-

67

Constructing ACGM

Algorithm 5 ACGM in estimate sequence form
ACGM(x0, L0, A0, γ0, ru, rd, μf , μΨ, K)
1: v0 = x0
2: μ = μf + μΨ

3: for k = 0, ..., K − 1 do
4: L̂k+1 := rdLk
5: loop

6: âk+1 :=
1

2(L̂k+1−μf)

(
γk + Akμ +

√
(γk + Akμ)2 + 4(L̂k+1 − μf)Akγk

)
7: Âk+1 := Ak + âk+1

8: γ̂k+1 := γk + âk+1μ

9: ŷk+1 :=
1

Akγ̂k+1+âk+1γk
(Akγ̂k+1xk + âk+1γkvk)

10: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
11: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1(x̂k+1) then
12: Break from loop
13: else
14: L̂k+1 := ruL̂k+1

15: end if
16: end loop
17: Lk+1 = L̂k+1, Ak+1 = Âk+1, ak+1 = âk+1, γk+1 = γ̂k+1

18: xk+1 = x̂k+1, yk+1 = ŷk+1

19: vk+1 =
1

γk+1
(γkvk + ak+1(Lk+1 + μΨ)xk+1 − ak+1(Lk+1 − μf)yk+1)

20: end for

ments and omit the visual proof. Combining (3.113) with (3.121) yields

vk+1 =
γk

γk+1

(ak+1γk + Akγk+1)yk+1 −Akγk+1xk
ak+1γk

+
ak+1(Lk+1 + μΨ)

γk+1
xk+1 −

ak+1(Lk+1 − μf)

γk+1
yk+1

=
ak+1γk + Akγk+1 − a2k+1(Lk+1 − μf)

ak+1γk+1
yk+1

+
ak+1(Lk+1 + μΨ)

γk+1
xk+1 −

Ak
ak+1

xk, k ≥ 0. (3.122)

Two subexpressions in (3.122) can be simplified using (3.119). First, the
coefficient of yk+1 is proportional to

ak+1γk + Akγk+1 − a2k+1(Lk+1 − μf)

= ak+1γk + Akγk+1 −Ak+1γk+1 − a2k+1μ = 0, k ≥ 0.
(3.123)

Also, the coefficient of xk+1 can be written as

ak+1(Lk+1 + μΨ)

γk+1
=

Ak+1

ak+1
, k ≥ 0. (3.124)

Finally, we eliminate the yk+1 term in (3.122) based on (3.123), we rewrite
the coefficient of xk+1 using (3.124), and get the desired result.

68

Constructing ACGM

Sequence {tk}k≥0 generalizes here to

tk
def
=

√
(Lk + μΨ)Ak

γk
, k ≥ 0. (3.125)

The terms of this sequence are vertex extrapolation factors for k ≥ 1

because

tk+1 =

√
(Lk+1 + μΨ)Ak+1

γk+1

(3.119)
=

√
A2
k+1

a2k+1

=
Ak+1

ak+1
, k ≥ 0. (3.126)

Based on Lemma 6, we seek a generalization of Proposition 1 to support
arbitrary strong convexity. To use extrapolation in the first iteration we
maintain the artificial iterate x−1

def
= x0. We introduce the local inverse

condition number
qk

def
=

μ

L′
k

=
μ

Lk + μΨ
, k ≥ 0. (3.127)

Using the notation in (3.125) and (3.127), we can express the curvature
ratio γk/γk+1 as

γk
γk+1

= 1− ak+1μ

γk+1
= 1− Ak+1ak+1μ

Ak+1γk+1

(3.119)
= 1− ak+1Ak+1μ

(Lk+1 + μΨ)a2k+1

= 1− qk+1tk+1, k ≥ 0. (3.128)

Proposition 4. At every iteration k ≥ 0, the new auxiliary point yk+1 can
be obtained from the previous iterates by extrapolation as

yk+1 = xk + βk(xk − xk−1),

where
βk =

tk − 1

tk+1

1− qk+1tk+1

1− qk+1
.

Proof. For k = 0, (3.113) implies that

y1 =
1

A0γ1 + a1γ0
(A0γ1x0 + a1γ0v0) = x0

= x0 +
t0 − 1

t1

1− q1t1
1− q1

(x0 − x−1). (3.129)

When k ≥ 1, from (3.113) and Lemma 6 we have that

yk+1 =
1

Akγk+1 + ak+1γk
(Akγk+1xk + ak+1γk(xk−1 + tk(xk − xk−1)))

= xk +
1

Akγk+1 + ak+1γk
(ak+1γk(tk − 1)xk + ak+1γk(1− tk)xk−1)

= xk + βk(xk − xk−1), (3.130)

69

Constructing ACGM

where

βk =
ak+1γk (tk − 1)

Akγk+1 + ak+1γk

(3.126)
=

tk − 1

tk+1

Ak+1γk
Akγk+1 + ak+1γk

(3.5)
=

tk − 1

tk+1

γk
γk+1

Ak+1γk+1−ak+1(γk+1−γk)
Ak+1γk+1

(3.82)
=

tk − 1

tk+1

γk
γk+1

1− μa2k+1
Ak+1γk+1

(3.119)
=

tk − 1

tk+1

γk
γk+1

1− qk+1

(3.128)
=

tk − 1

tk+1

1− qk+1tk+1

1− qk+1
. (3.131)

Definition (3.125) and ratio (3.128) facilitate the derivation of a recursion
rule for tk that does not depend on either ak, Ak, or γk for all k ≥ 0 and
μ ≥ 0 as follows.

Proposition 5. For arbitrary strong convexity, the vertex extrapolation
factors obey the following recursion rule:

t2k+1 − tk+1(1− qkt
2
k)−

Lk+1 + μΨ

Lk + μΨ
t2k = 0, k ≥ 0.

Proof. Definition (3.125) can be reformulated as

(Lk + μΨ)Ak = γkt
2
k, k ≥ 0. (3.132)

Combining (3.125) with (3.119) yields

(Lk+1 + μΨ)ak+1 = γk+1tk+1, k ≥ 0. (3.133)

Given the positivity of LCEs, the weight recursion in (3.5) can be written
for all k ≥ 0 as

(Lk+1 + μΨ)Ak+1− (Lk+1 + μΨ)ak+1−
Lk+1 + μΨ

Lk + μΨ
(Lk + μΨ)Ak = 0. (3.134)

Using (3.132) and (3.133), we can replace the convergence guarantees in
(3.134) as

γk+1t
2
k+1 − γk+1tk+1 −

Lk+1 + μΨ

Lk + μΨ
γkt

2
k = 0, k ≥ 0. (3.135)

Dividing by γk+1 followed the substitution of the curvature ratio in (3.128)
completes the proof.

The quadratic equation in Proposition 5 has only one positive root. Its
expression provides an update rule for tk+1 as

tk+1 =
1

2

(
1− qkt

2
k +

√(
1− qkt

2
k

)2
+ 4

Lk+1 + μΨ

Lk + μΨ
t2k

)
, k ≥ 0. (3.136)

Now, from Proposition 4 and (3.136) we can formulate ACGM for ar-
bitrary strong convexity using iterate extrapolation, as presented in Al-
gorithm 6. Algorithms 5 and 6 perform calculations differently, but are
guaranteed to generate the same iterates. Also, Algorithms 3 and 4 are
particular cases (μ = μf = μΨ = 0) of Algorithms 5 and 6, respectively.

70

Constructing ACGM

Algorithm 6 ACGM in extrapolated form
ACGM(x0, L0, A0, γ0, ru, rd, μf , μΨ, K)
1: x−1 = x0
2: μ = μf + μΨ

3: q0 =
μ

L0+μΨ

4: t0 =
√

(L0+μΨ)A0
γ0

5: for k = 0, ..., K − 1 do
6: L̂k+1 := rdLk
7: loop
8: q̂k+1 :=

μ

L̂k+1+μΨ

9: t̂k+1 :=
1
2

(
1− qkt

2
k +

√
(1− qkt

2
k)

2 + 4
L̂k+1+μΨ
Lk+μΨ

t2k

)
10: ŷk+1 := xk +

tk−1
t̂k+1

1−q̂k+1 t̂k+1
1−q̂k+1 (xk − xk−1)

11: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
12: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1(x̂k+1) then
13: Break from loop
14: else
15: L̂k+1 := ruL̂k+1

16: end if
17: end loop
18: Lk+1 = L̂k+1, qk+1 = q̂k+1, tk+1 = t̂k+1

19: xk+1 = x̂k+1

20: end for

Retrieving the convergence guarantee
In Algorithm 5, the convergence guarantee in expression (2.5) is obtained
directly from a single state variable Ak. For Algorithm 6, we need to
retrieve the convergence guarantees from the other state parameters.
First, we determine how much information is contained in the vertex

extrapolation factors by investigating their behavior. By putting together
(3.84) and (3.125), we obtain a closed form expression for the vertex ex-
trapolation factors as

tk =

√
(Lk + μΨ)Ak

(γ0 −A0μ) + Akμ
=

√
Lk + μΨ
γ0−A0μ
Ak

+ μ
, k ≥ 0. (3.137)

The following statements are direct consequences of (3.137).
If γ0 > A0μ, then

tk <
1
√

q
k

, k ≥ 0. (3.138)

If γ0 = A0μ, then

tk =
1
√

q
k

, k ≥ 0. (3.139)

71

Constructing ACGM

If γ0 < A0μ, then

tk >
1
√

q
k

, k ≥ 0. (3.140)

Note that the parameter choices in (3.139) and (3.140) are valid in the
strongly convex case.
From an asymptotic perspective, the convergence guarantees can be

arbitrarily large and therefore, for any parameter setup, we have that

lim
k→∞

qkt
2
k = 1. (3.141)

The difference in behavior of the vertex extrapolation factors leads us to
distinguish between two scenarios. The most common one is outlined in
the following lemma.

Lemma 7. If γ0 �= A0μ, then

Ak =
(γ0 −A0μ)t

2
k

(Lk + μΨ)(1− qkt
2
k)

, k ≥ 1.

Proof. Definition (3.125) gives

(Lk + μΨ)Ak = γkt
2
k, k ≥ 0. (3.142)

Substituting curvature γk given by (3.84) in (3.125), we obtain that

1− qkt
2
k = 1− μ

Lk + μΨ

(Lk + μΨ)Ak
γk

=
γk − μAk

γk
=

γ0 −A0μ

γk
, (3.143)

for all k ≥ 0. Combining (3.142) with (3.143) yields

(Lk + μΨ)(1− qkt
2
k)Ak = (γ0 −A0μ)t

2
k, k ≥ 0. (3.144)

When γ0 �= A0μ, (3.138) and (3.140) imply that 1 − qkt
2
k �= 0. Dividing by

this non-zero quantity in (3.144), we get the desired result.

Consequently, if γ0 �= A0μ, the convergence guarantee can be derived
directly from the state parameters without alterations to Algorithm 6.

Border-case
When γ0 = A0μ, Algorithm 6 can be brought to a simpler form. From (3.139)
we have that the auxiliary point extrapolation factor in Proposition 4 is
given by

βk =

1√
qk
− 1

1√
qk+1

1− qk+1√
qk+1

1− qk+1
=

√
qk+1√
qk

1−√qk
1 +

√
qk+1

=

√
Lk + μΨ −

√
μ√

Lk+1 + μΨ +
√

μ
, k ≥ 0. (3.145)

However, the sequence {tk}k≥0 does not store any relevant information and
can be left out. This means that the convergence guarantee Ak requires a

72

Constructing ACGM

dedicated update. Assumption γ0 = A0μ in (3.84) leads to γk = μAk for all
k ≥ 0. The curvature ratio in (3.128) becomes

γk
γk+1

=
μAk

μAk+1
= 1− qk+1tk+1 = 1−√qk+1, k ≥ 0, (3.146)

which provides a simple recursion rule in the form of

Ak+1 =
1

1−√qk+1
Ak =

√
Lk+1 + μΨ√

Lk+1 + μΨ −
√

μ
Ak, k ≥ 0. (3.147)

Due to scaling invariance, we can select any pair (A0, γ0) that is a positive
multiple of (1, μ). For simplicity, we choose A0 = 1 and γ0 = μ.
The local inverse condition number sequence {qk}k≥0 does not appear in

updates (3.145) and (3.147). Hence, it can also be abstracted away. The
form taken by ACGM in this border-case, after simplifications, is listed in
Algorithm 7.

Algorithm 7 Border-case ACGM (BACGM) in extrapolated form
BACGM(x0, L0, ru, rd, μf , μΨ, K)
1: x−1 = x0
2: μ = μf + μΨ

3: A0 = 1

4: for k = 0, ..., K − 1 do
5: L̂k+1 := rdLk
6: loop
7: ŷk+1 := xk +

√
L̂k+1+μΨ−√

μ√
L̂k+1+μΨ+

√
μ
(xk − xk−1)

8: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
9: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1(ẑ) then
10: Break from loop
11: else
12: L̂k+1 := ruL̂k+1

13: end if
14: end loop
15: Lk+1 := L̂k+1

16: xk+1 := x̂k+1

17: Ak+1 :=

√
Lk+1+μΨ√

Lk+1+μΨ−√
μ
Ak

18: end for

73

Constructing ACGM

3.5 Monotone ACGM

Even though the convergence guarantee upper bound in the ISDUB expres-
sion (2.5) is monotonically decreasing, the variants of ACGM derived up to
this point cannot guarantee that the objective value at the current iterate
F (xk) is monotonically decreasing for all k ≥ 0. Monotonicity is a desirable
property, because it prevents divergence when dealing with proximal oper-
ators that lack a closed form expression and need to be approximated or
other kinds of inexact oracles [6, 22]. Generally, monotonicity leads to a
more stable and predictable convergence rate.

3.5.1 Upper Bounds

We want ACGM to converge as fast as possible while maintaining the
monotonicity property, expressed as

F (xk+1) ≤ F (xk), k ≥ 0. (3.148)

Then, without further knowledge of the objective function, the simple upper
bound in (3.8) and (3.148) suggest a simple expression of the monotone
ACGM upper bound in the form of

uk+1(x) = min{Qf,Lk+1,yk+1(x) + Ψ(x), F (xk) + σ{xk}(x)}, k ≥ 0, (3.149)

where σX is the indicator function [35] of set X, given by

σX(x) =

{
0, x ∈ X,

+∞, otherwise.
(3.150)

Note that the upper bound in (3.149) differs from the one described in
Subsection 3.2.1 and therefore the new iterate xk+1 is no longer given by
(3.12). Instead, it is generated by

xk+1 = argmin{F (zk+1), F (xk)}, k ≥ 0, (3.151)

where
zk+1 = Tf,Ψ,Lk+1(yk+1), k ≥ 0. (3.152)

Therefore, most properties of xk+1 in Section 3.4 apply only to zk+1 in this
section, most notable being the descent condition, now given by

f(zk+1) ≤ Qf,Lk+1,yk+1(zk+1), k ≥ 0. (3.153)

3.5.2 Formulating Monotone ACGM

To construct an algorithm, we also need an expression for the lower bound
wk+1. Since computing zk+1 in (3.152) requires two oracle calls, we reuse

74

Constructing ACGM

this information to construct a lower bound based on Proposition 3 as

wk+1(x) = RL′
k+1,yk+1

(x) = F (zk+1) +
1

2L′
k+1

‖gL′
k+1

(yk+1)‖22

+
〈

gL′
k+1

(yk+1),x− yk+1

〉
+

μ

2
‖x− yk+1‖22, x ∈ Rn, k ≥ 0. (3.154)

As before, we construct monotone ACGM (MACGM) based on Algorithm 2,
but using the new upper and lower bounds. Therefore, the building blocks
in Algorithm 2 are as follows:

1. The upper bounds in (3.149).

2. The relaxed supporting parabola lower bounds from (3.154).

3. The Lyapunov property of the gap sequence in (2.57) .

From the the choice of upper bounds in (3.149), it follows that line 5 in
Algorithm 2 is given by (3.151) and the LSSC (line 6 in Algorithm 2) is now
(3.153).
The lower bounds in (3.154) are generalized parabolae. Consequently,

the results in Subsection 2.6.1 hold for zk+1 and, following the procedure
outlined in Subsection 3.4.3, we get the estimate function curvature and
the weight update for all k ≥ 0 as

γk+1 = γk + ak+1μ, (3.155)

vk+1 =
1

γk+1
(γkvk + ak+1(Lk+1 + μΨ)zk+1 − ak+1(Lk+1 − μf)yk+1) .

(3.156)

The descent condition in (3.153) can be equivalently expressed in terms
of composite objective values (see also (3.14) and (3.15)) as

F (zk+1) ≤ Qf,Lk+1,yk+1(zk+1) + Ψ(zk+1), x ∈ Rn. (3.157)

In Theorem 4 we have shown that if we choose xk+1 = zk+1, we can build
a method that maintains a monotone gap sequence. However, it is possible
to choose a point xk+1 that is better than zk+1 using the following result.

Theorem 5. If at iteration k ≥ 0 we have

F (xk+1) ≤ F (zk+1) ≤ Qf,Lk+1,yk+1(zk+1) + Ψ(zk+1),

then
Δk+1 +Ak+1 + Bk+1 ≤ Δk,

where subexpressions Ak+1 and Bk+1 are given by (3.85) and (3.86), respec-
tively, without modification.

75

Constructing ACGM

Proof. As in Theorems 3 and 4, we assume that k ≥ 0 throughout this
proof. We define residual Rk+1(x) as

Rk+1(x)
def
= F (x)− wk+1(x), x ∈ Rn, (3.158)

where wk+1(x) is given by (3.154). The lower bound property of wk+1(x)

means that Rk+1(x) ≥ 0 for all x ∈ Rn. Therefore

AkRk+1(xk) + ak+1Rk+1(x
∗) ≥ 0. (3.159)

The terms in (3.159) can be expanded and rearranged to yield

Ak(F (xk)− F (x∗))−Ak+1(F (zk+1)− F (x∗)) ≥ Ck+1, (3.160)

where the lower bound Ck+1 is given by (3.93). The form in (3.93) can be
equivalently expressed as (3.100) and we have that (3.112) holds. The
justification carries over as is from the proof of Theorem 4.
By combining (3.100) with (3.112), we obtain that

Ck+1 ≥ Ak+1 + Vk+1 +
1

γk+1

〈
gL′

k+1
(yk+1) +

μ

2Yk+1
sk+1, sk+1

〉
. (3.161)

Putting together (3.160) and (3.161), rearranging terms, and applying
F (xk+1) ≤ F (zk+1) gives the desired result.

Theorem 5 provides a simple sufficient condition for the monotonicity of
the gap sequence, regardless of the algorithmic state, given for all k ≥ 0 by
the following relations:

yk+1 =
1

Akγk+1 + ak+1γk
(Akγk+1xk + ak+1γkvk) , (3.162)

(Lk+1 + μΨ)a
2
k+1 ≤ Ak+1γk+1. (3.163)

The latter can be written as

ak+1 ≤ E(γk, Ak, Lk+1), k ≥ 0, (3.164)

where expression E(γk, Ak, Lk+1) is given by (3.118). To provide the best
convergence guarantees, as before, we enforce equality in (3.117), namely

ak+1 = E(γk, Ak, Lk+1). (3.165)

Updates (3.165) and (3.151) make up Ca,u,w in Algorithm 2. Adding LSSC
(3.153) and vertex update (3.156) to Algorithm 2 produces monotone ACGM
in estimate sequence form, as listed in Algorithm 8.

76

Constructing ACGM

Algorithm 8 Monotone ACGM in estimate sequence form
MACGM(x0, L0, A0, γ0, ru, rd, μf , μΨ, K)
1: v0 = x0
2: μ = μf + μΨ

3: for k = 0, . . . , K − 1 do
4: L̂k+1 := rdLk
5: loop

6: âk+1 :=
1

2(L̂k+1−μf)

(
γk + Akμ +

√
(γk + Akμ)2 + 4(L̂k+1 − μf)Akγk

)
7: âk+1 := Ak + âk+1

8: γ̂k+1 := γk + âk+1μ

9: ŷk+1 :=
1

Akγ̂k+1+âk+1γk
(Akγ̂k+1xk + âk+1γkvk)

10: ẑk+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
11: if f(ẑk+1) ≤ Qf,L̂k+1,ŷk+1(ẑk+1) then
12: Break from loop
13: else
14: L̂k+1 := ruL̂k+1

15: end if
16: end loop
17: Lk+1 := L̂k+1, Ak+1 := Âk+1, ak+1 := âk+1, γk+1 := γ̂k+1

18: yk+1 := ŷk+1, zk+1 := ẑk+1

19: xk+1 := argmin{F (zk+1), F (xk)},
20: vk+1 :=

1
γk+1

(γkvk + ak+1(Lk+1 + μΨ)zk+1 − ak+1(Lk+1 − μf)yk+1)

21: end for

3.5.3 Extrapolated Form

Monotonicity and extrapolation
In non-monotone ACGM (Algorithm 6), the auxiliary point can be obtained
from two successive main iterates through extrapolation. Interestingly,
this property is preserved for any value of the inverse step size. We show
in the following how monotonicity alters this property and bring monotone
ACGM to a form in which the auxiliary point is an extrapolation of state
variables. First, we observe that extrapolation still applies to estimate
sequence vertices.

Lemma 8. The estimate sequence vertices can be obtained from state vari-
ables by extrapolation, namely

vk+1 = xk +
Ak+1

ak+1
(zk+1 − xk), k ≥ 0.

Proof. See the proof of Lemma 6, with xk+1 replaced by zk+1.

As in the non-monotone case, we define the vertex extrapolation fac-

77

Constructing ACGM

tor sequence {tk}k≥0 as before using (3.125) which implies (3.126). The
curvature ratio is given by (3.128) as well. We set x−1

def
= x0 and z0 = x0.

We denote the coefficient of vertex vk in auxiliary point update (3.162)
by ωk+1 for all k ≥ 0. Coefficient ωk+1 is therefore given by

ωk+1
def
=

ak+1γk
Akγk+1 + ak+1γk

, k ≥ 0. (3.166)

Using (3.5), (3.126), and (3.128), (3.166) becomes

ωk+1 =

γk
γk+1

Ak+1−ak+1
ak+1

+ γk
γk+1

=
1− qk+1tk+1

tk+1 − 1 + 1− qk+1tk+1

=
1− qk+1tk+1

(1− qk+1)tk+1
, k ≥ 0. (3.167)

We can now update the auxiliary point extrapolation rule in Proposition 4
to the monotone case.

Proposition 6. At every iteration k ≥ 0, the new auxiliary point yk+1 can
be obtained from the algorithm state parameters by extrapolation as

yk+1 = xk + βk(zk − xk−1),

where the extrapolation factor βk is given by

βk = (tk − 1{zk}(xk))ωk+1,

and 1X denotes the membership function of set X, namely

1X(x)
def
=

{
1, x ∈ X

0, x /∈ X
.

Proof. For k = 0, we have z0 = x−1 = x0. Hence

y1 = x0 = x0 + β0(z0 − x−1). (3.168)

For k ≥ 1, Lemma 8 combined with the auxiliary point update in (3.162)
gives

yk+1 =
1

Akγk+1 + ak+1γk

(
Akγk+1xk +

Ak
ak
zk +

(
ak+1γk −

Ak
ak

)
xk−1

)
.

(3.169)
Depending on the outcome of the update in line 19 of Algorithm 8 at
iteration k − 1, we distinguish two situations.
If F (zk) ≤ F (xk−1), then

yk+1 = (1 + bk)zk − bkxk−1 = xk + bk(zk − xk−1), (3.170)

where, for brevity, we define extrapolation factor bk as

bk
def
=

(
Ak
ak
− 1

)
ωk+1. (3.171)

78

Constructing ACGM

If F (zk) > F (xk−1) then, by monotonicity, we impose xk = xk−1, which
leads to

yk+1 = b′
kzk − (b′

k − 1)xk−1 = xk + b′
k(zk − xk−1), (3.172)

where the extrapolation factor b′
k is given by

b′
k

def
=

(
Ak
ak

)
ωk+1. (3.173)

Expressions (3.170) and (3.172) lead to the following auxiliary point ex-
trapolation rule:

yk+1 = xk + βk(zk − xk−1), (3.174)

where

βk =

{
bk, xk = zk
b′
k, xk = xk−1

. (3.175)

Auxiliary point extrapolation factor βk can be written as

βk =

{
(tk − 1)ωk+1, xk = zk

tkωk+1, xk = xk−1
,

= (tk − 1{zk}(xk))ωk+1. (3.176)

We simplify monotone ACGM further by noting that, to produce the
auxiliary point, the extrapolation rule in Proposition 6 depends on three
vector parameters. However, it is not necessary to store both zk and xk−1

across iterations. To address applications where memory is limited, we
only maintain the difference term dk, given by

dk = (tk − 1{zk}(xk))(zk − xk−1), k ≥ 0. (3.177)

The difference term in (3.177) simplifies Proposition 6 to

yk+1 = xk + ωk+1dk, k ≥ 0. (3.178)

The above modifications yield a form of monotone ACGM (MACGM)
based on extrapolation, which we list in Algorithm 9.
Note that subexpression ωk+1 contains only recent information whereas
dk needs only to access the state of the preceding iteration.
We stress that while Algorithms 8 and 9 carry out different computa-

tions, they are mathematically equivalent with respect to the main iterate
sequence {xk}k≥0.
Lemma 7 applies to monotone ACGM as well. Consequently, when

γ0 �= A0μ, the convergence guarantee can be obtained from the state
parameters.

79

Constructing ACGM

Algorithm 9 Monotone ACGM (MACGM) in extrapolated form
MACGM(x0, L0, A0, γ0, ru, rd, μf , μΨ, K)
1: x−1 = x0
2: d0 = 0

3: μ = μf + μΨ

4: t0 =
√

(L0+μΨ)A0
γ0

5: q0 =
μ

L0+μΨ
6: for k = 0, ..., K − 1 do
7: L̂k+1 := rdLk
8: loop
9: q̂k+1 :=

μ

L̂k+1+μΨ

10: t̂k+1 :=
1
2

(
1− qkt

2
k +

√
(1− qkt

2
k)

2 + 4
L̂k+1+μΨ
Lk+μΨ

t2k

)
11: ŷ := xk +

1−q̂k+1 t̂k+1
(1−q̂k+1)t̂k+1dk

12: ẑ := prox 1
L̂k+1

Ψ

(
ŷ − 1

L̂k+1
∇f(ŷ)

)
13: if f(ẑ) ≤ Qf,L̂k+1,ŷ(ẑ) then
14: Break from loop
15: else
16: L̂k+1 := ruL̂k+1

17: end if
18: end loop
19: Lk+1 := L̂k+1, qk+1 := q̂k+1, tk+1 := t̂k+1

20: zk+1 := ẑk+1

21: xk+1 = argmin{F (zk+1), F (xk)}
22: dk+1 = (tk+1 − 1{zk+1}(xk+1))(zk+1 − xk)
23: end for

Border-case
When γ0 = A0μ, (3.139) holds as is. In this border-case, Algorithm 9
can be simplified further. It follows from (3.139) that the auxiliary point
extrapolation factor is given by

βk =

√
Lk + μΨ − 1{zk}(xk)

√
μ√

Lk+1 + μΨ +
√

μ
, k ≥ 0. (3.179)

The convergence guarantee recursion rule in (3.147) remains valid and
we also choose A0 = 1 and γ0 = μ. To reduce computational intensity, we
modify subexpressions dk and ωk+1 as

dk =
(√

Lk + μΨ − 1{zk}(xk)
√

μ
)
(zk − xk−1), k ≥ 0, (3.180)

ωk+1 =
1√

Lk+1 + μΨ +
√

μ
, k ≥ 0. (3.181)

This simpler form taken by border-case monotone ACGM (BMACGM) is
listed in Algorithm 10.

80

Constructing ACGM

Algorithm 10 Border-case Monotone ACGM (BMACGM) in extrapo-
lated form
BMACGM(x0, L0, ru, rd, μf , μΨ, K)
1: x−1 = x0
2: d0 = 0

3: μ = μf + μΨ

4: A0 = 1

5: for k = 0, ..., K − 1 do
6: L̂k+1 := rdLk
7: loop
8: ŷk+1 := xk +

1√
L̂k+1+μΨ+

√
μ
dk

9: ẑk+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
10: if f(ẑk+1) ≤ Qf,L̂k+1,ŷk+1(ẑk+1) then
11: Break from loop
12: else
13: L̂k+1 := ruL̂k+1

14: end if
15: end loop
16: Lk+1 := L̂k+1

17: zk+1 := ẑk+1

18: xk+1 = argmin{F (zk+1), F (xk)}
19: dk+1 =

(√
Lk+1 + μΨ − 1{zk+1}(xk+1)

√
μ
)
(zk+1 − xk)

20: Ak+1 =

√
Lk+1+μΨ√

Lk+1+μΨ−√
μ
Ak

21: end for

81

Constructing ACGM

82

4. Analysis of ACGM

4.1 Revisiting the Estimate Sequence

In Section 2.4, we have seen how the estimate sequence can be derived as a
substitute convergence guarantee and how the estimate sequence property
in (2.15) is a sufficient condition for the convergence guarantees in the
ISDUB expression (2.6).
Let the estimate sequence gap be defined as

Γ̃k
def
= AkF (xk)− ψ∗

k, k ≥ 0. (4.1)

FGM was designed in [16] to maintain the Lyapunov property of the
estimate sequence gap, stated as

Γ̃k+1 ≤ Γ̃k, k ≥ 0. (4.2)

The structure of the initial estimate function in (2.11), which applies to
FGM as well, implies that Γ̃0 = 0 for any initial parameter choice and
therefore (4.2) constitutes a sufficient condition for the estimate sequence
property (2.15) in FGM.
In this section, we investigate whether (4.2) applies to any variant of

ACGM and if it can also be used to construct ACGM1. First, note that
the estimate sequence gap terms in (4.1) involve the optimal values of the
estimate functions. These values do not depend on unknown quantities
and can be updated as ACGM progresses.

Lemma 9. For all variants of ACGM, the estimate function optimal values
can be updated at every iteration k ≥ 0 as

ψ∗
k+1 = ψ∗

k + ak+1F (xk+1) +

(
ak+1

2L′
k+1

−
a2k+1

2γk+1

)
‖gL′

k+1
(yk+1)‖22

+
ak+1γk
γk+1

(〈
gL′

k+1
(yk+1),yk+1 − vk

〉
+

μ

2
‖vk − yk+1‖22

)
.

1We thank Rose Sfeir for pointing out Subsection 2.2.4 in [16].

83

Analysis of ACGM

Proof. The derivation style proposed in [16] considerably reduces the num-
ber of calculations required to reach the solution by exploiting the fact
that the lower bounds are formulated around the auxiliary point. Since we
have used the same strategy when designing the lower bounds of ACGM,
for the sake of brevity, we construct this proof along the lines of [16]. Every
result in this proof holds for all k ≥ 0.
From (2.46) and (3.7), we have at point yk+1 that

ψk+1(yk+1) = ψ∗
k+1 +

γk+1

2
‖yk+1 − vk+1‖22 = ψk(yk+1) + ak+1wk+1(yk+1).

(4.3)
By expanding ψk(yk+1) in (4.3) using (2.46), we obtain an estimate function
optimal value update rule as

ψ∗
k+1 = ψ∗

k +
γk
2
‖yk+1 − vk‖22 −

γk+1

2
‖yk+1 − vk+1‖22 + ak+1wk+1(yk+1).

(4.4)
Note that all variants of ACGM introduced in this work share the same
simple lower bound expression, given by (3.80). Expanding wk+1(yk+1)

using (3.80) yields

ψ∗
k+1 = ψ∗

k + ak+1F (xk+1) +
ak+1

2L′
k+1

‖gL′
k+1

(yk+1)‖22

+
γk
2
‖yk+1 − vk‖22 −

γk+1

2
‖yk+1 − vk+1‖22.

(4.5)

Combining (3.82) and (3.83) gives

yk+1 − vk+1 =
γk

γk+1
(yk+1 − vk) +

ak+1

γk+1
gL′

k+1
(yk+1). (4.6)

The simple expression in (4.6) leads to

γk+1

2
‖yk+1 − vk+1‖22 =

a2k+1

2γk+1
‖gL′

k+1
(yk+1‖2

+
ak+1γk
γk+1

〈
gL′

k+1
(yk+1),yk+1 − vk

〉
+

γ2
k

2γk+1
‖yk+1 − vk)‖2.

(4.7)

We substitute (4.7) in (4.5) and use (3.82) to get the desired result.

Given the generality of Lemma 9, in the remainder of this section we
will use the term ACGM to denote all variants of ACGM introduced in this
work, collectively.

Theorem 6. In ACGM, if at iteration k ≥ 0 the descent condition for f in
(3.15) holds, then

Γ̃k+1 +Ak+1 +
1

γk+1

〈
gL′

k+1
(yk+1), sk+1

〉
≤ Γ̃k,

where subexpression Ak+1 and sk+1 are given by (3.85) and (3.87), respec-
tively, without modification.

84

Analysis of ACGM

Proof. Using (3.5), (4.1), and Lemma 9 we obtain

−Γ̃k+1 = −Γ̃k + Ak(F (xk)− F (xk+1)) +

(
ak+1

2L′
k+1

−
a2k+1

2γk+1

)
‖gL′

k+1
(yk+1)‖22

+
1

γk+1

(〈
gL′

k+1
(yk+1), ak+1γk(yk+1 − vk)

〉
+

μ

2
‖vk − yk+1‖22

)
, k ≥ 0.

(4.8)
Since the descent condition in (3.15) is satisfied, then Proposition 3 holds
and, by multiplying both sides of the inequality in Proposition 3 at xk with
non-negative quantity Ak, we have that

Ak(F (xk)− F (xk+1)) ≥
Ak

2Lk+1
‖gL′

k+1
(yk+1)‖22

+
〈

gL′
k+1

(yk+1), Ak(xk − yk+1)
〉
+

Akμ

2
‖xk − yk+1‖22, k ≥ 0.

(4.9)

Adding together (4.8) and (4.9) yields

−Γ̃k+1 ≥ −Γ̃k +Ak+1 +
1

γk+1

〈
gL′

k+1
(yk+1), sk+1

〉
+

μ

2γk+1

(
Akγk+1‖xk − yk+1‖22 + ak+1γk‖vk − yk+1‖22

)
, k ≥ 0.

(4.10)

The square terms ‖xk − yk+1‖22 and ‖vk − yk+1‖22 in (4.10) are non-negative
and can be left out.

Theorem 6 provides a means of satisfying the Lyapunov property of the
estimate sequence in (4.2) for any algorithmic state of ACGM. Namely, for
the same reasons outlined in Chapter 3, we need to ensure that Ak+1 ≥ 0

and sk+1 = 0. These two conditions are identical to the ones we have
derived from Theorems 4 and 5.
This observation has two implications. First, the original estimate se-

quence property in (2.15) holds for ACGM, regardless of the algorithmic
state. Second, ACGM can be derived using the non-augmented estimate
sequence. Thus, in the context of ACGM, the estimate sequence and the
augmented estimate sequence can be used interchangeably. Each approach
comes with its own advantages. The numerical value of the estimate se-
quence gap in (4.1) can be computed at every iteration. On the other hand,
the gap sequence that results from the augmented estimate sequence has
a simple closed form expression and effectively bridges the concepts of
estimate sequence and Lyapunov functions. Moreover, the gap sequence
terms in (2.55) contain both an image space term and a domain space term,
whereas the estimate sequence gap in (4.1) is an image space only term.
This special structure of the gap sequence can be used, for instance, to
study the convergence of the iterates (see [26]).
We leave a detailed comparison of the two approaches, along with their

wider implications, as a topic for future research.

85

Analysis of ACGM

4.2 Worst-case Convergence Guarantees

Regardless of whether we use the estimate sequence or the augmented
estimate sequence, every variant of ACGM introduced in this work adheres
to the design pattern in Algorithm 2, with the iterates obeying the ISDUB
expression in (2.6). As such, the state variable Ak, whether maintained
explicitly or derived from other state parameters, gives the convergence
guarantee at the beginning of iteration k ≥ 0. Note that non-strongly
convex ACGM is a particular case of ACGM for arbitrary strong convexity
and the convergence guarantees of non-monotone ACGM are identical to
those of monotone ACGM by virtue of Theorem 4. Thus, the results in this
section, as in Section 4.1, apply to all versions of ACGM, unless stated
otherwise.
At every iteration k ≥ 0, the larger the LCE Lk+1, the slower the algo-

rithm. Therefore, we need to establish an upper bound for Lk+1 that would
enable us to formulate worst-case convergence guarantees.

Lemma 10. At every iteration k ≥ 0 of ACGM, the LCE is upper bounded
as

Lk+1 ≤ Lu,

where the worst-case Lipschitz constant estimate Lu is given by

Lu
def
= max{ruLf , rdL0}.

Proof. Let k̃ denote the number of consecutive iterations, starting at k = 0,
for which no backtracks occur. Note that the value of k̃ can be zero. We
have that

Lk = rkdL0, 0 ≤ k ≤ k̃. (4.11)

Therefore
Lk+1 = rk+1

d L0 < rdL0, 0 ≤ k ≤ k̃ − 1. (4.12)

The definition of k̃ implies that the first candidate L̂k̃+1 will fail the LSSC.
ACGM will backtrack until it outputs an estimate Lk̃+1 such that Lk̃+1/ru
fails and Lk̃+1 passes. Hence, Lk̃+1/ru < Lf , which implies that

Lk̃+1 < ruLf . (4.13)

We prove by induction that

Lk+1 < ruLf , k ≥ k̃. (4.14)

First, (4.13) shows that (4.14) holds for k = k̃. Next, we assume (4.14)
holds for a certain k ≥ k̃ and show that (4.14) applies to k + 1 as well. At
iteration k, we distinguish two scenarios. If no backtrack occurs, then we
have

Lk+1 = rdLk < Lk < ruLf . (4.15)

86

Analysis of ACGM

If one or more backtracks occur, following the same reasoning as in itera-
tion k̃, we have that

Lk+1/ru < Lf . (4.16)

Thus, (4.14) is valid. Combining (4.12) with (4.14) gives

Lk+1 < max{ruLf , rdL0}, k ≥ 0. (4.17)

For our analysis, we will also need to define the worst-case local inverse
condition number qu, given by

qu
def
=

μ

Lu + μΨ
. (4.18)

Using Lemma 10 and (4.18), we can state the worst-case convergence
guarantees of ACGM.

Theorem 7. If γ0 ≥ A0μ, ACGM generates a sequence {xk}k≥1 that satisfies

F (xk)− F (x∗) ≤ min

{
4

(k + 1)2
, (1−√qu)

k−1

}
(Lu − μf)Δ̄0, k ≥ 1,

where the normalized gap term Δ̄0 is given by

Δ̄0
def
=

Δ0

γ0
=

A0

γ0
(F (x0)− F (x∗)) +

1

2
‖x0 − x∗‖22.

Proof. The curvature γk can be lower bounded based on (3.84) as

γk = γ0 + μ(Ak −A0) ≥ γ0, k ≥ 0. (4.19)

This bound is accurate when μ = 0 or the inverse condition number is
negligibly low, namely q � 1/K, where K ≥ 1 is the total number of
iterations performed by ACGM (see Section 3.1).
From (3.5), (3.120), and (4.19) we have that

Ak+1 = Ak + E(γk, Ak, Lk+1)

≥ Ak +
γ0

2(Lk+1 − μf)
+

√
γ2
0

4(Lk+1 − μf)2
+

Akγ0
(Lk+1 − μf)

, k ≥ 0.

(4.20)

Regardless of the outcome of individual line-search calls, Lemma 10
guarantees that

Ak+1 ≥ Ak +
γ0

2(Lu − μf)
+

√
γ2
0

4(Lu − μf)2
+

Akγ0
(Lu − μf)

= Ak +
γ0

Lu − μf

⎛
⎝1

2
+

√
1

4
+

Ak(Lu − μf)

γ0

⎞
⎠ , k ≥ 0. (4.21)

87

Analysis of ACGM

To simplify the derivation, we define the scaled convergence guarantee Ãk
as

Ãk
def
=

Ak(Lu − μf)

γ0
, k ≥ 0. (4.22)

Using (4.22) in (4.21), we obtain

Ãk+1 ≥ Ãk +
1

2
+

√
1

4
+ Ãk, k ≥ 0. (4.23)

We show by induction that

Ãk ≥
(k + 1)2

4
, k ≥ 1. (4.24)

First, for k = 1, Ã0 ≥ 0 in (4.23) implies that

Ã1 ≥ Ã0 +
1

2
+

√
1

4
+ Ã0 ≥

1

2
+

√
1

4
= 1 =

(1 + 1)2

4
. (4.25)

Next, we show that if (4.24) holds for a certain k ≥ 1 then it does for k + 1

as well.

Ãk+1 ≥ Ãk +
1

2
+

√
1

4
+ Ãk ≥

(k + 1)2

4
+

1

2
+

√
1

4
+

(k + 1)2

4

>
1

4

(
k2 + 2k + 1 + 2 + 2

√
(k + 1)2

)
=

1

4
(k2 + 4k + 5)

>
(k + 2)2

4
. (4.26)

Combining ISDUB expression (2.6) with (4.24) yields

F (xk)− F (x∗) ≤ 4

(k + 1)2
(Lu − μf)Δ̄0, k ≥ 1. (4.27)

We have from (3.115) and assumption γ0 ≥ A0μ that

a2k+1

A2
k+1

=
γk+1

(Lk+1 + μΨ)Ak+1
=

(γ0 −A0μ) + Ak+1μ

(Lk+1 + μΨ)Ak+1
≥ qk+1

≥ qu, k ≥ 0, (4.28)

which, combined with qu ≥ 0, implies that

Ak+1

Ak
≥ 1√

1− qu
, k ≥ 0. (4.29)

This bound is meaningful in tracking the progress of ACGM only when
μ > 0 and q is of a magnitude comparable to that of 1/K. Under such
conditions, we can obtain a simple lower bound on A1 by using A0 ≥ 0 in
(3.120) in the form of

A1 = A0 + E(γ0, A0, L1) ≥
γ0 +

√
γ2
0

2(L1 − μf)
≥ γ0

Lu − μf
. (4.30)

88

Analysis of ACGM

By iterating (4.29) starting at (4.30), we obtain

Ak+1 ≥
γ0

(Lu − μf)(1−
√

qu)k
, k ≥ 0. (4.31)

Substituting (4.31) in the ISDUB expression (2.6) yields

F (xk)− F (x∗) ≤ (1−√qu)
k−1(Lu − μf)Δ̄0, k ≥ 1. (4.32)

The desired result is the combination of (4.27) and (4.32).

Note that the assumption γ0 ≥ A0μ always holds for non-strongly convex
objectives and that ACGM is guaranteed to converge for strongly convex
objectives also when γ0 < A0μ (see Subsection 3.4.3). However, in the latter
case, it is more difficult to obtain simple lower bounds on the convergence
guarantees. We leave such an endeavor to future research.

4.3 Wall-clock Time Units

So far, we have measured the theoretical performance of algorithms in
terms of convergence guarantees (including the worst-case ones) indexed in
iterations. This does not account for the complexity of individual iterations.
From now on, we distinguish between two types of convergence guarantees.
One is the aforementioned iteration convergence guarantee and a new
computational convergence guarantee, introduced in the sequel.
In the literature, the prevailing indexing strategies for objective values

used in measuring the convergence rate are based on either iterations
(e.g., [6, 17–19]), running time in a particular computing environment
(e.g., [6,19]), or the number of calls to a low-level routine that dominates
all others in complexity (e.g., [17,36]). The first approach, which we have
also used in the derivation of ACGM, cannot cope with the diversity of
methods studied. For example, when no backtracks occur, AMGS makes
two calls to ∇f(x) per iteration whereas FISTA makes only one. The latter
two approaches do not generalize to the entire problem class. Running time,
in particular, is highly sensitive to system architecture and implementation
details. For instance, inadequate cache utilization can increase running
time by at least an order of magnitude [37].
Optimization algorithms must also take into account the constraints

determined by computer hardware technology, especially the limitation
on microprocessor frequency imposed by power consumption and gener-
ated heat [37]. This restriction, along with the increase in magnitude
of large-scale problems, has rendered serial machines unsuitable for the
computation of large-scale oracle functions. Therefore, large-scale opti-
mization algorithms need to be executed on parallel systems. To account
for parallelism, we extend the oracle model by introducing the following
abstraction. We assume that each oracle function call is processed by a

89

Analysis of ACGM

dedicated parallel processing unit (PPU). A PPU may be itself a collection
processors. While we do not set a limit on the number of processors a single
PPU may have2, we do assume that all PPUs are identical. For instance,
a PPU may be a single central processing unit (CPU) core or a collection
of graphics processing unit (GPU) cores. Since the exact implementation
of the oracle functions need not be known to the optimization algorithm,
the manner in which processors within a PPU are utilized need not be
known as well. However, on a higher level of abstraction, we are able to
explicitly execute an unlimited number of oracle functions simultaneously,
as long as there are no race conditions. The computing system is further
assumed to be uniform memory access (UMA) [37] and to be able to store
the arguments and the results of oracle calls in memory for as long as they
are needed.
Thus, the computational convergence rate is given by the objective dis-

tance decrease rate indexed in WTU, when the optimization algorithm is
executed on the aforementioned shared memory parallel system.

4.3.1 Standard WTU

To account for the broadness of the problem class, wherein oracle functions
may or may not be separable3 and their relative cost may vary, we impose
that the complexity of computing f(x) is comparable to that of ∇f(x) [23].
We denote the amount of wall-clock time required to evaluate f(x) or
∇f(x) by 1 wall-clock time unit (WTU). In many applications, the two calls
share subexpressions. However, for a given value of x, f(x) and ∇f(x) are
computed simultaneously on separate PPUs, which merely reduces the
cost of a WTU without violating the oracle model. Because we are dealing
with large-scale problems and Ψ is assumed to be simple, we attribute
a cost of 0 WTU to Ψ(x) and proxτΨ(x) calls as well as to element-wise
vector operations, including scalar-vector multiplications, vector additions,
and inner products [4].

Non-monotone ACGM
In the following, we analyze the resource usage and runtime behavior
of FGM, AMGS, FISTA, FISTA-CP, and non-monotone ACGM under the
above assumptions. We will argue in Section 4.4 why we do not need to
consider other methods applicable to composite problems.
FGM and FISTA-CP compute at every iteration k ≥ 0 the gradient at

the auxiliary point (∇f(yk+1)) but lack an explicit line-search scheme. The
per-iteration cost of these methods is therefore always 1 WTU.

2In practice, the limit on the number of execution threads is imposed by the
communication and synchronization overhead, which varies widely between im-
plementations.
3For instance, a single matrix-vector multiplication is separable (with respect to
individual scalar operations) whereas a chain of such multiplications is not.

90

Analysis of ACGM

For methods that employ line-search, backtracks stall the algorithm in
a way that cannot be alleviated by parallelization or intensity reduction.
Therefore, it is desirable to reduce their frequency. Assuming that the local
curvature of f varies around a fixed value, the likelihood of a backtrack
occurring is given by −log(rd)/ log(ru). Therefore, log(ru) should be signifi-
cantly larger than −log(rd). With such a parameter choice, the algorithm
can proceed from one iteration to another by speculating that backtracks
do not occur at all. This technique is referred to in the literature as spec-
ulative execution [37] whereby the validation phase of the search takes
place in parallel with the advancement phase of the next iteration. When a
backtrack occurs, function and gradient values of points that change have
to be recomputed, stalling the entire multi-threaded system accordingly. It
follows that additional backtracks have the same cost.
AMGS requires at iteration k calls to both ∇f(yk+1) and ∇f(xk+1). The

iterate xk+1 can only be computed after ∇f(yk+1) completes and the next
auxiliary point yk+2 requires ∇f(xk+1). Hence, an iteration without back-
tracks entails 2 WTU. A backtrack at iteration k involves the recalculation
of ∇f(yk+1), followed by ∇f(xk+1), which means that each backtrack also
costs 2 WTU.
FISTA advances using one ∇f(yk+1) call. The values of f(yk+1) and

f(xk+1) are only needed to validate the LCE. The f(yk+1) call can be
performed in parallel with ∇f(yk+1) but the calculation of xk+1 utilizes
∇f(yk+1). The backtracking strategy of FISTA does not require the recalcu-
lation of yk+1 and its oracle values. However, the need for a backtrack can
only be asserted after the completion of f(xk+1). Therefore, an iteration
without backtracks of FISTA entails 1 WTU, with each backtrack adding
1 WTU to the cost.
The ability of ACGM to decrease the LCE necessitates the recalculation

of yk+1, in addition to the delay in the backtrack condition assessment. As
a result, non-monotone ACGM has an iteration base cost of 1 WTU and a
2 WTU backtrack cost. The Algorithms 5, 6, and 7 forms of ACGM (along
with particular cases Algorithms 3 and 4, respectively) are identical with
respect to WTU usage.
The iteration costs of AMGS, FISTA, and non-monotone ACGM are

summarized in Table 4.1. Note that, with properly tuned parameters,
as explained above, iterations without backtracks are by far the most
common. Hence, the backtrack costs have a negligible impact on algorithm
performance.
Interestingly, when using standard WTU, the above algorithms need at

most three concurrent high-level computation threads (PPUs) to operate.
The assignment of different computations to different PPUs at every time
unit, along with the iterations these computations are part of, are detailed
in Table 4.2 for an iteration k ≥ 1 without backtracks and in Table 4.3 for
an iteration where a single backtrack occurs. The behavior of subsequent

91

Analysis of ACGM

Table 4.1. Per iteration cost in WTU of line-search methods AMGS, FISTA, and non-
monotone ACGM

Iteration phase AMGS FISTA ACGM

Iteration without backtrack 2 1 1
Each backtrack 2 1 2

backtracks follows closely the pattern shown in Table 4.3.

Table 4.2. Resource allocation and runtime behavior of parallel black-box FGM, FISTA-CP,
AMGS, FISTA, and non-monotone ACGM when no backtracks occur (iteration
k ≥ 1 starts at time T)

Method WTU PPU 1 PPU 2 PPU 3
Comp. Iter. Comp. Iter. Comp. Iter.

FGM T ∇f(yk+1) k Idle Idle
T + 1 ∇f(yk+2) k + 1 Idle Idle

FISTA-CP T ∇f(yk+1) k Idle Idle
T + 1 ∇f(yk+2) k + 1 Idle Idle

AMGS T ∇f(yk+1) k Idle Idle
T + 1 ∇f(xk+1) k Idle Idle
T + 2 ∇f(yk+2) k + 1 Idle Idle

FISTA T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

ACGM T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

Monotone ACGM
We define an overshoot of monotone ACGM at iteration k ≥ 0 as the event
in which the new iterate has a larger objective value than the previous
one, i.e., the monotone condition (MC), given by F (xk+1) ≤ F (xk), fails. We
assume that overshoots occur even less frequently than backtracks. Simi-
larly, the algorithm can proceed by speculating that the MC always passes
and defaults to xk+1 = zk+1. The monotone condition can be computed at
the same time as the LSSC and does not incur additional computation.
Therefore, the MC and the LSSC can be fused into a single condition. If the
LSSC fails, the MC is not evaluated. This leaves three possible outcomes,
outlined in Table 4.4.

92

Analysis of ACGM

Table 4.3. Resource allocation and runtime behavior of parallel black-box AMGS, FISTA,
and non-monotone ACGMwhen a single backtrack occurs (iteration k ≥ 1 starts
at time T)

Method WTU PPU 1 PPU 2 PPU 3
Comp. Iter. Comp. Iter. Comp. Iter.

AMGS T ∇f(yk+1) k Idle Idle
T + 1 ∇f(xk+1) k Idle Idle
T + 2 ∇f(yk+1) k Idle Idle
T + 3 ∇f(xk+1) k Idle Idle
T + 4 ∇f(yk+2) k + 1 Idle Idle

FISTA T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 3 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

ACGM T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+1) k f(yk+1) k Idle
T + 3 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 4 Idle Idle f(xk+2) k + 1

Table 4.4. Additional cost in WTU incurred by the fused LSSC / MC condition in MACGM

MC passed MC failed

LSSC passed 0 1
LSSC failed 2 N / A

4.3.2 Generalized WTU

In order to compare algorithms based on a unified benchmark, we have as-
sumed in Subsection 4.3.1 that f(x) and ∇f(x) require 1WTU each while
all other operations are negligible and amount to 0WTU. In this section,
we generalize the analysis. We attribute finite non-negative costs tf , tg, tΨ,
and tp to f(x), ∇f(x), Ψ(x), and proxτΨ(x), respectively. However, since
we are dealing with large-scale problems, we maintain the assumption that
element-wise vector operations have negligible complexity when compared
to oracle functions and assign a cost of 0WTU to each. Synchronization
of PPUs also incurs no cost. Consequently, when computed in isolation,
an objective function value F (x) call costs tF = max{tf , tΨ}, ascribable to
separability, while a proximal gradient operation costs tT = tg + tp, due to
computational dependencies.

93

Analysis of ACGM

Non-monotone ACGM
The advancement phase of an ACGM iteration consists of one proximal
gradient step. Hence, every iteration has a base cost of tT = tg + tp.
If the LSSC of iteration k ≥ 0 fails, then the algorithm discards all

the state information pertaining to all iterations made after k, reverts
to iteration k, and performs the necessary computations to correct the
error. We consider that a mis-prediction incurs a detection cost tLSSCd and
a correction cost tLSSCc . The LSSC requires the evaluation of f(zk+1) and
incurs a detection cost of tLSSCd = tf . A backtrack entails recomputing yk+1,
yielding a LSSC correction time of tLSSCc = tT . Thus, for non-monotone
ACGM, each backtrack adds tf + tT WTU to a base iteration cost of tT . A
comparison to other methods employing line-search is shown in Table 4.5.

Table 4.5. Per-iteration cost of FISTA, AMGS, and non-monotone ACGM

FISTA AMGS ACGM

Base cost tg + tp 2tg + 2tp tg + tp
tLSSCd tf tg tf
tLSSCc tp tg + tp tg + tp
Backtrack cost tf + tp 2tg + tp tf + tg + tp

Monotone ACGM
The LSSC and the MC can be evaluated in parallel with subsequent
iterations. Both rely on the computation of f(zk+1), which in the worst
case requires �tf/tT � dedicated PPUs. In addition, the MC may need up to
�tΨ/tT � PPUs.
Monotone ACGM proceeds speculating that the MC always passes. Hence,

the MC has tMC
d = tF , due to its dependency on Ψ(zk+1), but once the

algorithmic state of iteration k has been restored, no additional oracle calls
are needed, leading to tMC

c = 0. The possible outcomes of the fused LSSC /
MC condition and their cost in generalized WTU are listed in Table 4.6.

Table 4.6. Monotone ACGM stall time in generalized WTU based on the outcome of the
fused LSSC / MC condition

MC passed MC failed

LSSC passed 0 max{tf , tΨ}
LSSC failed tf + tg + tp N / A

94

Analysis of ACGM

4.4 ACGM among its Class of Algorithms

4.4.1 Uniting Nesterov’s FGM and FISTA

Due to its generality, ACGM is able to incorporate, as particular instances,
both FGM and FISTA, in their most common forms.
ACGM, when formulated using extrapolation (in particular, the versions

listed in Algorithms 4, 6, 7, and 9), encompasses several variants of FISTA.
Specifically, non-monotone ACGM (Algorithm 6) without the line-search
procedure, where

Lk = Lf , k ≥ 0, (4.33)

produces the same iterates as FISTA-CP [6] with the theoretically optimal
step size

τFISTA−CP =
1

Lf
. (4.34)

Monotone ACGM (Algorithm 9) without line search is equivalent to the
monotone variant of FISTA-CP with the optimal step size in (4.34). For
a special subclass of composite problems with non-strongly convex reg-
ularizers (μΨ = 0 and μ = μf > 0), border-case non-monotone ACGM
(Algorithm 7) with line-search matches the scAPG method introduced
in [21].
In the non-strongly convex case, Algorithm 4 without line-search co-

incides with the original formulation of constant step size FISTA in [5].
Adding monotonicity (Algorithm 9 with μ = μf = μΨ = 0 and fixed step
size) yields monotone FISTA (MFISTA) in [22]. Also for μ = 0, ACGM
with line-search (Algorithm 4) is a generalization (whereby A0 need not
be zero) of the robust FISTA-like method described in [38] which in turn
constitutes a simplification of a recently introduced line-search extension
of FISTA [39].
When dealing with differentiable objectives, we can assume without loss

of generality that
Ψ(x) = 0, x ∈ Rn. (4.35)

In this context, non-monotone ACGM in estimate sequence form (Algo-
rithm 5) without line search has the local upper bounds given byQf,Lf ,yk+1(x)

at every iteration k ≥ 0. By substituting these local upper bound functions
with any functions uk+1(x) that produce iterates satisfying the descent
condition, which means in this context that

argmin
x∈Rn

uk+1(x) ≤ argmin
x∈Rn

Qf,Lf ,yk+1(x)

= f(yk+1)−
1

2Lf
‖∇f(yk+1)‖22, (4.36)

where xk+1 is given by line 4 of Algorithm 1, we obtain the “general scheme
of optimal method” in [16]. Note that under the assumption in (4.33), (4.36)

95

Analysis of ACGM

is satisfied not only by the upper bounds (3.8) of non-monotone ACGM in
Algorithm 5, but also by the upper bounds in (3.149) of monotone ACGM
in Algorithm 8. The correspondence between Nesterov’s notation in [16]
and ours is, for all k ≥ 0, given by:

yFGM
k = yACGM

k+1 , (4.37)

αFGM
k =

aACGM
k+1

AACGM
k+1

=
1

tACGM
k+1

, (4.38)

γFGM
k =

γACGM
k

AACGM
k

. (4.39)

The remaining state parameters are identical. Note that if AACGM
0 = 0 in

(4.38), then parameter αFGM
0 is undefined. With assumption

AACGM
0 > 0, (4.40)

non-monotone ACGM (Algorithm 5) is in fact identical to “constant step
scheme I” in [16]. Similarly, the extrapolated form of fixed-step non-
monotone ACGM (Algorithm 6) under (4.40) corresponds exactly to the
“constant step scheme II” in [16]. Fixed-step border-case non-monotone
ACGM (Algorithm 7), which imposes (4.40) by design, is in turn identical
to the “constant step scheme III” in [16].
The FGM variant in [24] is a particular case of ACGM in Algorithm 5

(with line-search) when the objective is non-strongly convex (μ = 0) and
the step size search parameters are set to rACGM

u = 2 and rACGM
d = 0.5.

The notation correspondence is as follows:

xFGM
k+1,i = x

ACGM
k+1 , yFGM

k,i = yACGM
k+1 , aFGM

k,i = âACGM, 2iLf = L̂ACGM.

(4.41)
The remaining parameters are identical.
Thus, ACGM effectively encompasses FGM [16], with its recently intro-

duced variant [24], as well as the original FISTA [5], including its adaptive
step-size variants [38,39], the monotone version MFISTA [22], the strongly
convex extension FISTA-CP (including the monotone variant) [6], and the
line-search extension restricted to strongly convex objectives scAPG [21].
A summary of how the above first-order methods relate to generalized
ACGM is given in Table 4.7.

4.4.2 Standard WTU Worst-case Analysis

The introduction of standard WTU allows us to compare the computational
convergence guarantees of ACGMwith those of the state-of-the art methods
applicable to the composite problem class: FGM, FISTA, FISTA-CP, scAPG,
AMGS, MOS, and AA. In Subsection 4.4.1, we have seen that FGM, FISTA,
FISTA-CP, and scAPG correspond to particular cases of ACGM, applicable
to a subset of composite problem class and imposing particular restrictions

96

Analysis of ACGM

Table 4.7. FGM and FISTA, along with their common variants, can be considered instances
of generalized ACGM with certain restrictions applied.

Algorithm Restriction

Sm
ooth

obje
ctiv

e

μ = 0
μ > 0

A0
= 0

A0
> 0

Fixe
d st

ep s
ize

Non
-mo

noto
ne

FGM [16] yes no no no yes yes yes
FGM [24] yes yes no unclear unclear no yes
FISTA [5] no yes no yes no partial yes
MFISTA [22] no yes no yes no yes no
scAPG [21] no no yes no yes no yes
FISTA-CP [6] no no no no no yes no

on the input parameters of ACGM. Hence, we limit our comparison to
ACGM, MOS, AMGS, and AA.
Not all aforementioned methods are endowed with line search and, to

be able to perform a comparison, we restrict our analysis to the composite
problem class with Lf known in advance. Therefore, we study ACGM
and AMGS without line-search. This setup no longer has to assume a
particular parallel implementation, such as the one employing specula-
tive execution. Therefore, the results in this section are of fundamental
theoretical importance.
In the non-strongly convex case, the convergence guarantees are, respec-

tively, given for all k ≥ 1 by

AACGM
k = AACGM

i ≥ (k + 1)2

4Lf
=

(i + 1)2

4Lf
, (4.42)

AMOS
k = AMOS

i ≥ k2

4Lf
=

i2

4Lf
, (4.43)

AAMGS
k = AAMGS

i
2

≥ k2

2Lf
=

i2

8Lf
, (4.44)

AAA
k = AAA

i
2

≥ k2

4Lf
=

i2

16Lf
, (4.45)

where i gives the number of WTU required by the first k iterations. It
trivially follows that

AACGM
i

i2
� AMOS

i

i2
>

AAMGS
i

i2
>

AAA
i

i2
, i ≥ 2. (4.46)

In the strongly convex case, let q be the inverse condition number of the
objective function, defined as

q
def
=

μ

Lf + μΨ
. (4.47)

We assume that q < 1 since for q = 1 the optimization problem can be solved
exactly, using only one proximal gradient step. When employing AMGS,

97

Analysis of ACGM

Nesterov suggests in [17] either to transfer all strong convexity from f to Ψ,
or to restart the algorithm at regular intervals4. Both enhancements have
the same effect on the convergence guarantee, which can be expressed as

AAMGS
k = AAMGS

i
2

≥ CAMGS
(
BAMGS

)i
, (4.48)

where BAMGS is a base signifying the asymptotic convergence rate, given
by

BAMGS def
=

(
1 +

√
μ

2(Lf − μf)

)2

=

(
1 +

√
q

2(1− q)

)2

, (4.49)

and CAMGS is a proportionality constant.
For ACGM, MOS, and AA, we have

AACGM
k = AACGM

i ≥ CACGM
(
BACGM

)i
, (4.50)

AMOS
k = AMOS

i ≥ CMOS
(
BMOS

)i
, (4.51)

AAA
k = AAA

i
2

≥ CAA
(
BAA

)i
, (4.52)

where

BACGM def
=

1

1−√q
, (4.53)

BMOS def
=

(
1 +

1

2

√
q

1− q

)2

, (4.54)

BAA def
= 1 +

1

2

√
q

1− q
. (4.55)

Assumption 0 < q < 1 implies that

BACGM > BMOS > BAMGS > BAA. (4.56)

A quantitative comparison of the rates can be found in Figure 4.1. The
inverse rates are compared for every possible value of q in Figure 4.1(a)
whereas the rates are compared directly in Figure 4.1(b) for the range of q

found in the vast majority of practical applications.
It can be clearly discerned from (4.46), (4.56), and Figure 4.1 that ACGM

is asymptotically more efficient than MOS, AMGS, and AA, in that order.
AMGS is considerably slower than ACGM due to its computationally ex-
pensive line-search procedure. By removing line-search, MOS achieves a
rate similar to ACGM in the non-strongly convex case and a lower rate
(yet comparable when q � 1) for strongly-convex objectives. This, however,
comes at the expense of reduced functionality. The heuristic search of
AA incurs an extra 1 WTU per iteration without provably advancing the
algorithm, explaining why AA has the worst guarantees of the methods
studied.
4These suggestions are made in the context of smooth constrained optimization
but also apply to composite problems.

98

Analysis of ACGM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

1
/ B

1 / BACGM

1 / BMOS

1 / BAMGS

1 / BAA

(a) Inverse rates as a function of q

0 0.02 0.04 0.06 0.08 0.1
1

1.1

1.2

1.3

1.4

1.5

q

B

BACGM

BMOS

BAMGS

BAA

(b) Rates for q ≤ 0.1

Figure 4.1. Asymptotic rates of ACGM, MOS, AMGS, and AA

4.4.3 Theoretical Superiority of ACGM

Subsection 4.4.1 argues that ACGM can be considered an “umbrella”
method among large-scale first-order schemes. However, ACGM is more
than a generalizing framework and actually surpasses constituent FGM,
FISTA, FISTA-CP, and scAPG as well as the methods in the AMGS family.
For FGM and FISTA, this occurs even on the more restricted problem
classes they were designed to address.
For instance, the line-search procedure of ACGM is superior to that of

FISTA on non-strongly convex composite problems. FISTA’s line-search
suffers from two drawbacks: the parameter tFISTAk update is oblivious to the
change in local curvature and the LCEs cannot decrease. Hence, if the ini-

99

Analysis of ACGM

tial guess L0 is erroneously large, FISTA will slow down considerably (this
behavior will be illustrated on a simulation example in Subsection 5.1.1).
We formally express the advantages of ACGM’s line-search over that of
FISTA in the following proposition.

Proposition 7. In the non-strongly convex case (μ = 0), under identical
local curvature conditions, when rACGM

u = rFISTAu , ACGM has superior
theoretical convergence guarantees to FISTA, namely

AACGM
k ≥ AFISTA

k , k ≥ 0.

Proof. With judicious use of parameters ru and rd, the average WTU cost
of an iteration of ACGM can be adjusted to equal that of FISTA (also
evidenced in Subsection 5.1.1). Consequently, it is adequate to compare the
convergence guarantees of the two algorithms when indexed in iterations.
Combining (3.46) and (3.48), we obtain

AACGM
k+1 = LACGM

k+1

(
aACGM
k+1

)2
=

1

2LACGM
k+1

(
1 +

√
1 + 4LACGM

k+1 AACGM
k

)

=

(√
1

4LACGM
k+1

+

√
1

4LACGM
k+1

+ AACGM
k

)2

. (4.57)

Replacing (3.66) in non-monotone ACGM for non-strongly convex objectives
in extrapolated form (Algorithm 4) with

tFISTAk+1 =
1 +

√
1 + 4(tFISTAk)2

2
, k ≥ 0, (4.58)

results in an algorithm that produces identical iterates to FISTA.
The convergence analysis of ACGM can be used to show that definition

(3.57) is valid for FISTA as well. Combining (3.57) with (4.58) produces
the corresponding accumulated weight for FISTA as

AFISTA
k+1 =

(√
1

4LFISTA
k+1

+

√
1

4LFISTA
k+1

+
LFISTA
k

LFISTA
k+1

AFISTA
k

)2

. (4.59)

Both methods start with the same state, including AACGM
0 = AFISTA

0 = 0.
The line-search procedure of ACGM is guaranteed to produce Lipschitz
constant estimates no greater than those of FISTA for the same local curva-
ture, i.e., LACGM

k ≤ LFISTA
k , k ≥ 0. FISTA, by design, can only accommodate

an LCE increase, namely LFISTA
k ≤ LFISTA

k+1 , k ≥ 0. Thus, regardless of the
fluctuation in the local curvature of f , we have that

AACGM
k ≥ AFISTA

k , k ≥ 0. (4.60)

100

Analysis of ACGM

The ability to dynamically and frequently adjust to the local Lipschitz
constant gives ACGM an advantage over FISTA-CP, even when an accurate
estimate of the Lipschitz constant is available beforehand (also argued
using simulations in Subsection 5.1.2). Considering that backtracks rarely
occur, the per-iteration complexity of ACGM, both in the non-strongly and
strongly convex cases (μ ≥ 0), approaches that of FISTA and FISTA-CP
(see Table 4.1) and the absolute minimum of 1 WTU per iteration. The
scAPG method is an instance of border-case ACGM that features fully
adaptive line-search and has a per-iteration complexity that matches the
one of ACGM. However, scAPG is guaranteed to converge only when μf > 0

and x0 is feasible, and the restriction γ0 = A0μ renders it less flexible
than ACGM. This parameter choice generally has a negative impact on
performance, as argued in Subsection 5.2.3.
AMGS has better iteration convergence guarantees than ACGM and is

also equipped with a fully adaptive line-search procedure. However, its
high per-iteration cost is almost twice that of ACGM. Consequently, ACGM
surpasses AMGS in terms of computational convergence guarantees on
non-strongly convex problems and actually has a better asymptotic rate on
strongly convex objectives (see Subsection 4.4.2).
MOS can be considered a variant of AMGS with the per-iteration com-

plexity of FISTA-CP. Nevertheless, MOS is slightly slower than FISTA-CP.
This is proven theoretically in Subsection 4.4.2 and a practical confirma-
tion can be found in Subsection 5.1.2. Therefore, ACGM outperforms MOS
by a larger margin than FISTA-CP. AA is a variant of MOS that features
an estimate sequence based acceleration heuristic which can be considered
to be a form of line-search. However, AA requires that an overestimate
of the Lipschitz constant be known beforehand. Unlike FISTA, where an
overestimate slows down the algorithm, an underestimate in AA leads to
outright divergence. Moreover, the per-iteration complexity of AA is equal
to that of AMGS, that combined with an iteration convergence guarantee
lower than that of FISTA-CP gives it the lowest computational convergence
guarantee among the AMGS family of methods (see Subsection 4.4.2).
Table 4.8 contains a detailed feature comparison between large-scale

first-order methods. The combination of capabilities displayed by ACGM,
as outlined in Table 4.8, is unique among this class of algorithms and
accounts for ACGM’s superiority.

101

Analysis of ACGM

Table 4.8. Features of black-box first-order methods applicable to large-scale composite
problems

Algorithm Feature

Co
mp
os
ite
ob
jec
tiv
e

Li
ne
-se
ar
ch

O(
1/
k
2)
ra
te
for

μ
=
0

Li
ne
ar
ra
te
for

μ
>
0

O(
(1
−
√ q)

k)
ra
te
for

μ
>
0

M
on
oto
ne

Proximal point yes no no yes no yes
FGM [16] no no yes yes yes no
FGM [24] no yes yes no no no
FISTA [5] yes partial yes no no no
MFISTA [22] yes no yes no no yes
scAPG [21] partial yes no yes yes no
FISTA-CP [6] yes no yes yes yes yes
AMGS [17] yes yes yes yes no no
MOS [20] yes no yes yes almost no
AA [20] yes partial yes yes no no
ACGM yes yes yes yes yes yes

102

5. Simulations

5.1 Non-monotone ACGM Benchmark

In this section we test non-monotone ACGM against the state-of-the-art
methods on a typical non-strongly convex inverse problem in Subsec-
tion 5.1.1 whereas in Subsection 5.1.2 we focus on a strongly convex
machine learning problem. Both applications feature l1-norm regular-
ization [40]. They have been chosen due to their popularity and simplic-
ity. While effective approaches that exploit additional problem structure,
such as sparsity of optimal points, have been proposed in the literature
(e.g. [10–13]), we consider the applications studied in this section as rep-
resentative of a broader class of problems for which the above specialized
methodologies may not apply.

5.1.1 l1-regularized Image Deblurring

To better compare the capabilities of ACGM (Algorithm 4) to those of
FISTA, we choose the very problem FISTA was introduced to solve, namely
the l1-regularized deblurring of images. For ease and accuracy of bench-
marking, we have adopted the experimental setup from Section 5.1 in [5].
Here, the composite objective function is given by

f(x) = ‖Ax− b‖22, Ψ(x) = λ‖x‖1, (5.1)

where A = RW . The linear operator R is a Gaussian blur with standard
deviation 4.0 and a 9× 9 pixel kernel, applied using reflexive boundary con-
ditions [41]. The linear operatorW is the inverse three-stage Haar wavelet
transform. The digital image x ∈ Rn1×n2 has dimensions n1 = n2 = 256.
The blurred image b is obtained by applying R to the cameraman test im-
age [5] with pixel values scaled to the [0, 1] range, followed by the addition
of Gaussian noise (zero-mean, standard deviation 10−3). The constant Lf
can be computed as the maximum eigenvalue of a symmetric Toeplitz-plus-

103

Simulations

Hankel matrix (more details in [41]), which yields a value of Lf = 2.0. The
problem is non-strongly convex with μ = μf = μΨ = 0. The regularization
parameter λ is set to 2 · 10−5 to account for the noise level of b.
We have noticed that several monographs in the field (e.g., [6, 18]) do

not include AMGS in their benchmarks. For completeness, we compare
Algorithm 4 against both FISTA with backtracking line-search (FISTA-
BT) and AMGS. The starting point x0 was set toW−1b for all algorithms.
AMGS and FISTA were run using rAMGS

u = rFISTAu = 2.0 and rAMGS
d = 0.9

as these values were suggested in [36] to “provide good performance in
many applications”. We assume, as in Subsection 4.3.1, that the LCEs
hover around a fixed value. Therefore, we have for AMGS that a backtrack
occurs every −(log rAMGS

u)/(log rAMGS
d) iterations. The cost ratio between

a backtrack and an iteration without backtracks for ACGM is double
that of AMGS (see Table 4.1). Therefore, to ensure that the line-search
procedures of both methods have comparable computational overheads, we
have chosen rACGM

u = rAMGS
u and rACGM

d =
√

rAMGS
d .

To showcase the importance of employing an algorithm with an efficient
and robust line-search procedure, we have considered two scenarios: a
normally underestimated initial guess L0 = 0.3Lf (Figure 5.1) and a
greatly overestimated L0 = 10Lf . The convergence rate is measured as the
difference between objective function values and an optimal value estimate
F (x̂∗), where x̂∗ is the iterate obtained after running fixed step size FISTA
with the correct Lipschitz constant parameter for 10000 iterations.
When indexing in iterations (Figures 5.1(a) and 5.1(b)), ACGM converges

roughly as fast as AMGS. ACGM takes the lead after 500 iterations, owing
mostly to the superiority of ACGM’s descent condition over AMGS’s strin-
gent “damped relaxation condition” [17]. When indexed in WTU (Figures
5.1(c) and 5.1(d)), ACGM clearly surpasses AMGS from the very beginning,
because of ACGM’s low per-iteration complexity.
FISTA-BT lags behind in the overestimated case, regardless of the con-

vergence measure (Figures 5.1(b) and 5.1(d)), and it is also slightly slower
than ACGM in the underestimated case (Figures 5.1(a) and 5.1(c)). The
disadvantage of FISTA-BT lies in the inability of its line-search procedure
to decrease the Lipschitz constant estimate while the algorithm is running.
Consequently, in both cases, FISTA-BT produces on average a higher Lips-
chitz estimate than ACGM. This is clearly evidenced by Figures 5.1(e) and
5.1(f).

104

Simulations

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(a) Convergence rate in iterations
(L0 = 0.3Lf)

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(b) Convergence rate in iterations
(L0 = 10Lf)

0 100 200 300 400 500 600 700 800 900 1000

10
−4

10
−2

10
0

10
2

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(c) Convergence rate in WTU
(L0 = 0.3Lf)

0 100 200 300 400 500 600 700 800 900 1000

10
−4

10
−2

10
0

10
2

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(d) Convergence rate in WTU
(L0 = 10Lf)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(e) Lipschitz constant estimates
(L0 = 0.3Lf)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(f) Lipschitz constant estimates
(L0 = 10Lf)

Figure 5.1. Convergence results on the l1-regularized image deblurring problem (μ = 0)

105

Simulations

5.1.2 Logistic Regression with Elastic Net

As a strongly convex application, we choose a randomly generated instance
of the logistic regression classification task [42], regularized with an elastic
net [43]. The objective function components are, respectively, given by

f(x) = −yTAx+

m∑
i=1

log(1 + ea
T
i x), (5.2)

Ψ(x) = λ1‖x‖1 +
λ2

2
‖x‖22, (5.3)

where the sparse matrix A ∈ Rm×n has rows aTi , i ∈ {1, ..., m}, and y ∈ Rm
is the vector of classification labels. The gradient of function f has a global
Lipschitz constant Lσ = 1

4σmax(A)2, where σmax(A) is the largest singular
value of A. The computation of σmax(A) is generally intractable for large-
scale problems and optimization algorithms need instead to rely on an
estimate of this value. The matrix A is ill conditioned, which implies that
the smooth part f is not strongly convex (μf = 0).
The elastic net regularizer Ψ has parameters λ1 and λ2. Therefore, the

strong convexity of the objective is μ = μΨ = λ2. Elastic net regularization
is specified by the user [43] and we assume that optimization algorithms
can access μΨ.
In this simulation, the problem size is m = n = 104. The matrix A has

10% of elements non-zero, each sampled as independent and identically
distributed (i.i.d.) from the standard Gaussian distribution N (0, 1). The
labels yi are randomly generated with probability

P(Yi = 1) =
1

1 + e〈aTi ,x〉 , i ∈ {1, ..., m}. (5.4)

The elastic net parameters are λ1 = 1 and λ2 = 10−3Lσ.
We benchmark ACGM against methods that have convergence guaran-

tees. These methods are either equipped with a line-search procedure,
such as FISTA and AMGS, or rely on Lf being known in advance, namely
FISTA-CP and MOS. We do not include scAPG in our benchmark because
μf = 0. We also do not consider methods that owe their performance on
specific applications to heuristic improvements that either significantly
degrade the provable convergence rate, such as in AA, (see Subsection 4.4.2
for proof), or invalidate it altogether, like adaptive restart in FISTA [44] or
in AA [20].
The starting point x0, the same for all algorithms tested, has entries ran-

domly sampled as i.i.d. fromN (0, 1). For ACGM, we setA0 = 0. In this case,
the value of γ0 has no influence. The effectiveness of this initial parameter
selection will be argued in Subsection 5.2.3. For the same reasons as out-
lined in Subsection 5.1.1, we have chosen rACGM

u = rAMGS
u = rFISTAu = 2.0,

rAMGS
d = 0.9, and rACGM

d =
√

rAMGS
d .

106

Simulations

We have computed the optimal point estimate x̂∗ as the iterate with the
smallest objective value obtained after running AMGS for 500 iterations
using Lf = Lσ with the other parameters as mentioned above. Methods
equipped with a line-search procedure incur a search overhead whereas the
other methods do not. For fair comparison, we have tested the collection
of methods in the accurate Lf = Lσ case as well as the overestimated
Lf = 5Lσ case (Figure 5.2).
When indexing in iterations, AMGS converges the fastest (Figures 5.2(a)

and 5.2(b)). However, AMGS has the same asymptotic rate in iterations as
ACGM, despite AMGS performing around twice the number of proximal
gradient steps per iteration. While proximal gradient steps (incurring
1 WTU each) in AMGS improve the Lipschitz constant estimate (Figures
5.2(e) and 5.2(f)), they do not appear to be used efficiently in advancing the
algorithm since AMGS is inferior to ACGM and FISTA-CP in terms of WTU
usage (Figures 5.2(c) and 5.2(d)). Note that FISTA-CP and MOS display
nearly identical convergence behaviors (Figures 5.2(a), 5.2(b), 5.2(c), and
5.2(d)), as theoretically argued in Subsection 4.4.2.
This particular application emphasizes the importance of taking into

account the local curvature of the function. Whereas ACGM and FISTA-
CP have identical a priori worst-case rates, FISTA-CP (and consequently
MOS) lags behind considerably, even when an accurate value of Lf is
supplied (Figures 5.2(a) and 5.2(c)). The reason is that the Lipschitz
estimates of ACGM are several times smaller than the global value Lf
(Figure 5.2(e)). The difference between local and global curvature is so
great that FISTA-CP’s ability to exploit strong convexity does not give
it a sizable performance advantage over FISTA on this problem1. The
benefit of being able to decrease the LCE at runtime is predictably more
evident in the inaccurate case (Figure 5.2(f)). Even though AMGS also
features a fully adaptive line-search procedure, estimates produced by
the AMGS’s “damped relaxation condition” are considerably higher than
those of ACGM, further contributing for the ACGM’s superior convergence
behavior in WTU (Figures 5.2(c) and 5.2(d)).

1We forward the reader to [6] for a more detailed comparison between FISTA and
FISTA-CP.

107

Simulations

0 25 50 75 100 125
10

−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(a) Convergence rate in iterations
(Lf = Lσ)

0 25 50 75 100 125

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(b) Convergence rate in iterations
(Lf = 5Lσ)

0 25 50 75 100 125 150

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(c) Convergence rate in WTU
(Lf = Lσ)

0 25 50 75 100 125 150 175

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(d) Convergence rate in WTU
(Lf = 5Lσ)

0 25 50 75 100 125 150
0

200

400

600

800

1000

1200

1400

1600

1800

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(e) Lipschitz constant estimates
(Lf = Lσ)

0 25 50 75 100 125 150 175
0

1000

2000

3000

4000

5000

6000

7000

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(f) Lipschitz constant estimates
(Lf = 5Lσ)

Figure 5.2. Convergence results on logistic regression with elastic net (μ = 10−3Lσ)

108

Simulations

5.2 Monotone ACGM Benchmark

5.2.1 Benchmark Setup

Having confirmed the superiority of ACGM on two simple examples, we
continue the tests using a larger selection of parameters and variants
of ACGM, including the monotone ones. We now include in our bench-
mark non-monotone ACGM (denoted as plain ACGM), monotone ACGM
(MACGM), and, for strongly-convex problems, border-case non-monotone
ACGM (BACGM) as well as border-case monotone ACGM (BMACGM). We
compare against FISTA-CP, monotone FISTA-CP (MFISTA-CP), AMGS,
and FISTA with backtracking line-search (FISTA-BT). BACGM produces
identical iterates to scAPG, so we do not mention scAPG explicitly in our
simulations.
In this extended survey, we have selected as test cases five synthetic

instances of composite problems in the areas of statistics, inverse problems,
and machine learning. Three are non-strongly convex: the least absolute
shrinkage and selection operator (LASSO) [40], non-negative least squares
(NNLS), and l1-regularized logistic regression (L1LR). The other two are
strongly-convex: ridge regression (RR) and elastic net (EN) [43]. Table 5.1
lists the oracle functions of all above mentioned problems. Here, the sum

Table 5.1. Oracle functions of the five test problems

Problem f(x) Ψ(x) ∇f(x) proxτΨ(x)

LASSO 1
2‖Ax− b‖22 λ1‖x‖1 AT (Ax− b) Tτλ1(x)

NNLS 1
2‖Ax− b‖22 σRn+(x) AT (Ax− b) (x)+

L1LR I(Ax)− yTAx λ1‖x‖1 AT (L(Ax)− y) Tτλ1(x)
RR 1

2‖Ax− b‖22
λ2
2 ‖x‖22 AT (Ax− b) 1

1+τλ2
x

EN 1
2‖Ax− b‖22 λ1‖x‖1 + λ2

2 ‖x‖22 AT (Ax− b) 1
1+τλ2

Tτλ1(x)

softplus function I(x), the element-wise logistic function L(x), and the
shrinkage operator Tτ (x) are, respectively, given by

I(x) =
m∑
i=1

log (1 + exi) , i ∈ {1, ..., m}, (5.5)

L(x)i =
1

1 + e−xi , i ∈ {1, ..., m}, (5.6)

Tτ (x)j = (|xj | − τ)+ sgn(xj), j ∈ {1, ..., n}. (5.7)

To attain the best convergence guarantees for AMGS, Nesterov suggests
in [17] that all known global strong convexity be transfered to the simple
function Ψ. When line-search is enabled, generalized ACGM also benefits
slightly from this arrangement when ru > 1 because the LCEs are smaller
and therefore tighter. Without line-search, the convergence guarantees of

109

Simulations

generalized ACGM do not change as a result of strong convexity transfer, in
either direction. Thus, for fair comparison, we have incorporated in Ψ the
strongly-convex quadratic regularization term for the RR and EN problems.
In the following, we describe in detail each of the five problem instances.
All random variables are independent and identically distributed, unless
stated otherwise.
LASSO. Real-valued matrix A is of size m = 500× n = 500, with entries

drawn from N (0, 1). Vector b ∈ R
m has entries sampled from N (0, 9).

Regularization parameter λ1 is 4. The starting point x0 ∈ Rn has entries
drawn from N (0, 1).
NNLS. Sparse m = 1000 × n = 10000 matrix A has approximately 10%

of entries, at random locations, non-zero. The non-zero entries are drawn
from N (0, 1) after which each column j ∈ {1, ..., n} is scaled independently
to have an l2 norm of 1. Starting point x0 has 10 entries at random locations
all equal to 4 and the remainder zero. Vector b is obtained from b = Ax0+z,
where z is standard Gaussian noise.
L1LR. Matrix A has m = 200× n = 1000 entries sampled from N (0, 1),
x0 has exactly 10 non-zero entries at random locations, each entry value
drawn from N (0, 225), and λ1 = 5. Labels yi ∈ {0, 1}, i ∈ {1, ..., m}, are
selected with probability P(Yi = 1) = L(Ax)i.
RR. Dimensions are m = 500× n = 500. The entries of matrix A, vector
b, and starting point x0 are drawn from N (0, 1), N (0, 25), and N (0, 1),
respectively. Regularizer λ2 is given by 10−3(σmax(A))2, where σmax(A) is
the largest singular value of A.
EN. Matrix A has m = 1000 × n = 500 entries sampled from N (0, 1).

Starting point x0 has 20 non-zero entries at random locations, each en-
try value drawn from N (0, 1). Regularization parameter λ1 is obtained
according to [45] as λ1 = 1.5

√
2 log(n) and λ2 is the same as in RR, namely

λ2 = 10−3(σmax(A))2.
The Lipschitz constant Lf is given by (σmax(A))2 for all problems ex-

cept for L1LR where it is 1
4(σmax(A))2. Strongly convex problems RR

and EN have μ = μΨ = λ2 and an inverse condition number given by
q = μ/(Lf + μΨ) = 1/1001.
To be able to benchmark against FISTA-CP and FISTA-BT, which lack

a fully adaptive line-search procedure, we have set L0 = Lf for all tested
algorithms, thus giving FISTA-CP and FISTA-BT an advantage over the
proposed methods. To better highlight the differences between ACGM and
BACGM, we ran ACGM and MACGM with parameters A0 = 0 and γ0 = 1.
Despite the problems differing in structure, the oracle functions have the

same computational costs. We consider one matrix-vector multiplication
to cost 1 WTU. Consequently, for all problems, we have tf = 1 WTU,
tg = 2WTU, and tΨ = tp = 0WTU.
The line-search parameters were selected according to the recommenda-

tion given in [36]. For AMGS and FISTA-BT we have rAMGS
u = rFISTAu = 2.0

110

Simulations

and rAMGS
d = 0.9. The variants of generalized ACGM and AMGS are the

only methods included in the benchmark that are equipped with fully adap-
tive line-search. We have decided to select rACGM

d to ensure that ACGM
and AMGS have the same overhead. We formally define the line-search
overhead of methodM, denoted by ΩM, as the average computational cost
attributable to backtracks per WTU of advancement. Assuming that the
LCEs hover around a fixed value (see also Subsection 5.1.1), we thus have
that

ΩAMGS = −(2tg + tp) log(r
AMGS
d)

2(tg + tp) log(rAMGS
u)

, ΩACGM = −(tf + tg + tp) log(r
ACGM
d)

(tg + tp) log(rACGM
u)

.

(5.8)
From (5.8) we have that rACGM

d = (rAMGS
d)

2
3 , with no difference for border-

case or monotone variants.
For measuring ISDs, we have computed beforehand an optimal point

estimate x̂∗ for each problem instance. Each x̂∗ was obtained as the main
iterate after running MACGM for 5000 iterations with parameters A0 = 0,
γ0 = 1, L0 = Lf , and aggressive search parameters rd = 0.9 and ru = 2.0.

5.2.2 Non-strongly Convex Problems

The convergence results for LASSO, NNLS, and L1LR are shown in Fig-
ure 5.3. The LCE variation during the first 200 WTU is shown in Figures
5.4(a) and 5.4(c) for LASSO and L1LR, respectively. For NNLS, floating
point precision was exhausted after 100 WTU and the LCE variation was
only studied up to this point (Figure 5.4(b)). In addition, the average LCEs
are listed in Table 5.2.
Both variants of ACGM outperform in iterations and especially in WTU

the competing methods in each of these problem instances (Figure 5.3).
Even though for LASSO and NNLS, the iteration convergence rate of
AMGS is slightly better in the beginning (Figures 5.3(a) and 5.3(c)), AMGS
lags behind afterwards and, when measured in terms of computational
convergence rate, has the poorest performance among the methods tested
(Figures 5.3(b) and 5.3(d)). In all the non-strongly convex problems, when
L0 = Lf , the backtrack condition of FISTA-BT is never triggered and
FISTA-BT produces the same iterates as FISTA-CP (Figure 5.3).
The overall superiority of ACGM and MACGM can be attributed to the

effectiveness of line-search. Interestingly, ACGM manages to surpass
FISTA-CP and MFISTA-CP even when the latter are supplied with the
exact value of the global Lipschitz constant. This is because ACGM is able
to accurately estimate the local curvature, which is often below Lf . For
the L1LR problem, where the smooth part f is not the square of a linear
function, the local curvature is substantially lower than the global Lips-
chitz constant with LCEs hovering around one fifth of Lf (Figure 5.4(c)).
AMGS is not able to estimate local curvature as accurately as ACGM

111

Simulations

0 500 1000 1500 2000

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(a) Iteration convergence rates on
LASSO

0 1000 2000 3000 4000

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(b) Computational convergence
rates on LASSO

0 5 10 15 20 25 30 35 40 45 50

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(c) Iteration convergence rates on
NNLS

0 10 20 30 40 50 60 70 80 90 100

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(d) Computational convergence
rates on NNLS

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(e) Iteration convergence rates on
L1LR

0 50 100 150 200 250 300 350 400
10

−10

10
−5

10
0

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(f) Computational convergence
rates on L1LR

Figure 5.3. Convergence results of FISTA with backtracking (FISTA-BT), AMGS, FISTA-
CP, monotone FISTA-CP (MFISTA-CP), non-monotone ACGM and monotone
ACGM (MACGM) on the LASSO, NNLS, and L1LR non-strongly convex prob-
lems. Dots mark iterations preceding overshoots. At these iterations, the
convergence behavior changes.

112

Simulations

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(a) LASSO

0 20 40 60 80 100
0

5

10

15

20

25

30

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(b) NNLS

0 50 100 150 200
0

100

200

300

400

500

600

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(c) L1LR

Figure 5.4. Line-search method LCE variation on LASSO, NNLS, and L1LR

Table 5.2. Average LCEs of line-search methods on LASSO, NNLS, and L1LR

Problem Lf Iterations FISTA-BT AMGS ACGM MACGM

LASSO 1981.98 2000 1981.98 2202.66 1385.85 1303.70
NNLS 17.17 50 17.17 19.86 14.35 13.54
L1LR 518.79 200 518.79 246.56 80.76 79.12

due to AMGS’s reliance on a “damped relaxation condition” line-search
stopping criterion. For LASSO and NNLS, the average LCE of AMGS is
actually above Lf (Table 5.2). ACGM has an average LCE that is roughly
two thirds that of AMGS on these problems whereas for L1LR the average
is more than three times lower than AMGS. The difference between the
LCE averages of ACGM and MACGM is negligible.
Indeed, monotonicity, as predicted, does not alter the overall iteration

convergence rate and has a stabilizing effect. MACGM overshoots do have
a negative but limited impact on the computational convergence rate. We
have noticed in our simulations that overshoots occur less often2 for larger
problems, such as the tested instance of NNLS.

2Our computing system used double precision floating point internally so we con-
sider only the first 12 digits of image space accuracy to be reliable measurements.

113

Simulations

5.2.3 Strongly Convex Problems

The convergence results for RR and EN are shown in Figures 5.5(a), 5.5(b),
5.5(c), and 5.5(d). The LCE variation is shown in Figure 5.6 with the LCE
averages listed in Table 5.3.
Strongly convex problems have a unique optimum point and accelerated

first-order schemes are guaranteed to find an accurate estimate of it in
domain space (see [16] for a detailed analysis). Since our procedure for
obtaining x̂∗ ensures that x̂∗ � x∗, we have that

A0(F (x0)− F (x̂∗)) +
γ0
2
‖x0 − x̂∗‖22 � Δ0. (5.9)

Thus, we can display accurate estimates Uk of ISDUBs in (2.5), defined as

Uk
def
=

Δ0

Ak
, k ≥ 1, (5.10)

for methods that maintain convergence guarantees at runtime. These are
shown in Figures 5.5(e) and 5.5(f) as upper bounds indexed in WTU.
For the RR problem, all methods except FISTA-BT exhibit a smooth linear

convergence rate (Figures 5.5(a) and 5.5(c)). In iterations, AMGS converges
the fastest. However, in terms of WTU usage, it is the least effective of
the methods designed to deal with strongly convex objectives (Figure
5.5(c)). The reasons are the high cost of its iterations, its low asymptotic
rate compared to ACGM and FISTA-CP (see Subsection 4.4.2), and the
stringency of its damped relaxation criterion that results in higher LCEs
(on average) than ACGM (Figure 5.6(a) and Table 5.3). The computational
convergence rate of BACGM is the best, followed by ACGM, FISTA-CP, and
AMGS. This does not, however, correspond to the upper bounds (Figure
5.5(e)). While BACGM produces the largest accumulated weights Ak, the
high value of the ISD term in Δ0 causes BACGM to have poorer upper
bounds than ACGM, except for the first iterations. In fact, the effectiveness
of BACGM on this problem is exceptional, partly due to the regularity of
the composite gradients. This regularity also ensures monotonicity of
BACGM, ACGM, and FISTA-CP. FISTA-BT is effective during the first 200
WTU, after which it lags behind all other methods. After 500 WTU, FISTA-
BT is even slower than AMGS, despite its lower line-search overhead and
advantageous parameter choice L0 = Lf .
On the less regular EN problem, ACGM leads all other methods in terms

of both iteration and computational convergence rates (Figures 5.5(b) and
5.5(d)). The advantage of ACGM, especially over BACGM, is accurately
reflected in the upper bounds (Figure 5.5(f)). However, convergence is
much faster than the upper bounds would imply. Even FISTA-BT has a
competitive rate, due to the small number of iterations (150) needed for
high accuracy results. The ineffectiveness of AMGS on this problem is
mostly due to its high LCEs (Figure 5.6(b) and Table 5.3). All variants

114

Simulations

0 50 100 150 200 250 300 350

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(a) Iteration convergence rates on
RR

0 50 100 150

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(b) Iteration convergence rates on
EN

0 100 200 300 400 500 600 700

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(c) Computational convergence
rates on RR

0 50 100 150 200 250 300

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(d) Computational convergence
rates on EN

0 100 200 300 400 500 600 700

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

AMGS (U)
ACGM (U)
MACGM (U)
BACGM (U)
BMACGM (U)
AMGS (R)
ACGM (R)
MACGM (R)
BACGM (R)
BMACGM (R)

(e) Computational convergence rates
(R) and upper bounds (U) on RR

0 50 100 150 200 250 300

10
−10

10
−5

10
0

WTU

F
(x

k
)
−
F

(x̂
∗
)

AMGS (U)
ACGM (U)
MACGM (U)
BACGM (U)
BMACGM (U)
AMGS (R)
ACGM (R)
MACGM (R)
BACGM (R)
BMACGM (R)

(f) Computational convergence rates
(R) and upper bounds (U) on EN

Figure 5.5. Convergence results of FISTA with backtracking (FISTA-BT), AMGS, FISTA-
CP, monotone FISTA-CP (MFISTA-CP), non-monotone ACGM, monotone
ACGM (MACGM), border-case non-monotone ACGM (BACGM), and border-
case monotone ACGM (BMACGM) on the RR and EN strongly-convex prob-
lems. Dots mark iterations preceding overshoots.

115

Simulations

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM
BACGM
BMACGM

(a) RR

0 50 100 150 200
0

1000

2000

3000

4000

5000

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM
BACGM
BMACGM

(b) EN

Figure 5.6. Line-search method LCE variation on RR and EN

Table 5.3. Average LCEs of line-search methods on RR and EN. RR has Lf = 1963.66 and
for EN Lf = 2846.02. All algorithms were run on RR for K = 350 iterations
and on EN for K = 150 iterations.

Algorithm Problem
RR EN

FISTA-BT 1963.66 2846.02
AMGS 2022.73 3023.47
ACGM 1473.88 2056.68
MACGM 1473.88 2003.09
BACGM 1471.16 2093.56
BMACGM 1471.16 1998.12

of ACGM have comparable average LCEs. Here as well, monotonicity
has a stabilizing effect and does not have a significant impact on the
computational convergence rate.
We note that for both the RR and EN problems, regardless of the actual

performance of BACGM, the convergence guarantees of BACGM are poorer
than those of ACGM with A0 = 0. This discrepancy in guarantees is
supported theoretically because, in the most common applications, the ISD
term in Δ0 is large compared to the DST. This extends to the fixed-step
setup and challenges the notion found in the literature (e.g., [46]) that for
strongly-convex functions, FGM and FISTA-CP are momentum methods
that take the form of the “constant step scheme III” in [16]. In fact, the
border-case form may constitute the poorest choice of parameters A0 and
γ0 in many applications. Indeed, the worst-case results in Theorem 7 favor
A0 = 0.

116

6. Ultrasound Image Reconstruction

The reconstruction of ultrasound images is a difficult open problem, due
to the high degree of noise, the lack of clearly defined features, and the
high dynamic range of ultrasound images. In this chapter, we shall utilize
the low resource usage, applicability, adaptability, and state-of-the art
convergence guarantees of ACGM to develop an accurate ultrasound image
reconstruction methodology that is tractable even for large images.

6.1 Background

Ultrasound imaging is an efficient, cost effective, and safe medical imag-
ing modality. It is widely used for various clinical applications and is
especially well suited for the diagnosis of soft tissue pathologies. These
advantages are however mitigated by the relative low image quality (in
terms of signal-to-noise ratio), low contrast, and poor spatial resolution.
The main factors affecting the quality of ultrasound images are the finite
bandwidth and aperture of the imaging transducer as well as the physical
phenomena (e.g., diffraction and attenuation) related to the propagation
of sound waves in human tissues. Consequently, a rich body of scientific
literature addresses ultrasound image reconstruction, i.e., the estimation
of the tissue reflectivity function (TRF) from ultrasound radio-frequency
(RF) images. Generally, existing approaches turn the TRF estimation into
a deconvolution problem, by considering, under the first order Born approx-
imation, that the formation of ultrasound images follows a 2D convolution
model between the TRF and a system point-spread function (PSF). The
PSF can be either estimated in a pre-processing step (see, e.g., [47–52]) or
jointly estimated with the TRF, an approach known as blind deconvolution
(see, e.g., [53–56]). Mainly for computational reasons, most of the existing
ultrasound image restoration methods consider a spatially invariant PSF
model and circulant boundary conditions. However, regardless of the acqui-
sition setup, stationary convolution cannot accurately model the formation
of ultrasound images.

117

Ultrasound Image Reconstruction

6.1.1 Pulse-echo Ultrasound

Pulse-echo emission of focused waves still remains the most widely used
acquisition scheme in ultrasound imaging. The active elements of the
ultrasound probe sequentially transmit an excitation, unique for each
element, such that the combined beam is narrowly focused at a certain
location in the tissue. Scatterers in the tissue reflect the ultrasound waves
back to the probe. The active elements in the probe are piezoelectric
and also act as receivers. The received signals, with one raw channel
data stream corresponding to each active element, are combined in a
process known as beamforming to obtain one radio-frequency (RF) signal.
These focused beams are transmitted sequentially. For each transmission
centered at a lateral position, the raw data is used to beamform one RF
signal. The juxtaposition of the RF signals yields the RF image.
Each RF signal passes through a band-pass filter. The Hilbert transform

is applied and the magnitude of the result constitutes the detected envelope.
The log-compressed envelopes of the RF channel signals are juxtaposed to
form the ultrasound image that is displayed to the user. The process of
obtaining the final ultrasound image from the RF image is well defined and
will not be developed further in this work. Instead, our goal is to recover
the TRF from the RF image.
Whereas the RF image formation process is poorly modeled by traditional

2D convolution, a spatially varying kernel convolution model can be very
accurate [57, 58]. Given the repeatability of the imaging process in the
lateral direction, the lateral variation of the kernels is negligible. However,
despite dynamic focusing in reception and time gain compensation, the ker-
nels become wider as we move away from the focal depth, thus degrading
the spatial resolution.

6.1.2 Previous Work

The kernel variation has been accounted for by assuming local regions
of kernel invariance and performing deconvolution block-wise (e.g., [59]).
Very recently, ultrasound imaging convolution models with continuously
varying kernels were proposed in [57] and [58]. However, [57] makes the
overly restrictive assumption that the spatially varying kernel is obtained
from a constant reference kernel modulated by the exponential of a fixed
discrete generator scaled by the varying kernel center image coordinates.
Therefore, it does not take into account the depth-dependent spatial resolu-
tion degradation that occurs in pulse-echo ultrasound. On the other hand,
the deconvolution proposed in [58] has an iteration complexity proportional
to the cube of the number of pixels in the image, limiting its applicability
to very small images.

118

Ultrasound Image Reconstruction

6.2 Notation

In this chapter, images (ultrasound images and TRFs) are vectorized
in column-major order but referenced in 2D form. For instance, image
v ∈ Rmvnv corresponds to an mv × nv 2D image and has the pixel value at
coordinates (i, j) given by vmv(j−1)+i. However, for clarity of exposition, we
denote it as the 2D object v ∈ Rmv×nv , with the pixel value at location (i, j)

given by vi,j . Bold marks this artificial indexing. Similarly, linear operators
are matrices but referred to as 4D tensors, e.g., O : Rmv×nv → R

mw×nw

denotes O ∈ Rmvnv×mwnw .
In the sequel, we define several classes of linear operators that constitute

the mathematical building blocks of our proposed model and analysis.
Note that these are more general than normal linear operators because
their dimensions not only depend on those of their parameters but also of
their arguments. These arguments include kernel k ∈ Rmk×nk and image
a ∈ Rma×na , where mk, nk, ma, na ≥ 1.
Let the rotation operatorR(k) be given by

(R(k))i,j
def
= kmk−i+1,nk−j+1, i ∈ {1, ..., mk}, j ∈ {1, ..., nk}. (6.1)

To simplify notation, for all indices 1 ≤ a ≤ b ≤ c, we denote the exception
index set I(a, b, c) as

I(a, b, c)
def
= {1, ..., c} \ {a, ..., b}. (6.2)

The window and zero padding operators are, respectively, defined as

W(i1, i2, j1, j2, ma, na)a
def
= ai+i1,j+j1 , i ∈ {1, ..., i2 − i1}, j ∈ {1, ..., j2 − j1},

(6.3)

Z(i1, i2, j1, j2, ma, na)a
def
=

{
ai−i1,j−j1 , i1 ≤ i ≤ i2, j1 ≤ j ≤ j2,

0, i ∈ I(i1, i2, ma), j ∈ I(j1, j2, na).
(6.4)

It trivially follows that the two operators are mutually adjoint, namely

W(i1, i2, j1, j2, ma, na)
T = Z(i1, i2, j1, j2, ma, na), (6.5)

where (∗)T denotes the adjoint of a linear operator, which corresponds to
the transpose of its matrix form. Their effect on a test image is shown in
Figure 6.1.
Note that none of the operators introduced up until now involve any

computation in practice.

119

Ultrasound Image Reconstruction

�

��� ��
�
��

�
� �

�
� �

�
�����	

�� ��
�
� �

�
� �

�
� �

�
�� ����

�
�

�
� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure 6.1. Applying the full-width window operator, followed by a full-width zero-padding
operator on a test image a.

6.3 Discrete Convolution

6.3.1 Definitions

To define spatially varying convolution, it is necessary to first define spa-
tially invariant convolution for images or image patches of arbitrary size.

Circular convolution
Existing ultrasound formation forward models assume that the RF image
is formed from the discrete circular convolution of the TRF with a system
PSF. Circular (periodic) convolution approximates the physical processes
involved in the formation of the central part of the image while being very
computationally efficient [60]. It only applies to arguments of equal size.
When k and a are not the same size, they can only be circularly convolved
by appropriately padding them with zeros. When dealing with circular
convolution, we only consider arguments k̄ and ā of equal size m by n.
Circular convolution � can be defined using the discrete Fourier transform
(DFT) using the convolution theorem [61] as

k̄ � ā def
= FH((F k̄)� (F ā)), (6.6)

where F is the DFT operator.
Circular convolution in (6.6) can be written explicitly [62], without em-

ploying the DFT, as

(k̄ � ā)i,j =
m∑
p=1

n∑
q=1

k̄p,qāi�mp,j�nq, i ∈ {1, ..., m}, j ∈ {1, ..., n}, (6.7)

where the circular sum ⊕ and difference � are, respectively, defined as

a⊕c b
def
= ((a + b− 2) mod c) + 1, (6.8)

a�c b
def
= ((a− b) mod c) + 1, (6.9)

for all integers c ≥ 1 and a, b ∈ {1, ..., c}.
The circular convolution linear operator C(k̄), parametrized by kernel k̄

is defined as
C(k̄)ā def

= k̄ � ā. (6.10)

120

Ultrasound Image Reconstruction

Valid and full convolution
Whereas circular convolution possesses remarkable mathematical prop-
erties, the zero padding of the arguments and its circulant boundary are
entirely artificial. Full convolution very accurately models the ultrasound
image formation process from isolated scatterers [58,63].
We define discrete full convolution ∗1 between kernel k ∈ Rmk×nk and

image a ∈ Rma×na of size 1 ≤ mk ≤ ma and 1 ≤ nk ≤ na as

(k ∗1 a)i,j def
=

p̄i∑
p=pi

q̄j∑
q=qj

kp,qai−p+1,j−q+1,

i ∈ {1, ..., ma + nk − 1}, j ∈ {1, ..., na + nk − 1},
pi = max{1, i−ma + 1}, p̄i = min{i, mk},
qj = max{1, j − na + 1}, q̄j = min{j, nk}.

(6.11)

Its corresponding linear operator C1(k), parametrized by kernel k, is de-
fined as

C1(k)a
def
= k ∗1 a, (6.12)

for all a ∈ Rma×na

Valid convolution is the subset of full convolution where every output
pixel is expressed using the entire kernel k. This type of convolution is
particularly useful when the reconstructed TRF needs to be as large as the
RF image [64]. Valid convolution ∗2 is written explicitly as

(k ∗2 a)i,j def
=

mk∑
p=1

nk∑
q=1

kp,qai−p+mk,j−q+nk ,

i ∈ {1, ..., ma −mk + 1}, j ∈ {1, ..., na − nk + 1},
(6.13)

with its linear operator C2(k) given by

C2(k)a
def
= k ∗2 a. (6.14)

Here, arguments k and a are of the same type as in full convolution.
The difference between valid and full convolution is exemplified in Fig-

ure 6.2.

� �

��
�
�

��
�
�

�

�

Figure 6.2. Convolving test image a with a Gaussian kernel k. The inner rectangle
represents valid convolution whereas the outer marks full convolution. Here,
black and white correspond to values of 1 and 0, respectively. Kernel k is
displayed after min-max normalization.

121

Ultrasound Image Reconstruction

6.3.2 Adjoint Expressions

As we have seen in the comprehensive benchmark in Subsection 5.2.1, and
particularly in Table 5.1, the oracle functions of inverse problems with
linear forward models employ the adjoint of the model operator. Our aim is
to express our forward model in terms of the aforementioned convolution
operators. Therefore, we need to derive the adjoints of these convolution
operators.

Adjoint of circular convolution
To be able to express the adjoint of the circular convolution operator, we
define the circular shift operator S(p, q) as

S(p, q)ā
def
= e(p, q)� ā, (6.15)

where e(p, q) is the standard basis vector image

e(p, q)i,j =

{
1, i = p, j = q,

0, otherwise.
(6.16)

It follows that S(1, 1) is the identity operator.
The derivation of the adjoint relies on the following basic property of the

shift operators.

Lemma 11. Shift operators cumulate and can be taken out of convolutions
as

C(S(p1, q1)k̄)S(p2, q2) = S(p1 ⊕m p2, q1 ⊕n q2)C(k̄).
Proof. The result follows trivially from the commutativity and associativity
properties of circular convolution

C(S(p1, q1)k̄)S(p2, q2)ā = (e(p1, q1)� k̄)� (e(p2, q2)� ā)
= (e(p1, q1)� e(p2, q2))� k̄ � ā
= e(p1 ⊕m p2, q1 ⊕n q2)� (k̄ � ā)
= S(p1 ⊕m p2, q1 ⊕n q2)C(k̄)ā. (6.17)

Using notation (6.15) and Lemma 11 we can proceed to the main result.

Theorem 8. The adjoint of circular convolution is circular cross-correlation
circularly shifted forward by one position

(C(k̄))T = S(2, 2)C(R(k̄)).

Proof. From the convolution theorem in (6.6) we have that

k̄ � ā = FH diag(F k̄)F ā, (6.18)

122

Ultrasound Image Reconstruction

where diag(x) produces a diagonal matrix (linear operator) with the entries
of x. Therefore, the circular convolution operator is diagonalized in the
Fourier domain as

C(k̄) = FHdiag(F k̄)F . (6.19)

Taking the adjoint in (6.19), we obtain that

(C(k̄))T = (C(k̄))H = FHdiag((F k̄)∗)F

= FHdiag(F ∗k̄)F . (6.20)

The DFT matrix has conjugate symmetry [62], namely

F ∗k̄ = FS(2, 2)R(k̄). (6.21)

Substituting (6.21) in (6.20) we have

(C(k̄))T = FHdiag(FS(2, 2)R(k̄))F , (6.22)

which can be expressed using the convolution theorem in (6.18) as

(C(k̄))T = C(S(2, 2)R(k̄)). (6.23)

The application of Lemma 11 with p1 = q1 = 2, p2 = q2 = 1, in (6.23)
completes the proof.

Adjoint of valid and full convolution
Circular convolution is a fundamental mathematical construct and The-
orem 8 can be used to derive the adjoint of valid and full convolution, as
follows.

Theorem 9. The adjoint of valid convolution is full correlation (full convo-
lution with the rotated kernel), namely

(C2(k))
T = C1(R(k)).

Proof. To simplify notation, we redefine within the scope of this proof the
window and zero padding operators, respectively, as

WL,H
def
= W(mL, mH , nL, nH , mN , nN), (6.24)

ZL,H def
= Z(mL, mH , nL, nH , mN , nN). (6.25)

where indices L, H ∈ {1, k, a, M, N} stand for quantities m1, mk, ma, etc.,
with m1 = n1 = 1 and

mM = ma −mk + 1, nM = na − nk + 1, (6.26)

mN = ma + mk − 1, nN = na + nk − 1. (6.27)

123

Ultrasound Image Reconstruction

Using the above shorthand notation, we can express the valid and full
convolution linear operators, respectively, as

C2(k) = Wk,aC(Z1,kk)Z1,a, (6.28)

C1(k) = W1,aC(Z1,kk)Z1,M . (6.29)

Note that if C2(k) takes as arguments images of size ma × na, its adjoint
expression involves an operator C1(k) with arguments of size mM × nM .
We apply the adjoint in (6.28) and obtain

(C2(k))
T = (Z1,a)

T (C(Z1,kk))
T (Wk,a)

T . (6.30)

Like their full-width counterparts, the window operator and corresponding
zero padding operators introduced in this section are also mutually adjoint,
namely

(WL,H)
T = ZL,H . (6.31)

Applying (6.31) in (6.30) yields

(C2(k))
T = W1,a(C(Z1,kk))

TZk,a. (6.32)

Theorem 8 gives

(C(Z1,kk))
T = S(2, 2)C(R(Z1,kk))

= S(2, 2)C(Za,NR(k))

= S(2, 2)C(S(ma, na)Za,NR(k))

= S(ma + 1, na + 1)C(Z1,kR(k)). (6.33)

Using (6.33) in (6.32) and applying Lemma 11 we obtain that

(C2(k))
T = W1,aS(ma + 1, na + 1)C(Z1,kR(k))S(mk, nk)Z1,M

= W1,aS(1, 1)C(Z1,kR(k))Z1,M

= W1,aC(Z1,kR(k))Z1,M . (6.34)

The desired result follows by observing that the right-hand sides of (6.34)
and (6.29) are identical.

Corollary 1. The adjoint of full convolution is valid correlation (valid
convolution with the rotated kernel), namely

(C1(k))
T = C2(R(k)).

Proof. Just like transposition, the rotation operator is unitary and self-
adjoint, namely

R(R(k)) = k, (6.35)

for all kernels k. The rotation operator is also bijective. Therefore, rotating
the kernel in Theorem 9 does not reduce its generality. Taking the adjoint
in Theorem 9 applied to rotated kernelR(k), we have that

C2(R(k)) = (C1(R(R(k))))T . (6.36)

Using (6.35) in (6.36) completes the proof.

124

Ultrasound Image Reconstruction

6.4 Ultrasound Image Formation Models

In this section we provide two increasingly accurate models for the forma-
tion of ultrasound radio-frequency images.

6.4.1 Prototype Mixture Model

We propose the following image formation model

y =HPx+ n, (6.37)

where y denotes the observed radio-frequency (RF) image, x is the tissue
reflectivity function (TRF) to be recovered and n represents independent
identically distributed (i.i.d.) additive white Gaussian noise (AWGN). All
images are of the same size, x,y,n ∈ Df

def
= R

mt×nt , where mt denotes the
height (number of pixels along the axial dimension) and nt gives the width
(lateral pixel count) of the TRF.

Padding
Operator P : Rmt×nt → R

mp×np pads the TRF with a boundary of width nr
and heightmr, yielding an image of sizemp = mt + 2mr times np = nt + 2nr.
Padding in our ultrasound imaging model allows us to reconstruct a TRF
of the same size as the observed RF image. To this end, we must simu-
late the effect the surrounding tissues have on the imaged tissues. With
padding, we estimate the TRF from the surrounding tissues using informa-
tion from the imaged TRF. This estimation only affects the border of the
reconstructed TRF. If this border information is not required, the recon-
structed TRF can simply be cropped accordingly. The addition of padding
to our model brings the advantage of accommodating both options.
For computational reasons, P is assumed linear and separable along

the dimensions of the image. Separability translates to P = PmPn. Here,
Pm pads every column of the image independently by applying the 1D
padding (linear) operator P(mt, mr). Consequently, when nt = 1 and
nr = 0, operators P and P(mt, mr) are equivalent. The row component Pn
treats every row as a column vector, applies P(nt, nr) to it, and turns the
result back into a row.
Padding, either in 1D or 2D, can be performed without explicitly deriving

an operator matrix. However, the matrix form facilitates the formulation
of the corresponding adjoint operator. Common matrix forms of operator
P(mt, nt) are shown in Figure 6.3 for mt = 10 and mr = 3. These examples
demonstrate that the matrix form of P(mt, mr) can be easily generated
programatically and, due to its sparsity, can be stored in memory even for
very large values of mt and mr. These properties extend to the matrix form
of the 2D padding operator P by virtue of the following result.

125

Ultrasound Image Reconstruction

Zero Circular Replicate Symmetric

Figure 6.3. Common matrix forms of 1D padding operators P(10, 3). Black denotes a
value of 1 and white denotes 0.

Theorem 10. Padding operator P can be obtained programatically in the
form of a sparse matrix as

P = P(nt, nr)⊗P(mt, mr).

Proof. Since column-major vectorization stacks image columns one on top
of the other, Pm will have a block diagonal structure, with each block given
by P(mt, mr), namely

Pm = diag{P(mt, mr),P(mt, mr), ...,P(mt, mr)}
= Int ⊗P(mt, mr). (6.38)

Matrix Pn lacks this block structure. It instead has the elements of
P(nt, nr) strided horizontally by mt and replicated along the diagonal.
This can be expressed succinctly as

Pm =

⎡
⎢⎣

P(nt, nr)1,1Imt · · · P(nt, nr)1,ntImt

...
P(nt, nr)mp,1Imt · · · P(nt, nr)mp,ntImt

⎤
⎥⎦

= P(nt, nr)⊗ Imt . (6.39)

By combining the results along the dimensions in (6.38) and (6.39), we
can compute P in closed form as

P = PmPn = (Int ⊗P(mt, mr))(P(nt, nr)⊗ Imt)

= P(nt, nr)⊗P(mt, mr). (6.40)

Prototype mixture convolution
Linear operator H : Rmp×np → R

mt×nt performs the prototype mixture
convolution. We assume that a small number nk of prototype kernels is
known, each prototype PSF kq, q ∈ {1, ..., nk}, having a center at row cq.
The prototype PSFs are sorted by cq and thus the values of cq can be used

126

Ultrasound Image Reconstruction

to generate a partition of the set of rows i ∈ {1, ..., mt}. The kernels of each
row are computed using linear interpolation. Specifically, kernels above c1
are equal to k1, those below cnk equal knk . The kernels of all other rows
are obtained as a convex combination (alpha-blending) of the prototype
PSF above and the one below that row, the proportion given by the relative
distance to the two centers.
Let the full-width window and zero padding operators be defined as

Ws(i1, i2)
def
= W(i1, i2, 1, ns, ms, ns), (6.41)

Zs(i1, i2) def
= Z(i1, i2, 1, ns, ms, ns). (6.42)

where j ∈ {1, ..., ns} and index s ∈ {t, p} stands for image size quantities
mt, mp, nt, and np.
Using the full width operators, linear operator H can be expressed

analytically in a matrix-free form as

H = Zy(1, c1)C1(k1)Wp(1, c1 + 2mr)

+

nk−1∑
q=1

cq+1∑
i=cq+1

Zy(i, i)C1(k(i, q))Wp(i, i + 2mr)

+Zy(cnk + 1, my)C1(knk)Wp(cnk + 1, mp),

(6.43)

where the row kernels k(i, q) and the row blending factors θ(i, q) are, re-
spectively, given by

k(i, q)
def
= (1− θ(i, q))kq + θ(i, q)kq+1, (6.44)

θ(i, q)
def
=

i− cq
cq+1 − cq

. (6.45)

Adjoint
The objective function of the inverse problem contains a data fidelity term
φ(HPx− y). Unlike the forward model which, by utilizing operatorsH
and P , can be computed exactly with great efficiency, black-box first-order
methods such as ACGM employ at every iteration the gradient of the data
fidelity term, given by

∇(φ(HPx− y)) = P THT (∇φ)(HPx− y). (6.46)

Note that, under our AWGN assumption, φ is the square of the �2-norm
but the results in this work may be applied to other additive noise models.
The gradient expression in (6.46) depends onH and P as well as on their

adjoints. In the following, we derive computationally efficient expressions
for adjoint operatorsHT and P T .
To obtain the adjoint of prototype mixture convolution, we take the

127

Ultrasound Image Reconstruction

adjoint in (6.43) and get

HT = (Wp(1, c1 + 2mr))
T (C2(k1))T (Zy(1, c1))

T

+

nk−1∑
q=1

cq+1∑
i=cq+1

(Wp(i, i + 2mr))
T (C2(k(i, q)))T (Zy(i, i))T

+(Wp(cnk + 1, mp))
T (C2(knk))T (Zy(cnk + 1, my))

T .

(6.47)

Using (6.5) and Theorem 9 in (6.47), we obtain the matrix-free expression

HT = Zp(1, c1 + 2mr)C1(R(k1))Wy(1, c1)

+

nk−1∑
q=1

cq+1∑
i=cq+1

Zp(i, i + 2mr)C1(R(k(i, q)))Wy(i, i)

+Zp(cnk + 1, mp)C1(R(knk))Wy(cnk + 1, my).

(6.48)

The adjoint of the padding operator, P T , can be obtained either directly
through sparse matrix transposition or by applying transposition in Theo-
rem 10 as

P T = (P)T = (P(nt, nr))
T ⊗ (P(mt, mr))

T . (6.49)

Finally, note that whereas the column-major order assumption can be
made without loss of generality for operatorH, it is not the case for the
padding operator P . In particular, row-major order reverses the terms in
the Kronecker product.

Inverse problem
The proposed image formation model in (6.37) can be used to construct a de-
convolution problem which seeks to minimize the additive white Gaussian
noise subject to regularization. To regularize the solution of this least-
squares problem, we use herein the classical elastic net constraint [65].
Elastic net ensures a compromise between the �1-norm promoting sparse
solutions and the �2-norm imposing smooth results. Its interest in ultra-
sound imaging has been already shown through different applications, e.g.,
compressed sensing [66], beamforming [67], or clutter filtering [68]. The
inverse problem is given by

min
x∈Df

1

2
‖HPx− y‖22 + λ1‖x‖1 +

λ2

2
‖x‖22. (6.50)

6.4.2 Axially Variant Kernel Model

The prototype mixture model can be generalized to yield an axially variant
kernel model, whereby a prototype kernel is assigned to every row of the
image. The features of the prototype mixture model introduced in (6.37)
carry over to this new model, with the exception of the way the axially
variant convolution operatorH is defined. In particular, padding and its
adjoint as well as the inverse problem in (6.50) apply here as well.

128

Ultrasound Image Reconstruction

Axially varying convolution
We define axially variant convolution as the linear operation whereby each
row ih ∈ {1, ..., mt} of the output image is obtained by the valid convolu-
tion between the kernel pertaining to that row k(ih) ∈ R

mk×nk , where
mk = 2mr + 1 and nk = 2nr + 1, and the corresponding patch in the input
(padded) TRF. The auxiliary operators defined in Sections 6.2 and 6.3
enable us to write H as a sum of linear operators based on the obser-
vation that the concatenation of output rows has the same effect as the
summation of the rows appropriately padded with zeros. Analytically, this
translates to the following matrix-free expression:

H =

mt∑
ih=1

Zt(ih, ih)C2(k(ih))Wp(ih, ih + 2mr). (6.51)

In matrix form, operator H would need to store mpnpmtnt coefficients
and its invocation would entail an equal number of multiplications. Its
complexity would thus be greater than the square of the number of pixels
in the image, limiting its applicability to medium sized images. Using the
matrix-free expression in (6.51), operatorH performs mknkmtnt multipli-
cations and has negligible memory requirements. Therefore, in ultrasound
imaging, the matrix-free representation is not only vastly superior to its
matrix counterpart (because the kernel is much smaller than the image),
but has the same computational complexity as spatially invariant convolu-
tion (excluding the unrealistic circulant boundary case).

Adjoint
By taking the adjoint in (6.51), we get

HT =

mt∑
ih=1

(Wp(ih, ih + 2mr))
T (C2(k(ih)))

T (Zt(ih, ih))T . (6.52)

Theorem 9 and (6.5) yield a matrix-free expression forHT in the form of

HT =

mt∑
ih=1

Zp(ih, ih + 2mr)C1(R(k(ih)))W t(ih, ih). (6.53)

Therefore, operators H and HT have equal computational complexity.
Moreover, they exhibit two levels of parallelism. The convolution operators
themselves are fully parallel and the computations pertaining to each row
ih can be performed concurrently. Thus, in matrix-free from, both operators
benefit from parallelization in the same way as their matrix counterparts.

129

Ultrasound Image Reconstruction

6.5 Optimizing ACGM for Linear Inverse Problems

To efficiently solve the optimization problem in (6.50) for any non-negative
value of λ2, we optimize ACGM for linear inverse problems.
The objective F in problem (6.50) can be split into a quadratic function f

and an elastic net regularizer Ψ as follows:

f(x) =
1

2
‖Ax− y‖22, (6.54)

Ψ(x) = λ1‖x‖1 +
λ2

2
‖x‖22, (6.55)

where A def
= HP . Function f is quadratic and consequently has Lipschitz

continuous gradient. The Lipschitz constant Lf is given by σ2
max(A), where

σmax(A) is the largest singular value of operator A. In practice, σmax(A)

may be intractable to compute. Hence, this problem is well suited for
ACGM. However it is known that operator A is ill-conditioned and we can
assume that function f has strong convexity parameter μf = 0. Elastic
net regularizer Ψ is not differentiable due to the l1 term but has strong
convexity parameter μΨ = λ2. Hence, the objective as a whole has a strong
convexity parameter of μ = μΨ = λ2.
The gradient-type oracle functions∇f(x) and proxτΨ(x) are, respectively,

written in closed form (see also [18] and Subsection 5.2.1) as

∇f(x) = AT (Ax− y), (6.56)

proxτΨ(x) =
1

1 + τλ2
Tτλ1(x), (6.57)

where AT = P THT and the shrinkage operator Tτ (x) is given by

(Tτ (x))i,j def
= (|xi,j | − τ)+ sgn(xi,j),

τ > 0, i ∈ {1, ..., mt}, j ∈ {1, ..., nt}.
(6.58)

The structure of f(x) in (6.54) and ∇f(x) in (6.56) can be used to reduce
the computational complexity of ACGM by departing from the oracle model.
To estimate the local Lipschitz constant, operator A has to be applied at
every iteration k to the new iterate xk+1. It is computationally inexpensive
to cache these results by maintaining alongside the main iterate sequence
the sequence x̃k, given by

x̃k = Axk, k ∈ {−1, ..., K}. (6.59)

ACGM in extrapolated form (Algorithm 6) produces an auxiliary point yk+1

(not to be confused with the RF image y) as the linear extrapolation of
xk and xk+1. The new iterate xk+1 is computed based on ∇f(yk+1). The
computational intensity of the gradient expression in (6.56) can be reduced
as

∇f(yk+1) = A
T (ỹk+1 − y), (6.60)

130

Ultrasound Image Reconstruction

where
ỹk+1

def
= Ayk+1 = x̃k + βk(x̃k − x̃k−1), (6.61)

and βk is the extrapolation factor given by Proposition 4.
The line-search stopping criterion of ACGM at every iteration k is given

by (3.15). Substituting the gradient expression from (6.56) in (3.15) and
rearranging terms yields

‖A(xk+1 − yk+1)‖22 ≤ Lk+1‖xk+1 − yk+1‖22. (6.62)

We obtain a computationally efficient expression by reusing the precom-
puted values x̃k+1 and ỹk+1 as

‖x̃k+1 − ỹk+1‖22 ≤ Lk+1‖xk+1 − yk+1‖22. (6.63)

The global Lipschitz constant Lf can alternatively be expressed as

Lf = sup
Df

‖Ax‖22
‖x‖22

. (6.64)

In practice, the estimates are below this value and we set the initial one to

L0 =
‖Ax0‖22
‖x0‖22

=
‖x̃0‖22
‖x0‖22

. (6.65)

Incorporating the performance enhancements from (6.59), (6.60), (6.61),
(6.63), and (6.65) into Algorithm 6 yields the method listed in Algorithm 11.
To improve performance, we set t0 = 0, as suggested by the findings in
Subsection 5.2.3. Note that, to improve readability, we omit the estimate
notation in Algorithm 11.

6.6 Experimental Results

6.6.1 Prototype Mixture Model

A three-step process was employed to simulate the RF ultrasound image:
i) the calculation of the spatially variant prototype PSFs; ii) the generation
of the tissue reflectivity function (TRF); and iii) the spatially variant
convolution between the PSFs and the TRF, following the model described
in (6.37) (Subsection 6.4.2).
The prototype PSFs were obtained in step i) using Field II, a realistic

state-of-the-art simulator [69,70]. The simulation involved a linear 128 ele-
ment ultrasound probe emitting ultrasound waves at a nominal frequency
of 3 MHz. The width of each element was set to equal the wavelength
(0.5 mm), while height was fixed at 5 mm. The distance between two
consecutive elements was set to 0.1 mm. The transducer was excited us-
ing a two-period sinusoidal wave of frequency 3MHz. The backscattered

131

Ultrasound Image Reconstruction

Algorithm 11 ACGM for elastic net regularized least-squares
ACGM(x0, ru, rd, λ1, λ2, K)
1: x̃0 := Ax0
2: x(−1) = x0
3: x̃(−1) = x̃0

4: L0 =
‖x̃0‖22
‖x0‖22

5: q0 =
λ2

L0+λ2

6: t0 = 0

7: for k = 0, ..., K − 1 do
8: Lk+1 := rdLk
9: loop
10: qk+1 :=

λ2
Lk+1+λ2

11: tk+1 :=
1
2

(
1− qkt

2
k +

√(
1− qkt

2
k

)2
+ 4

Lk+1+λ2
Lk+λ2

t2k

)
12: βk :=

tk−1
tk+1

1−qk+1tk+1
1−qk+1

13: yk+1 := xk + βk(xk − xk−1)

14: ỹk+1 := x̃k + βk(x̃k − x̃k−1)

15: τk+1 :=
1

Lk+1

16: xk+1 :=
1

1+τk+1λ2
Tτk+1λ1

(
yk+1 − τk+1A

T (ỹk+1 − y)
)

17: x̃k+1 := Axk+1

18: if ‖x̃k+1 − ỹk+1‖22 ≤ Lk+1‖xk+1 − yk+1‖22 then
19: Break from loop
20: else
21: Lk+1 := ruLk+1

22: end if
23: end loop
24: end for

RF signals were sampled at a rate of 20 MHz. The prototype PSFs were
obtained by placing isolated scatterers in front of the transducer with a
distance in depth of 8.5 mm to each other. Ultrasound waves electronically
focalized at 47 mm from the probe were emitted and the received echoes
were statically focused prior to the delay-and-sum beamforming process.
Hann apodization was used both for the emission and the reception.
The resulting nk = 10 prototype PSFs are shown in Figure 6.4. For the

purpose of visualizing the areas influenced by individual prototype PSFs,
they are displayed after envelope detection and min-max normalization
centered at cq for all q ∈ {1, ..., nk} in Figure 6.4(a). To highlight the
differences between individual prototype PSFs, they are shown separately
in Figure 6.4(b). The 5th prototype PSF (k5) located at 43 mm from the
probe was used in the spatially invariant deconvolution experiments. It is
shown both in native form and after envelope detection in Figure 6.5.

132

Ultrasound Image Reconstruction

-10 0 10
Lateral distance [mm]

10

20

30

40

50

60

70

80

90

A
xi

al
 d

is
ta

nc
e

[m
m

]

(a)

PSF 1

-10 0 10

8

9

PSF 2

-10 0 10

17

18

PSF 3

-10 0 10

25

26

PSF 4

-10 0 10

34

35

PSF 5

-10 0 10

42

43

PSF 6

-10 0 10

51

52

PSF 7

-10 0 10

59

60

PSF 8

-10 0 10

68

69

PSF 9

-10 0 10

77

78

PSF 10

-10 0 10

85

86

(b)

Figure 6.4. Prototype PSFs generated with Field II for nk = 10 depths at regularly
spaced intervals of 8.5 mm. (a) Global view, after demodulation and min-max
normalization, showing the location within the image of the prototype PSF
centers; (b) Individual view, showing the spatial variance of the prototype
PSFs.

Lateral distance [mm]A
xi

al
 d

is
ta

nc
e

[m
m

]

−10 −5 0 5 10

42

43

−10 −5 0 5 10

42

43

Figure 6.5. The 5th prototype PSF k5 (left) and its demodulated version (right).

The TRF was obtained in step ii) following the classical procedure em-
ployed in the simulation of ultrasound images. A collection of scatterers
with zero-mean Gaussian random amplitudes has been generated and
placed at uniformly random locations. The standard deviation used to
generate the amplitude of one scatterer depended on its location and was
related, as suggested in the Field II simulator, to a digital image obtained
from an optical scan of a human kidney tissue sample. The number of
scatterers was sufficiently large (105) to ensure fully developed speckle.
The scatterer map was finally linearly interpolated onto a rectangular grid
yielding the TRF shown in Figure 6.6(a).
In step iii), an ultrasound image was simulated from the TRF using

the model in (6.37) to produce a starting point x0 for the deconvolution
experiments. First, the TRF was padded with a symmetric boundary. Next,

133

Ultrasound Image Reconstruction

the padded image was convolved with the spatially varying convolution
operatorH , based on the prototype PSFs shown in Figure 6.4. To simplify
the hyperparameter tuning process, we have scaled H to ensure that
L0, as given by (6.65), is equal to 1. Finally, white Gaussian noise was
added to the convolved image, such that the signal-to-noise ratio is 40 dB.
The simulated ultrasound image is shown in B-mode representation in
Figure 6.6(b).

(a) (b)

(c) (d)

Figure 6.6. (a) Ground truth of the tissue reflectivity function (TRF); (b) Observed B-mode
image simulated from the ground truth TRF in (a) using the image acquisition
model in (6.37) that employs the spatially variant convolution operation based
on the prototype PSFs in Figure 6.4; (c) Spatially invariant deconvolution
result obtained using the fixed kernel k5 in Figure 6.5; (d) Spatially variant
deconvolution result using our method.

We have conducted two deconvolution experiments. Both used as the
starting point the simulated ultrasound image shown in Figure 6.6(b) and
the same values of the hyperparameters, λ1 = 0.005 and λ2 = 0.01, which
were found by manual tuning to give the best results.
First, we have compared our method, which is able to integrate the spa-

tial variability of the kernels in the deconvolution process, with ACGM
employing a spatially invariant blur operator H. Two restored images,
obtained after 150 iterations, are displayed in Figures 6.6(c) and 6.6(d). The
image in Figure 6.6(c) was estimated considering a spatially invariant PSF

134

Ultrasound Image Reconstruction

(k5 at 43 mm depth) and the one in Figure 6.6(d) was obtained using our
method. The quality of the deconvolution can be appreciated by comparing
the restored images with the true TRF in Figure 6.6(a). Note that the
deconvolution results are also shown in B-mode. While the deconvolved
images are similar in the vicinity of the focal point, our method manages to
restore image features at the vertical extremities (Figure 6.6(d)). These fea-
tures are barely discernible both in the blurred image shown (Figure 6.6(b))
as well as in the spatially invariant PSF reconstruction (Figure 6.6(c)). The
simulation results support our previous claim that the reconstruction qual-
ity of an image patch depends on the similarity between the blurring and
the deblurring kernels applied to it, clearly demonstrating the superiority
of our model.

6.6.2 Axially Variant Kernel Model

To test the generalized model, we have devised a more extensive set of
simulations. Three TRFs (TRF 1, TRF 2, and TRF 3) were generated
following the procedure used in step ii) of Subsection 6.6.1. Each TRF is
an interpolation of Gaussian distributed random scatterers with standard
deviations determined by a pixel intensity map. The map for TRF 1 is
the same as the one utilized in Subsection 6.6.1. The maps for TRF 2
and TRF 3 are patches from a single slice (visual identifier 3272) of the
female dataset provided by the Visible Human Project [71]. Deconvolution
experiments were performed for each of the 3 TRFs, with the padding
size, matching the kernel radii, given by mr × nr. The TRFs are shown in
Figures 6.7(a1), 6.7(a2), and 6.7(a3), respectively, and their parameters
are listed in Table 6.1.

Table 6.1. Deconvolution experiment parameters for each TRF

TRF mt nt Axial size Lateral size mr nr

TRF 1 2480 480 94 mm 95 mm 9 50
TRF 2 2598 480 100 mm 95 mm 7 35
TRF 3 2598 480 100 mm 95 mm 5 25

For every row ih ∈ {1, ..., mt}, we have defined the kernel k(ih) in (6.51)
as

k(ih)i,j = ρμz ,σz(i)ρμx,σx(ih)(j) cos

(
2π

f0
fs

(i− μz)

)
,

where ρμ,σ(x) is a normalized Gaussian window, given by

ρμ,σ(x) =
1√
2πσ

exp

(
−(x− μ)2

2σ2

)
,

and parameters μz and μx are the center coordinates of the kernel. Axial

135

Ultrasound Image Reconstruction

standard deviation (SD) was set to σz = σ1 and lateral SD to

σx(ih) =
√

((2ih)/mt − 1)2(σ2
2 − σ2

1) + σ2
1,

with σ1 = mr/3 and σ2 = nr/3. Here, f0 = 3 MHz and fs = 20 MHz are
the ultrasound central and sampling frequencies, respectively. For each
TRF deconvolution experiment, the depth-dependent width variation of the
kernel simulates the lateral spatial resolution degradation when moving
away from the focus point, located in the center of the image (47 mm from
the probe for TRF 1, 50 mm for TRF 2 and TRF 3). The envelopes of these
kernels at regular intervals across the image are shown in Figures 6.7(b1),
6.7(b2), and 6.7(b3). Whereas the TRFs are of approximately the same size,
the intensity of the blur differs in each experiment in order to display both
the high and low frequency reconstruction capabilities of our method. We
chose symmetric padding, as illustrated in Figure 6.3, because it is more
realistic than circular and zero padding and, by using a larger number
of pixels from the TRF, more robust to noise than replicate padding. A
small amount of noise was added to each TRF such that the signal to noise
ratio is 40 dB. The ultrasound images produced from each TRF using our
forward model in (6.37) are shown in Figure 6.7(c1), 6.7(c2), and 6.7(c3).
To estimate the TRFs, we have considered the inverse problem in (6.50)

with manually tuned parameters λ1 = 2 · 10−3 and λ2 = 10−4. As in
Subsection 6.6.1, we address (6.50) with the optimized variant of ACGM
listed in Algorithm 11.
Due to the efficient matrix-free expressions of H in (6.51) and HT in

(6.53) as well as the sparse matrix implementation of P and P T (easily
precomputed using Theorem 10 and (6.49), respectively), deconvolution
with our model entails the same computational cost as with a fixed kernel
model.
The results of axially-invariant deconvolution (AI) are shown in Figures

6.7(d1), 6.7(d2), and 6.7(d3) and using our axially variant model (AV) in
Figures 6.7(e1), 6.7(e2), and 6.7(e3), all after 150 iterations. Our approach
achieves almost perfect low frequency reconstruction for each TRF. For
higher frequencies, blurring destroys visual information. Therefore, re-
construction quality at this level depends on the size of the kernels. For
TRF 3, axial standard deviation values are the smallest and the blurring
process has not suppressed all minor details. Here, our method manages
to reconstruct even small, high contrast features.
For all TRFs, the gain in reconstruction quality is evident especially

in the upper and lower extremities, as can be discerned from Figure 6.7.
Interestingly, even though the two models differ only slightly in the center
of the image, our model performs better in that region as well.

136

Ultrasound Image Reconstruction

(a1)

-10 0 10
Lateral distance [mm]

10

20

30

40

50

60

70

80

90

A
xi

al
 d

is
ta

nc
e

[m
m

]

(b1) (c1)

(d1) (e1)

(a2)

-5 0 5
Lateral distance [mm]

10

20

30

40

50

60

70

80

90

100

A
xi

al
 d

is
ta

nc
e

[m
m

]

(b2) (c2)

(d2) (e2)

137

Ultrasound Image Reconstruction

(a3)

-5 0 5
Lateral distance [mm]

10

20

30

40

50

60

70

80

90

100

A
xi

al
 d

is
ta

nc
e

[m
m

]

(b3) (c3)

(d3) (e3)

Figure 6.7. (a) Ground truth (in B-mode) of the tissue reflectivity function (TRF);
(b) Demodulated kernels k(ih) for twenty depths at regularly spaced intervals
of 2 mm; (c) Observed B-mode image simulated following the proposed axially
variant convolution model; (d) Axially-invariant deconvolution result AI (in
B-mode) obtained with a fixed kernel equal to k(mt/2) (the center kernel of
the axially variant model); (e) Axially variant deconvolution result AV (in
B-mode) using our model. All images are displayed using a dynamic range
of 40 dB. Row (a1)-(e1) pertains to TRF 1, row (a2)-(e2) to TRF 2, and row
(a3)-(e3) to TRF 3.

138

7. Conclusions

In this work, we have demonstrated that the estimate sequence can be
derived as a functional extension of the theoretical algorithm performance
bounds on large scale smooth problems. We have further extended these
results to the composite problem class. The estimate sequence optimum
is thus a computable substitute for the convergence guarantees on com-
posite problems. Next, we have shown that we can relax the estimate
sequence, by reducing the gap between the aforementioned optimum and
the convergence guarantee, to obtain the augmented estimate sequence.
The estimate sequence along with its augmented variant incorporate

convex global lower bounds on the objective function. When these lower
bounds are generalized parabolae, we have shown that the augmented
estimate sequence can be expressed using the simple gap sequence. The
Lyapunov property of the gap sequence is a sufficient condition, and thus
a replacement, for the augmented estimate sequence and, in turn, for the
convergence guarantee.
Using the ideas developed by Nesterov, we have formulated a design

pattern for first-order accelerated algorithms applicable to composite prob-
lems. Composite problems can be defined in terms of local upper bounds
and global lower bounds on the objective. The proposed pattern is based on
these properties as well as on an accumulated history of all previous global
lower bounds combined using a computationally inexpensive weighting
strategy.
The design pattern simplifies the derivation of a first-order optimization

method with a provable convergence rate to the selection of upper and
lower bounds along with the derivation of the corresponding update rules
to satisfy the Lyapunov property of the gap sequence. By selecting different
types of upper and lower bounds, we were able to derive several variants
of the novel Accelerated Composite Gradient Method, each possessing a
collection of desirable capabilities. These include optimal convergence
guarantees for non-strongly convex objectives, state-of-the-art guarantees
for strongly convex objectives, and monotonicity.
Interestingly, the local upper bound property in our pattern and the local

139

Conclusions

Lipschitz property of the gradient are identical notions. By taking this into
account by default, the design process produces a fully adaptive line-search
procedure applicable to all the above variants. A further coincidence is
that when dealing with arbitrary strong convexity, the auxiliary point and
the recent iterates are collinear, a property that is retained to a certain
extent even by the monotone variants.
These features are not mutually exclusive and ACGM can posses all of

them simultaneously. Thus, ACGM acts as an umbrella method, effectively
encompassing several popular first-order schemes: original FGM [16], line-
search FGM [24], original FISTA [5], line-search FISTA [38,39], monotone
FISTA [22], as well as strongly convex extensions FISTA-CP [6], and
scAPG [21].
Standard WTU makes it possible to compare a wide range of algorithms

with vastly varying per-iteration complexity. It is particularly suited for
comparing the theoretical performance of FISTA and AMGS which, to the
best of our knowledge, has not been attempted before. When measured
in standard WTU, ACGM surpasses FISTA with backtracking line-search
as well as the algorithms from the AMGS family: original AMGS [17],
MOS, and AA [20]. The superior performance of ACGM is demonstrated
theoretically and is supported by simulation results. Moreover, simulations
show that the standard WTU results also hold for a common form of
generalized WTU.
Each of the aforementioned competing methods possesses one charac-

teristic of ACGM, but ACGM is unique among its class of algorithms for
having almost all the features of the competing methods. This explains the
superiority of ACGM with its class of algorithms.
ACGM can enable new applications, such as the accurate reconstruction

of ultrasound images. We have shown that ACGM is able to exploit the
inherent structure of the ultrasound image reconstruction inverse prob-
lem and is theoretically guaranteed to converge linearly for any type of
input data. Simulation results confirm that reconstruction is not only
computationally tractable, but has a rate that is competitive with existing
approaches relying on far more restrictive assumptions. In this respect,
the reliability of ACGM is particularly of value to the stringent demands
of the medical ultrasonography industry.
The results presented in this work also open up new avenues for investi-

gation. For instance, we have demonstrated that, under certain conditions,
the augmentation of the estimate sequence leads to the gap sequence. New
algorithms may be created by studying the effect of augmentation on other
types of global lower bounds or even other problem classes.
In the area of ultrasound imaging, ACGM can be used with more complex

models. These may include 3D models, non-linear models, or both.

140

References

[1] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in Signal
Processing. Springer New York, NY, USA, 2011, pp. 185–212.

[2] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization
for big data analytics: (statistical) learning tools for our era of data deluge,”
IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18–31, Sep. 2014.

[3] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data:
Scalable, randomized, and parallel algorithms for big data analytics,” IEEE
Signal Processing Magazine, vol. 31, no. 5, pp. 32–43, Sep. 2014.

[4] Y. Nesterov, “Subgradient methods for huge-scale optimization problems,”
Mathematical Programming, Series A, vol. 146, no. 1-2, pp. 275–297, 2014.

[5] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1,
pp. 183–202, 2009.

[6] A. Chambolle and T. Pock, “An introduction to continuous optimization for
imaging,” Acta Numerica, vol. 25, pp. 161–319, 2016.

[7] M. Baes. (2017, May) Estimate sequence methods: extensions and
approximations. [Online]. Available: http://www.optimization-online.org/DB_
FILE/2009/08/2372.pdf

[8] J.-F. Aujol and C. Dossal, “Stability of over-relaxations for the forward-
backward algorithm, application to FISTA,” SIAM Journal on Optimization,
pp. 2408–2433, 2015.

[9] R. Gu and A. Dogandžić, “Projected Nesterov’s proximal-gradient algorithm
for sparse signal recovery,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3510–3525, Jul. 2017.

[10] W. W. Hager, D. T. Phan, and H. Zhang, “Gradient-based methods for sparse
recovery,” SIAM Journal on Imaging Sciences, vol. 4, no. 1, pp. 146–165,
2011.

[11] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, “A fast algorithm for sparse
reconstruction based on shrinkage, subspace optimization, and continuation,”
SIAM Journal on Scientific Computing, vol. 32, no. 4, pp. 1832–1857, 2010.

[12] Z. Wen, W. Yin, H. Zhang, and D. Goldfarb, “On the convergence of an active-
set method for l1 minimization,” Optimization Methods and Software, vol. 27,
no. 6, pp. 1127–1146, 2012.

141

References

[13] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction by
separable approximation,” IEEE Transactions on Signal Processing, vol. 57,
no. 7, pp. 2479–2493, 2009.

[14] A. Nemirovski and D.-B. Yudin, Problem complexity and method efficiency in
optimization. John Wiley & Sons, New York, NY, USA, 1983.

[15] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Doklady Mathematics, vol. 27, no. 2, pp. 372–376,
1983.

[16] ——, Introductory Lectures on Convex Optimization. Applied Optimization,
vol. 87. Kluwer Academic Publishers, Boston, MA, USA, 2004.

[17] ——, “Gradient methods for minimizing composite functions,” Mathematical
Programming, Series B, vol. 140, no. 1, pp. 125–161, 2013.

[18] N. Parikh, S. P. Boyd et al., “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[19] P. Tseng, “On accelerated proximal gradient methods for convex-concave
optimization,” SIAM Journal on Optimization, submitted, 2008.

[20] R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter, “An adaptive accelerated first-
order method for convex optimization,” Computational Optimization and
Applications, vol. 64, no. 1, pp. 31–73, 2016.

[21] Q. Lin and L. Xiao, “An adaptive accelerated proximal gradient method
and its homotopy continuation for sparse optimization,” in International
Conference on Machine Learning, 2014, pp. 73–81.

[22] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained to-
tal variation image denoising and deblurring problems,” IEEE Transactions
on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[23] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimiza-
tion problems,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362,
2012.

[24] Y. Nesterov and S. U. Stich, “Efficiency of the accelerated coordinate descent
method on structured optimization problems,” SIAM Journal on Optimiza-
tion, vol. 27, no. 1, pp. 110–123, 2017.

[25] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach, 5th ed. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2011.

[26] A. Chambolle and C. Dossal, “On the convergence of the iterates of the fast
iterative shrinkage/thresholding algorithm,” Journal of Optimization Theory
and Applications, vol. 166, no. 3, pp. 968–982, 2015.

[27] Y. Nesterov, “Quasi-monotone subgradient methods for nonsmooth convex
minimization,” Journal of Optimization Theory and Applications, no. 165,
pp. 917–940, 2015.

[28] ——, “Accelerating the cubic regularization of Newton’s method on convex
problems,” Mathematical Programming, vol. 112, no. 1, pp. 159–181, 2008.

[29] B. Polyak, Introduction to optimization. Translations Series in Mathematics
and Engineering, Optimization Software, New York, NY, USA, 1987.

142

References

[30] A. Brown and M. C. Bartholomew-Biggs, “Some effective methods for uncon-
strained optimization based on the solution of systems of ordinary differential
equations,” Journal of Optimization Theory and Applications, vol. 62, no. 2,
pp. 211–224, 1989.

[31] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[32] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equa-
tions in several variables. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1970.

[33] K. Lange, MM optimization algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2016.

[34] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1–3,
1966.

[35] R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton,
NJ, USA, 1970.

[36] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” Mathematical Pro-
gramming Computation, vol. 3, no. 3, pp. 165–218, 2011.

[37] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed. Morgan Kaufmann Publishers, San Francisco, CA, USA,
2011.

[38] M. I. Florea and S. A. Vorobyov, “A robust FISTA-like algorithm,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, Mar.
2017, New Orleans, USA, pp. 4521–4525.

[39] K. Scheinberg, D. Goldfarb, and X. Bai, “Fast first-order methods for compos-
ite convex optimization with backtracking,” Foundations of Computational
Mathematics, vol. 14, no. 3, pp. 389–417, 2014.

[40] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal
of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp.
267–288, 1996.

[41] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring images: matrices,
spectra, and filtering. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2006.

[42] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 20, pp. 215–242, 1958.

[43] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society. Series B (Methodological),
vol. 67, no. 2, pp. 301–320, 2005.

[44] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated gradient
schemes,” Foundations of Computational Mathematics, vol. 15, no. 3, pp.
715–732, 2015.

[45] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with
Sparsity: The LASSO and Generalizations. CRC Press, 2015.

143

References

[46] W. Su, S. Boyd, and E. J. Candès, “A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights,” Journal of
Machine Learning Research (JMLR), vol. 17, pp. 1–43, 2016.

[47] J. Ng, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Wavelet restoration
of medical pulse-echo ultrasound images in an EM framework,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, no. 3,
pp. 550–568, 2007.

[48] R. Rangarajan, C. V. Krishnamurthy, and K. Balasubramaniam, “Ultrasonic
imaging using a computed point spread function,” IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 2, pp. 451–464,
Feb. 2008.

[49] H.-C. Shin, R. Prager, J. Ng, H. Gomersall, N. Kingsbury, G. Treece, and
A. Gee, “Sensitivity to point-spread function parameters in medical ultra-
sound image deconvolution,” Ultrasonics, vol. 49, no. 3, pp. 344 – 357, 2009.

[50] M. Alessandrini, S. Maggio, J. Poree, L. D. Marchi, N. Speciale, E. Frances-
chini, O. Bernard, and O. Basset, “A restoration framework for ultrasonic
tissue characterization,” IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, vol. 58, no. 11, pp. 2344–2360, 2011.

[51] C. Dalitz, R. Pohle-Frohlich, and T. Michalk, “Point spread functions and
deconvolution of ultrasonic images,” IEEE Transactions on Ultrasonics, Fer-
roelectrics and Frequency Control, vol. 62, no. 3, pp. 531–544, Mar. 2015.

[52] N. Zhao, A. Basarab, D. Kouamé, and J.-Y. Tourneret, “Joint segmenta-
tion and deconvolution of ultrasound images using a hierarchical Bayesian
model based on generalized Gaussian priors,” IEEE Transactions on Image
Processing, vol. 25, no. 8, pp. 3736–3750, 2016.

[53] O. Michailovich and D. Adam, “A novel approach to the 2-D blind deconvolu-
tion problem in medical ultrasound,” IEEE Transactions on Medical Imaging,
vol. 24, pp. 86–104, Jan. 2005.

[54] O. Michailovich and A. Tannenbaum, “Blind deconvolution of medical ultra-
sound images: A parametric inverse filtering approach,” IEEE Transactions
on Image Processing, vol. 16, no. 12, pp. 3005–3019, 2007.

[55] R. Jirik and T. Taxt, “Two dimensional blind Bayesian deconvolution of med-
ical ultrasound images,” IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, vol. 55, no. 10, pp. 2140–2153, 2008.

[56] C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach to ultrasound
imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, vol. 59, no. 2, pp. 271–280, 2012.

[57] O. V. Michailovich, “Non-stationary blind deconvolution of medical ultra-
sound scans,” in Proceedings of SPIE: The International Society for Optical
Engineering, vol. 101391C, Mar. 2017.

[58] L. Roquette, M. M. J.-A. Simeoni, P. Hurley, and A. G. J. Besson, “On an
analytical, spatially-varying, point-spread-function,” in IEEE International
Ultrasound Symposium (IUS), Sep. 2017, Washington D.C., USA.

[59] J. G. Nagy and D. P. O’Leary, “Restoring images degraded by spatially variant
blur,” SIAM Journal on Scientific Computing, vol. 19, no. 4, pp. 1063–1082,
Jul. 1998.

[60] Z. Chen, A. Basarab, and D. Kouamé, “Compressive deconvolution in medical
ultrasound imaging,” vol. 35, no. 3, pp. 728 – 737, 2016.

144

References

[61] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson
Prentice Hall, Upper Saddle River, NJ, USA, 2008.

[62] B. P. Lathi, Signal Processing and Linear Systems. Oxford University Press,
New York, NY, USA, 1998.

[63] G. S. Alberti, H. Ammari, F. Romero, and T. Wintz, “Mathematical analysis
of ultrafast ultrasound imaging,” SIAM Journal on Applied Mathematics,
no. 77, pp. 1 – 25, 2017.

[64] M. I. Florea, A. Basarab, D. Kouamé, and S. A. Vorobyov, “An axially variant
kernel imaging model applied to ultrasound image reconstruction,” IEEE
Signal Processing Letters, vol. 25, no. 7, pp. 961–965, Jul. 2018.

[65] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society. Series B (Methodological),
vol. 67, no. 2, pp. 301–320, 2005.

[66] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain compressive
sampling for ultrasound imaging,” Advances in Acoustics and Vibration,
vol. 12, pp. 1–16, 2012.

[67] T. Szasz, A. Basarab, M.-F. Vaida, and D. Kouamé, “Elastic-net based beam-
forming in medical ultrasound imaging (regular paper),” Apr. 2016, Prague,
Czech Republic, pp. 477–480.

[68] B. Byram, “Aperture domain model image reconstruction (ADMIRE) for im-
proved ultrasound imaging,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, Mar. 2017, pp. 6250 –6253.

[69] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbi-
trarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, no. 2,
pp. 262–267, Mar. 1992.

[70] J. A. Jensen, “Field: A program for simulating ultrasound systems,” Medical
and Biological Engineering and Computing, vol. 34, pp. 351–353, 1996.

[71] M. J. Ackerman, “The visible human project,” Proceedings of the IEEE, vol. 86,
no. 3, pp. 504–511, 1998.

145

References

146

Publication I

Mihai I. Florea and Sergiy A. Vorobyov. A Robust FISTA-like Algorithm. In

IEEE International Conference on Acoustics, Speech and Signal Process-

ing, New Orleans, USA, pp. 4521–4525, Mar. 2017.

c© 2017 IEEE

Reprinted with permission.

147

A ROBUST FISTA-LIKE ALGORITHM

Mihai I. Florea and Sergiy A. Vorobyov

Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

ABSTRACT

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is re-
garded as the state-of-the-art among a number of proximal gradient-
based methods used for addressing large-scale optimization prob-
lems with simple but non-differentiable objective functions. How-
ever, the efficiency of FISTA in a wide range of applications is ham-
pered by a simple drawback in the line search scheme. The local
estimate of the Lipschitz constant, the inverse of which gives the
step size, can only increase while the algorithm is running. As a
result, FISTA can slow down significantly if the initial estimate of
the Lipschitz constant is excessively large or if the local Lipschitz
constant decreases in the vicinity of the optimal point. We propose
a new FISTA-like method endowed with a robust step size search
procedure and demonstrate its effectiveness by means of a rigorous
theoretical convergence analysis and simulations.

Index Terms— FISTA, backtracking, line search, convergence

1. INTRODUCTION

Simple continuous convex optimization problems are used to model
many inverse problems and several simple classification tasks, par-
ticularly in imaging applications. Often, as in the case of sparse
inverse problems, the objective is not differentiable in certain parts
of the search space [1]. Accelerated algorithms that rely on gradient
information (e.g. [2]) cannot be used directly to solve such prob-
lems. However, if the problem objective has a composite structure,
certain algorithms are effective when supplied with proximal gra-
dient information, instead of gradient information [3]. Although the
number of variables can be large, usually of the order of millions [1],
with recent advances in graphics processors it is possible to compute
the proximal gradient on a single machine without the need for ex-
pensive communication between processing nodes. Consequently,
proximal gradient methods are increasingly employed for address-
ing composite problems, and have become the subject of very active
research [4–8]. Among proximal gradient methods, the Fast Itera-
tive Shrinkage-Thresholding Algorithm (FISTA) [9] is currently re-
garded as the state-of-the-art [1, 10].

FISTA is designed to solve the following problem:

min
x∈Q

F (x) = f(x) + Ψ(x), (1)

where Q ⊆ R
n is a closed convex set, x is a vector of optimization

variables, and F is the objective function, which has a composite
structure, i.e., f is a convex differentiable function with Lipschitz
continuous gradient (Lipschitz constant Lf) andΨ is a convex func-
tion that may not be differentiable nor defined outside Q. However,
Ψ is simple in the sense that the proximal operator

proxτΨ(v) = argmin
x∈Q

(
Ψ(x) +

1

2τ
‖x− v‖22

)
(2)

can be computed for any v in the search space and any non-negative
step size τ in O(n) time. The popularity of FISTA owes to its sim-
plicity and speed, but mostly to its generality [10]. The algorithm
is unaware of the nature of the objective function or the problem
constraints. It progresses using a sequence of calls to a proximal
gradient routine, each involving one call to the proximal operator.

When the Lipschitz constantLf is not known in advance, FISTA
employs a simple backtracking “line search” procedure. However,
the effectiveness of FISTA is hampered by a simple drawback in
the search scheme, namely the estimate of the Lipschitz constant
can only increase while the algorithm is running. As the step size
is set to be the inverse of the Lipschitz constant estimate, the line
search may slow the progress of the algorithm. In two situations, the
drawbacks of the search are evident: (i) L0, the initial estimate of
Lf , far exceeds the actual value and (ii) the local curvature of f is
large in the vicinity of the initial iterates but decreases around the
optimal point.

A number of approaches addressing both aforementioned issues
have been proposed in the literature. A method that predates FISTA,
which we choose to call Nesterov’s Accelerated Multistep Gradient
Scheme (Nesterov’s AMGS) [11], does feature a step size increase
schedule. While having comparable theoretical convergence guar-
antees to FISTA, it is slower in the most common applications [12].
A variation of Nesterov’s AMGS more similar to FISTA, mentioned
in [3], is nominally equipped with a step size increase option when
“conditions permit”. However, the study does not quantitatively de-
scribe these conditions nor does it provide any theoretical conver-
gence guarantees. In a recent study [13], FISTA has been equipped
with an “exact” line search procedure. This version comes with a rig-
orous convergence analysis but assumes that the objective function
is known to the algorithm, detracting from the generality of FISTA’s
black-box philosophy.

In this work, we propose an algorithm that alleviates the draw-
backs of FISTA in the above mentioned situations, rendering it ro-
bust in the sense that it can be applied without parameter adjust-
ment to the full spectrum of problems it addresses. Furthermore, our
method does not restrict the generality of FISTA and does not alter
the theoretical convergence guarantees while surpassing FISTA in
practice. We support our findings with simulation results.

2. ROBUST LINE SEARCH FISTA

Our goal is to create an algorithm that can dynamically adjust the
Lipschitz constant estimate at every iteration. The simplest and most
straightforward way of achieving this is by decreasing the Lipschitz
constant estimate slightly at the beginning of every iteration, relying
on backtracking to correct excessive reduction. This search strat-
egy is not applicable to FISTA (i.e., convergence cannot be theo-
retically guaranteed) because this method collects insufficient infor-
mation while it is running. In FISTA, the first iteration k = 0 is
a proximal point step [10]. At every subsequent iteration k ≥ 1,

�������	�	�
�
	����	�����
���

���
������� ��������
��

the new iterate xk+1 (estimate of optimal point x∗) is obtained by
querying the proximal gradient not at the previous iterate xk, but at
a point yk+1 obtained from the two preceding iterates xk and xk−1
through extrapolation, the extent of which depends on terms tk and
tk+1 of a recursively defined weight sequence {ti}i≥1. Although
not maintained explicitly while running, FISTA’s convergence anal-
ysis relies on an auxiliary sequence (which we denote by {zi}i≥0)
that is updated in parallel with {xi}i≥0. Note that yk+1 can be ob-
tained as a convex combination of xk and zk, with the weighting
determined by tk and tk+1.

FISTA benefits from the same simplification employed by the
Fast Gradient Method (FGM) [2]. When the step size is non-
increasing, the sequence {ti}i≥1 can be determined a priori, irre-
spective of Lipschitz constant estimate values. Maintaining at every
iteration k the accumulated weight property

Tk+1 =

k+1∑
i=1

ti = t2k+1, ∀k ≥ 0, (3)

guarantees anO(1
k2
) rate of convergence, optimal for a class of first-

order algorithms introduced in [2]. By relaxing the non-increasing
step size assumption, the weight sequence {ti}i≥1 can be updated to
take into account the current and past Lipschitz constant estimates,
yielding a more robust algorithm that retains the O(1

k2
) rate of con-

vergence. Specifically, we can replace the accumulated weight prop-
erty (3) with

Tk+1 =

k+1∑
i=1

ti
Li
≥ Lk+1t

2
k+1, ∀k ≥ 0, (4)

where Lk+1 represents the new Lipschitz constant estimate obtained
at iteration k. Equality in (4) ensures the fastest theoretical conver-
gence rate but our framework accommodates also methods that vio-
late equality to trade off speed for other desirable properties, such as
weak convergence of iterates [7] or ease of interpretation [14].

Using equality in (4), we propose the method outlined in Al-
gorithm 1. Our notation differs slightly from the one used by
FISTA [9]. We define the quadratic function UL,y(x) as

UL,y(x) = f(y) + 〈�f(y),x− y〉+ L

2
‖x− y‖22. (5)

Then, by fixing the step size in (2) to be τ = 1/L, the proximal
gradient expression becomes

pL(y) = argmin
x∈Q

(UL,y(x) + Ψ(x)) (6)

= proxτΨ (y − τ � f(y)) . (7)

While the formulation of our algorithm appears greatly dissimi-
lar to FISTA, in fact, we can obtain an algorithm that is completely
equivalent to FISTA (which we designate as z-FISTA) by simply re-
moving line 4 and by modifying lines 6 and 19. For z-FISTA, line 6
reads instead as

t̂ :=
1 +

√
1 + 4Tk
2

(8)

and line 19 is replaced with zk+1 = zk + t̂(x̂− ŷ).
The relation of the remainder of parameters in Algorithm 1 to

those present in z-FISTA is listed in Table 1. In the proposed method,
the accumulated weight Tk+1 constitutes a valid convergence rate
at each iteration k (see Section 3 for proof). The quantity Tk+1
does not hold the same meaning in z-FISTA, where a valid conver-
gence rate is instead given by T̄k+1 = Tk+1/Lk+1. This is poorer

than in our method. In FISTA, {zi}i≥0 and {Ti}i≥0 are abstracted
away. Similarly, in the proposed method, there is no need to main-
tain {yi}i≥1 nor {ti}i≥1 across iterations. Instead, we update only
current estimates of these sequences.

Algorithm 1 A robust FISTA-like algorithm
1: z0 = x0
2: T0 = 0
3: for k = 0,...,K-1 do
4: L̂ := γdLk

5: loop

6: t̂ :=
1+
√
1+4L̂Tk
2L̂

7: T̂ := Tk + t̂
8: ŷ := 1

T̂
(Tkxk + t̂zk)

9: x̂ := pL̂(ŷ)
10: if f(x̂) ≤ UL̂,ŷ(x̂) then
11: Break from loop
12: else

13: L̂ := γuL̂
14: end if

15: end loop

16: Lk+1 = L̂
17: xk+1 = x̂
18: Tk+1 = T̂
19: zk+1 = zk + t̂L̂(x̂− ŷ)
20: end for

Table 1. Parameters and variables used by our method

Type Symbol Domain Description z-FISTA
equivalent

Input x0 R
n initial estimate of x∗ same

Input L0 (0,∞) initial estimate of Lf same
Input γu (1,∞) increase rate of L̂ same
Input γd (0, 1) decrease rate of L̂ none
Internal L̂ (0,∞) estimate of Lf same
Internal x̂ Q estimate of xk+1 same
Internal ŷ R

n estimate of yk+1 yk+1

Internal t̂ (0,∞) weight of zk+1
tk+1

Lk+1

Internal T̂ (0,∞) estimate of Tk+1
Tk+1

Lk+1

Output xK Q final estimate of x∗ same

Our method cannot be benchmarked directly against FISTA and
Nesterov’s AMGS in terms of theoretical computational complexity.
Each method calls a dynamic mix of functions which, depending on
the problem specification, may have vastly varying relative complex-
ities. Table 2 provides a detailed description of the type and number
of function calls in several stages of an iteration. Our method re-
quires more computation than FISTA for a backtracking operation
while showing no increase in complexity when no backtracks occur.
Nesterov’s AMGS cannot be compared in any algorithmic state as it
was designed to work without the need to implement function value
calls to f . An iteration of Nesterov’s AMGS does, however, require
at least two projection calls (proximal operator plus gradient compu-
tation) which gives it a clear disadvantage when these operations are
more complex than calls to f . Overall, our method strikes a balance
in a variety of situations, further contributing to its robustness.

����

Table 2. Per iteration complexity, measured in terms of operator calls, of FISTA, Nesterov’s AMGS, and our method

FISTA Nesterov’s AMGS Our method
f �f proxτΨ f �f proxτΨ f �f proxτΨ

Step size validation (lines 4 to 11) 2 1 1 0 2 1 2 1 1
Backtrack (lines 4 to 15) 1 0 1 0 2 1 2 1 1
State update (lines 16 to 19) 0 0 0 0 0 1 0 0 0

Iteration without backtrack (lines 4 to 19) 2 1 1 0 2 2 2 1 1

3. CONVERGENCE ANALYSIS

While our method does not keep track of the sequences {yk}k≥1
and {tk}k≥1, they can be easily recovered. Lines 6, 7, 8 and 18 in
Algorithm 1 imply that

tk+1 = Tk+1 − Tk, ∀k ≥ 0, (9)
Tk+1yk+1 = Tkxk + tk+1zk, ∀k ≥ 0. (10)

Given that for every k ≥ 1, xk satisfies relations

f(xk) ≤ ULk,yk (xk), (11)
xk = pLk (yk), (12)

enforced by lines 9, 10, 16 and 17 in Algorithm 1, it follows that
[9, Lemma 2.3] holds for all k ≥ 1 and x ∈ Rn, that is

F (x)−F (xk) ≥
Lk

2
‖xk − yk‖22 +Lk〈yk −x,xk − yk〉. (13)

Let us consider the sequence {Δk}k≥0, defined as

Δk = Tk(F (xk)− F ∗) +
1

2
‖zk − x∗‖22, ∀k ≥ 0. (14)

We aim to prove that this sequence is non-increasing. Indeed, apply-
ing (13) at iteration k + 1 (for all k ≥ 0) using xk and x∗ as values
of x we obtain

F (xk)− F (xk+1) ≥
Lk+1

2
‖xk+1 − yk+1‖22+ (15)

Lk+1〈yk+1 − xk,xk+1 − yk+1〉,

F (x∗)− F (xk+1) ≥
Lk+1

2
‖xk+1 − yk+1‖22+ (16)

Lk+1〈yk+1 − x∗,xk+1 − yk+1〉.

Lines 6, 7, 16 and 18 ensure that (4) holds with equality. Using (9),
(10), and (4) in Tk · (15) + tk+1 · (16) we obtain

Tk(F (xk)− F ∗)− Tk+1(F (xk+1)− F ∗) ≥ (17)

L2k+1t
2
k+1‖xk+1 − yk+1‖22 + tk+1Lk+1〈zk − x∗,xk+1 − yk+1〉.

Lines 16 and 19 translate into the following recursion rule:

zk+1 = zk + tk+1Lk+1(xk+1 − yk+1), ∀k ≥ 0. (18)

Then, using (18) in (17) and rearranging terms, we obtain the desired
result,

Δk+1 ≤ Δk, ∀k ≥ 0. (19)
This last inequality implies that every term Δk, k ≥ 1, is upper
bounded byΔ0. Given thatΔ0 = 1

2
‖x0 − x∗‖22 and that the quan-

tity 1
2
‖zk −x∗‖22 is always non-negative, we can write down a con-

vergence rate explicitly as

F (xk)− F ∗ ≤ 1

2Tk
‖x0 − x∗‖22, ∀k ≥ 1. (20)

Clearly, Tk constitutes a valid convergence rate. To obtain a sim-
ple closed form convergence rate, it suffices to find a simple lower
bound for Tk. When Lk ≥ Lf , due to the Lipschitz continuous
property of�f , inequality (11) holds regardless of the values of xk

and yk. Hence, the backtracking search will never produce a value
of Lk beyond γuLf . Therefore, combining (4) with Lk ≤ γuLf we
obtain

Tk+1 ≥ Tk +
1

2γuLf
+

√
1

4(γuLf)2
+

Tk
γuLf

, ∀k ≥ 0. (21)

Using (21) and T0 = 0, it follows through induction that

Tk ≥
(k + 1)2

4γuLf
, ∀k ≥ 1. (22)

Finally, substituting the lower bound on Tk (22) in (20) we ob-
tain the same quadratic convergence rate as the original FISTA
[9, Theorem 4.4], namely

F (xk)− F ∗ ≤ 2γuLf

(k + 1)2
‖x0 − x∗‖22, ∀k ≥ 1. (23)

Note that our convergence analysis is more general than the one
provided in [9]. Inequality (19) applies to FISTA as well (by replac-
ing Tk with T̄k = t2k/Lk for k ≥ 1 and setting T0 = 0) and can be
used to obtain the same convergence rate for variations on the weight
update rule (8).

4. NUMERICAL ANALYSIS

The performance of our method (Algorithm 1) was tested and com-
pared to that of FISTA with backtracking line search and Nesterov’s
AMGS on the l1 regularized deblurring of a simple test image.
For ease of benchmarking, we used the experimental setup from
[9, Section 5.1]. The composite objective function is given by

f(x) = ‖Ax− b‖22, Ψ(x) = λ‖x‖1, (24)

where A = RW ; R is a matrix representing Gaussian blur (9× 9
pixel kernel, standard deviation 4.0, reflexive boundary condi-
tions [15]);W is the inverse three-stage Haar wavelet transform; b
is obtained by applying R to the 256 × 256 cameraman test image
(pixel values scaled to the [0, 1] range), followed by the addition of
Gaussian noise (zero-mean, standard deviation 10−3). Here, �f
has a Lipschitz constant value Lf = 2.0, computed as the maximum
eigenvalue of a symmetric Toeplitz-plus-Hankel matrix, according
to [15], and λ = 2 · 10−5 is a regularization parameter. In addi-
tion, we chose γu = 2.0 and γd = 0.9 for each method tested, as
these values were suggested in [3] to “provide good performance in
many applications”. Two scenarios are considered: a pathologically
overestimated initial guess L0 = 10Lf (Fig. 1) and a normally
underestimated L0 = 0.3Lf (Fig. 2).

����

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA (backtracking)
Nesterov’s AMGS
Our method

(a) Convergence rate

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Iteration
Li

ps
ch

itz
 c

on
st

an
t e

st
im

at
e

FISTA (backtracking)
Nesterov’s AMGS
Our method

(b) Lipschitz constant estimate

0 50 100 150 200 250

0.999

0.9995

1

Iteration

C
os

in
e

FISTA (backtracking)
Nesterov’s AMGS
Our method

(c) Inertial degree

Fig. 1. Comparison of FISTA, Nesterov’s AMGS, and our method for an overestimated initial Lipschitz constant: L0 = 10Lf

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA (backtracking)
Nesterov’s AMGS
Our method

(a) Convergence rate

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA (backtracking)
Nesterov’s AMGS
Our method

(b) Lipschitz constant estimate

0 50 100 150 200 250
0.9996

0.9998

1

Iteration

C
os

in
e

0 50 100 150 200 250

0.98
0.985

0.99
0.995

Iteration
C

os
in

e

FISTA (backtracking)
Nesterov’s AMGS
Our method

(c) Inertial degree

Fig. 2. Comparison of FISTA, Nesterov’s AMGS, and our method for an underestimated initial Lipschitz constant: L0 = 0.3Lf

Convergence is measured in terms of the difference between ob-
jective function values and an optimal value estimate, during the first
1000 iterations (Figs. 1(a) and 2(a)). This estimate was computed as
F (x̂∗), where x̂∗ is the iterate obtained after running fixed step size
FISTA with the correct Lipschitz constant parameter for 10000 iter-
ations. Key algorithm state parameters, such as Lipschitz constant
estimates (Figs. 1(b) and 2(b)) and inertial degrees (Figs. 1(c) and
2(c)) are shown only during the first 100 iterations, as subsequent it-
erations did not reveal more information. Inertial degrees are defined
at every iteration k ≥ 0 as the cosine of the angle between yk+1 and
xk at xk−1. When two of these points match, the inertial degree is
set to 1.

In both scenarios, after the first 400 iterations, our method
clearly surpasses the others in terms of function value (Figs. 1(a)
and 2(a)). FISTA converges slowly, especially in the pathological
case where, as expected, FISTA is unable to reduce its Lipschitz
constant estimate (Fig. 1(b)), whereas the other methods are able to
decrease their estimates at comparable rates during the first 30 itera-
tions. Under normal conditions (Fig. 2(b)), FISTA quickly increases
its estimate in the first iterations after which the value reaches a
saturation level. The other methods are constantly adjusting their
estimates. In both situations, our method produces on average a
lower Lk than the other two methods. FISTA’s inability to reduce
Lk accounts for its high estimates whereas Nesterov’s AMGS has a
stricter backtracking condition than our method or FISTA, leading
to more backtracks.

In our method, just as in FISTA, yk+1, xk and xk−1 are
collinear (Figs. 1(c) and 2(c)). However, in Nesterov’s AMGS they
are not, contradicting the notion found in several monographs in the
field (e.g. [10,16]) that all accelerated first order methods rely on ex-

trapolation. We provide in [12] a rigorous proof of collinearity in the
proposed method and corroborate the superiority of our algorithm
with a more detailed performance analysis.

In summary, our method can be regarded as a hybrid of FISTA
with its collinear iterates (Figs. 1(c) and 2(c)) and Nesterov’s AMGS
with its dynamic step search procedure (Figs. 1(b) and 2(b)), benefit-
ing from the strengths of these methods while alleviating the draw-
backs. Namely, our method produces more accurate estimates of
the local curvature of f (unlike the artificially high estimates of
FISTA) and is able to utilize both gradient and subgradient infor-
mation (whereas Nesterov’s AMGS updates a weighted average of
gradients without taking into consideration the subgradient of Ψ),
resulting in larger steps and, consequently, faster convergence.

5. CONCLUSION

By updating the weight sequence to take into account the current
and past Lipschitz constant estimates, we have devised a FISTA-like
algorithm with a robust step size search strategy. We have shown
that the same theoretical convergence rate of O(1

k2
) applies to our

method, with a provably smaller constant. Simulation results on the
very problem FISTA was introduced to solve show that our method
surpasses both FISTA and the more complex Nesterov’s AMGS,
without the need to adjust any parameters.

The properties of the proposed method follow naturally from the
augmented estimate sequence framework [12]. In fact, our method is
a particular case of the Accelerated Composite Gradient Method, a
general-purpose optimization scheme [12]. Thus, the concepts pre-
sented in this work are of importance to the entire field of accelerated
optimization algorithms.

����

6. REFERENCES

[1] A. Chambolle and T. Pock, “An introduction to continuous
optimization for imaging,” Acta Numer., vol. 25, pp. 161–
319, May 2016.

[2] Y. Nesterov, Introductory lectures on convex optimization.
Applied optimization, vol. 87. Kluwer Academic Publishers,
Boston, 2004.

[3] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for
convex cone problems with applications to sparse signal re-
covery,”Math. Program. Comput., vol. 3, no. 3, pp. 165–218,
Sep. 2011.

[4] A. Auslender and M. Teboulle, “Interior gradient and prox-
imal methods for convex and conic optimization,” SIAM J.
Optim., vol. 16, no. 3, pp. 697–725, 2006.

[5] G. Lan, Z. Lu, and R. D. Monteiro, “Primal-dual first-order
methods with O(1/ε) iteration-complexity for cone pro-
gramming,”Math. Program., vol. 126, no. 1, pp. 1–29, 2011.

[6] P. Tseng, “On accelerated proximal gradient methods for
convex-concave optimization,” May 2008, submitted to
SIAM J. Optim. Available: http://www.mit.edu/∼dimitrib/
PTseng/papers/apgm.pdf

[7] A. Chambolle and C. Dossal, “On the convergence of the iter-
ates of the fast iterative shrinkage/thresholding algorithm,” J.
Optim. Theory Appl., vol. 166, no. 3, pp. 968–982, May 2015.

[8] B. O’Donoghue and E. Candès, “Adaptive restart for acceler-
ated gradient schemes,” Found. Comput. Math., vol. 15, no. 3,
pp. 715–732, 2015.

[9] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM J.
Imaging Sci., vol. 2, no. 1, pp. 183–202, 2009.

[10] N. Parikh, S. P. Boyd, et al., “Proximal algorithms,” Found.
Trends Optim., vol. 1, no. 3, pp. 127–239, 2014.

[11] Y. Nesterov, “Gradient methods for minimizing composite
objective function,” CORE, Université Catholique de Lou-
vain, Tech. Rep. 76, Sep. 2007.

[12] M. I. Florea and S. A. Vorobyov, “An accelerated com-
posite gradient method for large-scale composite objec-
tive problems,” arXiv preprint arXiv:1612.02352 [math.OC],
Dec. 2016.

[13] Z. Zhang and V. Saligrama, “RAPID: Rapidly acceler-
ated proximal gradient algorithms for convex minimization,”
Proc. IEEE Intern. Conf. Acoust., Speech and Signal Process.
(ICASSP), Brisbane, Australia, Apr. 2015, pp. 3796–3800.

[14] W. Su, S. Boyd, and E. Candes, “A differential equation for
modeling Nesterov’s accelerated gradient method: Theory
and insights,” Advances in Neural Inform. Process. Syst. 27,
Montréal, Canada, Dec. 2014, pp. 2510–2518.

[15] P. Hansen, J. Nagy, and D. O’Leary, Deblurring images.
SIAM, Philadelphia, 2006.

[16] D. P. Bertsekas, Convex optimization algorithms. Athena Sci-
entific, Belmont, 2015.

����

Publication II

Mihai I. Florea and Sergiy A. Vorobyov. An Accelerated Composite Gradient

Method for Large-scale Composite Objective Problems. Accepted for

publication in IEEE Transactions on Signal Processing, May 2018.

c© 2018 IEEE

Reprinted with permission.

155

1

An Accelerated Composite Gradient Method for
Large-scale Composite Objective Problems

Mihai I. Florea, Student Member, IEEE, and Sergiy A. Vorobyov, Fellow, IEEE

Abstract—Various inverse problems, tabulated function mini-
mization problems, and machine learning tasks can be expressed
as large-scale optimization problems with a composite objective
structure, where the Lipschitz constant of the smooth part
gradient is not known. For other problems, as in l1-regularized
logistic regression, the global Lipschitz constant is known but its
local values may only be a fraction of the global value. In all
the above cases, the smooth part may be strongly convex as well.
Numerous methods have been proposed to deal with different
instances within this class of problems. However, these do not
account for the characteristics of the entire problem class, leading
to performance degradation or outright divergence outside their
scope. The most generic among them are black-box accelerated
first-order methods, related to either Nesterov’s Fast Gradient
Method (FGM) or the Accelerated Multistep Gradient Scheme
(AMGS), which were developed and analyzed using the estimate
sequence mathematical framework. In this work, we introduce
the augmented estimate sequence framework, a relaxation of the
estimate sequence. When the lower bounds incorporated in the
augmented estimate functions are hyperplanes or parabolae, this
framework generates a conceptually simple gap sequence. We
use this gap sequence to construct the Accelerated Compos-
ite Gradient Method (ACGM), a versatile first-order scheme
applicable to the entire composite problem class. Moreover,
ACGM is endowed with an efficient dynamic Lipschitz constant
estimation (line-search) procedure. Motivated by the absence of a
reliable complexity measure applicable to all first-order methods,
we also introduce the wall-clock time unit (WTU). The WTU
accounts for variations in algorithmic per-iteration complexity
and more consistently reflects algorithm running time in practical
applications. When analyzed using WTU, ACGM has the best
provable convergence rate on the composite problem class, both
in the strongly and non-strongly convex cases. Our simulation
results confirm the theoretical findings and show the superior
performance of our new method.

Index Terms—acceleration, composite objective, estimate se-
quence, first-order method, large-scale optimization, line-search,
optimization algorithm

I. INTRODUCTION
Numerous signal processing applications in compressive

sensing, medical imaging, geophysics, bioinformatics, and
many other areas are currently empowered by large-scale
optimization methods (see [1]–[3], and references therein).
These applications, due to their size, can only be modeled as
optimization problems for which simple operations such as the
first-order derivative of objective function are computationally
tractable but complex operations such as Hessian inversion

M. I. Florea (E-mail: mihai.florea@aalto.fi) and S. A. Vorobyov (E-mail:
sergiy.vorobyov@aalto.fi) are with Aalto University, Department of Signal
Processing and Acoustics, FI-00076, AALTO, Finland. This work has been
partially supported by the Academy of Finland (Grant No. 299243). A
particular case of the algorithm introduced in this paper was presented at
the 42nd IEEE ICASSP, New Orleans, USA, March 2017.

are not (large-scale problems [4]). When these problems are
additionally convex, algorithms employing calls to first-order
operations (first-order methods) are able to obtain arbitrarily
precise estimates of the optimal value given a sufficient
number of iterations. Nesterov has demonstrated that first-
order methods can be accelerated, when he proposed his
breakthrough Fast Gradient Method (FGM) [5]. FGM was
constructed using the simple mathematical machinery of the
estimate sequence [6]. The estimate sequence is a collection of
estimate functions, each being a scaled version of a function
that incorporates a global lower bound while having an
optimal value that is a local upper bound on the objective
function. The local upper bounds tighten as the algorithm
progresses, thereby ensuring a provable convergence rate.
Using the estimate sequence, the design process of FGM

is straightforward and, by exploiting the structure of smooth
problems, simultaneously produces state-of-the art conver-
gence guarantees. FGM converges for non-strongly convex
objectives at an optimal rate O(1/k2) and for strongly convex
objectives at a near-optimal rate O((1 −√q)−k), where k is
the iteration index and q is the inverse condition number of
the objective [6]. However, FGM requires that the objective
be continuously differentiable with Lipschitz gradient, the
Lipschitz constant be known in advance, and the problem be
unconstrained.
A broad range of problems, including the most common

constrained smooth optimization problems, many inverse prob-
lems [7], and several classification and reconstruction prob-
lems in imaging [8], have a composite structure, wherein the
objective is the sum of a smooth function f with Lipschitz
gradient (Lipschitz constant Lf) and a simple function Ψ, that
may embed constraints by including the indicator function
of the feasible set. By simple function, we mean here that
the proximal operator of Ψ is exact (for treatment of inexact
oracles see, e.g., [9]) and has a negligible cost compared
to other operations. We stress that while many specialized
methods have been introduced to tackle composite problems
that have additional structure, such as sparsity (e.g., [10]–
[13]), we focus on methods applicable to the entire problem
class. In particular, we follow the black-box oracle model [14].
Namely, we assume that the exact nature of the objective
function is not known by the optimization algorithms (outside
the assumptions of the problem class) and they can only obtain
information on the problem by calling oracle functions. Apart
from generality and theoretical simplicity, this model is also
well suited for software libraries. Optimization algorithms can
be implemented as methods that take as arguments callback
oracle functions. Solving a particular problem reduces to

2

providing an implementation of the oracle functions.
To address the demand for fast algorithms applicable to this

problem class, as well as to alleviate the need to know Lf in
advance, Nesterov has introduced the Accelerated Multistep
Gradient Scheme (AMGS) [15] that relies on composite gra-
dients to overcome the limitations of FGM. This algorithm also
adjusts an estimate of Lf at every step (a process often called
“line-search” in the literature [7], [16]) that reflects the local
curvature of the function. The information collected by AMGS
to estimate Lf is reused to advance the algorithm. However,
AMGS requires line-search to complete before proceeding to
the next iteration. This increases the per-iteration complexity
of AMGS to at least twice that of FGM. Consequently, the
theoretical convergence guarantees of AMGS, while being
better than FGM when measured in iterations, are in fact
considerably inferior to FGM in terms of running time (see
Appendix A for a detailed analysis).
The Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) [7] decouples the advancement phase from the adjust-
ment phase, stalling the former phase only during backtracks.
Decoupling renders the computational complexity of a FISTA
iteration comparable to that of FGM. However, FISTA has
a fixed O(1/k2) provable convergence rate even when the
objective is strongly convex, and the line-search strategy
cannot decrease the Lf estimate. Similar algorithms to FISTA
have been collectively analyzed in [17], but none overcome
these drawbacks.
While preparing this manuscript, we became aware of

a strongly convex generalization of FISTA, recently intro-
duced in [8], which we designate by FISTA-Chambolle-Pock
(FISTA-CP). It has the same convergence guarantees as FGM
in both the non-strongly and the strongly convex cases. The
monograph [8] hints at but does not explicitly state any line-
search strategy. Two recent works also seek to overcome the
drawbacks of backtracking FISTA in the strongly convex case.
The first work [18] introduces a family of methods with two

notable members. One is the Monteiro-Ortiz-Svaiter (MOS)
method, which can be regarded as a simplification of Nes-
terov’s AMGS, obtained by discarding the line-search proce-
dure. MOS has better convergence guarantees than AMGS but
it cannot surpass FISTA-CP. The other member is the Adaptive
Accelerated (AA) method, which is obtained from MOS by
adding an estimate sequence based acceleration heuristic that
increases empirical performance on the applications studied
in [18] but weakens the theoretical convergence guarantees,
making them poorer than those of AMGS (see also Ap-
pendix A). The two restart heuristics proposed in [18] are
altogether incompatible with the convergence analysis.
The second work [19] proposes a strongly convex Ac-

celerated Proximal Gradient (scAPG) method, which can be
regarded as a line-search extension of FISTA-CP applicable
to problems where the smooth part f is strongly convex. The
convergence guarantees however do not apply outside this
scenario.
Thus, a multitude of methods have already been proposed to

tackle composite problems with specific additional structure,
but none of them successfully combine the strengths of FGM,
AMGS, and FISTA.

A. Contributions

• In this work, we give a new interpretation of Nesterov’s
first-order accelerated optimization algorithms and for-
mulate a generic design pattern for these algorithms based
on local upper bounds and global lower bounds. The
global lower bounds are incorporated in the estimate
functions whereas the local upper bounds are defined
separately.

• Nesterov’s estimate sequence can be relaxed to produce
an augmented estimate sequence. Augmentation renders
the estimate sequence invariant to the tightness of the
global lower bounds.

• When these lower bounds take the form of general-
ized parabolae (hyperplanes or quadratic functions with
Hessians equal to multiples of the identity matrix), the
augmented estimate sequence property can be insured by
maintaining a non-increasing (Lyapunov property) gap
sequence.

• We provide, using the above design pattern and the gap
sequence, a step-by-step derivation of our Accelerated
Composite Gradient Method (ACGM), a versatile first-
order scheme for the class of large-scale problems with
composite objective structure, which has the convergence
guarantees of FGM in both the non-strongly and strongly
convex cases. ACGM is equipped with an efficient adap-
tive line-search procedure that is decoupled from the
advancement phase at every iteration. ACGM does not
require a priori knowledge of the Lipschitz constant and
can converge even when the Lipschitz property holds only
locally.

• ACGM is derived in an estimate sequence based form
but it can be brought to an equivalent extrapolation based
form that is more similar to FISTA and its extensions.

• We introduce the wall-clock time unit (WTU), a com-
plexity measure that accounts for variations in the per-
iteration complexity of black-box optimization algo-
rithms. WTU more accurately reflects the actual perfor-
mance of such algorithms in practical applications.

• When analyzed using WTU, ACGM has the best provable
convergence rate both in the strongly and non-strongly
convex cases.

• We corroborate the theoretical arguments with simulation
results. Specifically, we show that on a popular instance
of the non-strongly convex l1-regularized image deblur-
ring problem and on a random instance of the strongly
convex logistic regression with elastic net regularization
problem, each with the Lipschitz constant assumed un-
known, our method surpasses the state-of-the-art in terms
of WTU usage.

B. Assumptions and notation

We consider the following convex optimization problem

min
x∈Rn

F (x) � f(x) + Ψ(x),

where x is a vector of n optimization variables. In this work,
we consider only large-scale problems [4]. The composite ob-
jective F has a non-empty set of optimal points X∗. Function

3

f : Rn → R is convex differentiable on Rn with Lipschitz
gradient (Lipschitz constant Lf > 0) and a strong convexity
parameter μf ≥ 0. The regularizer Ψ : Rn → R ∪ {∞} is a
proper lower semicontinuous convex function with a strong
convexity parameter μΨ. This implies that F has a strong
convexity parameter μ = μf +μΨ. The regularizer Ψ embeds
constraints by being infinite outside the feasible set. It does not
have to be differentiable. However, its proximal map, given by

proxτΨ(x) � argmin
z∈Rn

(
Ψ(z) +

1

2τ
‖z − x‖22

)
,

for all x ∈ R
n and τ > 0 can be computed with com-

plexity O(n). Here ‖.‖2 denotes the Euclidean norm. The
optimization problem is treated by algorithms in a black-box
setting [14], i.e. algorithms can only access oracle functions
f(x), ∇f(x), Ψ(x), and proxτΨ(x), with arguments x ∈ Rn

and τ > 0.
We define a parabola as a quadratic function ψ : Rn → R

of the form

ψ(x) � ψ∗ +
γ

2
‖x− v‖22, x ∈ Rn,

where γ > 0 gives the curvature, v ∈ Rn is the vertex, and
ψ∗ is the optimal value. We also define P as the set of all
parabolae, H as the set of all linear functions h : Rn → R

(which we denote as hyperplanes), and G as the set of
generalized parabolae, G � P ∪H. We define two abbreviated
expressions, Pf,y(x) ∈ H and Qf,γ,y(x) ∈ G, as

Pf,y(x) � f(y) + 〈∇f(y),x− y〉,
Qf,γ,y(x) � Pf,y(x) +

γ

2
‖x− y‖22, (1)

for any x,y ∈ R
n and γ > 0, where 〈., .〉 denotes the

inner product. Using expression Q, we introduce the proximal
gradient operator Tf,Ψ,L(y) as

Tf,Ψ,L(y) � argmin
x∈Rn

(Qf,L,y(x) + Ψ(x))

= prox 1
LΨ

(
y − 1

L
∇f(y)

)
, y ∈ Rn, (2)

where L > 0 is a parameter corresponding to the inverse of
the step size.
For a given function Ψ, we also define the set of composite

parabolae PΨ � {ψ + cΨ | c ≥ 0, ψ ∈ P}.

II. THEORETICAL BUILDING BLOCKS

First, we present the mathematical machinery used in
constructing ACGM. We begin this section with a novel
interpretation of Nesterov’s estimate sequence, we proceed by
introducing a generic design pattern for estimate sequence
based algorithms, and conclude with the properties of the
composite gradient that allow us to design the relaxed lower
bounds of ACGM.

A. Estimate sequence

For the class of composite problems with non-strongly
convex objectives, regardless of the optimization algorithm
used, the convergence of the iterates can be arbitrarily slow [6],

[20]. Consequently, we express the convergence rate of first-
order schemes on the entire composite problem class as the
decrease rate of the distance between the objective value
and the optimal value. We define a convergence guarantee
(provable convergence rate) as the decrease rate of a theoretical
upper bound on this distance. When designing algorithms,
we index objective values based on iterations.1 The bound
is expressed in terms of points in the domain space (see also
[15]) as

Ak(F (xk)− F (x∗)) ≤ 1

2
‖x0 − x∗‖22, (3)

for any x∗ ∈ X∗ and k ≥ 0. Without loss of generality, we
will fix x∗ to be an arbitrary element of X∗ throughout the
remainder of this work. The weight sequence {Ak}k≥0 with
Ak > 0 for all k ≥ 1 gives the convergence guarantees. Since
the starting point x0 is assumed to be arbitrary, the composite
function value F (x0) may not be finite and no guarantee can
be given for k = 0. Therefore, A0 is set to 0 to ensure that
(3) holds.
The provable convergence rate expression (3) translates to

AkF (xk) ≤ Hk, (4)

where

Hk � AkF (x∗) +
1

2
‖x0 − x∗‖22, k ≥ 0, (5)

is the highest allowable upper bound on the weighted objective
values AkF (xk). The convexity of F ensures that there exists
a sequence {Wk}k≥1 of global convex lower bounds on F ,
namely

F (x) ≥ Wk(x), x ∈ Rn, k ≥ 1. (6)

We define an estimate sequence {ψk(x)}k≥0 as

ψk(x) � AkWk(x) +
γ0
2
‖x− x0‖22, 0 < γ0 ≤ 1, k ≥ 0.

(7)
Here ψk for k ≥ 0 are estimate functions and γ0 is the
curvature of the initial estimate function ψ0. Since A0 = 0,
there is no need to define W0. Both AMGS and FGM are built
to maintain the following estimate sequence property2

AkF (xk) ≤ ψ∗k, (8)

where
ψ∗k � min

x∈Rn
ψk(x), k ≥ 0.

The estimate sequence property states that the estimate func-
tion optimal value is a scaled (by Ak) local (at xk) upper
bound on the objective F . Since the weights are increasing,
it follows that the local upper bounds 1

Ak
ψ∗k for k ≥ 1 are

increasingly tight, while incorporating the global lower bounds
Wk. The provable convergence rate bound in (4) follows
naturally from (6), (7), and (8). Thus, we have

AkF (xk) ≤ ψ∗k ≤ ψk(x
∗) ≤ Hk, k ≥ 0.

1This does not necessarily reflect the actual performance of the algorithm.
See Section IV for a detailed discussion.
2The definition in (7) corresponds to the “newer variant”, introduced in [15]

to analyze AMGS in the context of composite functions and, in particular,
of infeasible start. For FGM, the estimate sequence definition differs slightly
(see [6], [9]).

4

The estimate sequence property in (8) is more stringent than
the provable convergence rate expression (4). The gap between
ψ∗k and Hk is large and, as we shall see in Subsection III-B,
can be reduced to yield a relaxation of the estimate sequence
with remarkable properties.

B. A design pattern for Nesterov’s first-order accelerated
algorithms
Nesterov’s FGM and AMGS share the structure outlined in

Algorithm 1.

Algorithm 1 A design pattern for Nesterov’s first-order accel-
erated algorithms
1: ψ0(x) = A0F (x0) +

γ0
2 ‖x− x0‖22

2: for k = 0, . . . , K − 1 do
3: Lk+1 = S(xk, ψk, Ak, Lk) “line-search”
4: ak+1 = Fa(ψk, Ak, Lk+1)
5: yk+1 = Fy(xk, ψk, Ak, ak+1)
6: Ak+1 = Ak + ak+1
7: xk+1 = argmin

x∈Rn
uk+1(x)

8: ψk+1(x) = ψk(x) + ak+1wk+1(x)
9: end for

Algorithm 1 takes as input the starting point x0 ∈ Rn, an
initial estimate of the Lipschitz constant L0 > 0, the total
number of iterations K > 0, the initial weight A0 ≥ 0,
and the initial curvature 0 < γ0 ≤ 1. At every iteration k,
the future value of the main iterate xk+1 is generated using
majorization minimization, i.e., it is set as the minimum of
uk+1(x), a local upper bound on F (Algorithm 1, line 7). Note
that uk+1(x) is not related to ψ∗k. The estimate function ψk is
incremented with a global lower bound wk+1(x) weighted by
ak+1 (Algorithm 1, line 8). This ensures that the next estimate
function ψk+1 retains the canonical form in (7), where the
lower bounds Wk are given by

Wk(x) =
1

Ak

k∑
i=1

aiwi(x), k ≥ 1.

The weight ak+1 and the test point yk+1 are obtained as
functions Fa and Fy , respectively, of the state variables at
each iteration (Algorithm 1, lines 4 and 5). These functions
are derived in the algorithm design stage to guarantee that
the estimate sequence property in (8) carries over to the next
iterate, regardless of the algorithmic state. The line-search
procedure S (Algorithm 1, line 3) outputs an estimate of Lf ,
denoted by Lk+1.
Table I lists the expressions of functions Fa and Fy as well

as the lower bounds wk+1(x) and upper bounds uk+1(x) for
both FGM and AMGS. Note that FGM does not use line-
search nor the input parameter L0. It assumes that Ψ(x) = 0
and that Lf is known in advance. It defines the local upper
bounds based directly on Lf . The estimate functions of FGM
and AMGS take the form of

ψFGMk (x) = (ψ∗k)
FGM +

γk
2
‖x− vk‖22,

ψAMGSk (x) = (ψ∗k)
AMGS +

1

2
‖x− vk‖22 + AkΨ(x),

for all k ≥ 0. Both methods enforce γ0 = 1 (our notation
differs from the one in [6]). The convergence analysis of
AMGS requires that A0 = 0 (also argued in Subsection II-A)
while for FGM we have 0 < A0 ≤ 1/Lf .
Under the above assumptions, by replacing the symbols in

Algorithm 1 with the corresponding expressions in Table I, we
recover FGM and AMGS, respectively.

C. Composite gradient

A further link between FGM and AMGS has been provided
in [15] by means of the composite gradient, defined as

gL(y) � L (y − Tf,Ψ,L(y)), y ∈ Rn, L > 0. (9)

As we shall see in (18), there is no need specify functional
parameters. The composite gradient substitutes the gradient for
composite functions and shares many of its properties. Most
notably, the descent update (Algorithm 1, line 7) in FGM,
given by

xk+1 = yk+1 −
1

Lf
∇f(yk+1),

can be written similarly in AMGS using the composite gradi-
ent as

xk+1 = yk+1 −
1

Lk+1
gLk+1

(yk+1).

In addition, the descent rule [6], which for FGM takes the
form of

f(xk+1) ≤ f(yk+1)−
1

2Lf
‖∇f(yk+1)‖22, (10)

is obeyed by the composite gradient in AMGS as well (see
Lemma 1), that is,

F (xk+1) ≤ F (yk+1)−
1

2Lk+1
‖gLk+1

(yk+1)‖22.

These properties suggest that FGM could be applied to com-
posite objectives simply by replacing the gradient call with
a composite gradient call, yielding an algorithm that has the
superior convergence guarantees of FGM and the applicability
of AMGS.

III. ACGM

The convergence analysis of FGM in [6] requires only two
properties of the gradient to hold: the descent rule in (10) and
the supporting generalized parabola condition, i.e., Qf,μ,yk+1

is a lower bound on function f for all k ≥ 0. However,
the naive extension of Qf,μ,yk+1

(x) to composite gradients,
written as

F (yk+1)+ 〈gLk+1
(yk+1),x−yk+1〉+

μ

2
‖x−yk+1‖22, (11)

is not guaranteed to be a valid lower bound on F for any
value of Lk+1 > 0. Hence, this convergence analysis of FGM
does not apply to composite objectives.

5

TABLE I
DESIGN CHOICES OF FGM AND AMGS AT EVERY ITERATION k ≥ 0

Symbol In FGM In AMGS

wk+1(x) Qf,μ,yk+1
(x) Pf,xk+1

(x) + Ψ(x)

uk+1(x) Qf,Lf ,yk+1
(x) Qf,Lk+1,yk+1

(x) + Ψ(x)

Fa(ψk, Ak, Lk+1)
Solution a > 0 of

Lfa
2 = (Ak + a)(γk + μa)

Solution a > 0 of
Lk+1a

2 = 2(Ak + a)(1 + μAk)

Fy(xk, ψk, Ak, ak+1)
Akγk+1xk + ak+1γkvk

Akγk+1 + ak+1γk

Akxk + ak+1vk

Ak + ak+1

A. Relaxed lower bound

We seek a suitable replacement for the FGM supporting
generalized parabolae, bearing in mind that the accuracy of
the lower bounds at every iteration impacts the convergence
rate of the algorithm. At every iteration k, the lower bound in
FGM takes the form of an approximate second order Taylor
expansion of f at yk+1. For ACGM, we produce a similar
lower bound on F by transferring all strong convexity, if any,
from Ψ to f as

f ′(x) � f(x) +
μΨ
2
‖x− x0‖22, (12)

Ψ′(x) � Ψ(x)− μΨ
2
‖x− x0‖22. (13)

Note that the center of strong convexity in (12) and (13) can be
any point in Rn. We choose x0 only for convenience. Function
f ′ has Lipschitz gradient with constant Lf ′ = Lf + μΨ and
a strong convexity parameter μf ′ = μ. Naturally, this transfer
does not alter the objective function

F (x) = f(x) + Ψ(x) = f ′(x) + Ψ′(x)

and gives rise to the following remarkable property.

Proposition 1. By transferring convexity as in (12) we have

Qf ′,L+μΨ,y(x) = Qf,L,y(x) +
μΨ
2
‖x− x0‖22,

for all x,y ∈ Rn and L > 0.

Proof: See Appendix B.
From Proposition 1 and (12) it follows that the descent

condition for f at every iteration k, given by

f(xk+1) ≤ Qf,Lk+1,yk+1
(xk+1), (14)

is equivalent to that of f ′, stated as

f ′(xk+1) ≤ Qf ′,L′
k+1,yk+1

(xk+1), (15)

where L′k+1 � Lk+1 + μΨ.
When designing ACGM, we assume no upper bound on

Ψ. Therefore, we have to choose a composite parabolic upper
bound on F at every iteration k ≥ 0, that is,

uk+1(x) = Qf,Lk+1,yk+1
(x) + Ψ(x), x ∈ Rn. (16)

From Proposition 1 we can also see that the strong convexity
transfer in (12) and (13) does not alter the upper bound,
namely

uk+1(x) = Qf ′,L′
k+1,yk+1

(x) + Ψ′(x), x ∈ Rn. (17)

The invariance shown in (16) and (17) implies that the update
in line 7 of Algorithm 1 remains unchanged as well:

xk+1 = Tf,Ψ,Lk+1
(yk+1) = Tf ′,Ψ′,L′

k+1
(yk+1). (18)

We are now ready to formulate the sought after lower bound.
The following result can be regarded as a generalization of
Theorem 2.2.7 in [6], Lemma 2.3 in [7], and (4.37) in [8].

Lemma 1. If the descent condition in (14) holds at iteration
k ≥ 0, then the objective F is lower bounded as

F (x) ≥ RL′
k+1,yk+1

(x), x ∈ Rn,

where we denote with RL′
k+1,yk+1

(x) the relaxed supporting
generalized parabola of F at yk+1 using inverse step size
L′k+1, given by

RL′
k+1,yk+1

(x) � F (xk+1) +
1

2L′k+1
‖gL′

k+1
(yk+1)‖22

+ 〈gL′
k+1

(yk+1),x− yk+1〉+
μ

2
‖x− yk+1‖22, x ∈ Rn,

with xk+1 given by (18).

Proof: See Appendix C.
The relaxed supporting generalized parabola thus differs

from the naive extension of Qf,μ,yk+1
(x) to composite gradi-

ents in (11) by a small constant factor.

B. Augmented estimate sequence

Recall that the estimate sequence property in (8) produces
a gap between ψ∗k and Hk. This allows us to introduce
the more relaxed augmented estimate sequence {ψ′k(x)}k≥0
which we define, using the notation and conventions from
Subsection II-A, as

ψ′k(x) � ψk(x) + Ak(F (x∗)−Wk(x
∗)), k ≥ 0. (19)

Augmentation consists only of adding a non-negative constant
(due to the lower bound property of Wk) to the estimate func-
tion, thus preserving its curvature and vertex. The augmented
estimate sequence property, given as

AkF (xk) ≤ ψ′∗k , k ≥ 0, (20)

can be used to derive the provable convergence rate because,
along with definitions (5), (7), and (19), it implies that

AkF (xk) ≤ ψ′∗k = ψ∗k + Ak(F (x∗)−Wk(x
∗))

≤ ψ∗k + Hk − ψk(x
∗) ≤ Hk, k ≥ 0.

6

Note that by subtracting the lower bound constant term
Wk(x

∗), augmentation renders property (20) invariant to the
tightness of the lower bounds.

C. Gap sequence

Maintaining the augmented estimate sequence property in
(20) across iterations is equivalent to ensuring that the gap
between the weighted function values and the augmented
estimate function optimal value, defined as

Γk � AkF (xk)− ψ′∗k , k ≥ 0,

is non-positive. Given that initially Γ0 = A0F (x0)−ψ′∗0 = 0,
a sufficient condition for this guarantee is that Γk is monoton-
ically decreasing, that is

Γk+1 ≤ Γk, k ≥ 0. (21)

Since the initial estimate function is a parabola and the lower
bounds are generalized parabolae, we can write the estimate
function at any iteration k, along with its augmented variant,
as the following parabolae:

ψk(x) = ψ∗k +
γk
2
‖x− vk‖22, (22)

ψ′k(x) = ψ′∗k +
γk
2
‖x− vk‖22. (23)

The gap between AkF (xk) and ψ′∗k can be expressed as

Γk
(19)
= Ak(F (xk)− F (x∗)) + AkWk(x

∗)− ψ∗k
(7)
= Ak(F (xk)− F (x∗)) + ψk(x

∗)− ψ∗k −
γ0
2
‖x∗ − x0‖22

(22)
= Ak(F (xk)− F (x∗)) +

γk
2
‖vk − x∗‖22 −

γ0
2
‖x∗ − x0‖22

for all k ≥ 0. We define the gap sequence {Δk}k≥0 as

Δk � Ak(F (xk)− F (x∗)) +
γk
2
‖vk − x∗‖22, k ≥ 0.

With the quantity γ0
2 ‖x∗ − x0‖22 being constant across itera-

tions, the sufficient condition (21) can be rewritten as

Δk+1 ≤ Δk, k ≥ 0. (24)

The benefits of the augmented estimate sequence now
become evident. We have replaced the estimate sequence
property with a gap sequence that has a simple closed
form. The gap sequence is an example of a Lyapunov (non-
increasing) function, widely used in the convergence analysis
of optimization schemes (e.g., [21]).

D. Formulating ACGM

We proceed with the design of our method, ACGM, based
on the pattern presented in Algorithm 1. The building blocks
are as follows:
1) The Lyapunov property of the gap sequence in (24);
2) The composite parabolic upper bounds in (16);
3) The relaxed supporting generalized parabola lower
bounds from Lemma 1, namely

wk+1(x) = RL′
k+1,yk+1

(x), x ∈ Rn, k ≥ 0. (25)

The upper bounds in (16) imply that line 7 of Algorithm 1 is
the proximal gradient step in (18). For the relaxed supporting
generalized parabola to be a valid global lower bound on
F , Lemma 1 requires that, at every iteration k, the descent
condition for f in (14) holds. This is assured in the worst case
when Lk+1 ≥ Lf . The structure of the lower bounds implies
that the estimate functions and their augmented counterparts
take the form in (22) and (23), respectively. Substituting the
lower bound from (25) in the estimate sequence update in
line 8 of Algorithm 1 and differentiating with respect to x
gives the curvature and vertex update rules for all k ≥ 0 as

γk+1 = γk + ak+1μ, (26)

vk+1 =
1

γk+1

(
γkvk − ak+1(gL′

k+1
(yk+1)− μyk+1)

)
.

(27)

Next, we devise update rules for ak+1 and yk+1 to ensure
that the Lyapunov property of the gap sequence in (24) is
satisfied at every iteration k ≥ 0 for any algorithmic state.

Theorem 1. If at iteration k ≥ 0, the descent condition for f
in (14) holds, then

Δk+1 +Ak+1 + Bk+1 ≤ Δk,

where subexpressions Ak+1, Bk+1, sk+1, and Yk+1 are,
respectively, defined as

Ak+1 � 1

2

(
Ak+1

L′k+1
−

a2k+1
γk+1

)
‖gL′

k+1
(yk+1)‖22,

Bk+1 � 1

γk+1
〈gL′

k+1
(yk+1)−

μ

2Yk+1
sk+1, sk+1〉,

sk+1 � Akγk+1xk + ak+1γkvk − Yk+1yk+1,

Yk+1 � Akγk+1 + ak+1γk.

Proof: See Appendix D.
Theorem 1 implies that (24) holds if, regardless of the

algorithmic state, Ak+1 ≥ 0 and Bk+1 ≥ 0. The simplest
way to ensure Ak+1 ≥ 0 is by maintaining

Ak+1γk+1 ≥ L′k+1a
2
k+1 = (Lk+1 + μΨ)a

2
k+1. (28)

The vector terms in Bk+1 may form an obtuse angle so we set
sk+1 = 0, which gives an expression for Fy in Algorithm 1
in the form of

yk+1 = Fy(xk, ψk, Ak, ak+1)

=
1

Akγk+1 + ak+1γk
(Akγk+1xk + ak+1γkvk) , (29)

where γk+1 is obtained from (26).
We choose the most aggressive accumulated weight update

by enforcing equality in (28) and ensuring that γk+1 is as large
as possible by setting γ0 = 1. Update (28) becomes

(Lk+1+μΨ)a
2
k+1 = Ak+1γk+1

(26)
= (Ak+ak+1)(γk+μak+1).

(30)

7

Given that ak+1, Lk+1 > 0 and Ak ≥ 0, we can write Fa in
closed form as

ak+1 = Fa(ψk, Ak, Lk+1) =
1

2(Lk+1 − μf)(
γk + Akμ +

√
(γk + Akμ)2 + 4(Lk+1 − μf)Akγk

)
(31)

By using the definition of the composite gradient in (9), the
update rule for the vertices in (27) becomes

vk+1 =
1

γk+1

(
γkvk − ak+1(L

′
k+1(yk+1 − xk+1)− μyk+1)

)
=

1

γk+1
(γkvk + ak+1(Lk+1 + μΨ)xk+1

− ak+1(Lk+1 − μf)yk+1). (32)

Finally, we select the same Armijo-type [22] line-search
strategy SA as AMGS [15], with parameters ru > 1 and
0 < rd ≤ 1 as the increase and decrease rates, respectively,
of the Lipschitz constant estimate.
In summary, we have established the values of the initial

parameters (A0 = 0, γ0 = 1, and v0 = x0), the upper bounds
in (16) which give the iterate update in (18), the relaxed
supporting generalized parabola lower bounds in (25) that
yield the curvature update in (26) and the vertex update in
(32), the line-search strategy SA, as well as the expressions of
functions Fa in (31) and Fy in (29). Based on Algorithm 1,
we can now write down ACGM as listed in Algorithm 2.
Temporary estimates of algorithm parameters are marked with
(̂.) and the updates in which they appear use the := operator.

Algorithm 2 ACGM in estimate sequence form
ACGM(x0, L0, μf , μΨ, K)

1: v0 = x0, μ = μf + μΨ, A0 = 0, γ0 = 1
2: for k = 0, . . . , K − 1 do
3: L̂k+1 := rdLk

4: loop

5: âk+1 :=
1

2(L̂k+1−μf)(
γk + Akμ +

√
(γk + Akμ)2 + 4(L̂k+1 − μf)Akγk

)
6: Âk+1 := Ak + âk+1
7: γ̂k+1 := γk + âk+1μ
8: ŷk+1 :=

1
Akγ̂k+1+âk+1γk

(Akγ̂k+1xk + âk+1γkvk)

9: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
10: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1

(x̂k+1) then
11: Break from loop
12: else

13: L̂k+1 := ruL̂k+1

14: end if

15: end loop

16: Lk+1 := L̂k+1, xk+1 := x̂k+1
17: Ak+1 := Âk+1, γk+1 := γ̂k+1
18: vk+1 :=

1
γ̂k+1

(γkvk + âk+1(L̂k+1 + μΨ)x̂k+1

−âk+1(L̂k+1 − μf)ŷk+1)
19: end for
20: return xK

E. Convergence analysis

The convergence of ACGM is governed by (3), with the
guarantee given by Ak. The growth rate of Ak is affected
by the outcome of the line-search procedure. We formulate a
simple lower bound for Ak that deals with worst case search
behavior. To simplify notation, we introduce the local inverse
condition number

qk+1 �
μ

L′k+1
=

μ

Lk+1 + μΨ
, k ≥ 0.

If Lk+1 ≥ Lf , then the descent condition for f in (14) holds
regardless of the algorithmic state, implying the backtracking
search will guarantee that

Lk+1 ≤ Lu � max{ruLf , rdL0}, k ≥ 0. (33)

Let the worst case local inverse condition number be defined
as

qu � μ

Lu + μΨ
≤ qk+1, k ≥ 0.

Theorem 2. The convergence guarantee Ak for ACGM is
lower bounded in the non-strongly convex case (μ = 0) by

Ak ≥
(k + 1)2

4Lu
, k ≥ 1, (34)

and in the strongly convex case (μ > 0) by

Ak ≥
1

Lu − μf
(1−√qu)

−(k−1), k ≥ 1. (35)

Proof: See Appendix E.

F. ACGM in extrapolated form

An interesting property of FGM is that for all k ≥ 0, the
point yk+2 where the gradient is queried during iteration k+1
can be expressed in terms of the previous two iterates xk+1
and xk by extrapolation, namely

yk+2 = xk+1 + βk+1(xk+1 − xk), k ≥ 0,

where βk+1 is an auxiliary point extrapolation factor. To bring
ACGM to a form in which it can be easily compared with
FGM, as well as with FISTA and FISTA-CP, we demonstrate
that ACGM (Algorithm 2) also exhibits an auxiliary point
extrapolation property, with the difference that βk+1 can only
be computed during iteration k+1 due to uncertainties in the
outcome of line-search. First, we show the following property
of ACGM, which carries over from FGM.

Lemma 2. The estimate function vertices can be obtained
from successive iterates through extrapolation as

vk+1 = xk +
Ak+1

ak+1
(xk+1 − xk), k ≥ 0.

Proof: See Appendix F.
By combining Lemma 2 with (29) and rearranging terms,

we obtain the extrapolation expression for ACGM as

yk+1 = xk + βk(xk − xk−1), (36)

where the auxiliary point extrapolation factor βk is given by

βk =
ak+1γk

(
Ak
ak
− 1

)
Akγk+1 + ak+1γk

, k ≥ 1. (37)

8

We denote the vertex extrapolation factor in Lemma 2 as

tk �
{

Ak
ak

, k ≥ 1,

0, k = 0.
(38)

The accumulated weights and the curvature ratios γk/γk+1
can be written in terms of tk for all k ≥ 0 as

Ak+1
(30)
=

A2k+1γk+1

(Lk+1 + μΨ)a2k+1

(38)
=

γk+1t
2
k+1

Lk+1 + μΨ
, (39)

A0 = 0
(38)
=

γ0t
2
0

L0 + μΨ
, (40)

γk
γk+1

(30)
= 1− Ak+1ak+1μ

(Lk+1 + μΨ)a2k+1

(38)
= 1− qk+1tk+1. (41)

Expressions (38), (39), (40), and (41) facilitate the derivation
of a recursion rule for tk that does not depend on either ak or
Ak for all k ≥ 0 and μ ≥ 0 as follows:

(Lk+1 + μΨ)Ak+1 − (Lk+1 + μΨ)ak+1

−Lk+1 + μΨ
Lk + μΨ

(Lk + μΨ)Ak = 0

⇔ γk+1t
2
k+1 − γk+1tk+1 −

Lk+1 + μΨ
Lk + μΨ

γkt2k = 0

⇔ t2k+1 + tk+1(qkt2k − 1)− Lk+1 + μΨ
Lk + μΨ

t2k = 0. (42)

Lastly, we write down the auxiliary point extrapolation factor
βk in (37) as

βk
(38)
=

tk − 1

tk+1

Ak+1γk
Akγk+1 + ak+1γk

(26)
=

tk − 1

tk+1

γk
γk+1

1− μa2k+1

Ak+1γk+1

(41)
=

tk − 1

tk+1

1− qk+1tk+1
1− qk+1

, k ≥ 1. (43)

Since x0 = v0, from (29) we always have that y1 = x0.
Therefore, to be able to use (36) during the first iteration
k = 0, we have to define x−1 � x0. Parameter β0 can take
any real value in (36). For simplicity, we choose to compute
β0 using (43) with k = 0.
Now, from (42) and (43), we can formulate ACGM based

on extrapolation, as presented in Algorithm 3. Note that
Algorithms 2 and 3 differ only in form. They are theoretically
guaranteed to produce identical iterates.

IV. WALL-CLOCK TIME UNITS

When measuring the convergence rate, the prevailing index-
ing strategies for objective values found in the literature are
based on either iterations (e.g., [8], [15]–[17]), running time
in a particular computing environment (e.g., [8], [17]), or the
number of calls to a low-level routine that dominates all others
in complexity (e.g., [15], [23]). The first approach cannot cope
with the diversity of methods studied. For example, AMGS
makes two gradient steps per iteration whereas FISTA makes
only one. The latter two approaches do not generalize to the
entire problem class. Running time, in particular, is highly
sensitive to system architecture and implementation details.
For instance, inadequate cache utilization can increase running
time by at least an order of magnitude [24].

Algorithm 3 ACGM in extrapolated form
ACGM(x0, L0, μf , μΨ, K)

1: x−1 = x0, μ = μf + μΨ, t0 = 0, q0 =
μ

L0+μΨ
2: for k = 0, . . . , K − 1 do
3: L̂k+1 := rdLk

4: loop

5: q̂k+1 :=
μ

L̂k+1+μΨ

6: t̂k+1 :=
1
2

(
1− qkt2k +

√
(1− qkt2k)

2 + 4 L̂k+1+μΨ
Lk+μΨ

t2k

)
7: ŷk+1 := xk +

tk−1
t̂k+1

1−q̂k+1 t̂k+1

1−q̂k+1
(xk − xk−1)

8: x̂k+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
9: if f(x̂k+1) ≤ Qf,L̂k+1,ŷk+1

(x̂k+1) then
10: Break from loop
11: else

12: L̂k+1 := ruL̂k+1

13: end if

14: end loop

15: xk+1 := x̂k+1, Lk+1 := L̂k+1

16: qk+1 := q̂k+1, tk+1 := t̂k+1
17: end for
18: return xK

Optimization algorithms must also take into account the
constraints determined by computer hardware technology,
especially the limitation on microprocessor frequency im-
posed by power consumption and generated heat [24]. This
restriction, along with the increase in magnitude of large-
scale problems, has rendered serial machines unsuitable for
the computation of large-scale oracle functions. Therefore,
large-scale optimization algorithms need to be executed on
parallel systems. To account for parallelism, we extend the
oracle model by introducing the following abstraction. We
assume that each oracle function call is processed by a
dedicated parallel processing unit (PPU). A PPU may be itself
a collection processors. While we do not set a limit on the
number of processors a single PPU may have3, we do assume
that all PPUs are identical. For instance, a PPU may be a single
central processing unit (CPU) core or a collection of graphics
processing unit (GPU) cores. Since the exact implementation
of the oracle functions need not be known to the optimization
algorithm, the manner in which processors within a PPU are
utilized need not be known as well. However, on a higher level
of abstraction, we are able to explicitly execute an unlimited
number of oracle functions simultaneously, as long as there are
no race conditions. Throughout this work, we consider only
this shared memory parallel model.
To account for the broadness of the problem class, wherein

oracle functions may or may not be separable4 and their
relative cost may vary, we impose that the complexity of
computing f(x) is comparable to that of ∇f(x) [25]. We

3In practice, the limit on the number of execution threads is imposed by the
communication and synchronization overhead, which varies widely between
implementations.
4For instance, a single matrix-vector multiplication is separable (with

respect to individual scalar operations) whereas a chain of such multiplications
is not.

9

denote the amount of wall-clock time required to evaluate
f(x) or ∇f(x) by 1 wall-clock time unit (WTU). In many
applications, the two calls share subexpressions. However,
for a given value of x, f(x) and ∇f(x) are computed
simultaneously on separate PPUs, which merely reduces the
cost of a WTU without violating the oracle model. Because we
are dealing with large-scale problems and Ψ is assumed to be
simple, we attribute a cost of 0 WTU to Ψ(x) and proxτΨ(x)
calls as well as to individual scalar-vector multiplications and
vector additions [4].
In the following, we analyze the resource usage and runtime

behavior of FGM, AMGS, FISTA, FISTA-CP, and ACGM
under the above assumptions. FGM and FISTA-CP compute
at every iteration k ≥ 0 the gradient at the auxiliary point
(∇f(yk+1)) but lack an explicit line-search scheme. The per-
iteration cost of these methods is therefore always 1 WTU.
For methods that employ line-search, parallelization involves
the technique of speculative execution [24] whereby the val-
idation phase of the search takes place in parallel with the
advancement phase of the next iteration. When a backtrack
occurs, function and gradient values of points that change have
to be recomputed, stalling the entire multi-threaded system
accordingly. It follows that additional backtracks have the
same cost. If the search parameters are tuned properly, most
iterations do not have backtracks.
AMGS requires at iteration k calls to both ∇f(yk+1)

and ∇f(xk+1). Iterate xk+1 can only be computed after
∇f(yk+1) completes and the next auxiliary point yk+2 re-
quires ∇f(xk+1). Hence, an iteration without backtracks
entails 2 WTU. A backtrack at iteration k involves the re-
calculation of ∇f(yk+1), which means that each backtrack
also costs 2 WTU.
FISTA advances using one ∇f(yk+1) call. The values

of f(yk+1) and f(xk+1) are only needed to validate the
Lipschitz estimate. The f(yk+1) call can be performed in
parallel with ∇f(yk+1) but the calculation of xk+1 uti-
lizes ∇f(yk+1). The backtracking strategy of FISTA does
not require the recalculation of yk+1 and its oracle values.
However, the need for a backtrack can only be asserted after
the completion of f(xk+1). Therefore, an iteration without
backtracks of FISTA entails 1 WTU, with each backtrack
adding 1 WTU to the cost.
The ability of ACGM to decrease the Lipschitz estimate

necessitates the recalculation of yk+1, in addition to the delay
in the backtrack condition assessment. As a result, ACGM has
an iteration base cost of 1 WTU and a 2 WTU backtrack cost.
Note that the Algorithm 2 and Algorithm 3 forms of ACGM
are identical with respect to WTU usage. The iteration costs
of AMGS, FISTA, and ACGM are summarized in Table II.

TABLE II
PER-ITERATION COST IN WTU OF LINE-SEARCH METHODS AMGS,

FISTA, AND ACGM

Iteration phase AMGS FISTA ACGM

Iteration without backtrack 2 1 1
Each backtrack 2 1 2

Interestingly, the above algorithms need at most three con-

current high-level computation threads (PPUs) to operate. The
assignment of different computations to different PPUs at
every time unit, along with the iteration that computation are
detailed in Table III for an iteration k ≥ 1 without backtracks
and in Table IV for an iteration where a single backtrack
occurs. The behavior of subsequent backtracks follows closely
the pattern shown in Table IV.

V. SIMULATION RESULTS

We test ACGM against the state-of-the-art methods on
a typical non-strongly convex inverse problem in Subsec-
tion V-A whereas in Subsection V-B we focus on a strongly
convex machine learning problem. Both applications feature
l1-norm regularization [26]. They have been chosen due to
their popularity and simplicity. While effective approaches
that exploit additional problem structure, such as sparsity of
optimal points, have been proposed in the literature (e.g. [10]–
[13]), we consider the applications studied in this section as
representative of a broader class of problems for which the
above specialized methodologies may not apply.

A. l1-regularized image deblurring

To better compare the capabilities of ACGM (Algorithm 3)
to those of FISTA, we choose the very problem FISTA was
introduced to solve, namely the l1-regularized deblurring of
images5. For ease and accuracy of benchmarking, we have
adopted the experimental setup from Section 5.1 in [7]. Here,
the composite objective function is given by

f(x) = ‖Ax− b‖22, Ψ(x) = λ‖x‖1,

where A = RW . The linear operator R is a Gaussian blur
with standard deviation 4.0 and a 9× 9 pixel kernel, applied
using reflexive boundary conditions [28]. The linear operator
W is the inverse three-stage Haar wavelet transform. The
digital image x ∈ Rn1×n2 has dimensions n1 = n2 = 256.
The blurred image b is obtained by applying R to the
cameraman test image [7] with pixel values scaled to the [0, 1]
range, followed by the addition of Gaussian noise (zero-mean,
standard deviation 10−3). The constant Lf can be computed
as the maximum eigenvalue of a symmetric Toeplitz-plus-
Hankel matrix (more details in [28]), which yields a value
of Lf = 2.0. The problem is non-strongly convex with
μ = μf = μΨ = 0. The regularization parameter λ is set
to 2 · 10−5 to account for the noise level of b.
We have noticed that several monographs in the field (e.g.

[8], [16]) do not include AMGS in their benchmarks. For
completeness, we compare Algorithm 3 against both FISTA
with backtracking line-search (FISTA-BT) and AMGS. The
starting point x0 was set toW−1b for all algorithms. AMGS
and FISTA were run using rAMGSu = rFISTAu = 2.0 and
rAMGSd = 0.9 as these values were suggested in [23] to
“provide good performance in many applications”. Assuming
that most of time the Lipschitz constant estimates hover around
a fixed value, we have for AMGS that a backtrack occurs

5A particular case of ACGM in estimate sequence form, designed only for
non-strongly convex objectives, was tested on the same problem in [27].

10

TABLE III
RESOURCE ALLOCATION AND RUNTIME BEHAVIOR OF PARALLEL BLACK-BOX FGM, FISTA-CP, AMGS, FISTA, AND ACGM WHEN NO BACKTRACKS

OCCUR (ITERATION k ≥ 1 STARTS AT TIME T)

Method WTU PPU 1 PPU 2 PPU 3
Computation Iteration Computation Iteration Computation Iteration

FGM T ∇f(yk+1) k Idle Idle
T + 1 ∇f(yk+2) k + 1 Idle Idle

FISTA-CP T ∇f(yk+1) k Idle Idle
T + 1 ∇f(yk+2) k + 1 Idle Idle

AMGS T ∇f(yk+1) k Idle Idle
T + 1 ∇f(xk+1) k Idle Idle
T + 2 ∇f(yk+2) k + 1 Idle Idle

FISTA T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

ACGM T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

TABLE IV
RESOURCE ALLOCATION AND RUNTIME BEHAVIOR OF PARALLEL BLACK-BOX AMGS, FISTA, AND ACGM WHEN A SINGLE BACKTRACK OCCURS

(ITERATION k ≥ 1 STARTS AT TIME T)

Method WTU PPU 1 PPU 2 PPU 3
Computation Iteration Computation Iteration Computation Iteration

AMGS T ∇f(yk+1) k Idle Idle
T + 1 ∇f(xk+1) k Idle Idle
T + 2 ∇f(yk+1) k Idle Idle
T + 3 ∇f(xk+1) k Idle Idle
T + 4 ∇f(yk+2) k + 1 Idle Idle

FISTA T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 3 ∇f(yk+3) k + 2 f(yk+3) k + 2 f(xk+2) k + 1

ACGM T ∇f(yk+1) k f(yk+1) k f(xk) k - 1
T + 1 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 2 ∇f(yk+1) k f(yk+1) k Idle
T + 3 ∇f(yk+2) k + 1 f(yk+2) k + 1 f(xk+1) k
T + 4 Idle Idle f(xk+2) k + 1

every −(log rAMGSu)/(log rAMGSd) iterations. The cost ratio
between a backtrack and an iteration without backtracks for
ACGM is double that of AMGS. Therefore, to ensure that
the line-search procedures of both methods have comparable
computational overheads, we have chosen rACGMu = rAMGSu

and rACGMd =
√

rAMGSd .
To showcase the importance of employing an algorithm

with an efficient and robust line-search procedure, we have
considered two scenarios: a normally underestimated initial
guess L0 = 0.3Lf (Figure 1) and a greatly overestimated
L0 = 10Lf . The convergence rate is measured as the differ-
ence between objective function values and an optimal value
estimate F (x̂∗), where x̂∗ is the iterate obtained after running
fixed step size FISTA with the correct Lipschitz constant
parameter for 10000 iterations.
When indexing in iterations (Figures 1(a) and 1(d)), ACGM

converges roughly as fast as AMGS. ACGM takes the lead af-
ter 500 iterations, owing mostly to the superiority of ACGM’s
descent condition over AMGS’s stringent “damped relaxation
condition” [15]. When indexed in WTU, ACGM clearly sur-
passes AMGS from the very beginning (Figures 1(b) and 1(e)),

because of ACGM’s low per-iteration complexity.
FISTA-BT lags behind in the overestimated case, regardless

of the convergence measure (Figures 1(d) and 1(e)), and it is
also slightly slower in the underestimated case (Figures 1(a)
and 1(b)). The disadvantage of FISTA-BT lies in the inability
of its line-search procedure to decrease the Lipschitz constant
estimate while the algorithm is running. Consequently, In
both cases, FISTA-BT produces on average a higher Lipschitz
estimate than ACGM. This is clearly evidenced by Figures
1(c) and 1(f).

B. Logistic regression with elastic net

As a strongly convex application, we choose a randomly
generated instance of the logistic regression classification
task [29], regularized with an elastic net [30]. The objective
function components are given by

f(x) = −〈y,Ax〉+
m∑
i=1

log
(
1 + e〈a

T
i ,x〉

)
,

Ψ(x) = λ1‖x‖1 +
λ2
2
‖x‖22,

11

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(a) Convergence rate in iterations (L0 = 0.3Lf)

0 100 200 300 400 500 600 700 800 900 1000

10
−4

10
−2

10
0

10
2

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(b) Convergence rate in WTU (L0 = 0.3Lf)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(c) Lipschitz constant estimates (L0 = 0.3Lf)

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(d) Convergence rate in iterations (L0 = 10Lf)

0 100 200 300 400 500 600 700 800 900 1000

10
−4

10
−2

10
0

10
2

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
ACGM

(e) Convergence rate in WTU (L0 = 10Lf)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(f) Lipschitz constant estimates (L0 = 10Lf)

Fig. 1. Convergence results on the l1-regularized image deblurring problem (μ = 0)

where the matrix A ∈ Rm×n has rows aTi , i ∈ {1, ..., m},
y ∈ Rm is the vector of classification labels and the elastic
net regularizer Ψ has parameters λ1 and λ2. The problem
size is m = n = 10000. The matrix A is sparse and
has 10% of elements non-zero, each sampled as independent
and identically distributed (i.i.d.) from the standard Gaussian
distribution N (0, 1). The labels yi are randomly generated
with probability

P(Yi = 1) =
1

1 + e〈aTi ,x〉
, i ∈ {1, ..., m}.

The gradient of function f has a global Lipschitz constant
Lσ = 1

4σmax(A)2, where σmax(A) is the largest singular
value of A. The computation of σmax(A) is generally in-
tractable for large-scale problems and optimization algorithms
need instead to rely on an estimate of this value. The smooth
part f is not strongly convex (μf = 0). The elastic net pa-
rameters are λ1 = 1 and λ2 = 10−3Lσ . Hence μ = μΨ = λ2.
Elastic net regularization is specified by the user [30] and we
assume that optimization algorithms can access μΨ.
We benchmark ACGM against methods that have conver-

gence guarantees. These methods are either equipped with a
line-search procedure, such as FISTA and AMGS, or rely on
Lf being known in advance, namely FISTA-CP and MOS.
We do not include scAPG in our benchmark because μf = 0.
We also do not consider methods that owe their performance
on specific applications to heuristic improvements that either
significantly degrade the provable convergence rate, such as
in AA (see Appendix A for proof), or invalidate it altogether,
like adaptive restart in FISTA [31] or in AA [18].

The starting point x0, the same for all algorithms tested,
has entries randomly sampled as i.i.d. from N (0, 1). For the
same reasons as outlined in Subsection V-A, we have chosen
rACGMu = rAMGSu = rFISTAu = 2.0, rAMGSd = 0.9, and

rACGMd =
√

rAMGSd .
We have computed the optimal point estimate x̂∗ as the

iterate with the smallest objective value obtained after running
AMGS for 500 iterations using Lf = Lσ with the other
parameters as mentioned above. Methods equipped with a
line-search procedure incur a search overhead whereas the
other methods do not. For fair comparison, we have tested
the collection of methods in the accurate Lf = Lσ case as
well as the overestimated Lf = 5Lσ case (Figure 2).
When indexing in iterations, AMGS converges the fastest

(Figures 2(a) and 2(d)). However, AMGS has the same asymp-
totic rate (in iterations) as ACGM, despite AMGS performing
around twice the number of proximal gradient steps per itera-
tion. While proximal gradient steps (incurring 1 WTU each) in
AMGS improve the Lipschitz constant estimate (Figure 2(c)),
they do not appear to be used efficiently in advancing the
algorithm. Therefore, AMGS is inferior to ACGM and FISTA-
CP in terms of WTU usage (Figures 2(b) and 2(e)). Note
that FISTA-CP and MOS display nearly identical convergence
behaviors (Figures 2(a), 2(b), 2(d), and 2(e)), as theoretically
argued in Appendix A.
This particular application emphasizes the importance of

taking into account the local curvature of the function.
Whereas ACGM and FISTA-CP have identical a priori worst-
case rates, FISTA-CP (and consequently MOS) lags behind

12

0 25 50 75 100 125
10

−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(a) Convergence rate in iterations (Lf = Lσ)

0 25 50 75 100 125 150

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(b) Convergence rate in WTU (Lf = Lσ)

0 25 50 75 100 125 150
0

200

400

600

800

1000

1200

1400

1600

1800

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(c) Lipschitz constant estimates (Lf = Lσ)

0 25 50 75 100 125

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(d) Convergence rate in iterations (Lf = 5Lσ)

0 25 50 75 100 125 150 175

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
MOS
FISTA−CP
ACGM

(e) Convergence rate in WTU (Lf = 5Lσ)

0 25 50 75 100 125 150 175
0

1000

2000

3000

4000

5000

6000

7000

WTU

Li
ps

ch
itz

 c
on

st
an

t e
st

im
at

e

FISTA−BT
AMGS
ACGM

(f) Lipschitz constant estimates (Lf = 5Lσ)

Fig. 2. Convergence results on logistic regression with elastic net (μ = 10−3Lσ)

considerably, even when an accurate value of Lf is supplied
(Figures 2(a) and 2(b)). The reason is that the Lipschitz esti-
mates of ACGM are several times smaller than the global value
Lf (Figure 2(c)). The difference between local and global
curvature is so great that FISTA-CP’s ability to exploit strong
convexity does not give it a sizable performance advantage
over FISTA on this problem6. The benefit of ACGM’s line-
search is predictably more evident in the inaccurate case
(Figure 2(f)). The estimates produced by the AMGS’s damped
relaxation condition are considerably higher than those of
ACGM, further contributing for the ACGM’s superior con-
vergence behavior in WTU (Figures 2(b) and 2(e)).

VI. DISCUSSION AND CONCLUSIONS

The proposed method, ACGM, when formulated us-
ing extrapolation, encompasses several existing optimization
schemes. Specifically, Algorithm 3 without the line-search
procedure, i.e., with Lk = Lf for all k ≥ 0, produces the same
iterates as FISTA-CP with the theoretically optimal step size
τFISTA−CP = 1

Lf
. In the non-strongly convex case, ACGM

without line-search reduces to constant step size FISTA. Also
for μ = 0, ACGM with line-search constitutes a simplified
and more intuitive alternative to a recently introduced (without
derivation) line-search extension of FISTA [32].
However, ACGM is more than an umbrella method.

ACGM’s generality and unique collection of features is a

6We forward the reader to [8] for a more detailed comparison between
FISTA and FISTA-CP.

strength in itself. For instance, FISTA suffers from two draw-
backs: the parameter tFISTAk update is oblivious to the change
in local curvature and the Lipschitz constant estimates cannot
decrease. Hence, if the initial Lipschitz estimate is erroneously
large, FISTA will slow down considerably (exemplified in
Subsection V-A). We formally express the advantages of
ACGM’s line-search over that of FISTA in the following
proposition.

Proposition 2. In the non-strongly convex case (μ = 0), under
identical local curvature conditions, when rACGMu = rFISTAu ,
ACGM has superior theoretical convergence guarantees to
FISTA, namely

AACGMk ≥ AFISTAk , k ≥ 0.

Proof: See Appendix G.
The ability to dynamically and frequently adjust to the local

Lipschitz constant gives ACGM an advantage over FISTA-CP
as well, even when an accurate estimate of the Lipschitz con-
stant is available beforehand (illustrated in Subsection V-B).
The advantage over MOS is even greater since MOS is slightly
slower than FISTA-CP (see Appendix A). The scAPG method
is similar to ACGM, but only when μf > 0 and x0 is feasible.
We leave the generalization of ACGM to encompass scAPG,
and thus expand its range of applications, as a topic for future
research.
ACGM is also theoretically guaranteed to outperform

AMGS, as argued in Appendix A. The per-iteration complexity
of ACGM, both in the non-strongly and strongly convex cases
(μ ≥ 0), lies well below that of AMGS. Considering that

13

TABLE V
FEATURES OF BLACK-BOX FIRST-ORDER METHODS

Feature Prox. point FGM AMGS FISTA FISTA-CP MOS scAPG ACGM

Composite objective yes no yes yes yes yes partial yes
Line-search no no yes partial no no yes yes
O(1

k2
) rate for μ = 0 no yes yes yes yes yes no yes

Linear rate for μ > 0 yes yes yes no yes yes yes yes
O((1 − √

q)k) rate for μ > 0 no yes no no yes almost yes yes

backtracks rarely occur, it approaches that of FISTA (see
Table II) and the absolute minimum of 1 WTU per iteration.
Thus, this is the first time, as far as we are aware, that

a method has been shown to be superior, from theoretical
as well as simulation results (Section V), to AMGS, FISTA,
and FISTA-CP. The aforementioned features of ACGM are
summarized and compared to those of the competing black-
box first-order methods in Table V. As can be discerned from
Table V, ACGM is the only method of its class that is able
to combine the strengths of AMGS (generality) and FGM
(speed). The superiority of ACGM stems from this unique
combination.
Furthermore, due to its robustness, ACGM is not only

applicable to the entire composite problem class, where the
Lipschitz constant may not be known, but is also able to
converge on problems where the Lipschitz property of the
gradient can be proven to hold only locally.
Alongside of a new algorithm, in this work we have

provided a means of designing algorithms. We have demon-
strated that the estimate sequence concept can be extended to
problems outside its original scope. The augmented estimate
sequence actually links the concepts of estimate sequence and
Lyapunov function, and further argues that both are effective
tools not only for the analysis but also for the design of fast
algorithms. Whether augmentation leads to efficient algorithms
applicable to other problem classes is a promising topic for
future research.

APPENDIX A
THE ASYMPTOTIC CONVERGENCE GUARANTEES OF
ACCELERATED BLACK-BOX FIRST-ORDER METHODS

To be able to compare the provable convergence rates of the
state-of-the-art black-box methods introduced in Section I, we
consider the largest problem class to which they are applicable,
namely the class of composite problems with Lf known in
advance. For ease of analysis, we study ACGM, AMGS, and
scAPG without line-search. This setup does not assume any
particular parallel implementation. Therefore, the results in
this section are of fundamental theoretical importance.
The asymptotic rate of ACGM matches that of FISTA-CP,

for strongly convex f and non-strongly convex Ψ, that of
scAPG and, for Ψ = 0, that of FGM. Hence, we limit our
analysis to ACGM, MOS, AMGS, and AA.
In the non-strongly convex case, the convergence guarantees

are, respectively, given for all k ≥ 1 by

AACGMk = AACGMi ≥ (k + 1)2

4Lf
=

(i + 1)2

4Lf
,

AMOSk = AMOSi ≥ k2

4Lf
=

i2

4Lf
,

AAMGSk = AAMGSi
2

≥ k2

2Lf
=

i2

8Lf
,

AAAk = AAAi
2
≥ k2

4Lf
=

i2

16Lf
,

where i gives the number of WTU required by the first k
iterations. It trivially follows that

AACGMi

i2
� AMOSi

i2
>

AAMGSi

i2
>

AAAi
i2

, i ≥ 2. (44)

In the strongly convex case, let q be the inverse condition
number of the objective function, q � μ

Lf+μΨ
. We assume

that q < 1 since for q = 1 the optimization problem can be
solved exactly, using only one proximal gradient step. When
employing AMGS, Nesterov suggests in [15] either to transfer
all strong convexity from f to Ψ, or to restart the algorithm
at regular intervals7. Both enhancements have the same effect
on the convergence guarantee, which can be expressed as

AAMGSk = AAMGSi
2

≥ CAMGS
(
BAMGS

)i
,

where BAMGS is a base signifying the asymptotic convergence
rate, given by

BAMGS �
(
1 +

√
μ

2(Lf − μf)

)2
=

(
1 +

√
q

2(1− q)

)2
,

and CAMGS is a proportionality constant.
For ACGM, MOS, and AA, we have

AACGMk = AACGMi ≥ CACGM
(
BACGM

)i
,

AMOSk = AMOSi ≥ CMOS
(
BMOS

)i
,

AAAk = AAAi
2
≥ CAA

(
BAA

)i
,

where

BACGM � 1

1−√q
,

BMOS �
(
1 +

1

2

√
q

1− q

)2
,

BAA � 1 +
1

2

√
q

1− q
.

7These suggestions are made in the context of smooth constrained opti-
mization but also apply to composite problems.

14

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q

1
/ B

1 / BACGM

1 / BMOS

1 / BAMGS

1 / BAA

Inverse rates as a function of q

0 0.02 0.04 0.06 0.08 0.1
1

1.1

1.2

1.3

1.4

1.5

q

B

BACGM

BMOS

BAMGS

BAA

Rates for q ≤ 0.1

Fig. 3. Asymptotic rates of ACGM, MOS, AMGS, and AA

Assumption 0 < q < 1 implies that

BACGM > BMOS > BAMGS > BAA. (45)

A quantitative comparison of the rates can be found in Fig-
ure 3. The inverse rates are compared for every possible value
of q in Figure 3(a) whereas the rates are compared directly in
Figure 3(b) for the range of q found in the vast majority of
practical applications.
It can be clearly discerned from (44), (45), and Figure 3 that

ACGM is asymptotically more efficient than MOS, AMGS,
and AA, in that order. AMGS is considerably slower than
ACGM due to its computationally expensive line-search pro-
cedure. By removing line-search, MOS achieves a rate similar
to ACGM in the non-strongly convex case and a lower rate
(yet comparable when q � 1) for strongly-convex objectives.
This, however, comes at the expense of reduced functionality.
The heuristic search of AA incurs an extra 1 WTU per iteration
without provably advancing the algorithm, explaining why AA
has the worst guarantees of the methods studied.

APPENDIX B
PROOF OF PROPOSITION 1

By expanding Qf ′,L+μΨ,y using the definition of Q in (1)
and the strong convexity transfer in (12) we obtain

Qf ′,L+μΨ,y(x) = f(y) +
μΨ
2
‖y − x0‖22

+ 〈∇f(y) + μΨ(y − x0),x− y〉+
L + μΨ

2
‖x− y‖22

− μΨ
2
‖x− x0‖22 +

μΨ
2
‖x− x0‖22

= f(y) + 〈∇f(y),x− y〉+ L

2
‖x− y‖22 +

μΨ
2
‖x− x0‖22,

(46)

for all x,y ∈ R
n and L > 0. Rewriting (46) based on (1)

completes the proof.

APPENDIX C
PROOF OF LEMMA 1

From the strong convexity property of f ′, we have a
supporting generalized parabola at yk+1, given by

f ′(x) ≥ f ′(yk+1)+〈∇f ′(yk+1),x−yk+1〉+
μ

2
‖x−yk+1‖22,

(47)

for all x ∈ R
n. The first-order optimality condition of (2)

implies that there exists a subgradient ξ of function Ψ′ at
point xk+1 such that

gL′
k+1

(yk+1) = ∇f ′(yk+1) + ξ.

From the convexity of Ψ′, we have a supporting hyperplane
at xk+1, which satisfies

Ψ′(x) ≥ Ψ′(xk+1) + 〈ξ,x− xk+1〉
= Ψ′(xk+1) + 〈gL′

k+1
(yk+1)−∇f ′(yk+1),x− xk+1〉,

(48)

for all x ∈ Rn. By adding together (47), (48), and the descent
condition for f ′ in (15), we obtain the desired result.

APPENDIX D
PROOF OF THEOREM 1

All the definitions and results within the scope of this proof
hold for all k ≥ 0. Let the residual describing the tightness
of the lower bound wk+1 on the objective F at x ∈ Rn be
denoted by

Rk+1(x) � F (x)− F (xk+1)−
1

2L′k+1
‖gL′

k+1
(yk+1)‖22

−〈gL′
k+1

(yk+1),x− yk+1〉 −
μ

2
‖x− yk+1‖22. (49)

We introduce the reduced composite gradient Gk+1 in the
form of

Gk+1 � gL′
k+1

(yk+1)− μyk+1. (50)

The reduced composite gradient simplifies the non-constant
polynomial term in residual expression (49) as

〈gL′
k+1

(yk+1),x− yk+1〉+
μ

2
‖x− yk+1‖22

= 〈Gk+1,x− yk+1〉+
μ

2
‖x‖22 −

μ

2
‖yk+1‖22. (51)

Lemma 1 ensures that Rk+1(x) ≥ 0 for all x ∈ R
n.

Therefore

AkRk+1(xk) + ak+1Rk+1(x
∗) ≥ 0. (52)

By expanding (52) using (49) and (51), we obtain that

Ak(F (xk)− F (x∗))−Ak+1(F (xk+1)− F (x∗)) ≥ Ck+1,

where the lower bound Ck+1 is defined as

Ck+1 � C(1)k+1 + 〈Gk+1, Akxk + ak+1x
∗ −Ak+1yk+1〉

+
Akμ

2
‖xk‖22 +

ak+1μ

2
‖x∗‖22 −

Ak+1μ

2
‖yk+1‖22, (53)

with
C(1)k+1 � Ak+1

2L′k+1
‖gL′

k+1
(yk+1)‖22.

Using the reduced composite gradient definition in (50), we
expand C(1)k+1 as

C(1)k+1 = Ak+1 +
a2k+1
2γk+1

‖Gk+1 + μyk+1‖22

= Ak+1 + C(2)k+1 +
a2k+1μ

γk+1
〈Gk+1,yk+1〉+

a2k+1μ
2

2γk+1
‖yk+1‖22,

(54)

15

where

C(2)k+1 �
a2k+1
2γk+1

‖Gk+1‖22. (55)

Applying (50) in vertex update (27) yields

ak+1Gk+1 = γkvk − γk+1vk+1. (56)

Using (26) and (56) in C(2)k+1 expression (55) we obtain that

C(2)k+1 =
1

2γk+1
‖γkvk − γk+1vk+1‖22

=
γk+1
2
‖vk+1‖22 −

γk
2
‖vk‖22 +

μ

2γk+1
ak+1γk‖vk‖22

+
1

γk+1
〈Gk+1, ak+1γkvk〉 (57)

The coefficients of the yk+1 terms in Ck+1 are given by

Ak+1γk+1 − a2k+1μ = Akγk+1 + ak+1γk = Yk+1. (58)

Combining (54) and (57) in (53), rearranging terms, and
applying (58) yields

Ck+1 = Ak+1 + Vk+1 +
1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1,

(59)
where Sk+1 and Vk+1 are, respectively, defined as

Sk+1 � Akγk+1‖xk‖22 + ak+1γk‖vk‖22 − Yk+1‖yk+1‖22,
Vk+1 � γk+1

2
‖vk+1‖22 −

γk
2
‖vk‖22 + 〈Gk+1, ak+1x

∗〉

+
ak+1μ

2
‖x∗‖22. (60)

Applying (26) and (56) in (60) yields

Vk+1 =
γk+1
2
‖vk+1 − x∗‖22 −

γk
2
‖vk − x∗‖22. (61)

Putting together (53), (59), and (61) we obtain

Δk+1 +Ak+1 +
1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1 ≤ Δk.

(62)
For brevity, we define ωk+1 as

ωk+1 � ak+1γk
Yk+1

.

Residuals sk+1 and Sk+1 can thus be written as

sk+1 = Yk+1((1− ωk+1)xk + ωk+1vk − yk+1), (63)

Sk+1 = Yk+1

(
(1− ωk+1)‖xk‖22 + ωk+1‖vk‖22 − ‖yk+1‖22

)
.

(64)

Residual Sk+1 can be expressed in terms of sk+1 using the
following identity:

(1− ωk+1)‖xk‖22 + ωk+1‖vk‖22 =
((1− ωk+1)xk + ωk+1vk)

2
+ (1− ωk+1)ωk+1‖xk − vk‖22.

(65)

The proof of (65) is obtained simply by rearranging terms.
Using (63) and (65) in (64), we obtain that

Sk+1 = Yk+1

(
((1− ωk+1)xk + ωk+1vk)

2 − ‖yk+1‖22
)

+ S
(1)
k+1 =

〈
1

Yk+1
sk+1 + 2yk+1, sk+1

〉
+ S

(1)
k+1, (66)

where S
(1)
k+1 is defined as

S
(1)
k+1 � Yk+1(1− ωk+1)ωk+1‖xk − vk‖22

=
ak+1Akγkγk+1

Akγk+1 + ak+1γk
‖xk − vk‖22.

The square term ‖xk − vk‖22 is always non-negative, hence

S
(1)
k+1 ≥ 0. (67)

Putting together (50), (66), and (67) yields

1

γk+1
〈Gk+1, sk+1〉+

μ

2γk+1
Sk+1

≥ 1

γk+1

〈
Gk+1 +

μ

2

(
1

Yk+1
sk+1 + 2yk+1

)
, sk+1

〉

=
1

γk+1

〈
gL′

k+1
(yk+1) +

μ

2Yk+1
sk+1, sk+1

〉
. (68)

Combining (62) with (68) gives the desired result.

APPENDIX E
PROOF OF THEOREM 2

In the non-strongly convex case, we have

Ak+1 = Ak + ak+1
(28)
≥ Ak +

1 +
√

1 + 4Lk+1Ak

2Lk+1

(33)
≥ Ak +

1

2Lu
+

√
1

4L2u
+

Ak

Lu
, k ≥ 0. (69)

We prove by induction that (34) holds for all k ≥ 1. First,
for k = 1, (34) is valid since

A1 =
1

L1
≥ (1 + 1)2

4Lu
.

Next, we assume that (34) is valid for k ≥ 1, and show that
it holds for k + 1. From (34) and (69), we have

Ak+1 ≥
(k + 1)2

4Lu
+

1

2Lu
+

√
1

4(Lu)2
+

(k + 1)2

4(Lu)2

=
1

4Lu

(
(k + 1)2 + 2 + 2

√
1 + (k + 1)2

)
≥ (k + 2)2

4Lu
.

In the strongly convex case, the curvature of the estimate
function can be expressed in absolute terms as

γk = γ0+

(
k∑

i=1

ai

)
μ = γ0+(Ak−A0)μ = 1+Akμ, k ≥ 0,

which trivially implies that γk > Akμ. Hence, we have

a2k+1
A2k+1

(30)
=

γk+1
(Lk+1 + μΨ)Ak+1

>
μ

Lk+1 + μΨ
= qk+1 ≥ qu,

for all k ≥ 0. This leads to

Ak+1

Ak
>

1

1−√qu
, k ≥ 1.

Using A1 = 1
L1−μf

≥ 1
Lu−μf

, the strongly convex lower
bound in (35) follows by induction.

16

APPENDIX F
PROOF OF LEMMA 2

By combining (29) with (32), we get

vk+1 =
γk

γk+1

(ak+1γk + Akγk+1)yk+1 −Akγk+1xk
ak+1γk

+
ak+1(Lk+1 + μΨ)

γk+1
xk+1 −

ak+1(Lk+1 − μf)

γk+1
yk+1

(30)
=

ak+1γk + Akγk+1 −Ak+1γk+1 − a2k+1μ

ak+1γk+1
yk+1

+
Ak+1

ak+1
xk+1 −

Ak

ak+1
xk

(26)
= xk +

Ak+1

ak+1
(xk+1 − xk), k ≥ 0.

APPENDIX G
PROOF OF PROPOSITION 2

With judicious use of parameters ru and rd, the average
WTU cost of an ACGM iteration can be adjusted to equal that
of FISTA (also evidenced in Subsection V-A). Consequently,
it is adequate to compare the convergence guarantees of the
two algorithms when indexed in iterations.
Combining (39) and (42), we obtain

AACGMk+1 =

(√
1

4LACGMk+1

+

√
1

4LACGMk+1

+ AACGMk

)2
.

Replacing (42) in ACGM with

tFISTAk+1 =
1 +

√
1 + 4

(
tFISTAk

)2
2

, k ≥ 0, (70)

results in an algorithm that produces identical iterates to
FISTA. The convergence analysis of ACGM employing (70)
instead of (42) yields the following expression:

AFISTAk+1 =

(√
1

4LFISTAk+1

+

√
1

4LFISTAk+1

+
LFISTAk

LFISTAk+1

AFISTAk

)2
.

Both methods start with the same state, in which we have
AACGM0 = AFISTA0 = 0. The line-search procedure of ACGM
is guaranteed to produce Lipschitz constant estimates no
greater than those of FISTA for the same local curvature,
i.e., LACGMk ≤ LFISTAk , k ≥ 0. FISTA, by design, can only
accommodate a Lipschitz constant estimate increase, namely
LFISTAk ≤ LFISTAk+1 , k ≥ 0. Thus, for any variation in the local
curvature of f , we have

AACGMk ≥ AFISTAk , k ≥ 0.

REFERENCES
[1] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal

processing,” in Fixed-point algorithms for inverse problems in science
and engineering. Springer, 2011, pp. 185–212.

[2] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimiza-
tion for big data analytics:(statistical) learning tools for our era of data
deluge,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 18–31, Sept.
2014.

[3] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data
analytics,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 32–43, Sept.
2014.

[4] Y. Nesterov, “Subgradient methods for huge-scale optimization prob-
lems,” Math. Program., Ser. A, vol. 146, no. 1-2, pp. 275–297, 2014.

[5] ——, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Dokl. Math., vol. 27, no. 2, pp. 372–376,
1983.

[6] ——, Introductory Lectures on Convex Optimization. Applied Optimiza-
tion, vol. 87. Boston, MA: Kluwer Academic Publishers, 2004.

[7] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[8] A. Chambolle and T. Pock, “An introduction to continuous optimization
for imaging,” Acta Numer., vol. 25, pp. 161–319, 2016.

[9] M. Baes. (2017, May) Estimate sequence methods: extensions and
approximations. [Online]. Available: http://www.optimization-online.
org/DB FILE/2009/08/2372.pdf

[10] W. W. Hager, D. T. Phan, and H. Zhang, “Gradient-based methods for
sparse recovery,” SIAM J. Imaging Sci., vol. 4, no. 1, pp. 146–165, 2011.

[11] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, “A fast algorithm for
sparse reconstruction based on shrinkage, subspace optimization, and
continuation,” SIAM J. Sci. Comput., vol. 32, no. 4, pp. 1832–1857,
2010.

[12] Z. Wen, W. Yin, H. Zhang, and D. Goldfarb, “On the convergence of
an active-set method for l1 minimization,” Optim. Methods Software,
vol. 27, no. 6, pp. 1127–1146, 2012.

[13] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction
by separable approximation,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, 2009.

[14] A. Nemirovski and D.-B. Yudin, Problem complexity and method
efficiency in optimization. New York, NY: John Wiley & Sons, 1983.

[15] Y. Nesterov, “Gradient methods for minimizing composite functions,”
Math. Program., Ser. B, vol. 140, no. 1, pp. 125–161, 2013.

[16] N. Parikh, S. P. Boyd et al., “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 127–239, 2014.

[17] P. Tseng, “On accelerated proximal gradient methods for convex-
concave optimization,” SIAM J. Optim., submitted, 2008.

[18] R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter, “An adaptive accelerated
first-order method for convex optimization,” Comput. Optim. Appl.,
vol. 64, no. 1, pp. 31–73, 2016.

[19] Q. Lin and L. Xiao, “An adaptive accelerated proximal gradient method
and its homotopy continuation for sparse optimization,” in ICML, 2014,
pp. 73–81.

[20] A. Chambolle and C. Dossal, “On the convergence of the iterates of
the “fast iterative shrinkage/thresholding algorithm”,” J. Optim. Theory
Appl, vol. 166, no. 3, pp. 968–982, 2015.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[22] L. Armijo, “Minimization of functions having lipschitz continuous first
partial derivatives,” Pacific J. Math, vol. 16, no. 1, pp. 1–3, 1966.

[23] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” Math. Program.
Comput., vol. 3, no. 3, pp. 165–218, 2011.

[24] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. San Francisco, CA: Morgan Kaufmann
Publishers, 2011.

[25] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM J. Optim., vol. 22, no. 2, pp. 341–362,
2012.

[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Ser. B. Methodol., vol. 58, no. 1, pp. 267–288, 1996.

[27] M. I. Florea and S. A. Vorobyov, “A robust FISTA-like algorithm,” in
Proc. of IEEE Intern. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, New Orleans, USA, pp. 4521–4525.

[28] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring images:
matrices, spectra, and filtering. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2006.

[29] D. R. Cox, “The regression analysis of binary sequences,” J. R. Stat.
Soc. Ser. B. Methodol., vol. 20, pp. 215–242, 1958.

[30] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. R. Stat. Soc. Ser. B. Methodol., vol. 67, no. 2, pp. 301–
320, 2005.

[31] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated gradient
schemes,” Found. Comput. Math., vol. 15, no. 3, pp. 715–732, 2015.

[32] K. Scheinberg, D. Goldfarb, and X. Bai, “Fast first-order methods
for composite convex optimization with backtracking,” Found. Comput.
Math., vol. 14, no. 3, pp. 389–417, 2014.

Publication III

Mihai I. Florea and Sergiy A. Vorobyov. A Generalized Accelerated Com-

posite Gradient Method: Uniting Nesterov’s Fast Gradient Method and

FISTA. Submitted to IEEE Transactions on Signal Processing, Oct. 2018.

173

1

A Generalized Accelerated Composite Gradient
Method: Uniting Nesterov’s Fast Gradient Method

and FISTA
Mihai I. Florea and Sergiy A. Vorobyov

Abstract—Numerous problems in signal processing, statistical
inference, computer vision, and machine learning, can be cast as
large-scale convex optimization problems. Due to their size, many
of these problems can only be addressed by first-order black-box
methods. The most popular among these are the Fast Gradient
Method (FGM) and the Fast Iterative Shrinkage Thresholding
Algorithm (FISTA). FGM requires that the objective be finite
differentiable with known Lipschitz constant. FISTA is applicable
to the more broad class of composite objectives and is equipped
with a line-search procedure for estimating the Lipschitz con-
stant. Nonetheless, FISTA cannot increase the step size and is
unable to take advantage of strong convexity. FGM and FISTA
are very similar in form. Despite this, they appear to have vastly
differing convergence analyses. In this work we generalize the
previously introduced augmented estimate sequence framework
as well as the related notion of the gap sequence. We showcase the
flexibility of our tools by constructing a Generalized Accelerated
Composite Gradient Method, that unites FGM and FISTA, along
with their most popular variants. We further showcase the
flexibility of our tools by endowing our method with monotonicity
alongside a versatile line-search procedure. By simultaneously
incorporating the strengths of FGM and FISTA, our method is
able to surpass both in terms of robustness and usability. From a
theoretical perspective, the Lyapunov property of the generalized
gap sequence used in deriving our method implies that both FGM
and FISTA are amenable to a Lyapunov analysis, common among
optimization algorithms. We support our findings with simulation
results on an extensive benchmark of composite problems. Our
experiments show that monotonicity has a stabilizing effect on
convergence and challenge the notion present in the literature
that for strongly convex objectives, accelerated proximal schemes
can be reduced to fixed momentum methods.

Index Terms—estimate sequence, Nesterov method, fast gradi-
ent method, FISTA, monotone, line-search, composite objective,
large-scale optimization

I. INTRODUCTION
Numerous large-scale convex optimization problems have

recently emerged in a variety of fields, including signal and
image processing, statistical inference, computer vision, and
machine learning. Often, little is known about the actual
structure of the objective function. Therefore, optimization
algorithms used in solving such problems can only rely
(e.g., by means of callback functions) on specific black-box
methods, called oracle functions [1]. The term “large-scale”
refers to the tractability of certain computational primitives
(see also [2]). In the black-box setting, it means that the oracle

M. I. Florea (E-mail: mihai.florea@aalto.fi) and S. A. Vorobyov (E-mail:
sergiy.vorobyov@aalto.fi) are with Aalto University, Dept. Signal Processing
and Acoustics, FI-00076, AALTO, Finland. This work has been partially
supported by the Academy of Finland grant No. 299243.

functions of large-scale problems usually only include scalar
functions and operations that resemble first-order derivatives.
Many large-scale applications were rendered practical to

address with the advent of Nesterov’s Fast Gradient Method
(FGM) [3]. FGM requires that the objective be differentiable
with Lipschitz gradient. Many optimization problems, particu-
larly inverse problems in fields such as sparse signal process-
ing, linear algebra, matrix and tensor completion, and digital
imaging (see [4]–[8] and references therein), have a composite
structure. In these composite problems, the objective F is the
sum of a function f with Lipschitz gradient (Lipschitz constant
Lf) and a simple but possibly non-differentiable regularizer
Ψ. The regularizer Ψ embeds constraints by being infinite
outside the feasible set. Often, Lf is not known in advance.
The composite problem oracle functions are the scalar f(x)
and Ψ(x), as well as the gradient ∇f(x) and the proximal
operator proxτΨ(x).
To address composite problems, Nesterov has devised an

Accelerated Multistep Gradient Scheme (AMGS) [9]. This
method updates a Lipschitz constant estimate (LCE) at ev-
ery iteration using a subprocess commonly referred in the
literature as “line-search” [7], [10]. The generation of a new
iterate (advancement phase of an iteration) and line-search are
interdependent and cannot be executed in parallel. Moreover,
AMGS utilizes only the gradient-type oracle functions ∇f(x)
and proxτΨ(x). In many applications, including compressed
sensing (e.g., LASSO [11]) and many classification tasks (e.g.,
l1-regularized logistic regression), the evaluation of ∇f(x) is
more computationally expensive than f(x). An alternative to
AMGS that uses f(x) calls in line-search has been proposed
by Beck and Teboulle in the form of the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [10]. FISTA also
benefits from having line-search decoupled from advancement.
However, FISTA is unable to decrease the LCE at run-time. A
strongly convex extension of FISTA, which we designate as
FISTA Chambolle-Pock (FISTA-CP), has been recently intro-
duced in [6], but without line-search. An unrelated study [12]
proposes a variant of FISTA-CP equipped with a line-search
procedure capable of decreasing the LCE (fully adaptive line-
search). However, this strongly convex Accelerated Proximal
Gradient (scAPG) method is guaranteed to converge only if f
is strongly convex.
FGM was derived using the estimate sequence [13]. This

flexible framework was adapted in [9] to include AMGS
as well. FISTA-CP (and FISTA when the objective is non-
strongly convex) is identical in form to FGM. Therefore,

2

FISTA and FISTA-CP can be viewed as an extension of FGM
for composite objectives. However, the convergence analyses
of FISTA and FISTA-CP, each different from the other, do not
appear to involve the estimate sequence at all. Consequently,
new features of FGM cannot be directly incorporated into
FISTA and FISTA-CP. Recently, Nesterov has proposed in
[14] a line-search variant of FGM, albeit only for non-strongly
convex objectives. Neither a derivation nor a convergence
analysis have been provided, but can be readily obtained using
the estimate sequence framework. Had FISTA utilized the
same convergence analysis as FGM, a fully adaptive line-
search variant of FISTA could simply take the form in [14].
Instead, a sophisticated fully adaptive line-search extension
was proposed in [15], with a technical derivation based on
the mathematical constructs of [10]. However, through partial
adoption of the estimate sequence, i.e., relating FISTA to
“constant step scheme I” in [13] and AMGS, we have arrived
at a similar but simpler fully adaptive line-search scheme
for FISTA [16], but again only in the non-strongly convex
scenario.
In [17], we have introduced the augmented estimate se-

quence framework and used it to derive the Accelerated
Conjugate Gradient Method (ACGM), which incorporates by
design a fully adaptive line-search procedure. ACGM has the
convergence guarantees of FGM, the best among primal first-
order methods, while being as broadly applicable as AMGS. In
addition, FISTA-CP and FISTA, along with the fully adaptive
line-search extensions in [15] and [16], are particular cases of
ACGM [17]. However, to accommodate infeasible start, we
have imposed restrictions on the input parameters. Variants of
FGM (e.g., “constant step scheme III” in [13]) exist that are
guaranteed to converge only when the starting point is feasible,
and thus do not correspond to any instance of ACGM.
In this paper, we generalize the augmented estimate se-

quence framework and derive a generalization of ACGM that
encompasses FGM, FISTA, and FISTA-CP, along with their
variants. We further showcase the flexibility and power of
the augmented estimate sequence framework by endowing
ACGM with monotonicity alongside its adaptive line-search
procedure. Monotonicity is a desirable property, particularly
when dealing with proximal operators that lack a closed form
expression or other kinds of inexact oracles [6], [18]. Even
when dealing with exact oracles, monotonicity leads to a
more stable and predictable convergence rate. The resulting
generalized ACGM is therefore superior to FGM and FISTA
in terms of flexibility and usability. We support our theoretical
findings with simulation examples.

A. Assumptions and notation

Consider composite optimization problems of the form

min
x∈Rn

F (x)
def
= f(x) + Ψ(x),

where x ∈ R
n is a vector of n optimization variables,

and F is the objective function. The constituents of the
objective F are the convex differentiable function f : Rn → R

and the convex lower semicontinuous regularizer function

Ψ : Rn → R ∪ {∞}. Function f has Lipschitz gradient (Lips-
chitz constant Lf > 0) and strong convexity parameter μf ≥ 0
while Ψ has strong convexity parameter μΨ ≥ 0, entailing that
objective F has strong convexity parameter μ = μf + μΨ.
Constraints are enforced by making Ψ infinite outside the
feasible set, which is closed and convex.
Apart from the above properties, nothing is assumed known

about functions f and Ψ, which can only be accessed in
a black-box fashion [1] by querying oracle functions f(x),
∇f(x), Ψ(x), and proxτΨ(x), with arguments x ∈ Rn and
τ > 0. The proximal operator proxτΨ(x) is given by

proxτΨ(x)
def
= argmin

z∈Rn

(
Ψ(z) +

1

2τ
‖z − x‖22

)
,

for all x ∈ Rn and τ > 0.
Central to our derivation are generalized parabolae,

quadratic functions whose Hessians are multiples of the iden-
tify matrix. We refer to the strongly convex ones simply as
parabolae, of the form ψ : Rn → R,

ψ(x)
def
= ψ∗ +

γ

2
‖x− v‖22, x ∈ Rn,

where γ > 0 denotes the curvature, v is the vertex, and ψ∗ is
the optimum value.
For conciseness, we introduce the generalized parabola

expression Qf,γ,y(x) for all x,y ∈ Rn and γ ≥ 0 as

Qf,γ,y(x)
def
= f(y) + 〈∇f(y),x− y〉+ γ

2
‖x− y‖22. (1)

The proximal gradient operator TL(y) [9] can be expressed
succinctly using (1) as

TL(y)
def
= argmin

x∈Rn
(Qf,L,y(x) + Ψ(x)) , y ∈ Rn, (2)

where L > 0 is a parameter corresponding to the inverse of
the step size. Within the scope of this work, the left-hand side
of (2) does not need functional parameters. Operator TL(y)
can be evaluated in terms of oracle functions as

TL(y) = prox 1
LΨ

(
y − 1

L
∇f(y)

)
, y ∈ Rn.

The composite gradient [9] is given by

gL(y)
def
= L (y − TL(y)), y ∈ Rn, L > 0.

We also define the relaxed supporting generalized parabola
RL,y(x) of objective F at point y using inverse step size L
as

RL,y(x)
def
= F (TL(y)) +

1

2L
‖gL(y)‖22

+ 〈gL(y),x− y〉+
μ

2
‖x− y‖22, x ∈ Rn.

II. GENERALIZING ACGM

A. Nesterov’s first order method design pattern

Nesterov’s FGM and AMGS adhere to the design pattern
outlined in Algorithm 1 (early variant discussed in [17]). This
pattern will form the scaffolding of our generalized ACGM.
Algorithm 1 takes as input the starting point x0, function

ψ0 and, if the Lipschitz constant is not known in advance, an

3

initial LCE L0 > 0. As we shall see later on, ψ0 is the initial
estimate function within the generalized augmented sequence
framework (Subsection II-C). The pattern in Algorithm 1 fits
within the family of majorization-minimization algorithms. In
line 5 of Algorithm 1, the main iterate is given by the minimum
of uk+1(x), a local upper bound (at xk+1) on the objective F .
This upper bound is uniquely determined by an auxiliary point
yk+1. Alongside the main iterate, the algorithm maintains an
estimate function ψk+1, obtained from the previous one by
adding a global lower bound wk+1(x) weighted by ak+1 > 0
(line 6 of Algorithm 1). The current LCE Lk+1, weight
ak+1, and auxiliary point yk+1 are computed using algorithm
specific methods S, Fa, and Fy , respectively (lines 2, 3, and
4 of Algorithm 1). These methods take as parameters the state
of the algorithm, given by current values of the main iterate,
LCE, weight, and estimate function.

Algorithm 1 A design pattern for Nesterov’s first-order accel-
erated algorithms
1: for k = 0, . . . , K − 1 do
2: Lk+1 = S(xk, ψk, Lk)
3: ak+1 = Fa(ψk, Lk+1)
4: yk+1 = Fy(xk, ψk, ak+1)
5: xk+1 = argmin

x∈Rn
uk+1(x)

6: ψk+1(x) = ψk(x) + ak+1wk+1(x)
7: end for

B. FGM Estimate Sequence

When the objective function is strongly convex, many first-
order schemes, including the non-accelerated fixed-point meth-
ods, guarantee linear convergence of iterates to the optimal
point. When the problem is non-strongly convex, the optimiza-
tion landscape may contain a high-dimensional subspace of
very low curvature in the vicinity of the set of optimal points.
In this case, the convergence of iterates remains a difficult open
problem [19]. For instance, Nesterov has provided in [13] an
ill-conditioned quadratic problem where the convergence of
iterates to an optimal point is intractable for all first-order
schemes of a certain structure.
Hence, we choose to measure convergence using the image

space distance (ISD), which is the distance between the
objective values at iterates and the optimal value. The decrease
rate of an upper bound on the ISD gives the convergence
guarantee (provable convergence rate). The estimate sequence
framework follows naturally from the formulation of such
guarantees. Specifically, we interpret the image space distance
upper bound (ISDUB), provided by Nesterov for FGM in [13],
for all k ≥ 0 as

Ak(F (xk)−F (x∗)) ≤ A0(F (x0)−F (x∗))+
γ0
2
‖x0−x∗‖22.

(3)
Point x∗ can be any optimal point. However, we consider
it fixed throughout this work. The convergence guarantee is
given by the sequence {Ak}k≥0 with A0 ≥ 0 and Ak > 0
for all k ≥ 1. The right-hand side of (3) is a weighted sum
between the initial ISD and the corresponding domain space
term (DST), with weights given by A0 and γ0, respectively. In

the derivation of FGM, the weights are constrained as A0 > 0
and γ0 ≥ A0μ. When the starting point x0 is not guaranteed
to be feasible, A0 must be zero. For AMGS, γ0 is fixed as
1 while for original ACGM [17], to prevent A0 from being
unbounded above, we have enforced γ0 ≤ 1. Given that our
current aim is to provide a generic framework, we impose no
restrictions on the weights, apart from A0 ≥ 0 and γ0 > 0.
The former restriction follows from the convexity of F while
the latter is required by the estimate sequence, along with its
augmented variant, as we shall demonstrate in the sequel.
The ISDUB expression can be rearranged to take the form

AkF (xk) ≤ Hk, (4)

where

Hk
def
= (Ak −A0)F (x∗) + A0F (x0) +

γ0
2
‖x0 − x∗‖22

is the highest upper bound that can be placed on weighted
objective values AkF (xk) to satisfy (3).
The value of Hk depends on the optimal value F (x∗),

which is an unknown quantity. The estimate sequence provides
a computable, albeit more stringent, replacement for Hk. It is
obtained as follows. The convexity of the objective implies
the existence of a sequence {Wk}k≥1 of convex global lower
bounds on F , namely

F (x) ≥ Wk(x), x ∈ Rn, k ≥ 1. (5)

By substituting the optimal value terms F (x∗) in (4) with
Wk(x

∗), we obtain Hk, a lower bound on Hk, given by

Hk
def
= (Ak −A0)Wk(x

∗) + A0F (x0) +
γ0
2
‖x∗ − x0‖22,

for all k ≥ 0. This still depends on x∗. However, Hk can
be viewed as the value of an estimate function, taken at an
optimal point x∗. The estimate functions ψk(x), k ≥ 0 are
defined as functional extensions of Hk, namely

ψk(x)
def
= (Ak−A0)Wk(x)+A0F (x0)+

γ0
2
‖x−x0‖22, (6)

for all x ∈ Rn and k ≥ 0. Note that the first estimate function
ψ0 does not contain a lower bound term. Therefore, it is not
necessary to define W0. The collection of estimate functions
{ψk(x)}k≥0, is referred to as the estimate sequence.
The estimate function optimum value, given by

ψ∗k
def
= min

x∈Rn
ψk(x), k ≥ 0,

is guaranteed to be lower than Hk, since

ψ∗k = min
x∈Rn

ψk(x) ≤ ψk(x
∗) = Hk, k ≥ 0. (7)

As such, ψ∗k provides the sought after computable replacement
of Hk. Note that if the lower bounds Wk are linear, the
estimate functions are generalized parabolae with the curvature
given by γ0. In this case, the existence of ψ∗k is conditioned
by γ0 > 0, explaining the assumption made in (3).
Thus, it suffices to maintain the augmented estimate se-

quence property, given by

AkF (xk) ≤ ψ∗k, k ≥ 0, (8)

4

to satisfy the ISDUB expression (3). The proof follows from
the above definitions as

AkF (xk)
(8)
≤ ψ∗k

(7)
≤ ψk(x

∗) = Hk

(5)
≤ Hk, k ≥ 0.

C. Generalizing the Augmented Estimate Sequence

The interval between the maintained upper bound ψ∗k and
the highest allowable bound Hk contains Hk. This allows us
to produce a relaxation of the estimate sequence by forcibly
closing the gap between Hk and Hk. Namely, we define the
augmented estimate functions as

ψ′k(x)
def
= ψk(x) + Hk −Hk, k ≥ 0, (9)

with {ψ′k(x)}k≥0 being the augmented estimate sequence. We
expand definition (9) as

ψ′k(x) = ψk(x) + (Ak −A0)(F (x∗)−Wk(x
∗)).

The augmented estimate sequence property is thus given by

AkF (xk) ≤ ψ′∗k .

D. Lower bounds

As mentioned in Subsection II-A, we can construct an opti-
mization scheme based on the design pattern in Algorithm 1.
The pattern requires us to specify at every iteration a global
lower bound wk+1(x), a local upper bound uk+1(x), update
rules Fa, and Fy , and line-search S.
We set the lower bounds to be supporting generalized

parabolae, namely

wk+1(x) = RLk+1+μΨ,yk+1
(x), x ∈ Rn, k ≥ 0. (10)

Lemma 1. Supporting generalized parabolae (10) are valid
global lower bounds on the objective F if the auxiliary points
and LCEs obey the descent condition, stated as

f(zk+1) ≤ Qf,Lk+1,yk+1
(zk+1), k ≥ 0, (11)

where
zk+1

def
= TLk+1

(yk+1). (12)

Proof: Same as [17, Lemma 2], with xk+1 replaced by
zk+1.
By combining the estimate function update in line 6 of

Algorithm 1 with the estimate function definition (6), we
obtain a recursion rule for the lower bounds Wk+1(x) in the
form of

Wk+1(x) =
(Ak −A0)Wk(x) + ak+1wk+1(x)

Ak+1 −A0
, k ≥ 0.

For functions Wk+1(x) to be valid lower bounds on the
objective, regardless of the sign or tightness of lower bounds
wk+1(x), the following must hold for all k ≥ 0:

ak+1 > 0, (13)
Ak+1 = Ak + ak+1, (14)

Wk+1(x) =
1

Ak+1 −A0

k+1∑
i=1

(aiwi(x)) .

From definition (6), we have that the initial estimate func-
tion is a parabola, given by

ψ0(x) = A0F (x0) +
γ0
2
‖x− x0‖22. (15)

From (10) and (13), line 6 of Algorithm 1 further ensures that
estimate functions at every iteration are parabolic. We write
the estimate functions and the augmented estimate functions,
for all k ≥ 0, as

ψk(x) = ψ∗k +
γk
2
‖x− vk‖22, (16)

ψ′k(x) = ψ′∗k +
γk
2
‖x− vk‖22, (17)

with

ψ′∗k = ψ∗k + (Ak −A0)(F (x∗)−Wk(x
∗)). (18)

The estimate sequence update in line 6 of Algorithm 1
along with (10), (12), and (16) gives, through differentiation
and coefficient matching (see also [17]), update rules for the
estimate sequence curvatures and vertices, for all k ≥ 0, as

γk+1 = γk + ak+1μ, (19)

vk+1 =
1

γk+1
(γkvk + ak+1(Lk+1 + μΨ)zk+1

− ak+1(Lk+1 − μf)yk+1). (20)

It follows from (19) that the estimate function curvature can
obtained directly from the cumulative weights as

γk = γ0 +

(
k∑

i=1

ai

)
μ = γ0 −A0μ + Akμ, k ≥ 0. (21)

E. Generalizing the Gap Sequence

A sufficient condition for the preservation of the augmented
estimate sequence property (8) as the algorithm progresses is
that the augmented estimate sequence gap, defined as

Γk
def
= AkF (xk)− ψ′∗k , k ≥ 0, (22)

is non-increasing. When the estimate functions are parabolic,
this gap can be written as

Γk
(18)
=Ak(F (xk)− F (x∗)) + (Ak −A0)Wk(x

∗)
+ A0F (x∗)− ψ∗k

(16)
=Ak(F (xk)− F (x∗)) +

γk
2
‖x∗ − vk‖22−

− ψk(x
∗) + A0F (x∗) + (Ak −A0)Wk(x

∗)
(6)
=Ak(F (xk)− F (x∗)) +

γk
2
‖vk − x∗‖22−

−A0(F (x0)− F (x∗))− γ0
2
‖x0 − x∗‖22, k ≥ 0.

We introduce the gap sequence {Δk}k≥0 in the form

Δk
def
= Ak(F (xk)−F (x∗))+

γk
2
‖vk−x∗‖22, k ≥ 0. (23)

The augmented estimate sequence gaps can be expressed more
succinctly as

Γk = Δk −Δ0, k ≥ 0. (24)

Hence, the variation of the two sequences is identical, with the
only difference being that the augmented estimate sequence

5

gap is constrained to be zero initially. The sufficient condition
becomes

Δk+1 ≤ Δk, k ≥ 0. (25)

F. Upper bounds
Interestingly, all of the above results do not rely on a specific

form of the local upper bound uk+1(x), as long as assumption
(11) holds for all k ≥ 0. We want our algorithm to converge as
fast as possible while maintaining the monotonicity property,
expressed as

F (xk+1) ≤ F (xk), k ≥ 0. (26)

Then, without further knowledge of the objective function,
(12) and (26) suggest a simple expression of the upper bound
for all k ≥ 0 in the form of

uk+1(x) = min{Qf,Lk+1,yk+1
(x)+Ψ(x), F (xk)+σ{xk}(x)},

(27)
where σX is the indicator function [20] of set X , given by

σX(x) =

{
0, x ∈ X,

+∞, otherwise.

G. Towards an algorithm
With all building blocks in place, we select functions S,

Fa, and Fy so as to preserve the Lyapunov property of the
gap sequence (25).
The enforced descent condition (11) can be equivalently

expressed in terms of composite objective values as

F (zk+1) ≤ Qf,Lk+1,yk+1
(zk+1) + Ψ(zk+1), x ∈ Rn.

In [17, Theorem 3] we have shown that if we choose
xk+1 = zk+1, we can build a method that maintains a mono-
tone gap sequence. In this work we need a stronger result that
allows xk+1 to be “better” than zk+1.

Theorem 1. If at iteration k ≥ 0 we have

F (xk+1) ≤ F (zk+1) ≤ Qf,Lk+1,yk+1
(zk+1) + Ψ(zk+1),

then
Δk+1 +Ak+1 + Bk+1 ≤ Δk,

where subexpressions Ak, Bk, sk+1, and Yk+1 are, respec-
tively, defined as

Ak
def
=

1

2

(
Ak+1

Lk+1 + μΨ
−

a2k+1
γk+1

)
‖gLk+1+μΨ(yk+1)‖22,

Bk
def
=

1

γk+1
〈gLk+1+μΨ(yk+1)−

μ

2Yk+1
sk+1, sk+1〉,

sk+1
def
= Akγk+1xk + ak+1γkvk − Yk+1yk+1,

Yk+1
def
= Akγk+1 + ak+1γk.

Proof: See Appendix A.
Theorem 1 provides a simple sufficient condition for the

monotonicity of the gap sequence, regardless of the algorith-
mic state, given for all k ≥ 0 by the following relations:

yk+1 = Fy(xk, ψk, Ak, ak+1) =
Akγk+1xk + ak+1γkvk

Akγk+1 + ak+1γk
,

(28)

(Lk+1 + μΨ)a
2
k+1 ≤ Ak+1γk+1.

The latter, combined with the non-negativity of the
weights (13), yields

ak+1 ≤ E(γk, Ak, Lk+1), k ≥ 0, (29)

where expression E(γk, Ak, Lk+1) is given by

E(γk, Ak, Lk+1)
def
=

1

2(Lk+1 − μf)(
γk + Akμ +

√
(γk + Akμ)2 + 4(Lk+1 − μf)Akγk

)
.

The cumulative weight Ak in (14) gives the convergence
guarantee in (3). To provide the best guarantees, we enforce
equality in (29), namely

ak+1 = Fa(ψk, Ak, Lk+1) = E(γk, Ak, Lk+1). (30)

For determining the LCE, we select the backtracking line-
search method SA employed by AMGS [9] and the original
ACGM [17]. The search parameters comprise the LCE in-
crease rate ru > 1 and the LCE decrease rate 0 < rd < 1.
The search terminates when the line-search stopping criterion
(LSSC) in (11) is satisfied.

H. Putting it all together

We have thus determined a search strategy SA, initial
estimate function ψ0 in (15), upper bounds uk+1(x) in (27),
lower bounds wk+1(x) in (10), function Fa in (30), and
function Fy in (28). Substituting these expressions in the
design pattern outlined in Algorithm 1, we can write down a
generalization of ACGM in estimate sequence form, as listed
in Algorithm 2.
Non-monotone generalized ACGM can be obtained by

enforcing xk+1 = zk+1 for all k ≥ 0, accomplished by
replacing line 16 of Algorithm 2 with

xk+1 := ẑk+1. (31)

III. COMPLEXITY ANALYSIS

A. Worst-case convergence guarantees

Algorithm 2 maintains the convergence guarantee in (3)
explicitly at run-time as state variable Ak. Moreover, if suffi-
cient knowledge of the problem is available, it is possible to
formulate a worst-case convergence guarantee before running
the algorithm.
For our analysis, we will need to define a number of

curvature-related quantities, namely the local inverse condition
number qk+1 for all k ≥ 0, the worst-case LCE Lu, and the
worst-case inverse condition number qu, given by

qk+1
def
=

μ

Lk+1 + μΨ
,

Lu
def
= max{ruLf , rdL0},

qu
def
=

μ

Lu + μΨ
.

The worst-case convergence guarantees for generalized
ACGM are stated in following theorem.

6

Algorithm 2 Generalized monotone ACGM in estimate se-
quence form
ACGM(x0, L0, μf , μΨ, A0, γ0, ru, rd, K)
1: v0 = x0, μ = μf + μΨ
2: for k = 0, . . . , K − 1 do
3: L̂k+1 := rdLk

4: loop

5: âk+1 :=
1

2(L̂k+1−μf)(
γk + Akμ +

√
(γk + Akμ)2 + 4(L̂k+1 − μf)Akγk

)

6: Âk+1 := Ak + âk+1
7: γ̂k+1 := γk + âk+1μ
8: ŷk+1 :=

1
Akγ̂k+1+âk+1γk

(Akγ̂k+1xk + âk+1γkvk)

9: ẑk+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
10: if f(ẑk+1) ≤ Qf,L̂k+1,ŷk+1

(ẑk+1) then
11: Break from loop
12: else

13: L̂k+1 := ruL̂k+1

14: end if

15: end loop

16: xk+1 := argmin{F (ẑk+1), F (xk)}
17: vk+1 :=

1
γ̂k+1

(γkvk + âk+1(L̂k+1 + μΨ)ẑk+1

−âk+1(L̂k+1 − μf)ŷk+1)
18: Lk+1 := L̂k+1, Ak+1 := Âk+1, γk+1 := γ̂k+1
19: end for
20: return xK

Theorem 2. If γ0 ≥ A0μ, the generalized ACGM algorithm
generates a sequence {xk}k≥1 that satisfies

F (xk)− F (x∗)

≤ min

{
4

(k + 1)2
, (1−√qu)

k−1
}
(Lu − μf)Δ̄0, k ≥ 1,

where

Δ̄0
def
=

Δ0
γ0

=
A0
γ0

(F (x0)− F (x∗)) +
1

2
‖x0 − x∗‖22.

Proof: See Appendix B.
Note that the assumption γ0 ≥ A0μ always holds for

non-strongly convex objectives and that ACGM is guaranteed
converge for strongly convex objectives also when γ0 < A0μ.
However, in the latter case, it is more difficult to obtain simple
lower bounds on the convergence guarantees. We leave such
an endeavor to future research.

B. Wall-clock time units

So far, we have measured the theoretical performance of
algorithms in terms of convergence guarantees (including the
worst-case ones) indexed in iterations. This does not account
for the complexity of individual iterations. In [17], we have in-
troduced a new measure of complexity, the wall-clock time unit
(WTU), to compare optimization algorithms more reliably. We
thus distinguish between two types of convergence guarantees.
One is the previously used iteration convergence guarantee,

indexed in iterations and a new computational convergence
guarantee, indexed in WTU.
The WTU is a measure of running time in a shared memory

parallel scenario. The computing environment consists of a
small number of parallel processing units (PPU). Each PPU
may be a parallel machine itself. The number of parallel units
is considered sufficient to compute any number of independent
oracle functions simultaneously. The shared-memory system
does not impose constraints on parallelization, namely, it is
uniform memory access (UMA) [21] and it is large enough to
store the arguments and results of oracle calls for as long as
they are needed.
In order to compare algorithms based on a unified bench-

mark, in [17] we have assumed that f and ∇f require 1 WTU
each while all other operations are negligible and amount to
0 WTU. In this work, we generalize the analysis. We attribute
finite non-negative costs tf , tg , tΨ, and tp to f(x), ∇f(x),
Ψ(x), and proxτΨ(x), respectively. However, since we are
dealing with large-scale problems, we maintain the assumption
that element-wise vector operations, including scalar-vector
multiplications, vector additions, and inner products, have
negligible complexity when compared to oracle functions and
assign a cost of 0WTU to each. Synchronization of PPUs also
incurs no cost. Consequently, when computed in isolation, an
objective function value F (x) call costs tF = max{tf , tΨ},
ascribable to separability, while a proximal gradient operation
costs tT = tg + tp, due to computational dependencies.

C. Per-iteration complexity
We measure this complexity in WTU on the shared memory

system described in the previous subsection and consider a
parallel implementation involving speculative execution [21].
The advancement phase of a generalized ACGM iteration

consists of one proximal gradient step (line 9 of Algorithm 2).
Hence, every iteration has a base cost of tT = tg + tp.
The LSSC and the monotonicity condition (MC) in line 16
of Algorithm 2 can be evaluated in parallel with subsequent
iterations. Both rely on the computation of f(ẑk+1), which in
the worst case requires �tf/tT � dedicated PPUs. In addition,
MC may need up to �tΨ/tT � PPUs.
Backtracks stall the algorithm in a way that cannot be

alleviated by parallelization or intensity reduction. Therefore,
it is desirable to make them a rare event. Assuming that the
local curvature of f varies around a fixed value, this would
mean that log(ru) should be significantly larger than−log(rd).
With such a parameter choice, the algorithm can proceed from
one iteration to another by speculating that backtracks do not
occur at all. Let the current iteration be indexed by k. If
the LSSC of iteration k fails, then the algorithm discards all
the state information pertaining to all iterations made after k,
reverts to iteration k, and performs the necessary computation
to correct the error. We consider that a mis-prediction incurs
a detection cost td and a correction cost tc. LSSC requires the
evaluation of f(ẑk+1) and incurs a detection cost of td = tf .
A backtrack entails recomputing ŷk+1, yielding an LSSC
tc = tT correction time.
Overshoots are assumed to occur even less often. Similarly,

the algorithm proceeds speculating that MC always passes

7

and defaults to (31). Hence, MC has td = tF , due to its
dependency on Ψ(ẑk+1), but once the algorithmic state of
iteration k has been restored, no additional oracle calls are
needed, leading to tc = 0. MC and LSSC can be fused into
a single condition, giving rise to the scenarios outlined in
Table I. Note that if LSSC fails, MC is not evaluated.

TABLE I
ALGORITHM STALL TIME IN WTU BASED ON THE OUTCOME OF LSSC

AND MC

MC passed MC failed

LSSC passed 0 max{tf , tΨ}
LSSC failed tf + tg + tp N / A

For non-monotone generalized ACGM, each backtrack adds
tf + tT WTU to a base iteration cost of tT . A comparison to
other methods employing line-search is shown in Table II.

TABLE II
PER-ITERATION COST OF FISTA, AMGS, AND GENERALIZED ACGM IN

THE NON-MONOTONE SETTING

FISTA AMGS ACGM

Base cost tg + tp 2tg + 2tp tg + tp
LSSC td tf tg tf
LSSC tc tp tg + tp tg + tp
Backtrack cost tf + tp 2tg + tp tf + tg + tp

IV. EXTRAPOLATED FORM

A. Monotonicity and extrapolation
In the original ACGM [17], the auxiliary point can be ob-

tained from two successive main iterates through extrapolation.
Interestingly, this property is preserved for any value of the
inverse step size. We show in the following how monotonicity
alters this property and bring generalized monotone ACGM to
a form in which the auxiliary point is an extrapolation of state
variables. First, we observe that estimate sequence vertices can
be obtained from main iterates through extrapolation, namely

vk+1 = xk +
Ak+1

ak+1
(zk+1 − xk), k ≥ 0. (32)

The proof does not require any conditions on A0 or γ0 and is
thus the same as the one in [17, Lemma 5]. Combined with
the auxiliary point update (28) it leads to

yk+1 =
1

Akγk+1 + ak+1γk(
Akγk+1xk +

Ak

ak
zk +

(
ak+1γk −

Ak

ak

)
xk−1

)
,

(33)

for all k ≥ 1. Depending on the outcome of the update in
line 16 of Algorithm 2, we distinguish two situations.
If MC passes at iteration k − 1 (F (zk) ≤ F (xk−1)), then

yk+1 = (1 + bk)zk − bkxk−1 = xk + bk(zk − xk−1), (34)
where, for brevity, we define extrapolation factor bk and
subexpression ωk as

bk
def
=

(
Ak

ak
− 1

)
ωk, ωk

def
=

ak+1γk
Akγk+1 + ak+1γk

. (35)

If the algorithm overshoots (F (zk) > F (xk−1)) then, by
monotonicity, we impose xk = xk−1, which leads to

yk+1 = b′kzk − (b′k − 1)xk−1 = xk + b′k(zk − xk−1), (36)

where the extrapolation factor b′k is given by

b′k
def
=

(
Ak

ak

)
ωk. (37)

Expressions (34) and (36) lead to the following auxiliary point
extrapolation rule:

yk+1 = xk + βk(zk − xk−1), k ≥ 1, (38)

where
βk =

{
bk, xk = zk
b′k, xk = xk−1

, k ≥ 1.

Until this point we have assumed that the first iteration k = 0
does not use auxiliary point extrapolation rule (38). To write
generalized ACGM in a form similar to monotone FISTA
(MFISTA [18]) and the monotone version of FISTA-CP [6],
we define the vertex extrapolation factor in (32) as

tk
def
=

Ak

ak
, k ≥ 1. (39)

As long as k ≥ 1, (30) enables us to obtain a recursion rule
for the vertex extrapolation factor that does not depend on
weights ak and Ak, given by

t2k+1 + tk+1(qkt2k − 1)− Lk+1 + μΨ
Lk + μΨ

t2k = 0, k ≥ 1, μ ≥ 0.

(40)
Subexpression ωk and auxiliary point extrapolation factor βk

can also be written for all k ≥ 1 as

ωk =
1− qk+1tk+1
(1− qk+1)tk+1

, (41)

βk = (tk − 1{zk}(xk))ωk, (42)

where 1X denotes the membership function of set X , namely

1X(x) =

{
1, x ∈ X
0, x /∈ X

.

Note that subexpression ωk contains only recent information
whereas βk needs only to access the state of the preceding
iteration.
For simplicity, we wish to extend update rules (38), (40),

and (42) to the first iteration k = 0. The missing parameters
follow naturally from this extension. First, t0 can be obtained
by setting k = 0 in (40) as

t0 =

√
t21 − t1

L1+μΨ
L0+μΨ

− t1q0

(39)
=

√√√√ A1 − a1
(L1+μΨ)a21
(L0+μΨ)A1

− a1q0

(30)
=

√
(L0 + μΨ)A0

γ0
. (43)

Next, we introduce a “phantom iteration” k = −1 with the
main iterate as the only state parameter. We set x−1

def
= x0 so

that any value of β0 will satisfy (38). For brevity, we obtain
β0 from expression (42) with k = 0. We do not define a0.
Instead, extrapolation factors bk and b′k from (35) and (37)

8

can be computed when k = 0 by replacing A0/a0 with the t0
expression in (46).
Thus, with initialization (46) and recursion (40), we have

completely defined the vertex extrapolation factor sequence
{tk}k≥0, and derived from it the auxiliary extrapolation factor
expression (42). Now, we do not need to maintain weight
sequences {ak}k≥1 and {Ak}k≥0. We simplify generalized
ACGM further by noting that, to produce the auxiliary point,
extrapolation rule (38) depends on three vector parameters.
However, it is not necessary to store both zk and xk−1 across
iterations. To address applications where memory is limited,
we only maintain the difference term dk, given by

dk = (tk − 1{zk}(xk))(zk − xk−1), k ≥ 0. (44)

Extrapolation rule (38) becomes

yk+1 = xk + ωkdk, k ≥ 0. (45)

The above modifications yield a form of generalized ACGM
based on extrapolation, which we list in Algorithm 3. To obtain
a non-monotone algorithm, it suffices to replace line 16 of
Algorithm 3 with (31).
We stress that while Algorithms 2 and 3 carry out different

computations, they are mathematically equivalent with respect
to the main iterate sequence {xk}k≥0. The oracle calls and
their dependencies in Algorithm 3 are also identical to those
in Algorithm 2. Therefore the per-iteration complexity is the
same.

Algorithm 3 Generalized monotone ACGM in extrapolated
form
ACGM(x0, L0, μf , μΨ, A0, γ0, ru, rd, K)
1: x−1 = x0, d0 = 0

2: μ = μf + μΨ, t0 =
√
(L0+μΨ)A0

γ0
, q0 =

μ
L0+μΨ

3: for k = 0, ..., K − 1 do
4: L̂k+1 := rdLk

5: loop

6: q̂k+1 :=
μ

L̂k+1+μΨ

7: t̂k+1 :=
1
2

(
1− qkt2k +

√
(1− qkt2k)

2 + 4 L̂k+1+μΨ
Lk+μΨ

t2k

)

8: ŷk+1 := xk +
1−q̂k+1 t̂k+1

(1−q̂k+1)t̂k+1
dk

9: ẑk+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
10: if f(ẑk+1) ≤ Qf,L̂k+1,ŷk+1

(ẑk+1) then
11: Break from loop
12: else

13: L̂k+1 := ruL̂k+1

14: end if

15: end loop

16: xk+1 := argmin{F (ẑk+1), F (xk)}
17: dk+1 := (t̂k+1 − 1{ẑk+1}(xk+1))(ẑk+1 − xk)
18: Lk+1 := L̂k+1, qk+1 := q̂k+1, tk+1 := t̂k+1
19: end for
20: return xK

B. Retrieving the convergence guarantee
For Algorithm 2, the convergence guarantee in (3) is ob-

tained directly from the state variable Ak. For Algorithm 3,
we need the following result.

Lemma 2. The vertex extrapolation factor expression in (46)
generalizes to arbitrary k ≥ 0 as

tk =

√
(Lk + μΨ)Ak

γk
.

Proof: For k = 0, (46) holds. For k ≥ 1 we have that

tk+1 =

√
(Lk+1 + μΨ)A2k+1
(Lk+1 + μΨ)a2k+1

(30)
=

√
(Lk+1 + μΨ)Ak+1

γk+1
.

From Lemma 2, we distinguish two scenarios.
If γ0 �= A0μ, the convergence guarantee can be derived

directly from the state parameters without alterations to Algo-
rithm 3 as

Ak =
(γ0 −A0μ)t

2
k

(Lk + μΨ)(1− qkt2k)
, k ≥ 1.

C. Border-case
However, if γ0 = A0μ, then

tk =
1
√

qk
, k ≥ 1. (46)

Therefore, the state parameters of Algorithm 3 no longer
contain information on the convergence guarantee but can be
brought to a simpler form. The result in (46) implies that the
auxiliary point extrapolation factor is given by

βk =

√
Lk + μΨ − 1{zk}(xk)

√
μ√

Lk+1 + μΨ +
√

μ
, k ≥ 0. (47)

The sequence {tk}k≥0 does not store any relevant information
and can be left out. This means that the convergence guarantee
Ak requires a dedicated update. A simple recursion rule
follows from (46) as

Ak+1 =
1

1−√qk+1
Ak, k ≥ 0. (48)

Due to scaling invariance, we can select any pair (A0, γ0)
that is a positive multiple of (1, μ). For simplicity, we choose
A0 = 1 and γ0 = μ.
To reduce computational intensity, we modify subexpres-

sions dk and ωk as

dk =
(√

Lk + μΨ − 1{zk}(xk)
√

μ
)
(zk − xk−1), k ≥ 0,

(49)

ωk =
1√

Lk+1 + μΨ +
√

μ
, k ≥ 0. (50)

The local inverse condition number sequence {qk}k≥0 does
not appear in updates (47) and (48). Hence, it can also be
abstracted away. The form taken by generalized ACGM in
this border-case, after simplifications, is listed in Algorithm 4.
A non-monotone variant can be obtained by replacing

line 13 of Algorithm 4, with (31). The border-case iteration
complexity matches the one of Algorithms 2 and 3.

9

Algorithm 4 Border-case ACGM in extrapolated form
ACGM(x0, L0, μf , μΨ, ru, rd, K)
1: x−1 = x0, d0 = 0, A0 = 1, μ = μf + μΨ
2: for k = 0, ..., K − 1 do
3: L̂k+1 := rdLk

4: loop

5: ŷk+1 := xk +
1√

L̂k+1+μΨ+
√
μ
dk

6: ẑk+1 := prox 1
L̂k+1

Ψ

(
ŷk+1 − 1

L̂k+1
∇f(ŷk+1)

)
7: if f(ẑk+1) ≤ Qf,L̂k+1,ŷk+1

(ẑk+1) then
8: Break from loop
9: else

10: L̂k+1 := ruL̂k+1

11: end if

12: end loop

13: xk+1 := argmin{F (ẑk+1), F (xk)}
14: dk+1 :=

(√
L̂k+1 + μΨ − 1{ẑk+1}(xk+1)

√
μ

)
(ẑk+1 − xk)

15: Lk+1 := L̂k+1

16: Ak+1 :=

√
L̂k+1+μΨ√

L̂k+1+μΨ−√μ
Ak

17: end for
18: return xK

V. SIMULATION RESULTS

A. Benchmark setup

We have tested the variants of generalized ACGM in-
troduced in this work against the methods considered at
the time of writing to be the state-of-the-art on the prob-
lem class outlined in Subsection I-A. The proposed meth-
ods included in the benchmark are non-monotone ACGM
(denoted as plain ACGM), monotone ACGM (MACGM),
and, for strongly-convex problems, border-case non-monotone
ACGM (BACGM) as well as border-case monotone ACGM
(BMACGM). The state-of-the-art methods are FISTA-CP,
monotone FISTA-CP (MFISTA-CP) [6], AMGS [9], and
FISTA with backtracking line-search (FISTA-BT) [10].
We have selected as test cases five synthetic instances of

composite problems in the areas of statistics, inverse problems,
and machine learning. Three are non-strongly convex: least
absolute shrinkage and selection operator (LASSO) [11], non-
negative least squares (NNLS), and l1-regularized logistic
regression (L1LR). The other two are strongly-convex: ridge
regression (RR) and elastic net (EN) [22]. Table III lists the
oracle functions of all above mentioned problems.
Here, the sum softplus function I(x), the element-wise

logistic function L(x), and the shrinkage operator Tτ (x) are,
respectively, given by

I(x) =
m∑
i=1

log(1 + exi), i ∈ {1, ..., m},

L(x)i =
1

1 + e−xi
, i ∈ {1, ..., m},

Tτ (x)j = (|xj | − τ)+ sgn(xj), j ∈ {1, ..., n}.

To attain the best convergence guarantees for AMGS, Nes-
terov suggests in [9] that all known global strong convexity
be transfered to the simple function Ψ. When line-search is
enabled, generalized ACGM also benefits slightly from this ar-
rangement when ru > 1 (Theorem 2). Without line-search, the
convergence guarantees of generalized ACGM do not change
as a result of strong convexity transfer, in either direction.
Thus, for fair comparison, we have incorporated in Ψ the
strongly-convex quadratic regularization term for RR and EN
problems. In the following, we describe in detail each of the
five problem instances. All random variables are independent
and identically distributed, unless stated otherwise.
LASSO. Real-valued matrix A is of size m = 500 by

n = 500, with entries drawn from N (0, 1). Vector b ∈ R
m

has entries sampled from N (0, 9). Regularization parameter
λ1 is 4. The starting point x0 ∈ Rn has entries drawn from
N (0, 1).
NNLS. Sparse m = 1000 × n = 10000 matrix A has

approximately 10% of entries, at random locations, non-zero.
The non-zero entries are drawn from N (0, 1) after which each
column j ∈ {1, ..., n} is scaled independently to have an l2
norm of 1. Starting point x0 has 10 entries at random locations
all equal to 4 and the remainder zero. Vector b is obtained from
b = Ax0 + z, where z is standard Gaussian noise.
L1LR. Matrix A has m = 200×n = 1000 entries sampled

from N (0, 1), x0 has exactly 10 non-zero entries at random
locations, each entry value drawn fromN (0, 225), and λ1 = 5.
Labels yi ∈ {0, 1}, i ∈ {1, ..., m} are selected with probability
P(Yi = 1) = L(Ax)i.
RR. Dimensions are m = 500 × n = 500. The entries

of matrix A, vector b, and starting point x0 are drawn from
N (0, 1), N (0, 25), and N (0, 1), respectively. Regularizer λ2
is given by 10−3(σmax(A))2, where σmax(A) is the largest
singular value of A.
EN. Matrix A has m = 1000 × n = 500 entries sampled

from N (0, 1). Starting point x0 has 20 non-zero entries
at random locations, each entry value drawn from N (0, 1).
Regularization parameter λ1 is obtained according to [23]
as λ1 = 1.5

√
2 log(n) and λ2 is the same as in RR,

λ2 = 10−3(σmax(A))2.
The Lipschitz constant Lf is given by (σmax(A))2 for all

problems except for L1LR where it is 14 (σmax(A))2. Strongly
convex problems RR and EN have μ = μΨ = λ2 and inverse
condition number q = μ/(Lf + μΨ) = 1/1001.
To be able to benchmark against FISTA-CP and FISTA-BT,

which lack fully adaptive line-search, we have set L0 = Lf

for all tested algorithms, thus giving FISTA-CP and FISTA-
BT an advantage over the proposed methods. To highlight the
differences between ACGM and BACGM, we ran ACGM and
MACGM with parameters A0 = 0 and γ0 = 1.
Despite the problems differing in structure, the oracle func-

tions have the same computational costs. We consider one
matrix-vector multiplication to cost 1 WTU. Consequently,
for all problems, we have tf = 1 WTU, tg = 2 WTU, and
tΨ = tp = 0 WTU.
The line-search parameters were selected according to the

recommendation given in [4]. For AMGS and FISTA-BT
we have rAMGSu = rFISTAu = 2.0 and rAMGSd = 0.9.

10

TABLE III
ORACLE FUNCTIONS OF THE FIVE TEST PROBLEMS

f(x) Ψ(x) ∇f(x) proxτΨ(x)

LASSO 1
2
‖Ax− b‖22 λ1‖x‖1 AT (Ax− b) Tτλ1(x)

NNLS 1
2
‖Ax− b‖22 σRn+(x) AT (Ax− b) (x)+

L1LR I(Ax)− yTAx λ1‖x‖1 AT (L(Ax)− y) Tτλ1(x)
RR 1

2
‖Ax− b‖22 λ2

2
‖x‖22 AT (Ax− b) 1

1+τλ2
x

EN 1
2
‖Ax− b‖22 λ1‖x‖1 + λ2

2
‖x‖22 AT (Ax− b) 1

1+τλ2
Tτλ1(x)

The variants of generalized ACGM and AMGS are the only
methods included in the benchmark that are equipped with
fully adaptive line-search. We have decided to select rACGMd

to ensure that ACGM and AMGS have the same overhead.
We formally define the line-search overhead of method M,
denoted by ΩM, as the average computational cost attributable
to backtracks per WTU of advancement. Assuming that the
LCEs hover around a fixed value (Subsection III-C), we thus
have that

ΩAMGS = − (2tg + tp) log(r
AMGS
d)

2(tg + tp) log(rAMGSu)
, (51)

ΩACGM = − (tf + tg + tp) log(r
ACGM
d)

(tg + tp) log(rACGMu)
. (52)

From (51) and (52) we have that rACGMd = (rAMGSd)
2
3 , with

no difference for border-case or monotone variants.
For measuring ISDs, we have computed beforehand an

optimal point estimate x̂∗ for each problem instance. Each
x̂∗ was obtained as the main iterate after running MACGM
for 5000 iterations with parameters A0 = 0, γ0 = 1, L0 = Lf ,
and aggressive search parameters rd = 0.9 and ru = 2.0.

B. Non-strongly convex problems

The convergence results for LASSO, NNLS, and L1LR are
shown in Figure 1. The LCE variation during the first 200
WTU is shown in Figure 2. For NNLS, floating point precision
was exhausted after 100 WTU and the LCE variation was only
plotted to this point (Figure 2(b)). In addition, the average
LCEs are listed in Table IV.
Both variants of ACGM outperform in iterations and es-

pecially in WTU the competing methods in each of these
problem instances. Even though for LASSO and NNLS, the
iteration convergence rate of AMGS is slightly better in the be-
ginning (Figures 1(a) and 1(c)), AMGS lags behind afterwards
and, when measured in terms of computational convergence
rate, has the poorest performance among the methods tested
(Figures 1(b), 1(d), and 1(f)). FISTA-BT produces the same
iterates as FISTA-CP, as theoretically guaranteed in the non-
strongly convex case for L0 = Lf .
The overall superiority of ACGM and MACGM can be

attributed to the effectiveness of line-search. Interestingly,
ACGM manages to surpass FISTA-CP and MFISTA-CP even
when the latter are supplied with the exact value of the global
Lipschitz constant. This is because ACGM is able to accurately
estimate the local curvature, which is often below Lf . For the
L1LR problem, where the smooth part f is not the square

of a linear function, the local curvature is substantially lower
than the global Lipschitz constant with LCEs hovering around
one fifth of Lf (Figure 2(c)). One would expect AMGS to be
able to estimate local curvature as accurately as ACGM. This
is does not happen due to AMGS’s reliance on a “damped
relaxation condition” [9] line-search stopping criterion. For
LASSO and NNLS, the average LCE of AMGS is actually
above Lf . ACGM has an average LCE that is roughly two
thirds that of AMGS on these problems whereas for L1LR
the average is more than three times lower than AMGS. The
difference between the LCE averages of ACGM and MACGM
is negligible.
Indeed, monotonicity, as predicted, does not alter the over-

all iteration convergence rate and has a stabilizing effect.
MACGM overshoots do have a negative but limited impact
on the computational convergence rate. We have noticed in
our simulations that overshoots occur less often for larger
problems, such as the tested instance of NNLS.

C. Strongly convex problems

The convergence results for RR and EN are shown in
Figures 3(a), 3(b), 3(c), and 3(d). The LCE variation is shown
in Figure 4 with LCE averages listed in Table V.
Strongly convex problems have a unique optimum point

and accelerated first-order schemes are guaranteed to find an
accurate estimate of it in domain space (see [13] for detailed
analysis). Along with Theorem 2, it follows that

A0(F (x0)− F (x̂∗)) +
γ0
2
‖x0 − x̂∗‖22 � Δ0.

Thus, we can display accurate estimates of ISDUBs in (3),
of the form Uk

def
= Δ0/Ak, k ≥ 1, for methods that maintain

convergence guarantees at runtime. These are shown in Figures
3(e) and 3(f) as upper bounds indexed in WTU.
For the smooth RR problem, the effectiveness of each

algorithm tested is roughly given by the increase rate of the
accumulated weights (Figures 3(a) and 3(c)). In iterations,
AMGS converges the fastest. However, in terms of WTU
usage, it is the least effective of the methods designed to
deal with strongly convex objectives. The reasons are the
high cost of its iterations, its low asymptotic rate compared
to ACGM and FISTA-CP, and the stringency of its damped
relaxation criterion that results in higher LCEs (on average)
than ACGM (Figure 4(a) and Table V). The computational
convergence rate of BACGM is the best, followed by ACGM,
FISTA-CP. This does not, however, correspond to the upper
bounds (Figure 3(e)). While BACGM produces the largest

11

0 500 1000 1500 2000

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(a) Iteration convergence rates on
LASSO

0 5 10 15 20 25 30 35 40 45 50

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(c) Iteration convergence rates on
NNLS

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(e) Iteration convergence rates on
L1LR

0 1000 2000 3000 4000

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(b) Computational convergence rates
on LASSO

0 10 20 30 40 50 60 70 80 90 100

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(d) Computational convergence rates
on NNLS

0 50 100 150 200 250 300 350 400
10

−10

10
−5

10
0

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM

(f) Computational convergence rates
on L1LR

Fig. 1. Convergence results of FISTA with backtracking (FISTA-BT), AMGS, FISTA-CP, monotone FISTA-CP (MFISTA-CP), non-monotone ACGM and
monotone ACGM (MACGM) on the LASSO, NNLS, and L1LR non-strongly convex problems. Dots mark iterations preceding overshoots. At these iterations,
the convergence behavior changes.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(a) LASSO

0 20 40 60 80 100
0

5

10

15

20

25

30

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(b) NNLS

0 50 100 150 200
0

100

200

300

400

500

600

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM

(c) L1LR
Fig. 2. Line-search method LCE variation on LASSO, NNLS, and L1LR

TABLE IV
AVERAGE LCES OF LINE-SEARCH METHODS ON LASSO, NNLS, AND L1LR

Problem Lf Iterations FISTA-BT AMGS ACGM MACGM

LASSO 1981.98 2000 1981.98 2202.66 1385.85 1303.70
NNLS 17.17 50 17.17 19.86 14.35 13.54
L1LR 518.79 200 518.79 246.56 80.76 79.12

TABLE V
AVERAGE LCES OF LINE-SEARCH METHODS ON RR AND EN

Problem Lf Iterations FISTA-BT AMGS ACGM MACGM BACGM BMACGM

RR 1963.66 350 1963.66 2022.73 1473.88 1473.88 1471.16 1471.16
EE 2846.02 150 2846.02 3023.47 2056.68 2003.09 2093.56 1998.12

12

0 50 100 150 200 250 300 350

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(a) Iteration convergence rates
on RR

0 100 200 300 400 500 600 700

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(c) Computational convergence
rates on RR

0 100 200 300 400 500 600 700

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

AMGS (U)
ACGM (U)
MACGM (U)
BACGM (U)
BMACGM (U)
AMGS (R)
ACGM (R)
MACGM (R)
BACGM (R)
BMACGM (R)

(e) Computational convergence
rates (R) and upper bounds (U)
on RR

0 50 100 150

10
−10

10
−5

10
0

10
5

Iteration

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(b) Iteration convergence rates
on EN

0 50 100 150 200 250 300

10
−10

10
−5

10
0

10
5

WTU

F
(x

k
)
−
F

(x̂
∗
)

FISTA−BT
AMGS
FISTA−CP
MFISTA−CP
ACGM
MACGM
BACGM
BMACGM

(d) Computational convergence
rates on EN

0 50 100 150 200 250 300

10
−10

10
−5

10
0

WTU

F
(x

k
)
−
F

(x̂
∗
)

AMGS (U)
ACGM (U)
MACGM (U)
BACGM (U)
BMACGM (U)
AMGS (R)
ACGM (R)
MACGM (R)
BACGM (R)
BMACGM (R)

(f) Computational convergence
rates (R) and upper bounds (U)
on EN

Fig. 3. Convergence results of FISTA with backtracking (FISTA-BT), AMGS, FISTA-CP, monotone FISTA-CP (MFISTA-CP), non-monotone ACGM,
monotone ACGM (MACGM), border-case non-monotone ACGM (BACGM), and border-case monotone ACGM (BMACGM) on the RR and EN strongly-
convex problems. Dots mark iterations preceding overshoots.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM
BACGM
BMACGM

(a) RR

0 50 100 150 200
0

1000

2000

3000

4000

5000

WTU

LC
E

FISTA−BT
AMGS
ACGM
MACGM
BACGM
BMACGM

(b) EN
Fig. 4. Line-search method LCE variation on RR and EN

accumulated weights Ak, the high value of the ISD term
in Δ0 causes BACGM to have poorer upper bounds than
ACGM, except for the first iterations. In fact, the effectiveness
of BACGM on this problem is exceptional, partly due to
the regularity of the composite gradients. This regularity also
ensures monotonicity of BACGM, ACGM, and FISTA-CP.
FISTA-BT does not exhibit linear convergence on this problem
and it is even slower than AMGS after 500 WTU despite its
lower line-search overhead and advantageous parameter choice
L0 = Lf .
On the less regular EN problem, ACGM leads all other

methods in terms of both iteration and computational con-
vergence rates (Figures 3(b) and 3(d)). The advantage of
ACGM, especially over BACGM, is accurately reflected in the
upper bounds (Figure 3(f)). However, convergence is much
faster than the upper bounds would imply. Even FISTA-BT
has a competitive rate, due to the small number of iterations
(150) needed for high accuracy results. The ineffectiveness
of AMGS on this problem is mostly due to its high LCEs

(Figure 4(b) and Table V). The proposed ACGM and variants
show comparable average LCEs. Here as well, monotonicity
has a stabilizing effect and does not have a significant impact
on the computational convergence rate.

VI. DISCUSSION
Our simulation results suggest that enforcing monotonicity

in ACGM is generally beneficial in large-scale applications. It
leads to a more predictable convergence rate and, provided that
the number of overshoots per iteration is small, monotonicity
has a negligible impact on the computational convergence rate
as well. Our experimental results indicate that the frequency
of overshoots generally decreases with problem size.
From a theoretical standpoint, the proposed method can be

viewed as a unification of FGM and FISTA, in their most
common forms. Specifically, the fixed-step variant (Lk = Lf

for all k ≥ 0) of ACGM in extrapolated form (Algorithm 3)
is equivalent to both the monotone and non-monotone vari-
ants of FISTA-CP with the theoretically optimal step size

13

TABLE VI
FGM AND FISTA, ALONG WITH THEIR COMMON VARIANTS, CAN BE CONSIDERED INSTANCES OF GENERALIZED ACGM WITH CERTAIN RESTRICTIONS

APPLIED.

Algorithm Restriction
Smooth objective μ = 0 μ > 0 A0 = 0 A0 > 0 Fixed step size Non-monotone

FGM [13] yes no no no yes yes yes
FGM [14] yes yes no unclear unclear no yes
FISTA [10] no yes no yes no partial yes
MFISTA [18] no yes no yes no yes no
scAPG [12] no no yes no yes no yes
FISTA-CP [6] no no no no no yes no

τFISTA−CP = 1
Lf
. Moreover, when μ = 0, non-monotone

original fixed-step ACGM coincides with the original for-
mulation of FISTA in [10]. Adding monotonicity yields
MFISTA [18]. Also for μ = 0, but without the fixed-step
restriction, the original non-monotone ACGM in estimate
sequence form reduces to the robust FISTA-like algorithm
in [16], whereas in extrapolated form it is a valuable sim-
plification of the method introduced in [15].
When dealing with differentiable objectives, we can assume

without loss of generality that Ψ(x) = 0 for all x ∈ Rn. In
what follows, we consider generalized non-monotone fixed-
step ACGM in estimate sequence form, unless stated other-
wise. By substituting the local upper bound functions uk+1(x)
at every iteration k ≥ 0 with any functions that produce
iterates satisfying the descent condition, which means in this
context that

f(xk+1) ≤ f(yk+1)−
1

2Lk+1
‖∇f(yk+1)‖22,

where xk+1 is given by line 5 of Algorithm 1, we obtain
the “general scheme of optimal method” in [13]. Both the
monotone and non-monotone variants adhere to this scheme.
The correspondence between Nesterov’s notation in [13] and
ours is, for all k ≥ 0, given by:

λFGMk =
AACGM0

AACGMk

,

φFGMk (x) =
1

AACGMk

ψACGMk (x), x ∈ Rn

yFGMk = yACGMk+1 ,

αFGMk =
aACGMk+1

AACGMk+1

=
1

tACGMk+1

,

γFGMk =
γACGMk

AACGMk

.

The remaining state parameters are identical. Note that FGM
makes the assumption that AACGM0 > 0, which is incompatible
with the original specification of ACGM in [17]. With the
above assumption, the non-monotone variant (Algorithm 2)
is in fact identical to “constant step scheme I” in [13].
Similarly, the extrapolated form of fixed-step non-monotone
ACGM (Algorithm 3) corresponds exactly to “constant step
scheme II” in [13] while fixed-step border-case non-monotone
ACGM (Algorithm 4) is identical to “constant step scheme
III” in [13]. We note that for both the RR and EN problems,

regardless of the actual performance of BACGM, the conver-
gence guarantees of BACGM are poorer than those of ACGM
with A0 = 0. This discrepancy in guarantees is supported
theoretically because, in the most common applications, the
ISD term in Δ0 is large compared to the DST. This extends
to the fixed-step setup and challenges the notion found in the
literature (e.g., [24]) that for strongly-convex functions, FGM
and FISTA-CP are momentum methods that take the form of
the “constant step scheme III” in [13]. In fact, the border-
case form may constitute the poorest choice of parameters A0
and γ0 in many applications. Indeed, the worst-case results in
Theorem 2 favor A0 = 0.
The FGM variant in [14] is a particular case of non-

monotone ACGM with variable step size (Algorithm 2) when
the objective is non-strongly convex (μ = 0) and the step size
search parameters are set to rACGMu = 2 and rACGMd = 0.5.
The notation correspondence is as follows:

xFGMk+1,i = x
ACGM
k+1 , yFGMk,i = yACGMk+1 ,

aFGMk,i = âACGMk+1 , 2iLf = L̂ACGMk+1 .

The remaining parameters are identical.
Thus, by relaxing the assumption that A0 = 0, we have

devised a generalized variant of ACGM that effectively encom-
passes FGM [13], with its recently introduced variant [14], as
well as the original FISTA [10], including its adaptive step-size
variants [15], [16], the monotone version MFISTA [18], and
the strongly convex extension FISTA-CP [6]. A summary of
how the above first-order methods relate to generalized ACGM
is given in Table VI.
Due to its adaptivity, generalized ACGM is not limited to

the composite problem framework in Subsection I-A. It is also
guaranteed to converge on problems where the gradient of f
is not globally Lipschitz continuous. Constituent function f
needs to have Lipschitz gradient only in the area explored by
the algorithm.
In terms of usability, generalized ACGM does not require a

priori knowledge of Lipschitz constant Lf , or a lower estimate
of it, beforehand. Thus, the proposed method can be utilized
without any quantitative knowledge of the problem. Lack of
information does not hinder generalized ACGM more than any
other primal first-order method while additional information,
such as values of strong convexity parameters μf and μΨ or
even an accurate estimate L0 of the curvature around x0, leads
to a state-of-the-art performance increase unsurpassed for its
class.

14

APPENDIX A
PROOF OF THEOREM 1

We assume k ≥ 0 throughout this proof. The descent
condition assumption implies lower bound property (10). Let
the tightness of this lower bound be given by the residual R(x)
as

R(x)
def
= F (x)−RLk+1+μΨ,yk+1

(x), x ∈ Rn.

where wk+1(x) is given by (10). From (13) and (19) we have
that γk+1 ≥ γk. Along with AkR(xk) + ak+1R(x∗) ≥ 0, we
obtain, using the proof mechanics of [17, Theorem 1], that

Ak(F (xk)− F (x∗))−Ak+1(F (zk+1)− F (x∗)) ≥
≥ γk+1

2
‖vk+1 − x∗‖22 −

γk
2
‖vk − x∗‖22 +Ak+1 + Bk+1.

(53)
Combining F (xk+1) ≤ F (zk+1) with (53) gives the desired
result.

APPENDIX B
PROOF OF THEOREM 2

The non-negativity of the weights (13) implies that γk ≥ γ0
for all k ≥ 0. Combined with (30), we have

Ak+1 ≥ Ak +
γ0

2(Lk+1 − μf)

+

√
γ20

4(Lk+1 − μf)2
+

Akγ0
(Lk+1 − μf)

, k ≥ 0.

As we can see from Algorithm 2, scaling A0 and γ0 by a
fixed factor does not alter the behavior of generalized ACGM.
Additionally, γ0 is guaranteed to be non-zero. To simplify cal-
culations, we introduce the normalized convergence guarantees
Āk

def
= Ak/γ0 for all k ≥ 0.

Regardless of the outcome of individual line-search calls,
the growth of the normalized accumulated weights obeys

Āk+1 ≥ Āk +
1

2(Lu − μf)
+

√
1

4(Lu − μf)2
+

Āk

(Lu − μf)

for all k ≥ 0. Taking into account that A0 ≥ 0, we obtain by
induction that

Āk ≥
(k + 1)2

4(Lu − μf)
, k ≥ 1. (54)

From assumption γ0 ≥ A0μ, (21) implies γk ≥ Akμ for all
k ≥ 0. Hence

a2k+1
A2k+1

(30)
=

γk+1
(Lk+1 + μΨ)Ak+1

≥ μ

Lk+1 + μΨ
= qk+1 ≥ qu,

for all k ≥ 0. Since A0 ≥ 0, we have that Ā1 ≥ 1
Lu−μf

. By
induction, it follows that

Āk ≥
1

Lu − μf
(1−√qu)

−(k−1), k ≥ 1. (55)

Substituting (54) and (55) in (3) completes the proof.

REFERENCES
[1] A. Nemirovski and D.-B. Yudin, Problem complexity and method

efficiency in optimization. New York, NY: John Wiley & Sons, 1983.
[2] Y. Nesterov, “Subgradient methods for huge-scale optimization prob-

lems,” Math. Program., Ser. A, vol. 146, no. 1-2, pp. 275–297, 2014.
[3] ——, “A method of solving a convex programming problem with

convergence rate O(1/k2),” Dokl. Math., vol. 27, no. 2, pp. 372–376,
1983.

[4] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” Math. Program.
Comput., vol. 3, no. 3, pp. 165–218, 2011.

[5] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Found. Trends Mach. Learn., vol. 8, no. 3-4, pp. 231–357, 2015.

[6] A. Chambolle and T. Pock, “An introduction to continuous optimization
for imaging,” Acta Numer., vol. 25, pp. 161–319, 2016.

[7] N. Parikh, S. P. Boyd et al., “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 127–239, 2014.

[8] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimiza-
tion for big data analytics:(statistical) learning tools for our era of data
deluge,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 18–31, Sept.
2014.

[9] Y. Nesterov, “Gradient methods for minimizing composite functions,”
Math. Program., Ser. B, vol. 140, no. 1, pp. 125–161, 2013.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[11] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Ser. B. Methodol., vol. 58, no. 1, pp. 267–288, 1996.

[12] Q. Lin and L. Xiao, “An adaptive accelerated proximal gradient method
and its homotopy continuation for sparse optimization,” in ICML, 2014,
pp. 73–81.

[13] Y. Nesterov, Introductory Lectures on Convex Optimization. Applied
Optimization, vol. 87. Boston, MA: Kluwer Academic Publishers, 2004.

[14] Y. Nesterov and S. Stich, “Efficiency of accelerated coordinate descent
method on structured optimization problems,” Université catholique de
Louvain, Tech. Rep. 03, 2016.

[15] K. Scheinberg, D. Goldfarb, and X. Bai, “Fast first-order methods
for composite convex optimization with backtracking,” Found. Comput.
Math., vol. 14, no. 3, pp. 389–417, 2014.

[16] M. I. Florea and S. A. Vorobyov, “A robust FISTA-like algorithm,” in
Proc. of IEEE Intern. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, New Orleans, USA, pp. 4521–4525.

[17] ——, “An accelerated composite gradient method for large-scale com-
posite objective problems,” IEEE Transactions on Signal Processing
(accepted), May 2018.

[18] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,”
vol. 18, no. 11, pp. 2419–2434, 2009.

[19] A. Chambolle and C. Dossal, “On the convergence of the iterates of
the “fast iterative shrinkage/thresholding algorithm”,” J. Optim. Theory
Appl, vol. 166, no. 3, pp. 968–982, 2015.

[20] R. T. Rockafellar, Convex Analysis. Princeton University Press,
Princeton, NJ, 1970.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. San Francisco, CA: Morgan Kaufmann
Publishers, 2011.

[22] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. R. Stat. Soc. Ser. B. Methodol., vol. 67, no. 2, pp. 301–
320, 2005.

[23] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with
Sparsity: The Lasso and Generalizations. CRC Press, 2015.

[24] W. Su, S. Boyd, and E. J. Candès, “A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights,” vol. 17,
pp. 1–43, 2016.

Publication IV

Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov.

Restoration of Ultrasound Images using Spatially-variant Kernel Deconvo-

lution. In IEEE International Conference on Acoustics, Speech and Signal

Processing, Calgary, Canada, pp. 796–800, Apr. 2018.

c© 2018 IEEE

Reprinted with permission.

189

RESTORATION OF ULTRASOUND IMAGES USING SPATIALLY-VARIANT KERNEL
DECONVOLUTION

Mihai I. Florea� Adrian Basarab† Denis Kouamé† Sergiy A. Vorobyov�

� Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
†IRIT UMR CNRS 5505, University of Toulouse, Toulouse, France

ABSTRACT

Most of the existing ultrasound image restoration methods consider
a spatially-invariant point-spread function (PSF) model and circulant
boundary conditions. While computationally efficient, this model is
not realistic and severely limits the quality of reconstructed images.
In this work, we address ultrasound image restoration under the hy-
pothesis of piece-wise linear vertical variation of the PSF based on
a small number of prototypes. No assumption is made on the struc-
ture of the prototype PSFs. To regularize the solution, we use the
classical elastic net constraint. Existing methodologies are rendered
impractical either due to their reliance on matrix inversion or due to
their inability to exploit the strong convexity of the objective. There-
fore, we propose an optimization algorithm based on the Accelerated
Composite Gradient Method, adapted and optimized for this task.
Our method is guaranteed to converge at a linear rate and is able to
adaptively estimate unknown problem parameters. We support our
theoretical results with simulation examples.

Index Terms— Accelerated Composite Gradient Method,
point-spread function, reconstruction, restoration, spatially vary-
ing, ultrasound

1. INTRODUCTION

Ultrasound imaging is an efficient, cost effective, and safe medical
imaging modality. It is widely used for various clinical applications
and is especially well suited for the diagnosis of soft tissue patholo-
gies. These advantages are however mitigated by the relative low
image quality, in terms of signal-to-noise ratio, low contrast, and
poor spatial resolution. The main factors affecting the quality of
ultrasound images are the finite bandwidth and aperture of the imag-
ing transducer as well as the physical phenomena (e.g., diffraction
and attenuation) related to the propagation of sound waves in hu-
man tissues. Consequently, a rich body of scientific literature ad-
dresses ultrasound image reconstruction, i.e., the estimation of the
tissue reflectivity function (TRF) from ultrasound images. Gener-
ally, existing approaches turn the TRF estimation into a deconvo-
lution problem, by considering, under the first order Born approxi-
mation, that the formation of ultrasound images follows a 2D con-
volution model between the TRF and the system point-spread func-
tion (PSF). The PSF can be either estimated in a pre-processing step
(see, e.g., [1–6]) or jointly estimated with the TRF, i.e., blind de-
convolution (see, e.g., [7–10]). Mainly for computational reasons,
most of the existing ultrasound image restoration methods consider
a spatially-invariant PSF model and circulant boundary conditions.

Part of this work has been supported by the Academy of Finland, under
grant no. 299243, and CIMI Labex, Toulouse, France, under grant ANR-11-
LABX-0040-CIMI within the program ANR-11-IDEX-0002-02.

However, independently of the acquisition setup, stationary convolu-
tion cannot accurately model the formation of ultrasound images. To
overcome this issue, ultrasound images are generally divided in lo-
cal regions prior to deconvolution, assuming a block-wise spatially-
invariant PSF (see, e.g., [11]). To avoid issues related to stitching to-
gether the results of block-wise techniques, a few attempts have been
very recently made in [12] and [13] to account for non-stationary
convolution models in ultrasound imaging. The former relies on a
very restrictive model with few degrees of freedom whereas the de-
convolution method in the latter is computationally intractable for
large images.

This paper proposes an optimization algorithm adapted to ul-
trasound image restoration under the hypothesis of spatially-variant
PSF. The convolution kernel is assumed to be horizontally invariant
but to vary vertically as a linear combination of neighboring proto-
type point-spread functions (PSF). To regularize the solution of the
inverse problem generated by this model, we use herein the classical
elastic net constraint [14]. Elastic net ensures a compromise between
the �1-norm promoting sparse solutions and the �2-norm imposing
smooth results. Its interest in ultrasound imaging has been already
shown through different applications, e.g. compressed sensing [15],
beamforming [16] or clutter filtering [17]. The elastic net regularized
inverse problem has a non-differentiable objective and a large num-
ber of optimization variables. Therefore, it can only be addressed
using proximal gradient schemes. The proposed method, based on
the Accelerated Composite Gradient Method (ACGM) [18, 19], is
able to simultaneously exploit the strong convexity of the problem
and automatically provide a tight local estimate of the otherwise un-
known Lipschitz constant.

2. PROBLEM FORMULATION

The acquisition model considered in this work is given by

y = HPx+ n, (1)

where y denotes the observed image, x is the tissue reflectivity func-
tion (TRF) to be recovered and n represents independent identically
distributed additive white Gaussian noise. All images are of the
same size, x,y,n ∈ Df

def
= R

mt×nt , wheremt denotes the height
(number of pixels along the axial dimension) and nt gives the width
(lateral pixel count) of the TRF. The linear operator P pads the TRF
with amr×nr boundary, yielding an image of sizemp×np, where
mp = mt + 2mr and np = nt + 2nr , respectively. Our model
accounts for any simple form of padding1.

The linear operatorH performs the spatially-variant kernel con-
volution. Within a classical pulse-echo acquisition scheme, focused

1See [20] for a detailed discussion on simple padding and its implemen-
tation.

������	�	����	����	�����
���

���
������� ��������
��

ultrasound waves are sequentially emitted by a sliding active sub-
aperture. For each emission, the raw data is collected by the elements
within the active aperture and further beamformed to compute an A-
line representing one column of the ultrasound image. For this rea-
son, the PSF can be reasonably considered spatially-invariant in the
lateral (horizontal) direction. However, despite dynamic focusing in
reception and time gain compensation, the PSF strongly varies in
the axial (vertical) direction, i.e., in the direction of ultrasound wave
propagation, degrading spatial resolution away from the focal depth.

In our model, we account for this axial variation by assuming
that a small number nk of prototype kernels is known, each proto-
type PSFKq having a center at row cq for all q ∈ {1, ..., nk}. The
prototype PSFs are sorted by cq and thus the values of cq form a
partition of the set of rows. The kernels of each row are computed
using linear interpolation. Specifically, kernels above c1 are equal to
K1, those below cnk equalKnk . The kernels of all other rows are
obtained as a convex combination (alpha-blending) of the prototype
PSF above and the one below that row, the proportion given by the
relative distance to the two centers.

Every row produced by the linear operatorH is obtained by tak-
ing the corresponding row in the input image (padded TRF) along
with all pixels within a boundary of size mp × np and performing
discrete valid convolution with the kernel pertaining to that row, ob-
tained as explained above. It follows that the padding boundary size
has to match the prototype PSF radii. The use of discrete valid con-
volution is the reason behind the need for padding the TRF with P .

Our acquisition model can be used to construct a deconvolution
problem which seeks to minimize the additive white Gaussian noise
subject to regularization. When employing the elastic net, the TRF
can be obtained by solving the following optimization problem

min
x∈Df

1

2
‖HPx− y‖22 + λ1‖x‖1 +

λ2
2
‖x‖22. (2)

3. PROPOSED METHOD

To efficiently solve optimization problem (2) for any non-negative
value of λ2, we propose a variant of the Accelerated Composite Gra-
dient Method (ACGM) [18,19] optimized for the elastic net2.

The objective F in problem (2) can be split into a quadratic func-
tion f and an elastic net regularizer Ψ as follows:

f(x) =
1

2
‖Ax− y‖22, Ψ(x) = λ1‖x‖1 +

λ2
2
‖x‖22, (3)

where A def
= HP . Function f is quadratic and consequently has

Lipschitz continuous gradient. The Lipschitz constant Lf is given
by σ2max(A), where σmax(A) is the maximum eigenvalue of oper-
ator A. In practice, σmax(A) may be intractable to compute and,
as we shall see, Lf need not be known at all to ACGM. However
it is known that operator A is ill-conditioned and we can assume
that function f has strong convexity parameter μf = 0. Elastic net
regularizer Ψ is not differentiable due to the l1 term but has strong
convexity parameter μΨ = λ2. Hence, the objective as a whole has
a strong convexity parameter of μ = μΨ = λ2.

ACGM does not require the exact form of the objective func-
tion. It instead relies on calls to its zeroth and first order operations,
collectively referred to as “oracle functions” [22]. The splitting of

2A simpler version of ACGMwas introduced in [21] to deal with the case
of λ2 = 0. The proposed method can be regarded as a computationally
efficient generalization of this earlier scheme.

the reconstruction problem in (3) yields four such oracle functions:
f(x), Ψ(x), ∇f(x), and proxτΨ(x), for x ∈ Rn and τ > 0. The
gradient is given by

∇f(x) = AT (Ax− y), (4)

whereAT = P THT . The proximal operator, defined as

proxτΨ(x)
def
= argmin

z∈Rmt×nt

(
Ψ(z) +

1

2τ
‖z − x‖22

)
, (5)

can be written in closed form (see also [19] and [23]) as

proxτΨ(x) =
1

1 + τλ2
Tτλ1(x), (6)

where the shrinkage operator Tτ (x) is given by

(Tτ (x))i,j def= (|xi,j | − τ)+ sgn(xi,j),

τ > 0, i ∈ {1, ...,mt}, j ∈ {1, ..., nt}.
(7)

The structure of the objective function makes it possible to re-
duce the computational complexity of ACGM by departing from the
oracle model. To estimate the local Lipschitz constant, operator A
has to be applied at every iteration k to the new iterate x(k+1). It
is computationally inexpensive to cache these results by maintaining
alongside the main iterate sequence x(k), k ∈ {0, ..., kmax} the se-
quence x̃(k) = Ax̃(k). ACGM can be brought into an extrapolated
form whereby an auxiliary point z(k+1) can be obtained through lin-
ear extrapolation from x(k) and x(k−1). The new iterate x(k+1) is
computed based on the gradient of f at z(k+1). The computational
intensity of gradient expression (4) can be reduced as follows:

∇f(z(k+1)) = AT (z̃(k+1) − y), (8)

where

z̃(k+1)
def
= Az(k+1) = x̃(k) + β(x̃(k) − x̃(k−1)), (9)

and β is the extrapolation factor.
The line-search stopping criterion [19] of ACGM at every itera-

tion k is given by

f(x(k+1)) ≤ f(z(k+1)) +∇f(z(k+1))T (x(k+1) − z(k+1))

+
L(k+1)

2
‖x(k+1) − z(k+1)‖22,

(10)
where L(k+1) is the Lipschitz constant estimate at iteration k. Sub-
stituting gradient expression (4) and rearranging terms yields

‖A(x(k+1) − z(k+1))‖22 ≤ L(k+1)‖x(k+1) − z(k+1)‖22. (11)

We obtain a computationally efficient expression by reusing the pre-
computed values x̃(k+1) and z̃(k+1) as

‖x̃(k+1) − z̃(k+1)‖22 ≤ L(k+1)‖x(k+1) − z(k+1)‖22. (12)

The global Lipschitz constant Lf can alternatively be expressed
as

Lf = sup
Df

‖Ax‖22
‖x‖22

. (13)

In practice, the estimates are below this value and we set the initial
one to

L(0) =
‖Ax0‖22
‖x0‖22

=
‖x̃0‖22
‖x0‖22

. (14)

Incorporating the above performance enhancements into ACGM
in extrapolated form yields the method listed in Algorithm 1.

���

Algorithm 1 Proposed method
1: Input: x0, λ1, λ2, kmax

2: x̃(0) := HPx(0)

3: x(−1) = x(0)

4: x̃(−1) = x̃0
5: L(0) = ‖x̃(0)‖22/‖x(0)‖22
6: q(0) = λ2

L(0)+λ2

7: t(0) = 0
8: for k = 0, ..., kmax − 1 do
9: α := 1− q(k)(t(k))2

10: L(k+1) := rdL
(k)

11: loop

12: q(k+1) := λ2
L(k+1)+λ2

13: t(k+1) := 1
2

(
α+

√
α2 + 4L(k+1)+λ2

L(k)+λ2
(t(k))2

)
14: β := t(k)−1

t(k+1)
1−q(k+1)t(k+1)

1−q(k+1)

15: z(k+1) := x(k) + β(x(k) − x(k−1))
16: z̃(k+1) := x̃(k) + β(x̃(k) − x̃(k−1))
17: τ := 1/L(k+1)

18: G := P THT (z̃(k+1) − y)

19: x(k+1) := 1
1+τλ2

Tτλ1(z(k+1) − τG)

20: x̃(k+1) := HPx(k+1)

21: if ‖x̃(k+1)−z̃(k+1)‖22 ≤ L(k+1)‖x(k+1)−z(k+1)‖22 then
22: Break from loop
23: else

24: L(k+1) := ruL
(k+1)

25: end if

26: end loop

27: end for
28: Output: x(kmax)

4. EXPERIMENTAL RESULTS

A three-step process was employed to simulate the RF ultrasound
image: i) the calculation of the spatially-variant prototype PSFs; ii)
the generation of the tissue reflectivity function (TRF); and iii) the
spatially-variant convolution between the PSFs and the TRF, follow-
ing the model described in (1) (Section 2).

The prototype PSFs were obtained in step i) using Field II, a
realistic state-of-the art simulator [24, 25]. The simulation involved
a linear 128-element ultrasound probe emitting ultrasound waves at
a nominal frequency of 3 MHz. The width of each element was
set to equal the wavelength (0.5 mm), while height was fixed at 5
mm. The distance between two consecutive elements was set to 0.1
mm. The transducer was excited using a two-period sinusoidal wave
of frequency 3 MHz. The backscattered RF signals were sampled
at a rate of 20 MHz. The prototype PSFs we obtained by placing
isolated scatterers in front of the transducer with a distance in depth
of 8.5 mm to each other. Ultrasound waves electronically focalized
at 47 mm from the probe were emitted and the received echoes were
statically focused prior to the delay-and-sum beamforming process.
Hann apodization was used both for the emission and the reception.

The resulting nk = 10 prototype PSFs are shown in Fig. 1. For
the purpose of visualizing the areas influenced by individual proto-
type PSFs, they are displayed after envelope detection and min-max
normalization centered at cq for all q ∈ {1, ..., nk} in Fig. 1(a). To
highlight the differences between individual prototype PSFs, they
are displayed separately in Fig. 1(b). The 5th prototype PSF (K5)

-10 0 10
Lateral distance [mm]

10

20

30

40

50

60

70

80

90

A
xi

al
 d

is
ta

nc
e

[m
m

]

(a)

PSF 1

-10 0 10

8

9

PSF 2

-10 0 10

17

18

PSF 3

-10 0 10

25

26

PSF 4

-10 0 10

34

35

PSF 5

-10 0 10

42

43

PSF 6

-10 0 10

51

52

PSF 7

-10 0 10

59

60

PSF 8

-10 0 10

68

69

PSF 9

-10 0 10

77

78

PSF 10

-10 0 10

85

86

(b)

Fig. 1. Prototype PSFs generated with Field II for nk = 10 depths at
regularly spaced intervals of 8.5 mm. (a) Global view, after demod-
ulation and min-max normalization, showing the location within the
image of the prototype PSF centers; (b) Individual view, showing the
spatial variance of the prototype PSFs.

Lateral distance [mm]A
xi

al
 d

is
ta

nc
e

[m
m

]

−10 −5 0 5 10

42

43

−10 −5 0 5 10

42

43

Fig. 2. The 5th prototype PSFK5 (left) and its demodulated version
(right).

located at 43 mm from the probe was used in spatially-invariant de-
convolution experiments. It is shown both in native form and after
envelope detection in Fig. 2.

The TRF was obtained in step ii) following the classical pro-
cedure employed in ultrasound image simulation. A collection of
uniform randomly located scatterers with zero-mean Gaussian ran-
dom amplitudes has been generated. The standard deviation used to
generate the amplitude of one scatterer depended on its location and
was related, as suggested in the Field II simulator, to a digital image
obtained from MRI and CT scans of a human kidney tissue. The
number of scatterers was sufficiently large (105) to ensure fully de-
veloped speckle. The scatterer map was finally linearly interpolated
onto a rectangular grid resulting into the TRF shown in Fig. 3(a).

In step iii), an ultrasound image was simulated from the TRF
using the model in (1) to produce a starting point (x0) for the decon-
volution experiments. First, the TRF was padded with a symmetric
boundary. Next, the padded image was convolved with the spatially
varying convolution operatorH , based on the prototype PSFs shown
in Fig. 1. To simplify the hyperparameter tuning process, we have
scaledH to ensure that L(0), as given by (14), is equal to 1. Finally,
white Gaussian noise was added to the convolved image, such that
the signal-to-noise ratio is 40 dB. The simulated ultrasound image is
shown in B-mode representation in Fig. 3(b).

We have conducted two deconvolution experiments. Both used
as starting point the simulated ultrasound image shown in Fig. 3(b)
and the same values of the hyperparameters, λ1 = 0.005 and λ2 =
0.01, which were found by manual tuning to give the best results.

First, we have compared our method, which is able to inte-
grate the spatial variability of the kernels in the deconvolution

���

(a) (b)

(c) (d)

Fig. 3. (a) Ground truth of the tissue reflectivity function (TRF); (b) Observed B-mode image simulated from on the TRF in (a) using the image
acquisition model in (1) employing the spatially-variant convolution operation based on the prototype PSFs in Fig. 1; (c) Spatially-invariant
deconvolution result obtained using the fixed kernelK5 in Fig. 2; (d) Spatially-variant deconvolution result using our method.

process, with ACGM employing a spatially-invariant blur operator
H . Two restored images obtained after 150 iterations, are displayed
in Fig. 3(c, d). The image in Fig. 3(c) was estimated considering a
spatially-invariant PSF (K5 at 43mm depth) and the one in Fig. 3(d)
was obtained using our method. The quality of the deconvolution
can be appreciated by comparing the restored images in Fig. 3(c, d)
with the true TRF in Fig. 3(a). Note that the deconvolution re-
sults are also shown in B-mode. While the deconvolved images are
similar in the vicinity of the focal point, our method manages to
restore image features at the vertical extremities (Fig. 3(d)). These
features are barely discernible both in the blurred image shown
(Fig. 3(b)) as well as in the spatially-invariant PSF reconstruction
(Fig. 3(c)). The simulation results support our previous claim that
reconstruction quality of an image patch depends on the similarity
between the blurring and the deblurring kernels applied to it, clearly
demonstrating the superiority of our model.

The second experiment concerned optimization algorithms. We
have compared the convergence behavior of our method to the state-
of-the-art applicable to our model, in this case the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) [26]. Fig. 4 shows the
objective function values across iterations for the two methods. The
convergence plot required an optimum value estimate x̂∗, which was
obtained by running ACGM until floating point precision was ex-
hausted. As predicted theoretically in [18, 19], the convergence rate
of ACGM is linear. FISTA is unable to exploit the strong convexity
of the objective and lags behind considerably.

0 50 100 150
10 0

10 5

10 10

10 15

ACGM
FISTA

Fig. 4. Convergence rate of our method compared to FISTA.

5. CONCLUSION

We have devised a methodology for spatially-variant deconvolution
of ultrasound images. Our method is theoretically guaranteed to con-
verge linearly regardless of the structure of input data. In this respect,
the reliability of our method is particularly of value to the stringent
demands of the medical ultrasonography industry. Simulation re-
sults show that reconstruction is not only computationally tractable
but has a rate that is competitive with existing approaches relying
on far more restrictive assumptions. For that matter, our approach is
able to address far more complex imaging models, even those that
do not require horizontally-invariant PSF.

���

6. REFERENCES

[1] J. Ng, R. Prager, N. Kingsbury, G. Treece, and A. Gee,
“Wavelet restoration of medical pulse-echo ultrasound images
in an EM framework,” IEEE Trans. Ultrason. Ferroelectr.
Freq. Control, vol. 54, no. 3, pp. 550–568, 2007.

[2] R. Rangarajan, C. V. Krishnamurthy, and K. Balasubramaniam,
“Ultrasonic imaging using a computed point spread function,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no.
2, pp. 451–464, Feb. 2008.

[3] H.-C. Shin, R. Prager, J. Ng, H. Gomersall, N. Kingsbury,
G. Treece, and A. Gee, “Sensitivity to point-spread function
parameters in medical ultrasound image deconvolution,” Ul-
trasonics, vol. 49, no. 3, pp. 344 – 357, 2009.

[4] M. Alessandrini, S. Maggio, J. Poree, L. D. Marchi, N. Spe-
ciale, E. Franceschini, O. Bernard, and O. Basset, “A restora-
tion framework for ultrasonic tissue characterization,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 11, pp.
2344–2360, 2011.

[5] C. Dalitz, R. Pohle-Frohlich, and T. Michalk, “Point spread
functions and deconvolution of ultrasonic images,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 62, no. 3, pp.
531–544, Mar. 2015.

[6] N. Zhao, A. Basarab, D. Kouamé, and J.-Y. Tourneret, “Joint
segmentation and deconvolution of ultrasound images using
a hierarchical Bayesian model based on generalized Gaussian
priors,” IEEE Trans. Image Process., vol. 25, no. 8, pp. 3736–
3750, 2016.

[7] O. Michailovich and D. Adam, “A novel approach to the 2-
D blind deconvolution problem in medical ultrasound,” IEEE
Trans. Med. Imag., vol. 24, pp. 86–104, Jan. 2005.

[8] O. Michailovich and A. Tannenbaum, “Blind deconvolution
of medical ultrasound images: A parametric inverse filtering
approach,” IEEE Trans. Image Process., vol. 16, no. 12, pp.
3005–3019, 2007.

[9] R. Jirik and T. Taxt, “Two dimensional blind Bayesian decon-
volution of medical ultrasound images,” IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control, vol. 55, no. 10, pp. 2140–2153,
2008.

[10] C. Yu, C. Zhang, and L. Xie, “A blind deconvolution approach
to ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr.
Freq. Control, vol. 59, no. 2, pp. 271–280, 2012.

[11] J. G. Nagy and D. P. O’Leary, “Restoring images degraded by
spatially variant blur,” SIAM J. Sci. Comput., vol. 19, no. 4, pp.
1063–1082, 1998.

[12] O. V. Michailovich, “Non-stationary blind deconvolution of
medical ultrasound scans,” in Proc. SPIE, Mar. 2017, vol.
101391C.

[13] L. Roquette, M. M. J.-A. Simeoni, P. Hurley, and A. G. J.
Besson, “On an Analytical, Spatially-Varying, Point-Spread-
Function,” in Proc. IEEE Ultrason. Symp. (US), 2017.

[14] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” J. Roy. Stat. Soc. Ser. B, vol. 67, no. 2, pp.
301–320, 2005.

[15] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain
compressive sampling for ultrasound imaging,” Advances in
Acoustics and Vibration, vol. 12, pp. 1–16, 2012.

[16] T. Szasz, A. Basarab, M.-F. Vaida, and D. Kouamé, “Elastic-
net based beamforming in medical ultrasound imaging (regular
paper),” in Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), Apr.
2016, Prague, Czech Republic, pp. 477–480.

[17] B. Byram, “Aperture domain model image reconstruction (ad-
mire) for improved ultrasound imaging,” in Proc. IEEE Int.
Conf. Acoust., Speech, and Signal Processing (ICASSP), Mar.
2017, pp. 6250–6253.

[18] M. I. Florea and S. A. Vorobyov, “An accelerated compos-
ite gradient method for large-scale composite objective prob-
lems,” arXiv preprint arXiv:1612.02352, Dec. 2016.

[19] M. I. Florea and S. A. Vorobyov, “A generalized accelerated
composite gradient method: Uniting Nesterov’s Fast Gradient
Method and FISTA,” arXiv preprint arXiv:1705.10266, May
2017.

[20] M. I. Florea, A. Basarab, D. Kouamé, and S. A. Vorobyov,
“An axially-variant kernel imaging model for ultrasound image
reconstruction,” arXiv preprint arXiv:1801.08479, Jan. 2018.

[21] M. I. Florea and S. A. Vorobyov, “A robust FISTA-like al-
gorithm,” in Proc. IEEE Int. Conf. Acoust., Speech, and Sig-
nal Processing (ICASSP), Mar. 2017, New Orleans, USA, pp.
4521–4525.

[22] A. Nemirovski, D. B. Yudin, and E. R. Dawson, Problem com-
plexity and method efficiency in optimization, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 1983.

[23] N. Parikh, S. P. Boyd, et al., “Proximal algorithms,” Founda-
tions and Trends in optimization, vol. 1, no. 3, pp. 127–239,
2014.

[24] J. A. Jensen and N. B. Svendsen, “Calculation of pressure
fields from arbitrarily shaped, apodized, and excited ultrasound
transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,
vol. 39, no. 2, pp. 262–267, Mar. 1992.

[25] J. A. Jensen, “Field: A program for simulating ultrasound sys-
tems,” Med. Biol. Eng. Comput., vol. 34, pp. 351–353, 1996.

[26] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM J.
Imag. Sci., vol. 2, no. 1, pp. 183–202, 2009.

�

Publication V

Mihai I. Florea, Adrian Basarab, Denis Kouamé, and Sergiy A. Vorobyov.

An Axially Variant Kernel Imaging Model Applied to Ultrasound Image

Reconstruction. IEEE Signal Processing Letters, vol. 25, no.7, pp. 961–

965, Jul. 2018.

c© 2018 IEEE

Reprinted with permission.

197

IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 7, JULY 2018 961

An Axially Variant Kernel Imaging Model Applied to
Ultrasound Image Reconstruction

Mihai I. Florea , Student Member, IEEE, Adrian Basarab , Member, IEEE,
Denis Kouamé, Member, IEEE, and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—Existing ultrasound deconvolution approaches unre-
alistically assume, primarily for computational reasons, that the
convolution model relies on a spatially invariant kernel and cir-
culant boundary conditions. We discard both restrictions and in-
troduce an image formation model applicable to ultrasound imag-
ing and deconvolution based on an axially varying kernel, which
accounts for arbitrary boundary conditions. Our model has the
same computational complexity as the one employing spatially
invariant convolution and has negligible memory requirements.
To accommodate the state-of-the-art deconvolution approaches
when applied to a variety of inverse problem formulations, we also
provide an equally efficient adjoint expression for our model. Sim-
ulation results confirm the tractability of our model for the decon-
volution of large images. Moreover, in terms of accuracy metrics,
the quality of reconstruction using our model is superior to that
obtained using spatially invariant convolution.

Index Terms—Axially varying, deconvolution, forward model,
kernel, matrix-free, point-spread function, ultrasound.

I. INTRODUCTION

U LTRASOUND imaging is a medical imaging modality
widely adopted due to its efficiency, low cost, and safety.

These advantages come at the expense of image quality. Conse-
quently, the accurate estimation of the tissue reflectivity function
(TRF) from ultrasound images is a subject of active research.
Generally, the existing approaches assume that the formation of
ultrasound images follows a two-dimensional (2-D) convolution
model between the TRF and the system kernel. The convolution
model is further constrained for computational reasons to have
a spatially invariant kernel and circulant boundary conditions
(see, e.g., [1]–[6]).

Pulse-echo emission of focused waves still remains the most
widely used acquisition scheme in ultrasound imaging. It con-
sists of sequentially transmitting narrow-focused beams. For
each transmission centered at a lateral position, the raw data are

Manuscript received January 31, 2018; revised March 26, 2018; accepted
March 26, 2018. Date of publication April 9, 2018; date of current version May
23, 2018. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. James E. Fowler. This work was supported
in part by the Academy of Finland under Grant 299243 and in part by the CIMI
Labex, Toulouse, France, under Grant ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02. (Corresponding author: Mihai I. Florea.)

M. I. Florea and S. A. Vorobyov are with the Department of Signal Process-
ing and Acoustics, Aalto University, Aalto FI-00076, Finland (e-mail:, mihai.
florea@aalto.fi; sergiy.vorobyov@aalto.fi).

A. Basarab and D. Kouamé are with the IRIT, CNRS UMR 5505, Uni-
versity of Toulouse, Toulouse 31062, France (e-mail:,basarab@irit.fr; kouame
@irit.fr).

Digital Object Identifier 10.1109/LSP.2018.2824764

used to beamform one radio frequency (RF) signal. Given the
repeatability of the process in the lateral direction, the kernels do
not vary laterally. However, despite dynamic focusing in recep-
tion and time gain compensation, the kernels become wider as
we move away from the focal depth, thus, degrading the spatial
resolution and motivating the proposed kernel variation model.

Previous works accounted for this variation by assuming ker-
nel invariance over local regions and performing deconvolution
blockwise (e.g., [7]). Very recently, ultrasound imaging convo-
lution models with continuously varying kernels were proposed
in [8] and [9]. However, the model presented in [8] makes the
overly restrictive assumption that the spatially varying kernel
is obtained from a constant reference kernel modulated by the
exponential of a fixed discrete generator scaled by the varying
kernel center image coordinates. Therefore, it does not take into
account the depth-dependent spatial-resolution degradation ex-
plained previously. On the other hand, the deconvolutionmethod
proposed in [9] has an iteration complexity proportional to the
cube of the number of pixels in the image, limiting its applica-
bility to very small images.

The contributions of this letter are as follows.
1) We propose a novel axially variant kernel ultrasound im-

age formation model (see Section III).
2) Our model is linear and may be implemented as a ma-

trix. However, the matrix form does not scale because its
complexity is proportional to the square of the number
of pixels in the image. Therefore, we provide an efficient
matrix-free implementation of axially varying convolu-
tion that entails the same computational cost as spatially
invariant convolution (see Section III-B).

3) The deconvolution problem is ill-posed and many decon-
volution models can only be solved approximately using
proximal-splitting methods (see [10] and [11] and refer-
ences therein) that compute the gradient of a data-fidelity
term at every iteration. The data-fidelity gradient expres-
sion includes calls to both the model operator and its ad-
joint. We express this adjoint operator in a form of equal
complexity to that of the forward model operator (see
Section IV).

4) We confirm using simulation results that deconvolution
with our model is tractable even for large images and
produces results superior to those obtained by using the
spatially invariant model (see Section V).

II. NOTATION

In this letter, images (ultrasound images and TRFs) are vec-
torized in column-major order but referenced in 2-D form. For

1070-9908 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

962 IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 7, JULY 2018

Fig. 1. (a) Convolving test image a with a Gaussian kernel k. The inner
rectangle represents valid convolution, whereas the outer one marks full con-
volution. (b) Applying the full-width window operator, followed by a full-
width zero-padding operator on test image a. Here, black and white corre-
spond to values of 1 and 0, respectively. Kernel k is displayed after min–max
normalization.

instance, image v ∈ Rm v nv corresponds to an mv × nv 2-D
image and has the pixel value at coordinates (i, j) given by
vm v (j−1)+i . However, for clarity of exposition, we denote it as
a 2-D object v ∈ Rm v ×nv , with the pixel value at location (i, j)
given by vi,j . Bold marks this artificial indexing. Similarly, lin-
ear operators are matrices but referred to as 4-D tensors, e.g.,
O : Rm v ×nv → Rm w ×nw denotes O ∈ Rm v nv ×m w nw .

In the sequel, we define several classes of linear operators
that constitute the mathematical building blocks of our pro-
posed model and its analysis. Note that these are more general
than normal linear operators because their dimensions not only
depend on those of their parameters but also on the dimensions
of their arguments.

A. Convolution Operators

For all mk , nk ≥ 1, all kernels k ∈ Rm k ×nk, and all ma ≥
mk , na ≥ nk , we define the linear operators C1(k) and C2(k)
as

C1(k)a
def
= k ∗1 a, C2(k)a

def
= k ∗2 a

for all a ∈ Rm a ×na, where operations ∗1 and ∗2 denote (dis-
crete) valid convolution and full convolution, respectively,
defined as

(k ∗1 a)i,j
def
=

m k∑
p=1

nk∑
q=1

kp,qai−p+m k ,j−q+nk

i ∈ {1, . . ., ma −mk + 1}, j ∈ {1, . . ., na − nk + 1}

(k ∗2 a)i,j
def
=

p̄ i∑
p=pi

q̄j∑
q=qj

kp,qai−p+1,j−q+1

i ∈ {1, . . ., ma + nk − 1}, j ∈ {1, . . ., na + nk − 1}
pi = max{1, i−ma + 1}, p̄i = min{i, mk}
qj = max{1, j − na + 1}, q̄j = min{j, nk}.

The difference between the two forms of convolution is exem-
plified in Fig. 1(a). Valid convolution is thereby the subset of
full convolution where every output pixel is expressed using the
entire kernel k.

B. Auxiliary Operators

For conciseness, we also introduce the following auxiliary
operators. None involve any computation in practice.

Let the rotation operator R(k) be given by

(R(k))i,j
def
= km k −i+1,nk −j+1

i ∈ {1, . . ., mk}, j ∈ {1, . . ., nk}.

To further simplify the notation, we denote the exception in-

dex set I(a, b, c)
def
= {1, . . ., c}\{a, . . ., b} for all 1 ≤ a ≤ b ≤

c. The full-width window and zero-padding operators are de-
fined as

(Ws(i1 , i2)a)i,j
def
= ai+i1 ,j , i ∈ {0, . . ., i2 − i1}

(Zs(i1 , i2)a)i,j
def
=

{
ai−i1 ,j , i ∈ {i1 , . . ., i2}

0, i ∈ I(i1 , i2 , ms)

where j ∈ {1, . . ., ns} and index s ∈ {t, p} stands for image
size quantities mt , mp , nt , and np . Their effect on a test image
is shown in Fig. 1(b).

III. AXIALLY VARIANT KERNEL BASED ULTRASOUND

IMAGING MODEL

We propose the following image formation model:

y =HPx+ n (1)

where x,y,n ∈ Rm t×nt denote the TRF to be recovered, the
observed RF image, and the independent identically distributed
additive white Gaussian noise (AWGN), respectively.

A. Padding

Operator P : Rm t×nt → Rm p ×np pads the TRF with a
boundary of width nr and height mr , yielding an image of
size mp = mt + 2mr times np = nt + 2nr . Padding in our ul-
trasound imaging model allows us to reconstruct a TRF of the
same size as the observed RF image. To this end, we must sim-
ulate the effects that the surrounding tissues have on the imaged
tissues. Padding is an estimation of the surrounding tissues using
information from the imaged TRF. This estimation only affects
the border of the reconstructed TRF. If this border information
is not required, the reconstructed TRF can simply be cropped
accordingly. The addition of padding to our model brings the
advantage of accommodating both options.

For computational reasons, P is assumed linear and separa-
ble along the dimensions of the image. Separability translates
to P = PmP n . Here, Pm pads every column of the image
independently by applying the 1-D padding (linear) operator
P(mt, mr). Consequently, when nt = 1 and nr = 0, operators
P andP(mt, mr) are equivalent. The row componentP n treats
every row as a column vector, appliesP(nt, nr) to it, and turns
the result back into a row.

Padding, either in 1-D or 2-D, can be performed without ex-
plicitly deriving an operator matrix. However, the matrix form
facilitates the formulation of the corresponding adjoint opera-
tor. Common matrix forms of operator P(mt, nt) are shown in
Fig. 2 for mt = 10 and mr = 3. These examples demonstrate
that the matrix form ofP(mt, mr) can be easily generated pro-
grammatically and, due to its sparsity, can be stored in memory

FLOREA et al.: AXIALLY VARIANT KERNEL IMAGING MODEL APPLIED TO ULTRASOUND IMAGE RECONSTRUCTION 963

Fig. 2. Common matrix forms of 1-D padding operator P(10, 3). Black
denotes a value of 1 and white denotes 0.

even for very large values of mt and mr . These properties ex-
tend to the matrix form of the 2-D padding operatorP by virtue
of the following result.

Theorem 1: Padding operatorP can be obtained programat-
ically in the form of a sparse matrix as

P = P(nt, nr)⊗P(mt, mr)

where ⊗ denotes the Kronecker product.
Proof. See [12, Appendix A]. �

B. Axially Varying Convolution

Linear operatorH: Rm p ×np → Rm t×nt performs the axially
variant kernel convolution.Wedefine it as the operationwhereby
each row ih ∈ {1, . . ., mt} of the output image is obtained by
the valid convolution between the kernel pertaining to that row
k(ih) ∈ Rm k ×nk , where mk = 2mr + 1 and nk = 2nr + 1,
and the corresponding patch in the input (padded) TRF. The
auxiliary operators defined in Section II enable us to write H
as a sum of linear operators based on the observation that the
concatenation of the output rows has the same effect as the
summation of the rows appropriately padded with zeros. Ana-
lytically, this translates to

H =

m t∑
ih =1

Z t(ih , ih)C1(k(ih))Wp(ih , ih + 2mr). (2)

In matrix form, operator H would need to store mpnpmtnt

coefficients and its invocation would entail an equal number of
multiplications. Its complexity would, thus, be greater than the
square of the number of pixels in the image, limiting its appli-
cability to medium-sized images. Using the matrix-free expres-
sion in (2), operator H performs mk nk mtnt multiplications
and has negligible memory requirements. Therefore, in ultra-
sound imaging, the matrix-free representation is not only vastly
superior to its matrix counterpart (because the kernel is much
smaller than the image), but also has the same computational
complexity as the spatially invariant convolution operation (ex-
cluding the unrealistic circulant boundary case).

Unlike the forward model which, by utilizing operators H
and P , can be computed exactly with great efficiency, many
deconvolution models can only be solved approximately using
proximal-splitting methods that optimize an objective contain-
ing a data-fidelity term φ(HPx− y). These methods employ
at every iteration the gradient of the data-fidelity term, given by

∇(φ(HPx− y)) = P THT (∇φ)(HPx− y). (3)

Note that, under our AWGN assumption, φ is the square of the
�2-norm but the results in this letter may be applied to other
additive noise models.

The gradient expression in (3) depends onH and P as well
as their adjoints. In the following, we derive computationally
efficient expressions for adjoint operatorsHT and P T .

IV. ADJOINT OF MODEL OPERATOR

By taking the adjoint in (2), we get

HT =

m t∑
ih =1

(Wp(ih , ih + 2mr))
T (C1(k(ih)))

T (Z t(ih , ih))
T .

To obtain a matrix-free representation of HT , we need the
corresponding matrix-free expressions for the adjoints of the
convolution and auxiliary operators. First, it trivially holds that
the window operator and the corresponding zero-padding oper-
ator are mutually adjoint expressed as

(Ws(i1 , i2))
T = Zs(i1 , i2). (4)

The adjoint of valid convolution can be linked to full convolution
as follows.

Theorem 2: The adjoint of valid convolution is full correla-
tion (convolution with the rotated kernel), namely

(C1(k))
T = C2(R(k)).

Proof. See [12, Appendix B]. �
Theorem 2 and (4) yield a matrix-free expression forHT in

the form of

HT =

m t∑
ih =1

Zp(ih , ih + 2mr)C2(R(k(ih)))W t(ih , ih).

(5)
Therefore, operatorsH andHT have equal computational com-
plexity. Moreover, they exhibit two levels of parallelism. The
convolution operators themselves are fully parallel and the com-
putations pertaining to each row ih can be performed concur-
rently. Thus, in matrix-free from, both operators benefit from
parallelization in the same way as their matrix counterparts.

The adjoint of the padding operator P T can be obtained ei-
ther directly through sparse matrix transposition or by applying
transposition in Theorem 1 as

P T = (P)T = (P(nt, nr))
T ⊗ (P(mt, mr))

T . (6)

Finally, note that whereas the column-major order assumption
can be made without loss of generality for operatorH , it is not
the case for the padding operatorP . In particular, the row-major
vectorization assumption reverses the terms in the Kronecker
product.

V. EXPERIMENTAL RESULTS

We have tested our model on a simulated ultrasound image
deconvolution problem. The ground truth TRF, as shown in
Fig. 3(a), was computed by interpolating to a grid Gaussian
distributed random scatterers with standard deviations (SDs)
determined by a pixel intensity map (see the kidney phantom
from the Field II simulator [13], [14]). The map is a patch from
an optical scan of human kidney tissue. The TRF is mt = 2480
by nt = 480 pixels in size, corresponding to 94 mm× 95 mm.

964 IEEE SIGNAL PROCESSING LETTERS, VOL. 25, NO. 7, JULY 2018

Fig. 3. (a) Ground truth (in B-mode) of the TRF. (b) Demodulated kernels k(ih) for 20 depths at regularly spaced intervals of 2 mm. (c) Observed B-mode image
simulated following the proposed axially variant convolution model. (d) AI deconvolution result, IR in B-mode, obtained with a fixed kernel equal to k(mt /2)
(the center kernel of the AV model). (e) AV deconvolution result, VR in B-mode, using our model. All the images are displayed using a dynamic range of 40 dB.
White rectangles mark the patches used in computing the quality metrics.

More TRFs and their corresponding simulation results can be
found in [12].

For every row ih ∈ {1, . . ., mt}, we have defined the kernel
k(ih) in (2) as

k(ih)i,j = ρμz ,σz
(i)ρμx ,σx (ih)(j) cos (2πf0/fs(i− μz))

where ρμ,σ (x) is a normalized Gaussian window, given by

ρμ,σ (x) =
1√
2πσ

exp
(
− (x−μ)2

2σ 2

)
, and parameters μz and μx are

the center coordinates of the kernel. Axial SDwas set to σz = σ1

and lateral SD to σx(ih) =
√
((2ih)/mt − 1)2(σ2

2 − σ2
1) + σ2

1 ,
with σ1 = mr /3 and σ2 = nr /3. Here, f0 = 3 MHz and fs =
20 MHz are the ultrasound central and sampling frequencies,
respectively. The depth-dependent width variation of the ker-
nel simulates the lateral spatial-resolution degradation when
moving away from the focus point, located in this experiment
at the center of the image (47 mm from the probe). The en-
velopes of these kernels at regular intervals across the image
are shown in Fig. 3(b). We chose symmetric padding, as illus-
trated in Fig. 2, because it is more realistic than circular padding
and zero padding and, by using a larger number of pixels from
the TRF, more robust to noise than replicate padding. A small
amount of noise was added such that the signal-to-noise ratio is
40 dB. The ultrasound image produced from the TRF using our
forward model in (1) is shown in Fig. 3(c).

To estimate the TRF, we have considered an elastic net [15]
regularized least squares (based on the AWGN assumption)
deconvolution model

min
x

1

2
‖HPx− y‖22 + λ1‖x‖1 +

λ2

2
‖x‖22

with manually tuned parameters λ1 = 2e− 3 and λ2 = 1e− 4.
For deconvolution, we have employed the accelerated com-
posite gradient method (ACGM) [16], [17] on account of its
low resource usage, applicability, adaptability, and near-optimal
linear-convergence rate on elastic net regularized optimization
problems.

Every iteration of ACGM is dominated by the compu-
tationally intensive data-fidelity gradient function ∇f(x) =
P THT (HPx− y). All other calculations performed by
ACGM are either negligible when compared to ∇f(x) or can
be reduced to subexpressions of ∇f(x).

Due to the efficient matrix-free expressions ofH in (2) and
HT in (5) as well as the sparse matrix implementation ofP and
P T (easily precomputed usingTheorem1 and (6), respectively),

TABLE I
ACCURACY METRICS COMPUTED FOR FIVE PATCHES IN THE RECONSTRUCTED

IMAGES IR AND VR

deconvolution with our model entails the same computational
cost as with a fixed-kernel model.

The result of axially invariant (AI) deconvolution, IR, is
shown in Fig. 3(d), and using our axially variant (AV) model,
VR, in Fig. 3(e), both after 150 iterations. The normalized root-
mean-square error (NRMSE) and the mean image structural
similarity (MSSIM) [18] accuracy metrics were computed for
five patches in IR and VR after Gaussian normalization and
envelope detection. The values are listed in Table I.

Our approach achieves almost perfect low-frequency recon-
struction across the TRF. The gain in reconstruction quality is
evident, especially in the upper and lower extremities, as can
be discerned both empirically from Fig. 3 as well as from the
accuracy metric discrepancy in the corresponding patches (see
Table I), particularly the NRMSE. Interestingly, even though the
two models differ only slightly at the center of the image, our
model performs better in that region as well.

VI. CONCLUSION

In this letter, we have proposed an axially varying convolution
forward model for ultrasound imaging. The physics of ultra-
sound image formation as well as our deconvolution simulation
results show the superiority of our model over the traditional
fixed-kernel model.

Our matrix-free formulae for the adjoints of the convolution
and auxiliary operators, necessary for the implementation of de-
convolution using proximal-splitting techniques, also constitute
a solid theoretical foundation for deconvolution methodologies
using more sophisticated models, particularly those where the
kernel also varies along the lateral direction. Furthermore, our
theoretical results and methodology are not restricted to ultra-
sound imaging only and may be extrapolated to other imaging
modalities and applications as well.

FLOREA et al.: AXIALLY VARIANT KERNEL IMAGING MODEL APPLIED TO ULTRASOUND IMAGE RECONSTRUCTION 965

REFERENCES

[1] J. Ng, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Wavelet restora-
tion of medical pulse-echo ultrasound images in an EM framework,” IEEE
Trans. Ultrason., Ferroelect., Freq. Control, vol. 54, no. 3, pp. 550–568,
Mar. 2007.

[2] R. Rangarajan, C. V. Krishnamurthy, and K. Balasubramaniam, “Ultra-
sonic imaging using a computed point spread function,” IEEE Trans.
Ultrason., Ferroelect., Freq. Control, vol. 55, no. 2, pp. 451–464, Feb.
2008.

[3] H.-C. Shin et al., “Sensitivity to point-spread function parameters in
medical ultrasound image deconvolution,” Ultrasonics, vol. 49, no. 3,
pp. 344–357, 2009.

[4] M.Alessandrini et al., “A restoration framework for ultrasonic tissue char-
acterization,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 58,
no. 11, pp. 2344–2360, Nov. 2011.

[5] C. Dalitz, R. Pohle-Frohlich, and T. Michalk, “Point spread functions and
deconvolution of ultrasonic images,” IEEE Trans. Ultrason., Ferroelect.,
Freq. Control, vol. 62, no. 3, pp. 531–544, Mar. 2015.

[6] N. Zhao, A. Basarab, D. Kouamé, and J.-Y. Tourneret, “Joint segmentation
and deconvolution of ultrasound images using a hierarchical Bayesian
model based on generalizedGaussian priors,” IEEE Trans. Image Process.,
vol. 25, no. 8, pp. 3736–3750, Aug. 2016.

[7] J. G. Nagy and D. P. O’Leary, “Restoring images degraded by spatially
variant blur,” SIAM J. Sci. Comput., vol. 19, no. 4, pp. 1063–1082, Jul.
1998.

[8] O. V. Michailovich, “Non-stationary blind deconvolution of medical ul-
trasound scans,” in Proc. Int. Soc. Opt. Eng., Bellingham, WA, USA, Mar.
2017, Paper 101391C.

[9] L. Roquette, M. M. J.-A. Simeoni, P. Hurley, and A. G. J. Besson, “On an
analytical, spatially-varying, point-spread-function,” in Proc. 2017 IEEE
Int. Ultrasound Symp., Sep. 2017, Washington, DC, USA, pp. 1–4.

[10] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. New York, NY, USA: Springer-Verlag, 2011, pp. 185–
212.

[11] N. Parikh et al., “Proximal algorithms,” Found. Trends Optim., vol. 1,
no. 3, pp. 127–239, 2014.

[12] M. I. Florea, A. Basarab, D. Kouamé, and S. A. Vorobyov, “An axially-
variant kernel imaging model for ultrasound image reconstruction,”
arXiv:1801.08479, 2018.

[13] J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med.
Biol. Eng. Comput., vol. 34, pp. 351–353, 1996.

[14] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE
Trans. Ultrason., Ferroelect., Freq. Control, vol. 39, no. 2, pp. 262–267,
Mar. 1992.

[15] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. Roy. Statist. Soc. B, Methodol., vol. 67, no. 2, pp. 301–320, 2005.

[16] M. I. Florea and S. A. Vorobyov, “An accelerated composite gradient
method for large-scale composite objective problems,” arXiv:1612.02352,
Apr. 16, 2018.

[17] M. I. Florea and S. A. Vorobyov, “A generalized accelerated composite
gradient method: Uniting Nesterov’s fast gradient method and FISTA,”
arXiv:1705.10266, Apr. 16, 2018.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

gnisaercni na ees nac ew ,sraey tsal eht nI
-egral gnivlos rof smhtirogla eht ot tseretni

emas eht tA]...[.melborp noitazimitpo elacs
eht fo noitacfiitsuj fo elyts nredom eht ,emit

deliated a semussa sdohtem laciremun
esac-tsrow rieht fo sisylana ytixelpmoc

fo noitacfiitnedi ni pleh nac sihT .roivaheb
enilno(noitatnemelpmi fo edom larutan rieht
sniatnoc siseht desoporp ehT[.)eniflfo susrev

detareleccA wen fo tnempoleved]eht
xevnoc a gniziminim rof sdohteM tneidarG

ehT .mroF etisopmoC ni noitcnuf
desab si sisylana ytixelpmoc gnidnopserroc

secneuqes gnitamitse eht fo tnairav a no
semehcs desoporp eht ,revoeroM .euqinhcet

eht fo egdelwonk iroirp a na deen ton od
eht fo tneidarg eht rof tnatsnoc ztihcspiL

yehT .noitcnuf evitcejbo eht fo trap htooms
dna ylgnorts gniziminim rof sa desu eb nac
meht fo emoS .noitcnuf xevnoc ylgnorts-non

eulav eht fo esaerced enotonom a erusne nac
taht eveileb I]...[.noitcnuf evitcejbo eht fo

yrev sniatnoc hcihw ,siseht tnellecxe na si siht
 .stluser lanigiro dna gnitseretni

 voretseN iiruY rosseforP

-o
tl

a
A

D
D

79

1
/

 8
10

2

 +e
gcci

a*GM
FTSH

9 NBSI 4-6228-06-259-879)detnirp(
 NBSI 1-7228-06-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

gnireenignE lacirtcelE fo loohcS
scitsuocA dna gnissecorP langiS fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 a
er

ol
F

na
il

uI
 i

ah
i

M
 n

oi
ta

zi
mi

tp
O

el
ac

s-
eg

ra
L

ro
f

s
mh

ti
ro

gl
A

de
ta

re
le

cc
A

gn
it

cu
rt

sn
o

C
 y

ti
sr

ev
i

n
U

otl
a

A

 8102

 scitsuocA dna gnissecorP langiS fo tnemtrapeD

detareleccA gnitcurtsnoC
elacs-egraL rof smhtiroglA

 noitazimitpO
 snoitacilppA dna ,smhtiroglA ,krowemarF

 aerolF nailuI iahiM

y
3

x
3

x
2

x
1

y
2

v
2

v
1

v
3

 LAROTCOD
 SNOITATRESSID

