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1. Introduction

The spectral analysis of signals provides a rigorous tool for modeling signals and
extracting information from them [1]. It finds applications in radar, sonar, speech
processing, and communication to mention just a few. In this thesis, advances
and new applications of spectral analysis in three specific areas are consid-
ered. These three areas are noisy autoregressive (AR) parameter estimation,
direction-of-arrival (DOA) estimation, and one-bit massive/mmWave multiple-
input multiple-output (MIMO) uplink (UL) channel estimation/data detection.
We briefly review the challenges and open research directions corresponding to
each of these three research areas in the sequel.

Employing AR model for characterizing the behavior of a random signal is a
good fit in numerous signal processing applications such as speech processing,
digital communication, spectral estimation, noise cancellation, biomedical signal
processing, and image processing to name just a few [2]– [9].

The noisy p-th order real-valued AR model is given as

x(t)= a1x(t−1)+a2x(t−2)+ . . . +apx(t− p)+ e(t)= aTxt + e(t) (1.1)

y(t)= x(t)+w(t) (1.2)

where e(t) denotes the zero mean white driving noise with variance of σ2
e ,

a = [a1,a2, . . . ,ap]T contains coefficients of the AR model, xt = [x(t− 1), x(t−
2), . . . , x(t−p)]T , and w(t) is the white observation noise with zero mean and vari-
ance σ2

w. Because of the presence of w(t) in (1.2), the zero lag autocorrelation of
the process y(t) is biased. Therfore, the noiseless conventional least-squares (LS)-
based solution leads to a biased estimation for the AR coefficients {ai}

p
i=1 [19]. To

remedy this issue, several methods have been proposed in the literature where
the bias compensation principle (BCP) is used as the key idea [20]– [24].

DOA estimation problem is another area of spectral analysis covered in this
thesis. The received signal by a uniform linear array (ULA) at the time instant t
is expressed as

x(t)=A(θ)s(t)+n(t) (1.3)

where θ ≜ [θ1,θ2, . . . ,θL]T is the vector of the source DOAs,
A(θ) ≜ [a(θ1),a(θ2), . . . ,a(θL)] is the array manifold with a(θl) =

1
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[1, e− j2πsin(θl )d/λ, . . . , e− j2π(M−1)sin(θl )d/λ]T ∈ CM being the steering vector
corresponding to DOA θl for l = 1, . . . ,L, s(t) ≜ [s1(t), s2(t), . . . , sL(t)]T ∈ CL are
the source signals, and n(t) ∈ CM denotes the complex Gaussian sensor noise
vector. Several assumptions can be regarded concerning the structure of
the second-order statistics of the observation noise in (1.3). Most common
assumptions are uniform white and nonuniform white noise. A spatially
block-correlated noise assumption may be more accurate in some applications
as well [25]. Numerous DOA estimation methods have been proposed in the
literature for the cases of uniform [26]– [53], nonuniform [54]– [66], and some
for block-correlated [67]– [72] sensor noise.

Spectral analysis also finds novel applications in communications. Due to high
propagation loss, mmWave channels can be considered to be sparse in angular
domain. Hence, the channel between a base station (BS) with a ULA containing
M antennas and the k-th user (equipped with single antenna) can be formulated
as

hk =
Lk∑︂

l=1

Mk,l
path∑︂

m=1

γk,l,ma(θk,l,m)

= [A(θk,1),A(θk,2), . . . ,A(θk,Lk )]

⎡
⎢⎢⎢⎢⎢⎣

γk,1

γk,2
...

γk,Lk

⎤
⎥⎥⎥⎥⎥⎦
=A(θk)γk (1.4)

where Lk is the number of multipath clusters, Mk,l
path denotes the num-

ber of paths existing in the l-th cluster scattered in an angular area
[73], γk,l,m and θk,l,m represent the gain and DOA the m-th path of the
l-th cluster, respectively, a(θk,l,m) ≜ [1, e− jπsin(θk,l,m), . . . , e− j(M−1)πsin(θk,l,m)]T ∈
CM×1, θk,l ≜ [θk,l,1,θk,l,2, . . . ,θk,l,Mk,l

path
]T ∈ RMk,l

path×1 for l = 1,2, . . . ,Lk, A(θk,l) ≜

[a(θk,l,1),a(θk,l,2), . . . ,a(θk,l,Mk,l
path

)] ∈CM×Mk,l
path , γk,l ≜ [γk,l,1,γk,l,2, . . . ,γk,l,Mk,l

path
]T ∈

C
Mk,l

path×1, θk ≜ [θT
k,1,θT

k,2, . . . ,θT
k,Lk

]T , A(θk) ≜ [A(θk,1),A(θk,2), . . . ,A(θk,Lk )], and
γk ≜ [γT

k,1,γT
k,2, . . . ,γT

k,Lk
]T . In (1.4), the dependency of channels on DOAs clearly

appears. The use of one-bit analog-to-digital converters (ADCs) instead of
high-resolution ADCs is considered as an elegant solution for reducing power
consumption of large-scale systems like massive/mmWave MIMO systems. Due
to preserving signs of the received signal only, the conventional algorithms
developed for high-resolution ADCs may not be suitable for the one-bit ADCs
configuration. Therefore, new methods should be devised for tasks like channel
estimation and data detection when one-bit ADCs are used. Numerous one-bit
channel estimators and data detectors have been proposed in the literature [74]–
[105]. In this thesis, we use the angular sparsity of mmWave channels in (1.4),
and also the analogy between binary classification problem and one-bit param-
eter estimation to develop one-bit channel estimators and data detectors for
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massive MIMO and mmWave systems.

1.1 Objectives

The objective of this thesis is to develop accurate yet efficient algorithms for
estimating noisy AR parameters, estimating DOAs in unknown noise fields, esti-
mating channels and detecting transmitted data in large-scale MIMO systems
when one-bit ADCs are deployed.

1.2 Contributions

• In Publication I, four methods are developed for noisy AR parameter esti-
mation. These methods exploits both low-order and high-order Yule-Walker
equations to find out the AR coefficients.

• In Publication II, a non-iterative subspace-based method for estimating noisy
AR parameters is proposed. The essence of this method is to transform the
problem into a generalized eigenvalue problem and then find the variance of
the observation noise.

• In Publication III, a non-iterative subspace-based method called NISB is
developed for the case of nonuniform sensor noise. NISB has two phases. In
the first phase an initial estimate of the noise subspace is obtained with the
help of eigendecomposition (ED) of a reduced covariance matrix (RCM), while
a refined noise subspace estimate and a noise covariance matrix estimate are
obtained in the second phase.

• In Publication IV, the enhanced standard ESPRIT (ES ESPRIT) and its
unitary extension are presented as DOA estimators for uniform sensor noise
case. These methods take into account the signal subspace perturbation and
also use a DOA selection strategy designed for picking up the final DOAs from
previously generated DOA candidates.

• In Publication V, an iterative DOA estimation method for the case of nonuni-
form sensor noise is developed. This method uses generalized eigendecom-
position (GED) and LS to update the noise subspace estimate and the noise
covariance estimate, respectively. The main advantage of this method is that
only a few iterations is sufficient for achieving proper accuracy.

• In Publication VI, we use the concept of Toeplitz matrix reconstruction along
with the sparsity of mmWave channels in the discrete Fourier transform (DFT)
domain to propose a one-bit mmWave UL channel estimator.
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• In Publication VII, an optimization problem for estimating one-bit mmWave
UL channels is designed that combines ℓ1 logistic regression with Toeplitz
matrix reconstruction. Then, a computationally efficient alternating direction
method of multipliers (ADMM)-based [120] solution is developed for that
optimization problem.

• In Publication VIII, a unified approach for DOA estimation in the presence
of unknown noise fields is presented. This approach has three connected
steps. In the first step, the unknown noise covariance matrix is estimated for
nonuniform and block-diagonal noise. Then, double number of DOA candidates
is generated using a rooting-based method in the second step. In the third
step, a DOA selection strategy is proposed to pick up the final DOA estimates.

• In Publication IX, adaptive boosting (AdaBoost)-based [118], [119] channel
estimator and data detector are proposed for one-bit MIMO-OFDM system op-
erating over frequency selective channels. The Gaussian discriminant analysis
(GDA) classifier/approximate GDA classifiers [117] are used as weak classi-
fiers in each iteration of the proposed AdaBoost-based algorithms. The main
advantage of those AdaBoost-based methods that use approximate versions of
the GDA classifier is that they are highly efficient.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 discusses the
noisy AR parameter estimation problem and presents the methods proposed
in Publications I and II. Chapter 3 presents the DOA estimation algorithms
proposed in Publications III, IV, V, and VIII. Chapter 4 presents the one-bit
channel estimation and data detection algorithms for large-scale MIMO systems
proposed in Publications VI, VII, and IX.
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2. Noisy Autoregressive (AR) Parameter
Estimation

Employing AR model for characterizing the behavior of a random signal is a
good fit in numerous signal processing applications such as speech processing,
digital communication, spectral estimation, noise cancellation, biomedical signal
processing, and image processing to name just a few [2]– [9]. Among modern
data science applications, the use of AR modeling in, for example, annual popula-
tion assessment [10], climate and river flow forecasting [11], [12], and financial
time series analysis [13]– [16] is notable. In general, the AR parameter estima-
tion problem can be further sub-categorized as one-dimensional AR estimation
problem, multichannel AR estimation problem, and nonlinear AR estimation
problem [17], [18].

The AR estimation problem is conventionally solved by applying the LS method
to the low-order Yule-Walker equations. In practical scenarios, the existence
of observation noise hinders the use of the LS solution of the aforementioned
Yule-Walker equations [19]. The reason is rooted in a bias contaminating the
zero lag autocorrelation of data caused by white observation noise. The objective
of this chapter is to present five noisy AR parameter estimation algorithms.
The first four algorithms are from Publication I, whereas the fifth one has been
proposed in Publication II.

2.1 Signal Model

The noisy p-th order real-valued AR model is formulated as given in (1.1) and
(1.2). Using (1.1) and (1.2), the autocorrelation functions of y(t), rx(0), and r y(0)
are respectively obtained as

r y(k)= rx(k)+σ2
wδ(k) (2.1)

rx(0)= E{x(t)2}= rT
x a+σ2

e (2.2)

r y(0)= rT
x a+σ2

e +σ2
w (2.3)

where rx = [rx(1), rx(2), . . . , rx(p)]T . For k ≥ 1, the Yule-Walker equations are
introduced as rx(k)=∑︁p

i=1 airx(k−i) [2]. Then, the p low-order and q high-order
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Yule-Walker equations can be respectively derived as Rxa= rx and R′
xa= r′x by

considering 1≤ k ≤ p and p+1≤ k ≤ p+ q, where

Rx =

⎡
⎢⎢⎢⎢⎢⎣

rx(0) rx(−1) . . . rx(1− p)

rx(1) rx(0) . . . rx(2− p)
...

...
. . .

...

rx(p−1) rx(p−2) . . . rx(0)

⎤
⎥⎥⎥⎥⎥⎦

(2.4)

R′
x =

⎡
⎢⎢⎢⎢⎢⎣

rx(p) rx(p−1) . . . rx(1)

rx(p+1) rx(p) . . . rx(2)
...

...
. . .

...

rx(p+ q−1) rx(p+ q−2) . . . rx(q)

⎤
⎥⎥⎥⎥⎥⎦

(2.5)

r′x = [rx(p+1), rx(p+2), . . . , rx(p+ q)]T (2.6)

Exploiting (2.1) and (2.4)-(2.6), we obtain Ry =Rx +σ2
wIp, R′

y =R′
x, ry = rx, and

r′y = r′x. As a result, the p low-order and q high-order Yule-Walker equations
with respect to y(t) can be written as

Rya−σ2
wa= ry (2.7)

R′
ya= r′y (2.8)

We multiply (2.7) by R−1
y and rearrange the result to get a=R−1

y ry+σ2
wR−1

y a, in
which the term aLS =R−1

y ry is the so-called conventional LS estimate of a. This
estimate is biased though. In order to compensate the bias term σ2

wR−1
y a, σ2

w
needs to be estimated. Consequently, the objective of the noisy AR parameter
estimation task is to estimate σ2

e and σ2
w, and use the latter to correct the biased

LS solution of the noisy AR problem.

2.2 Proposed Methods

2.2.1 The first proposed method

In the first proposed method of Publication I, we presented an iterative method
with the aim of reducing the detrimental impact of the term σ2

wa in (2.7) in
each iteration. Let c=a−∆ denote the estimate of a obtained in the previous
iteration with ∥∆∥2 ≪∥a∥2. Then, there are p−1 pair-wise orthonormal vectors
bi (i = 1,2, . . . , p−1) that span the null space of c, that is,

bT
i c= 0 , ∥bi∥2

2 = 1 , bT
i b j = 0 , i, j = 1, . . . , p−1 , i ̸= j . (2.9)

Therefore, by multiplying (2.7) by bT
i ’s we obtain

b⊺
i Rya=b⊺

i ry +σ2
wb⊺

i a , i = 1, . . . , p−1 . (2.10)

6
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placing the definition of c into (2.10) and using (2.9), we get

σ2
wbT

i a=σ2
wbT

i (c+∆)=σ2
wbT

i ∆≈ 0 , i = 1, . . . , p−1 . (2.11)

where the term σ2
wbT

i ∆ can be interpreted as a negligible error. Note that as
c approaches the actual a, the approximation of (2.11) becomes more precise.
Adding q (arbitrary integer larger than one) high-order Yule-Walker equations
of (2.8) to p−1 equations obtain by combining (2.10) and (2.11), a linear system
of equations can be formed as Ha=h with the following definitions:

H=
[︄

B(Ry −σ2
wIp)

R′
y

]︄
, B= [b1,b2, . . . ,bp−1]T , h=

[︄
Bry

r′y

]︄
. (2.12)

Thus, a new update of a in the current iteration can be derived as a =
(HTH)−1HTh.

Instead of initializing the first proposed method with aLS, which is a popular
initial vector, we developed a method in Publication I to estimate a proper
initial value for σ2

w, denoted by σ̂2(0)
w (see Publication I for details). Then, â(0)

can be constructed using (2.7) as â(0) = (R̂y − σ̂2(0)
w Ip)−1r̂y. In the lth iteration,

the updates of a and σ2
w can be expressed as â(l) = (Ĥ(l)TĤ(l))−1Ĥ(l)Tĥ(l) and

σ̂2(l)
w = â(l)T (R̂yâ(l)−r̂y)

∥â(l)∥2 , respectively. After terminating the iterations, we calculate

σ̂2
e = r̂y[0]− r̂T

y â− σ̂2
w where â and σ̂ are the output of the aforementioned

iterations. Algorithms 1 and 2 in Publication I outlines the steps of the first
proposed method.

2.2.2 The second proposed method

The essence of the second proposed method is to design a constrained opti-
mization problem, in which the LS cost function of the low-order Yule-Walker
equations is regarded as the objective function of the optimization problem, while
the first high-order Yule-Walker equation is imposed as an equality constraint.
Using (2.7) and (2.8), the aforementioned optimization problem can be written
as

minimize
a , σ2

w

(︁(︁
Ry −σ2

wIp
)︁

a−ry
)︁⊺ (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁

subject to r̄⊺a= r y(p+1) (2.13)

where r̄ represents the first row of R′
y. We adopt the Lagrangian multiplier

method here to engage the equality constraint in the updated optimization
objective function L(a,σ2

w) as

L(a,σ2
w)= (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁⊺ (︁(︁Ry −σ2

wIp
)︁

a−ry
)︁+λ(︁a⊺r̄− r y(p+1)

)︁

= a⊺ (︁Ry −σ2
wIp
)︁2 a−2a⊺ (︁Ry −σ2

wIp
)︁

ry +∥ry∥2 +λ(︁a⊺r̄− r y(p+1)
)︁

(2.14)
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where λ is the Lagrangian multiplier. Taking partial derivative of (2.14) with
respect to a and σ2

w first, and then equating the resultants lead us to the
following relations

a= (︁Ry −σ2
wIp
)︁−1 ry − λ

2

[︂(︁
Ry −σ2

wIp
)︁2
]︂−1

r̄ . (2.15)

σ2
w = a⊺Rya−a⊺ry

∥a∥2
2

(2.16)

where (2.16) is equivalent to the result reached in the first proposed method.
To determine λ, the result of (2.15) should satisfy the constraint (2.13). Conse-
quently, plugging (2.15) into (2.13) results in

λ= 2
r̄⊺
(︁
Ry −σ2

wIp
)︁−1 ry − r y(p+1)

r̄⊺
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄
. (2.17)

At last, combining (2.15) and (2.17) together leads us to the second proposed
estimator of a, that is,

a= (︁Ry −σ2
wIp
)︁−1 ry −

⎛
⎜⎝

r̄⊺
(︁
Ry −σ2

wIp
)︁−1 ry − r y(p+1)

r̄⊺
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄

⎞
⎟⎠
[︂(︁

Ry −σ2
wIp
)︁2
]︂−1

r̄ .

(2.18)

Analogous to the first proposed method, we employ an iterative method to
calculate a and σ2

w using (2.18) and (2.16), respectively. Note that the initial-
ization here is the same as what presented for the first proposed method (See
Publication I for details).

2.2.3 The third proposed method

The aim of the third proposed method is to reduce the dimension of the origi-
nal noisy AR parameters estimation problem from p to only two. We exploit
this observation here that σ2

w is usually much smaller than the p−2 largest
eigenvalues of Ry. First, we write a as a linear combination of the eigenvectors
of Ry, and then show that different values of σ2

w have negligible impact on
p−2 of unknown parameters. Using the eigenvectors of Ry denoted by vm for
m = 1, . . . , p, we write

a=
p∑︂

m=1

αmvm . (2.19)

Note that we represent the eigenvalues of Ry by λm for m = 1, . . . , p where
λ1 < λ2 < . . . < λp. Plugging (2.19) into (2.7) and also taking into account the
characteristic equations Ryvm =λmvm (for m = 1, . . . , p), we have

Ry

p∑︂

m=1

αmvm = ry +σ2
w

p∑︂

m=1

αmvm =⇒
p∑︂

m=1

αmλmvm = ry +σ2
w

p∑︂

m=1

αmvm .

(2.20)
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Consequently, by multiplying (2.20) by vT
m for m = 1, . . . , p, we obtain

αmλm = v⊺
mry +σ2

wαm =⇒ αm = v⊺
mry

λm −σ2
w

, m = 1, . . . , p . (2.21)

Given the fact that 0 < σ2
w < λ1, (2.21) implies that varying σ2

w does not sub-
stantially change the values of αm for m ≥ 3 as λm is usually much larger than
σ2

w for m ≥ 3. In other words, updating αm for m ≥ 3 is not necessary in each
iteration since changes are negligible. Therefore, only initializing αm (m ≥ 3) via
selecting a proper σ2

w is sufficient which results in having to update only α1, α2,
and σ2

w in each iteration. Using this approximation, (2.19) can be reformulated
as

a=α1v1 +α2v2 + x̄, x̄=
p∑︂

m=3

αmvm . (2.22)

Lastly, by exploiting (2.8), and (2.21)-(2.22), the following system of linear equa-
tions can be formed:

H2α=h2 (2.23)

where

α=
[︄
α1

α2

]︄
, H2 =

[︄
Λ̄

R′
yV

]︄
, h2 =

[︄
V⊺ry

r′y −R′
yx̄

]︄

Λ̄=
[︄
λ1 −σ2

w 0

0 λ2 −σ2
w

]︄
, V=

[︂
v1 v2

]︂
. (2.24)

Here, the LS solution of (2.23) is α= (HT
2 H2)−1HT

2 h2. Analogous to previously
proposed methods, an iterative procedure can be used to update α and σ2

w via
(2.23) and (2.16), respectively. Note that initialization is carried out similarly as
in the previously proposed methods.

2.2.4 The fourth proposed method

Contrary to three previously proposed methods, the fourth one is a non-iterative
method. The objective of this method is to estimate σ2

w as the minimum eigen-
value of a properly enlarged autocorrelation matrix. In doing so, we write

Ry(m)=Rx(m)+σ2
wIm , m ≥ 1 (2.25)

where

Ry(m)≜

⎡
⎢⎢⎢⎢⎢⎣

r y[0] r y[−1] . . . r y[1−m]

r y[1] r y[0] . . . r y[2−m]
...

...
. . .

...

r y[m−1] r y[m−2] . . . r y[0]

⎤
⎥⎥⎥⎥⎥⎦

. (2.26)
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We show in Publication I that the minimum eigenvalues of Ry(m + 1) and
Rx(m+ 1) are smaller than the minimum eigenvalues of Ry(m) and Rx(m),
respectively, for m ≥ p. Since the minimum eigenvalue of Ry(m) is equal to the
minimum eigenvalue of Rx(m) plus σ2

w according to (2.25), it can be concluded
that as m increases, the minimum eigenvalue of Ry gets closer to σ2

w. Thus,
the minimum eigenvalue of Ry(2p), for example, is a better estimate for σ2

w
than the minimum eigenvalue of Ry(p). Increasing m beyond a certain number
is not always beneficial though, as it makes the computational complexity of
calculating the minimum eigenvalue of Ry(2p) prohibitive. We used m = 2p in
generating results in Publication I.

2.2.5 The fifth proposed method

In Publication II, another non-iterative method for estimating noisy AR parame-
ters is developed. First, we combine (2.7) and (2.8) to write

Aa=b+σ2
wc (2.27)

where

A=
[︄

Ry

R′
y

]︄
, b=

[︄
ry

r′y

]︄
, c=

[︄
a

0q

]︄
. (2.28)

As b ∈R(p+q)×1, a matrix D with p+ q−1 orthonormal rows can be found that
satisfies Db= 0p+q−1. As a result, by multiplying (2.27) by D and reorganizing
terms, we obtain

(DA−σ2
wE)a= 0p+q−1 (2.29)

where E is composed of the first p columns of D. Note that (2.30) is in the form of
a generalized eigenvalue problem with a and σ2

w being a generalized eigenvector
and the corresponding generalized eigenvalue, respectively. One can multiply
(2.29) by (DA−σ2

wE)T to build the following quadratic eigenvalue problem:

(G0 +σ2
wG1 + (σ2

w)2G2)a= 0p (2.30)

where

G0 =ATDTDA, G1 =−(ATDTE+ETDA),

G2 =ETE . (2.31)

Although multiple methods can be found in the literature for solving (2.31) ,
we selected the method that transforms (2.31) into a generalized eigenvalue
problem (now with squares matrices) as

(P−σ2
wQ)ā= 02p (2.32)

where

P=
[︄

G0 0

0 Ip

]︄
, Q=

[︄
−G1 −G2

Ip 0

]︄
, ā=

[︄
a

σ2
wa

]︄
. (2.33)
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With respect to the observation noise, we propose to recognize the absolute value
of the eigenvalue that has the minimum imaginary component, as the estimated
σ2

w. Finally, a can be estimated as the LS solution of (2.27).

2.3 Experimental Results

In this section, in addition to simulation examples in Publication I and Publica-
tion II, two numerical examples are considered for evaluating the performance
of the proposed noisy AR estimators. The normalized root mean squared error
(NRMSE) is used here for comparing the accuracy of the methods tested, which
is defined as

NRMSE=

√︂
((
∑︁M

m=1 ∥âm −a∥2)/M)

∥a∥
where âm is the estimate of a in the m-th trial. The hyperparameters used in this
section are the same as in Publication I and Publication II. In the first example,
a fourth-order noisy AR process with a = [0.55,0.1550,−0.5495,0.6241]T and
σ2

e = 1 is considered. Fig. 2.1 compares the performance of the proposed methods
when the number of data points varies from 200 to 2000 for SNR = 20 dB. It
can be observed that the first and third proposed methods outperform other
methods. Moreover, the use of the constraint in the optimization problem of
(2.13) is crucial for improving the performance of the second proposed method.
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Figure 2.1. NRMSE vs. the number of data points for the first example.

11



Noisy Autoregressive (AR) Parameter Estimation

In the second example, a fourth-order noisy AR process with a =
[1.6771,−1.6875,0.9433,−0.3164]T and σ2

e = 1 is considered. The number of
trials and the number of data points are set to M = 4000 and N = 1000, re-
spectively. Table 2.1 shows the means and standard deviations obtained from
implementing the proposed noisy AR estimators. It can be seen that all proposed
methods provide good results in this scenario.

Table 2.1. Computed results of estimated parameters for SNR= 1 dB for the second example.

True value Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV Proposed method V

a1 = 1.6771 1.5039±0.1547 1.5879±0.1589 1.6298±0.1604 1.6442±0.1446 1.5224±0.1777 1.6088±0.1445

a2 =−1.6875 −1.3542±0.3379 −1.5241±0.2721 −1.5967±0.2682 −1.6138±0.2548 −1.5094±0.2967 −1.5638±0.2456

a3 = 0.9433 0.6325±0.3721 0.8030±0.2258 0.8621±0.2180 0.8698±0.2175 0.7967±0.2412 0.8369±0.2035

a4 =−0.3164 −0.1840±0.2103 −0.2654±0.0816 −0.2850±0.0770 −0.2842±0.0795 −0.2654±0.0848 −0.2772±0.0745

σ2
w = 4.6 4.5279±0.2342 4.5666±0.1992 4.6360±0.2017 4.5986±0.1818 4.5652±0.1921 4.5783±0.1892

σ2
e = 1 1.3014±0.3862 1.1722±0.2934 1.0502±0.2740 1.0487±0.2498 1.2207±0.3478 1.1369±0.2546

NRMSE(%) 29.4308 17.9332 15.9501 15.1377 19.4546 15.5602
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3. DOA Estimation in the Presence of
Uniform, Nonuniform, and
Block-diagonal Sensor Noise

3.1 Signal Model

Considering a ULA composed of M sensors and L narrowband signals emitted
by L sources located in the far-field, the signal received by the ULA at the time
instant t is given by (1.3). For notation convenience, we use A instead of A(θ)
throughout this chapter.1 Exploiting (1.3), the array covariance matrix can be
formed as

R≜ E{x(t)xH(t)}=APAH +Q (3.1)

where P ∈ CL×L is the signal covariance matrix, and Q ∈ CM×M is the noise
covariance matrix. These matrices are defined as

P≜ E{s(t)sH(t)}, Q≜ E{n(t)nH(t)}. (3.2)

In this chapter, the problem of DOA estimation for the cases of uniform,
nonuniform, and block-diagonal noise covariance matrices is solved. The
uniform, nonuniform, and block-diagonal noise covariance matrices are re-
spectively represented as Quni = σ2IM , Qnonuni = diag

{︁
σ2

1,σ2
2, . . . ,σ2

M
}︁

, and
Qbdiag = bdiag

{︁
Q1,Q2, . . . ,Qq

}︁
. In the latter, it is worth noting that Q j ∈Cn j×n j

for j = 1, . . . , q.
The sample covariance matrix (SCM) calculated as R̂ = 1

N
∑︁N

t=1 x(t)xH(t) =
1
N XXH is typically used instead of R, as the latter is unknown in practical
scenarios. Note that X is expressed as

X=AS+N (3.3)

where X≜ [x(1),x(2), . . . ,x(N)], S≜ [s(1),s(2), . . . ,s(N)], N≜ [n(1),n(2), . . . ,n(N)],
and N is the number of snapshots.

1Note that we use the complete notation wherever the parameter of A is not θ.
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3.2 Proposed Methods

3.2.1 ES ESPRIT and EU ESPRIT

We have developed ES ESPRIT and EU ESPRIT DOA estimators in Publication
IV for the uniform sensor noise case. These methods first transform the shift
invariance equation (SIE) equations into the DFT domain, and then generate
2L DOA candidates by solving two different systems of linear equations. These
two systems of linear equations are solved using a generalized least-squares
(GLS)-based method which takes into account the second-order statistic of the
signal subspace perturbation. Afterwards, a properly designed DOA selection
strategy is introduced for selecting the final L DOA estimates from 2L DOA
candidates produced previously.

The noiseless SIE is given as

J1UsΨ=J2Us . (3.4)

where J1 = [IM−1, 0M], J2 = [0M , IM−1], Us ∈CM×L is the actual signal subspace
obtained by applying the truncated singular value decomposition (SVD) on X,
and Ψ ∈ CL×L is a matrix whose eigenvalues λl ’s are related to θl ’s through
λl = e− jπsin(θl ) for l = 1, . . . ,L. As a result, the aim is to first estimateΨ, and then
obtain θl ’s from its eigenvalues. Multiplying (3.4) by first the DFT matrix WD

and then the selecting matrix ZI ∈R|I |×M−1, we have

ZI WDJ1UsΨ=ZI WDJ2Us (3.5)

where members of the set I are the indices of the selected equations. Note
that all entries of the i-th row of ZI are zero except one entry which is set to
1. The index of this nonzero entry is specified by the i-th member of I . The
main reason of multiplying (3.4) by the DFT matrix WD is rooted in the relation
Us = AT−1, which indicates that the columns of Us can be formed by linear
combinations of the columns of A. Therefore, multiplying (3.4) by WD is a proper
choice as the columns of WD are structurally matched to the columns of J1Us.
Inserting Us = Ûs +∆Us into (3.5) and reorganizing the terms, we obtain

ZI WDJ1ÛsΨ+E=ZI WDJ2Ûs (3.6)

where Ûs denotes the estimated signal subspace by applying truncated SVD on
the received data, ∆Us is the signal subspace estimation error caused by the
observation noise, and E≜ZI WDJ1∆UsΨ−ZI WDJ2∆Us. Vectorizing (3.6), we
have

f̂S ≜ vec
{︁

ZI WDJ2Ûs
}︁= F̂Sψ+e= F̂Sψ+ ĜS∆us (3.7)

with F̂S ≜ IL ⊗ZI WDJ1Ûs ∈C|I |L×L2
, ĜS ≜ (ΨT ⊗ZI WDJ1)− (IL ⊗ZI WDJ2) ∈

C|I |L×ML, ψ≜ vec{Ψ} ∈CL2×1, and ∆us ≜ vec{∆Us} ∈CML×1. Analogous to [41],
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the covariance matrix of ∆us can be employed in a GLS-based approach [41],
[109], [110] to find the optimal solution of (3.7) as

ψ̂GLS =
(︂

F̂H
S ŴSF̂S

)︂−1
F̂H

S ŴSf̂S (3.8)

where as shown in [41] ŴS = [︁ĜS

(︂
Σ̂

−2
s ⊗IM

)︂
ĜH

S
]︁−1 with Σ̂s ∈RL×L being a di-

agonal matrix that contains the L principal singular values of X (for more detail,
see [41] and Publication IV). The DOA’s can be extracted from the arguments of
the L eigenvalues of Ψ̂GLS = unvec

{︁
ψ̂GLS

}︁
. Due to the dependency of ĜS on Ψ,

it is natural to use an iterative method to estimate ŴS and Ψ̂GLS. Based on our
observations, few iterations are sufficient to reach accurate results.

The unitary extension of (3.5) is given as

ZI WDK1EsΥ=ZI WDK2Es (3.9)

where K1 ≜ 2ℜ{QH
M−1J2QM} ∈R(M−1)×M , K2 ≜ 2ℑ{QH

M−1J2QM} ∈R(M−1)×M , and
the columns of Es are the L principal left singular vectors of ϕ(X)=QH

MXQ2N ∈
RM×2N with QM and Q2N being left Π-real matrices [35]. Similar to the steps
presented for solving (3.5), a GLS-based solution of (3.9) is obtained as

ν̂GLS =
(︂

F̂H
U ŴUF̂U

)︂−1
F̂H

U ŴUf̂U (3.10)

where ν̂GLS ≜ vec{Υ̂GLS}, F̂U ≜ (IL ⊗ZI WDK1Ês), f̂U ≜ vec{ZI WDK2Ês}. More-

over, it is showed in [41] that ŴU ≜
[︂
ĜU(Σ̂

−2
s ⊗IM)ĜH

U

]︂−1
with ĜU ≜ (Υ̂T ⊗

ZI WDK1)− (IL ⊗ZI WDK2), and Σ̂s ∈ RL×L denoting a diagonal matrix which
contains the principal singular values of ϕ(X).

In Publication IV, we propose to select members of I in (3.5) as those indices
associated with |I | largest absolute values of WDJ1u1. Here, u1 denotes the
left singular vector of X which corresponds to the largest singular value.

DOA Selection Strategy
For improving DOA estimation accuracy, we first generate 2L DOA candidates
by implementing the proposed ESPRIT-based methods twice with |I | = M−1
and |I | = M−2, and then select the best L DOAs from 2L DOA candidates.

The first DOA selection strategy is to employ the deterministic ML (DML) cost
function analogous to papers such as [39], [40], [114]. In this method, the final L
DOA estimates are a subset of 2L DOA candidates that minimizes the following
DML cost function:

Θ̂DML = argmin
Θi

trace((IM −A(Θi)(A(Θi)HA(Θi))−1A(Θi)H)R̂)

∀ i = 1, . . . ,PESE(EUE) (3.11)

where Θi represents the i-th DOA subset, and PESE(EUE) ≜ 2L!
L!L! is the total

number of different subsets.
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The second DOA selection strategy relies on a generalized likelihood ratio
(GLR) method presented in [115]. We propose in Publication IV that the final L
DOA estimates are recognized one by one in a sequential manner. Towards this
end, we select the l-th (for l = 1, . . . ,L) DOA estimate as the member of the set of
2L− (l−1) remaining DOAs that maximizes the GLR cost function [115], that is,

θ̂l = argmax
θi

a(θi)HP⊥
l−1R̂P⊥

l−1a(θi)
a(θi)HP⊥

l−1a(θi)

for i = 1, . . . ,2L− (l−1) , l = 1, . . . ,L (3.12)

where

P⊥
l−1 ≜

{︄
IM −Al−1(AH

l−1Al−1)−1AH
l−1 l > 1

IM l = 1
(3.13)

with Al−1 ≜ [a(θ̂1),a(θ̂2), . . . ,a(θ̂l−1)] ∈CM×(l−1). The advantage of the GLR-based
DOA selection strategy over the DML-based one is that the former requires
considerably less computations for selecting the final DOA estimates.

3.2.2 NISB

In Publication III, we develop the NISB method for DOA estimation in the
presence of nonuniform sensor noise. The NISB is a non-iterative method
comprised of two consecutive phases. In the first phase, an initial estimate of the
noise subspace is identified by applying ED of a RCM [58]. In the second phase,
this initial noise subspace estimate is used for estimating the noise covariance
matrix, and then a refined estimate of the noise subspace is found by applying the
generalized ED to the pair of SCM and estimated noise covariance matrix. Well-
known subspace-based methods such as multiple signal classification (MUSIC),
and root-MUSIC can exploit the noise subspace estimate for identifying the
unknown DOAs. The NISB method requires substantially lower computational
complexity to implement as compared to the iterative methods like IMLSE. It
should be pointed out that the performance of the NISB method degrades in the
presence of correlated sources.

Recall that the noise subspace matrix U ∈ CM×(M−L) satisfies the following
condition:

AHU= 0L×(M−L) . (3.14)

Consequently, multiplying (3.1) by a noise subspace estimate denoted by Û leads
to

R̂Û≈ Q̂nonuniÛ . (3.15)

where R is replaced by R̂, and Q̂nonuni represents an estimate of the nonuniform
noise covariance matrix. It is proved in Publication III that Û can be obtained
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as the M−L eigenvectors of the generalized ED of the pair R̂ and Q̂nonuni which
correspond to the M−L smallest eigenvalues. The NISB method uses this result
to find the refined noise subspace. A proper Q̂nonuni, however, needs to be found
first. Towards this end, the initial noise subspace estimate, denoted by Ûini,
can be found as the M−L eigenvectors of the RCM corresponding to the M−L
smallest eigenvalues [58]. Note that the RCM is formed as R̂RCM = R̂−D{R̂}.
We can write Q̂nonuni as

Q̂nonuni =σ2IM +Qnun (3.16)

where σ2 denotes the uniform part of sensor noise variances, and Qnun is a
diagonal matrix with one of its diagonal entries being zero. We consider the
position of this zero entry as the position of the smallest diagonal entry of R̂.
With k being the index of the aforementioned zero diagonal entry, we can first
insert (3.16) into (3.15) and then multiply the resultant by the unit vector dT

k
which yields

dT
k R̂Ûini ≈dT

k (σ2IM +Qnun)Ûini =σ2dT
k Ûini (3.17)

where Û is replaced by Ûini, and the relation dT
k Qnun = 01×M is used. Therefore,

an estimate of σ2 is obtained as

σ̂2 =
⃓⃓
⃓⃓
⃓
dT

k R̂ÛiniÛ
H
inidk

dT
k ÛiniÛ

H
inidk

⃓⃓
⃓⃓
⃓ . (3.18)

As the last step of forming Q̂nonuni, an estimate of Qnun is considered as

Q̂nun = diag
{︁

[R̂]1,1 − c, . . . , [R̂]M,M − c
}︁

(3.19)

where c is the smallest diagonal entry of R̂. The matrix Q̂nonuni can be con-
structed using (3.16), (3.17) and (3.19). At last, the refined noise subspace
estimate is computed as the M −L eigenvectors corresponding to the M −L
smallest eigenvalues of the generalized ED of the pair matrices R̂ and Q̂nonuni.

3.2.3 Unified Approach to DOA Estimation in Unknown Noise Fields

In Publication VIII, a unified approach for DOA estimation problem in unknown
noise fields is proposed. This approach comprises of three phases designed
carefully to handle challenging scenarios with small sample size and/or closely
located sources and/or relatively low signal-to-noise ratios (SNRs).

In the first phase, a general approach for nonuniform and also block-diagonal
noise covariance estimation is developed, which is applicable to arbitrary array
configurations. In the second phase, a GLS-based forward-only DOA estimation
method is devised that uses the output of the first phase. In addition, a forward-
backward (FB) extension of the aforementioned DOA estimator is developed.
Using the GLS-based estimators (forward-only or FB versions) twice leads to
the output of the second phase being a set which contains 2L DOA candidates.
In the third phase, a DOA selection strategy is designed to select the final DOA
estimates from the set of DOA candidates.
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Nonuniform Noise Covariance Matrix Estimation
The noise covariance matrix estimator is an iterative estimator that utilizes
(3.15) to update Q̂nonuni and Û. The LS minimization criteria is used to obtain the
update rule for Q̂nonuni, whereas the GED concept is adopted here for updating
Û.

In the i-th iteration, the columns of Û(i) can be estimated as the M−L eigenvec-
tors corresponding to the M−L smallest eigenvalues obtained by performing the
GED of the matrices

{︂
R̂,Q̂(i)

nonuni

}︂
. This choice is similar to the last step of the

NISB method, where it is used in a non-iterative manner though. Noteworthy
to mention that Û(i) and Q̂(i) represent the estimates in the i-th iteration.

To update Q̂nonuni in the (i+1)-st iteration, the following LS minimization
problem can be considered using (3.15):

Q̂(i+1)
nonuni = argmin

Q
f (Q)= ∥(R̂−Q)Û(i)∥2

F . (3.20)

Note that (3.20) should be solved given the constraint that Q is a diagonal
matrix. We show in Publication VIII that the partial derivative of f (Q) with
respect to Q after excluding the constant term can be written as [116]

∂ f (Q)
∂Q

= 2D
{︂

Û(i)(Û(i))H
}︂

Q−D
{︂

R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂
}︂

. (3.21)

As a result, the m-th diagonal entry of Q̂(i+1)
nonuni can be found by equating (3.21)

to zero as

σ̂2 (i+1)
m =dT

m

(︃
1
2

D
{︂

R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂
}︂

D
{︂

Û(i)(Û(i))H
}︂−1

)︃
dm,

m = 1,2, . . . , M . (3.22)

In the i-th iteration of the proposed nonuniform noise covariance matrix esti-
mator, only the m-th diagonal element of Q̂nonuni is updated via (3.22) where
m≜ rem(i, M)+1 with rem(a,b) denoting the remainder in the division of a by
b. All columns of Û are updated in each iteration. Employing the element-wise
update rule for estimating Q̂nonuni results in boosting the convergence of the
proposed iterative algorithm, in which we terminate the algorithm when the
condition | f (i+1) − f (i)| < ϵ is met. Note that we set ϵ= 10−4 and Q̂(0)

nonuni =D{R̂}
in Publication VIII.

Noteworthy to mention that we also propose another nonuniform noise co-
variance matrix estimator in Publication V that use the GED-based approach
to update Û, and use (3.22) to update Q̂nonuni. The difference here is that all
diagonal elements of Q̂nonuni are updated together using (3.22), and also the
proposed iterative algorithm is terminated early after a few iterations. The
reason for the latter is to make the proposed algorithm in Publication V more
computationally efficient.
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Block-diagonal Noise Covariance Matrix Estimation
The objective here is to develop an iterative block-diagonal noise covariance
estimator. First, we rewrite (3.15) for the case of block-diagonal noise as

R̂Û≈ Q̂bdiagÛ . (3.23)

Analogous to the nonuniform noise case, it is observed from (3.23) that Û(i) can
be considered as the M −L eigenvectors associated with the M −L smallest
eigenvalues computed by applying the GED on the pair of matrices

{︂
R̂,Q̂(i)

bdiag

}︂
.

For estimating Q̂bdiag in the (i+1)-st iteration, the following LS minimization
problem can be written using (3.23):

Q̂(i+1)
bdiag = arg min

Qbdiag
fbdiag(Qbdiag)= ∥(R̂−Qbdiag)Û(i)∥2

F . (3.24)

We show in Publication VIII that the partial derivative of fbdiag(Qbdiag) with
respect to the Hermitian matrix Q j after eliminating the constant term can be
expressed as [106]

∂ fbdiag(Qbdiag)
∂Q j

=Q∗
j (V(i)

j j )
T + (V(i)

j j )
TQT

j − (R(i)
j j )

T ,

j = 1, . . . , q (3.25)

where V(i)
j j ∈ Cn j×n j and R(i)

j j ∈ Cn j×n j are respectively defined as the jth block

on the main diagonal of R(i) ≜ R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂ and V(i) ≜ Û(i)(Û(i))H .
Applying first the transposition operator to (3.25), followed by vectorizing and
equating the result to zero, we have

V(i)
j q j = r(i)

j , j = 1, . . . , q (3.26)

where V(i)
j ≜

[︂(︂
(V(i)

j j )
T ⊗In j

)︂
+
(︂

In j ⊗V(i)
j j

)︂]︂
is a square matrix, q j ≜ vec{Q j},

and r(i)
j ≜ vec{R(i)

j j }. Consequently, by solving the systems of linear equations in
(3.26), and using the unvectorization operator, we obtain

Q̂(i+1)
j = unvec

{︂
(V(i)

j )−1r(i)
j

}︂
, j = 1, . . . , q. (3.27)

In the i-th iteration, we compute j = rem(i, q)+1 and update only the j-th block
of Q̂bdiag.

Subspace-Based DOA Estimation via GLS
In the second phase, we first pre-whiten the received signal using the noise
covariance matrix estimated in the first phase, and then develop a GLS-based
DOA estimation method by taking into account the signal subspace error. For
notation simplicity, we use Q to represent the noise covariance matrix regardless
of its structure.

Multiplying (3.3) by Q− 1
2 , we have

X≜Q− 1
2 X=Q− 1

2 AS+Q− 1
2 N=Q− 1

2 AS+N (3.28)
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where the covariance matrix of the columns of N is IM . Using the truncated
SVD, X can be decomposed as

X=UsΣsVH
s (3.29)

where Us ∈CM×L and Vs ∈CN×L are respectively the left and right singular vec-
tors corresponding to the L largest singular values on the diagonal of Σs ∈RL×L.
Taking (3.28) and (3.29) into account, it can be concluded that the columns of Us

and Q− 1
2 A reside in the same vector space. In other words, Us can be written

as Us =Q− 1
2 AG with G ∈CL×L being a non-singular matrix. Consequently, we

have ˜︁Us ≜Q
1
2 Us =AG. It is shown in Publication VIII that the DFT of the p-th

column of ˜︁Us can be expressed as

ūp +diag(ūp)Waa=Wbp, p = 1, . . . ,L (3.30)

where ūp ≜ DFT{˜︁up} = WD˜︁up, ˜︁up is the p-th column of ˜︁Us,
Wa ≜ [w1,w2, . . . ,wM]T ∈ CM×L, W ≜ [w1,w2, . . . ,wM]T ∈ CM×L, wk ≜
[Wk

M , (Wk
M)2, (Wk

M)3, . . . , (Wk
M)L]T , wk ≜ [1, Wk

M , (Wk
M)2, . . . , (Wk

M)L−1]T ,
and Wk

M ≜ e− j 2πk
M . In addition, it is shown in Publication VIII that the roots

of the polynomial γL +∑︁L
l=1[a]l γ

L−l = 0 are related to the unknown DOAs θl

via γl = e− j2πdsin(θl )/λ for l = 1, . . . ,L [107,108]. Therefore, the DOA estimation
problem boils down to estimating a.

As the aim is to form a set of DOA candidates with 2L members, the selection
matrix ZI ∈R|I |×M , introduced earlier in this chapter, is used to revise (3.30) as

ZI ūp+diag(ZI ūp)ZI Waa=ZI Wbp, p = 1, . . . ,L. (3.31)

Note that different selecting matrices choose different sets of equations in (3.31).
It is shown in Publication VIII that choosing |I | = M and |I | = M−1 ends up in
generating the most accurate 2L candidates.

To estimate a via (3.31), we need to first remove the impact of the unknown
vectors bp ’s. To do so, B ∈C|I |×(|I |−L) is obtained such that BH˜︁ZI = 0(|I |−L)×L

with ˜︁ZI ≜ZI W ∈C|I |×L. Then, multiplying (3.31) by BH results in

BH(ZI ūp+diag(ZI ūp)ZI Waa)= 0(|I |−L), p = 1, . . . ,L. (3.32)

Reorganizing (3.32), we form Hpa = hp for p = 1, . . . ,L, where Hp ≜
BHdiag(ZI ūp)ZI Wa ∈C(|I |−L)×L and hp ≜−BHZI ūp ∈C(|I |−L). Piling up the
L matrices Hp and the L vectors hp into a matrix H and a vector h, respectively,
(3.32) can be recast as

Ha=h (3.33)

where H≜ [HT
1 . . .HT

L ]T ∈CL(|I |−L)×L and h≜ [hT
1 . . .hT

L ]T ∈CL(|I |−L).
As only an estimate of Q can be calculated, (3.28)-(3.33) should be rewritten

with this consideration (see Publication VIII). By doing so, (3.33) is rewritten as
Ĥa≈ ĥ. Then, a GLS-based estimator of a is given as

â= (ĤHWĤ)−1ĤHWĥ. (3.34)
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where W≜
(︁
E{êêH}

)︁−1 ∈CL(|I |−L)×L(|I |−L) and ê≜ Ĥa− ĥ ∈CL(|I |−L). We show
in Publication VIII that a proper estimate of W can be calculated as

Ŵ= (Σ̂2
s ⊗ (C(a)CH(a))−1). (3.35)

where Σ̂s is a diagonal matrix which contains the L largest singular values of the

matrix X̂ ≜ Q̂− 1
2 X, and C(a) ≜ BH (︁I|I |+diag{ZI Waa}

)︁
ZI WDQ̂

1
2 ∈ C(|I |−L)×M .

It is clear from (3.34) and (3.35) that an iterative algorithm should be used to
update â and Ŵ. The algorithm is initialized by â(0) = âLS = Ĥ†ĥ. Noteworthy to
mention that only a few iterations are sufficient to reach a precise result.

At last, we show in Publication VIII that the FB extension of (3.34) can be
obtained as

â=
(︃
˜︁Ĥ

H
ŴFB ˜︁Ĥ

)︃−1
˜︁Ĥ

H
ŴFB˜︁ĥ (3.36)

where ˜︁Ĥ =
[︃
˜︁Ĥ

T
1 , . . . , ˜︁Ĥ

T
L

]︃T

∈ CL(|I |−L)×L, ˜︁ĥ =
[︃
˜︁ĥ

T
1 , . . . ,˜︁ĥ

T
L

]︃T

∈ CL(|I |−L), ˜︁Ĥp =

BHdiag(ZI êp)ZI Wa ∈ C(|I |−L)×L, ˜︁ĥp =−BHZI êp ∈ C(|I |−L), êp is the p-th col-

umn of Ês ≜DFT{˜︁Q̂
1
2 Ês} ∈CM×L, ˜︁Q̂≜ Q̂+JMQ̂∗JM , Ês and Π̂s are respectively

the matrix of the left singular vectors and the diagonal matrix of the L principal

singular values of the matrix X̂FB =
[︃
˜︁Q̂
− 1

2 X ˜︁Q̂
− 1

2 JMX∗JN

]︃
. Moreover, we have

ŴFB = Π̂2
s ⊗
(︁
CFB(a)CFB(a)H)︁−1, CFB(a)≜BH (︁I|I |+diag{ZI Waa}

)︁
ZI WD ˜︁Q̂

1
2 ∈

C(|I |−L)×M . Similar to the forward-only case, an iterative algorithm should be
used to update â and ŴFB.

After calculating â, γ̂l ’s are obtained as the roots of the polynomial γL +∑︁L
l=1[â]l γ

L−l = 0. Then, θ̂l for l = 1, . . . ,L are calculated as θ̂l = arcsin
(︂
− βlλ

2πd

)︂

where βl is the phase argument of γ̂l .

DOA Selection Strategy
Given 2L DOA candidates, a properly designed DOA selection strategy is re-
quired to select the final L DOA estimates. We propose a three-step DOA
selection strategy in Publication VIII which exploits the conventional beam-
former (CB) [33], [111–113], DML cost function [39], [40], [114], and GLR tech-
nique [46], [115].

Step 1: Let θ2L represent the vector which contains 2L DOA candidates. Then,
we calculate the threshold η as the value of the (L+1)-st peak of the CB output
LCB(θ) = a(θ)HR̂a(θ) computed for a reasonable number of equidistant points
(for example, 314 points) to cover the interval [−π

2 , π2 ]. We compute the CB
output for the elements of θ2L and put those elements that have output larger
than η into a new vector ˜︁θ. Note that if certain scenarios occur, we consider
the L DOAs generated by |I | = M as the final DOAs and terminate the DOA
selection strategy steps. These scenarios are the CB output has less number of
peaks than (L+1), and the number of elements of ˜︁θ becomes smaller than L or
equal to 2L.
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Step 2: Select the first DOA as that element of ˜︁θ which maximizes the GLR,
that is,

θ̂1 = argmax
θ

aH(θ)Q̂−1R̂Q̂−1a(θ)

aH(θ)Q̂−1a(θ)
, θ ∈ ˜︁θ. (3.37)

Note that the GLR presented in [115] is extended here to the general noise case
where Q̂ is an estimate of the noise covariance matrix.

Step 3: The remaining elements of ˜︁θ are stored in θ̄. Let L denote the length
of θ̄. Using the elements of θ̄, we construct Ḡ = L̄

(L−1)!(L̄−L+1)! DOA subsets such
that each subset has (L−1) DOAs. LetΘ1,Θ2, . . . ,ΘḠ and A(Θ1),A(Θ2), . . . ,A(ΘḠ)
be these DOA subsets and their corresponding array manifolds, respectively.
Therefore, we identify the (L−1) remaining DOAs as the subset that minimizes
the following DML cost function

Θ̂R = argmin
Θi

trace
[︂(︂

P⊥
˜︁A(Θi)

−ν1ν
H
1

)︂
Q̂− 1

2 R̂Q̂− 1
2
]︂

, i = 1,2, . . . ,Ḡ (3.38)

where P⊥
˜︁A(Θi)

≜ IM−˜︁A(Θi)
(︁˜︁A(Θi)H˜︁A(Θi)

)︁−1 ˜︁A(Θi)H , ˜︁A(Θi)≜ Q̂− 1
2 A(Θi), and ν1 ≜

P⊥˜︁A(Θi )
Q̂− 1

2 a(θ̂1)

∥P⊥˜︁A(Θi )
Q̂− 1

2 a(θ̂1)∥2

. Noteworthy to mention that Q̂− 1
2 R̂Q̂− 1

2 is employed here to cover

the general noise case.
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4. MIMO Channel Estimation and Data
Detection with One-Bit ADCs

4.1 Signal Model

4.1.1 MmWave UL Channel

Let a BS of a multi-user mmWave MIMO system be composed of a ULA with
M antennas that deploy one-bit ADCs. Consider also K single antenna users
equipped with high-resolution digital-to-analog converters (DACs). The UL
channel between user k and the BS is mathematically expressed as in (1.4). As
a result, by placing hk for k = 1,2, . . . ,K in columns of the matrix H, we have

H= [h1,h2, . . . ,hK ]= [A(θ1)γ1,A(θ2)γ2, . . . ,A(θK )γK ] . (4.1)

Consequently, the received signal at the BS in the training stage is formulated
as

Y=Q(HS+N) (4.2)

where Q(·)≜ sign(ℜ{·})+ jsign(ℑ{·}) represents the one-bit quantizer, S ∈CK×Ns

is the pilot sequence transmitted by users, and N ∈CM×Ns is a matrix of complex-
valued Gaussian noise with zero mean and variance σ2.

4.1.2 OFDM Systems With Frequency Selective Channels

Consider a MIMO-OFDM system operating over a frequency selective channel
with known number of channel taps, denoted by Ltap. The BS deploys M
antennas equipped by one-bit ADCs. This MIMO-OFDM system serves K single-
antenna users with high-resolution DACs. Moreover, Nc is the number of sub-
carriers employed by the MIMO-OFDM system. The frequency domain symbol
of the k-th user is xFD

k ∈ CNc×1. We add a cyclic prefix (CP) of length Ncp with
Ncp satisfying the relation Ltap −1≤ Ncp ≤ Nc. Note that the superscripts “TD”
and “FD” are used to specify Time Domain and Frequency Domain variables,
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respectively. After excluding the CP, the one-bit quantized observed signal by
the i-th antenna of the BS can be modeled as

yTD
i =Q

(︄
K∑︂

k=1

GTD
i,k WH

D xFD
k +nTD

i

)︄
, i = 1, . . . , M (4.3)

where WD ∈ CNc×Nc represents the normalized DFT matrix, and GTD
i,k is a

circulant matrix, specified by its first column gTD
i,k = [(hTD

i,k )T ,0, . . . ,0]T with
hTD

i,k ∈ CLtap×1 being the Ltap channel vector between the i-th antenna of the
BS and the k-th user. It is assumed that the elements of hTD

i,k are independent

and identically distributed (i.i.d.) as C N
(︂

0, 1
Ltap

)︂
.

4.2 Proposed Methods

4.2.1 SE-TMR

The SE-TMR method is proposed in Publication VI for one-bit mmWave UL
channel estimation. It is developed via leveraging the angular domain sparsity
of mmWave channel and Toeplitz matrix reconstruction concept. It is observed
from (1.4) that hk can be still considered sparse in the angular domain, in spite
of being made of many paths. As a result, we approximate the k-th column of H
in (4.1) with only Lk path gains and DOAs. Therefore, (4.1) can be approximated
as

H= [h1,h2, . . . ,hK ]= [A(θ̄1)γ̄1,A(θ̄2)γ̄2, . . . ,A(θ̄K )γ̄K ] (4.4)

where θ̄k ≜ [θ̄k,1, θ̄k,2, . . . , θ̄k,Lk ]T ∈ RLk×1 and γ̄k ≜ [γ̄k,1, γ̄k,2, . . . , γ̄k,Lk
]T ∈ CLk×1

are respectively the DOAs and path gains of Lk paths, considered for recon-
structing hk. Then, we recast (4.4) as

H=AΓḠ= H̄Ḡ (4.5)

where

A≜ [A(θ̄1),A(θ̄2), . . . ,A(θ̄K )] ∈CM×L (4.6)

Γ≜

⎡
⎢⎢⎣

diag(γ̄1)
. . .

diag(γ̄K )

⎤
⎥⎥⎦ ∈CL×L (4.7)

Ḡ≜

⎡
⎢⎢⎢⎢⎢⎣

1L1

1L2

. . .

1LK

⎤
⎥⎥⎥⎥⎥⎦
∈RL×K (4.8)
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H̄≜AΓ ∈CM×L (4.9)

and L ≜
∑︁K

k=1 Lk. Note that by estimating H̄, H can be recovered since Ḡ is
known. As A and Γ are Vandermonde and diagonal matrices, respectively, it can
be shown that

H̄H̄H =T (u) (4.10)

with u ∈CM×1 and [u]1 being a real number. Combining (4.10) with the sparsity
property of the columns of H in the angular domain, the following optimization
problem can be formulated:

min
H̄,u,ER ,EI

∥vec{WDH̄Ḡ}∥1 +λ
(︄

M∑︂

i=1

Ns∑︂

j=1

([ER]i, j + [EI ]i, j)

)︄
(4.11)

s.t.

[︄
IL H̄H

H̄ T (u)

]︄
⪰ 0

[u]1 = C
M

ℜ{[H̄ḠS]i, j}ℜ{[Y]i, j}⩾ −[ER]i, j,

i = 1, . . . , M, j = 1, . . . , Ns

ℑ{[H̄ḠS]i, j}ℑ{[Y]i, j}⩾ −[EI ]i, j,

i = 1, . . . , M, j = 1, . . . , Ns

[ER]i, j ⩾ 0, i = 1, . . . , M, j = 1, . . . , Ns

[EI ]i, j ⩾ 0, i = 1, . . . , M, j = 1, . . . , Ns

where WD ∈ CM×M is the normalized DFT matrix, λ > 0 is a regularization
parameter, the entries of ER ∈ RM×Ns and EI ∈ RM×Ns are slack variables (see
Publication VI for details). Note that the first constraint in (4.11) is imposed
to enforce the Toeplitz property presented in (4.10). The optimization problem
(4.11) is convex, and it is solved by CVX [121] in Publication VI. After recovering
H using (4.5), the RELAX [122] (which is an one-dimensional harmonic retrieval
(HR) method) is used in Publication VI to further refine the estimate of H.

4.2.2 L1-RLR-TMR

The L1-RLR-TMR method is proposed in Publication VII for estimating mmWave
UL channels with one-bit ADCs. This method leverages the combination of
ℓ1 regularized logistic regression and Toeplitz matrix reconstruction notions
for designing a proper minimization problem. An ADMM-based approach is
developed in Publication VII for handling the aforementioned minimization
problem.
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Plugging (4.5) into (4.2), and then applying the vectorization operator to the
resultant, we obtain

y≜ vec{Y}=Q
(︂(︁

(ḠS)T ⊗IM
)︁

h̄+n
)︂

(4.12)

where h̄≜ vec{H̄} and n≜ vec{N}. The real domain representation of (4.12) is
given as

yR ≜ [ℜ{y}T ,ℑ{y}T ]T = S̄h̄R (4.13)

where H̄≜ H̄R + jH̄I = [h̄1, h̄2, . . . , h̄M]T , h̄R ≜ [vec{H̄R}T ,vec{H̄I }T ]T , and

S̄≜
[︄
ℜ{(ḠS)T ⊗IM} −ℑ{(ḠS)T ⊗IM}

ℑ{(ḠS)T ⊗IM} ℜ{(ḠS)T ⊗IM}

]︄

= [s̄1, s̄2, . . . , s̄2MNs ]
T . (4.14)

The following minimization problem can be formulated for finding h̄R :

min
h̄R ,u

∥F̄h̄R∥1 +λ
2MNs∑︂

t=1

log
(︂

1+ e−κ[yR ]t(s̄T
t h̄R )

)︂

s.t.

[︄
IL (H̄R + jH̄I )H

H̄R + jH̄I T (u)

]︄
⪰ 0

∥h̄m∥2
2 = c , m = 1, . . . , M (4.15)

where F̄ ≜
[︄
ℜ{ḠT ⊗WD} −ℑ{ḠT ⊗WD}

ℑ{ḠT ⊗WD} ℜ{ḠT ⊗WD}

]︄
, λ > 0 is a regularization parame-

ter, and h̄T
m is the m-th row of H̄. In (4.15), the term ∥F̄h̄R∥1 is used for

capturing the underlying sparsity of the mmWave channel, while the term∑︁2MNs
t=1 log

(︂
1+ e−κ[yR ]t(s̄T

t h̄R )
)︂

is the well-known objective function of the binary
logistic regression added for modeling the binary outputs of one-bit ADCs. More-
over, the semi-definite relaxation (SDR) of (4.10) is imposed as a constraint
analogous to the SE-TMR method. The optimization problem introduced in
(4.15) is non-convex. We propose an ADMM-based solution for it in Publication
VII. We use the ADMM technique twice for splitting two sets of variables. The
first usage is for taking care of the SDR constraint, while the second one is for
taking care of the ℓ1 norm in the objective function. We call the former one
as the outer ADMM, whereas the latter is called the inner ADMM. The scaled
augmented Lagrangian of both the outer and inner ADMM, as well as the update
rules can be found in Publication VII.

4.2.3 AdaBoost-Based Channel Estimation and Data Detection in
One-Bit Massive MIMO

In Publication IX, AdaBoost-based algorithms for MIMO-OFDM channel estima-
tion and data detection are proposed. The main idea is to use GDA classifier/ap-
proximate GDA classifier as weak learners in each iteration of an AdaBoost
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algorithm. This approach enables us to develop such algorithms that are compu-
tationally efficient, specifically in large-scale MIMO-OFDM systems.

Binary Classification via GDA
For a training set containing m training examples with n features {x( j)} j=1,...,m

and two classes y( j) ∈ {1,−1} j=1,...,m, GDA assumes that each x( j) is generated
from a normal distribution with the covariance matrix of Σ and means of µ−1
and µ1 depending on the value of y( j). The means and covariance matrix can be
estimated using the training examples as

µ̂−1 =

m∑︂

j=1

1{y( j) =−1}x( j)

m∑︂

j=1

1{y( j) =−1}

(4.16)

µ̂1 =

m∑︂

j=1

1{y( j) = 1}x( j)

m∑︂

j=1

1{y( j) = 1}

(4.17)

Σ̂= 1
m

m∑︂

j=1

(x( j) − µ̂y( j))(x( j) − µ̂y( j))T . (4.18)

The decision boundary that separates two classes is then obtained as

hGDA = Σ̂−1 (︁
µ̂1 − µ̂−1

)︁
. (4.19)

Channel Estimation
Based on the definitions and details given in Publication IX, the GDA-based
weak classifier employed in the t-th iteration of the proposed AdaBoost-based
channel estimator can be developed as

µ̂(t)
−1 =

2Nc∑︂

j=1

1{yTD
i,R, j =−1}w(t)

j φ
TD
R, j (4.20)

µ̂(t)
1 =

2Nc∑︂

j=1

1{yTD
i,R, j = 1}w(t)

j φ
TD
R, j (4.21)

Σ̂
(t) =

2Nc∑︂

j=1

w(t)
j (φTD

R, j − µ̂(t)
yTD

i,R, j
)(φTD

R, j − µ̂(t)
yTD

i,R, j
)T (4.22)

ĥTD,(t)
i,R =

(︂
Σ̂

(t)
)︂−1 (︁

µ̂(t)
1 − µ̂(t)

−1
)︁

(4.23)

where hTD,(t)
i,R ≜

[︁ℜ{hTD
i }T ,ℑ{hTD

i }T]︁T ∈ R2KLtap×1 and hTD
i ≜

[(hTD
i,1 )T , (hTD

i,2 )T , . . . , (hTD
i,K )T ]T for i = 1, . . . , M where M is the number of
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antenna at the BS (see Publication IX for more details). Moreover, w(t)
j is the

weight allocated to the j-th training example in the t-th iteration. We name the
AdaBoost-based channel estimator which employ (4.23) in its t-th iteration as
one-bit GDA-Ada estimator.

Calculating the covariance matrix estimate via (4.22) and then inverting it
in (4.23) makes one-bit GDA-Ada computationally inefficient, particularly in
large-scale systems. To remedy this issue, two approximate versions of (4.23)
can be considered as follows

ĥTD,(t)
i,R,app1 ≜

(︂
Σ̂

(t)
1

)︂−1 (︁
µ̂(t)

1 − µ̂(t)
−1
)︁

(4.24)

ĥTD,(t)
i,R,app2 ≜ µ̂(t)

1 − µ̂(t)
−1 (4.25)

where Σ̂(t)
1 ≜ diag

{︁
σ̂(t)

1
}︁

and σ̂(t)
1 =∑︁2Nc

j=1 w(t)
j

(︂
(φTD

R, j − µ̂(t)
yTD

i,R, j
)⊙ (φTD

R, j − µ̂(t)
yTD

i,R, j
)
)︂

. We

call the AdaBoost-based channel estimators which use (4.24) and (4.25) in their
t-th iteration as one-bit GDA-Ada-1 and one-bit GDA-Ada-2, respectively. Note-
worthy to mention that the computational complexity for implementing the
one-bit GDA-Ada-1 and one-bit GDA-Ada-2 estimator is much lower than that
of the one-bit GDA-Ada estimator.

Data Detection
Analogous to the channel estimation part, GDA classifier/approximate GDA
classifiers can be considered as weak learners in each iteration of AdaBoost-
based data detectors. Hence, the t-th weak learner corresponding to the one-bit
GDA-Ada, one-bit GDA-Ada-1, and one-bit GDA-Ada-2 data detector can be
respectively expressed as

x̂FD,(t)
R =

(︂
Σ̂

(t)
d

)︂−1(︂
µ̂(t)

d,1 − µ̂(t)
d,−1

)︂
(4.26)

x̂FD,(t)
R,app1 =

(︂
Σ̂

(t)
d,1

)︂−1(︂
µ̂(t)

d,1 − µ̂(t)
d,−1

)︂
(4.27)

x̂FD,(t)
R,app2 = µ̂(t)

d,1 − µ̂(t)
d,−1 (4.28)

where

µ̂(t)
d,−1 =

2MNc∑︂

j=1

1{yTD
R, j =−1}w(t)

j gFD
R, j (4.29)

µ̂(t)
d,1 =

2MNc∑︂

j=1

1{yTD
R, j = 1}w(t)

j gFD
R, j (4.30)

Σ̂
(t)
d =

2MNc∑︂

j=1

w(t)
j (gFD

R, j − µ̂(t)
d,yTD

R, j
)(gFD

R, j − µ̂(t)
d,yTD

R, j
)T (4.31)

Σ̂
(t)
d,1 = diag

{︂
σ̂(t)

d,1

}︂
(4.32)
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σ̂(t)
d,1 =

2MNc∑︂

j=1

w(t)
j

(︂
(gFD

R, j − µ̂(t)
d,yTD

R, j
)⊙ (gFD

R, j − µ̂(t)
d,yTD

R, j
)
)︂

. (4.33)

and other definitions and details can be found in Publication IX.

4.3 Experimental Results

In this section, in addition to simulation examples in Publication VII, the perfor-
mance of the L1-RLR-TMR and SE-TMR methods in estimating mmWave UL
channels is compared with that of the BLMMSE [84] and AR [83] methods. The
pilot sequence is selected as a circularly shifted replica of a Zadoff-Chu (ZC) se-
quence of length Ns where each row is orthogonal to the others, i.e., SSH = NsIK.
The SNR and normalized mean squared error (NMSE) are respectively defined as

SNR≜ 10 log10

(︂ ∥HS∥2
F

MNsσ2

)︂
and NMSE≜ 1

K N
∑︁K

k=1
∑︁N

n=1

⃦⃦
⃦⃦ ĥ(n)

k

∥ĥ(n)
k ∥2

− hk
∥hk∥2

⃦⃦
⃦⃦

2

2
, where

ĥ(n)
k denotes the kth column of Ĥ estimated in the n-th Monte Carlo run with hk

being the actual kth column of H, and N being the total number of Monte Carlo
trials considered as N = 200. We consider λ= 1 for the SE-TMR and L1-RLR-
TMR methods, and K = 8. The number of channel clusters and the number of
the within cluster multipaths for all users are considered to be the same. The
latter is set as M1,1

path = ·· · = M1,L1
path = ·· · = MK ,1

path = ·· · = M1,LK
path = 100. We generate

DOAs randomly once and use them for all Monte Carlo trials. The channel path
gains are distributed as C N (0,1). Fig. 4.1 compares the NMSE of the methods
tested for the scenario when M = 16, Ns = 128, Lk = 1 for all users, and the
angle spread of 8 degrees within each cluster. It can be seen from Fig. 4.1 that
the performance of BLMMSE degrades substantially when the precise estimate
of the channel covariance matrix is not available. Moreover, the performance
of L1-RLR-TMR is comparable to that of the SE-TMR method at high-SNR
regime, although the SE-TMR method is implemented using CVX and has high
complexity [121]. In Fig. 4.2, the performance of the methods tested is shown
for the setup of M = 16, Ns = 128, Lk = 2, and the within cluster angle spreads
are 8 and 10 degrees for all users. The efficiency of L1-RLR-TMR is confirmed
at high-SNR regime as compared to other methods tested. Particularly, Fig. 4.2
shows that the performance of L1-RLR-TMR implemented by the ADMM is
comparable with that of the SE-TMR implemented using CVX.
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Figure 4.1. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 1.
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Figure 4.2. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 2.
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5. Summary and Future Directions

In this thesis, computationally efficient and yet accurate algorithms have been
developed for some problems in the area of spectral analysis and its applications.
Specifically, the problems of noisy AR parameter estimation, DOA estimation
in the presence of unknown noise fields, and one-bit massive/mmWave MIMO
channel estimation and data detection have been studied.

Five methods have been developed for noisy AR parameter estimation. The
main idea of the first method is to reduce the detrimental impact of noise
variance in each iteration, whereas a constrained LS optimization problem has
been formulated to estimate the AR parameters in the second method. The
third one uses an approximation to reduce the dimension of any arbitrary noisy
AR problem to only two unknown parameters and then estimates those two
parameters in an iterative manner. The fourth method estimates the observation
noise variance as the minimum eigenvalue of an enlarged autocorrelation matrix.
The fifth one solves a properly designed generalized eigenvalue problem to first
estimate the observation noise variance, and then estimate the AR coefficients.

For the case of uniform sensor noise, two ESPRIT-based DOA estimation
methods called ES ESPRIT and EU ESPRIT have been developed which use
GLS-based algorithms to first generate a candidate set of DOAs and then pick up
the final DOAs by either a DML-based or a GLR-based DOA selection strategies.
Furthermore, a computationally efficient non-iterative method called NISB have
been proposed for DOA estimation in the presence of nonuniform noise. The
NISB method is composed of two phases where an initial estimate of the noise
subspace is obtained in the first phase and the nonuniform noise covariance
matrix as well as a refined estimate of the noise subspace are obtained in
the second phase. A unified approch that contains three steps has been also
developed for DOA estimation in the case of unknown sensor noise. The aim of
the first step is to estimate the nonuniform or block-diagonal noise covariace
matrix, while the second step has been devised for generating DOA candidates
using rooting-based forward-only or FB GLS-based algorithms. The third step
exploits the CB, GLR, and DML concepts to select the best final DOA estimates.
This approach outperforms state-of-the-art DOA estimation methods in coping
with challenging setups such as small sample size and low SNRs.
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Summary and Future Directions

The SE-TMR and L1-RLR-TMR methods have been developed for one-bit
mmWave UL channel estimation. The SE-TMR method solves a convex opti-
mization problem that enforces the underlying sparsity and Toeplitz structure
of the channel by considering the ℓ1 norm of the channel in the DFT domain
and a positive semi-definite (PSD) constraint, respectively. The aforementioned
optimization problem is solved via CVX. The L1-RLR-TMR method formulates a
non-convex optimization problem using the combination of ℓ1 logistic regression
and Toeplitz matrix reconstruction. A computationally efficient ADMM-based
algorithm has been presented to solve the optimization problem of L1-RLR-
TMR. Lastly, we have considered GDA/approximate GDA classification methods
as weak learners in iterations of AdaBoost-based algorithms to develop com-
putationally efficient channel estimators and data detectors in MIMO-OFDM
systems with one-bit ADCs. It has been assumed that the fading of channels is
the frequency selective fading. The proposed AdaBoost-based channel estima-
tors and data detectors, which employ approximate versions of GDA as weak
classifiers, require substantially lower computational complexity compared to
other existing methods.

5.1 Future Directions

To close the loop of development in this thesis, it would be interesting to de-
velop a one-bit DOA estimation method based on AdaBoost. Such one-bit DOA
estimation method would be computationally very efficient because of using
approximate GDA classifiers as weak classifiers.

Some other research directions and extensions of the development in this thesis
are: (i) developing few-bit extensions of the proposed one-bit channel estimators
and data detectors. (ii) developing computationally efficient algorithms for
few-bit DOA estimation problem.
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Errata

Publication VI

The definition of SNR should be revised as SNR= 10log10

(︂ ∥HS∥2
F

MNsσ2

)︂
. Therefore,

the curves of both Figures should be shifted to the right for 22 dBs.
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a b s t r a c t 

This paper presents four new methods for estimating the parameters of an autoregressive (AR) process 

based on observations corrupted by white noise. The first three methods are iterative, while the last one 

is non-iterative. One method is designed to achieve an unbiased estimation of the AR parameters by 

undermining the destructive impact of observation noise in terms of utilizing the null space of the AR 

parameter vector. Another one uses both low- and high-order Yule-Walker equations to construct a con- 

strained least squares optimization problem, in which the variance of observation noise is estimated by 

alternating between two equations. One more method exploits an approximation which leads to reducing 

the problem of estimating the AR parameters with arbitrary order p to estimating just two parameters, 

while the last one estimates the variance of the observation noise using the minimum eigenvalue of 

the enlarged autocorrelation matrix. The performance of the proposed methods is evaluated in terms of 

various numerical examples, which demonstrate their superiority in terms of accuracy and robustness 

against the observation noise compared to state-of-the-art existing methods in most simulation exam- 

ples. It makes the proposed methods a good fit for practical analysis of data contaminated by observation 

noise, when AR modeling is applicable, and gives a range of choices of methods for different data analysis 

situations. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

In many signal processing applications, a random signal is mod- 

eled using autoregressive (AR) model to describe the signal of in- 

terest in a simple and effective way. Such application areas cover 

speech processing, noise cancellation, image processing, spectral 

estimation, biomedical signals modeling, digital communication 

[1–9] , and many other data analysis problems. For example, AR 

modeling is used in modern data science applications such as cli- 

mate and river flow forecasting [10,11] , annual population assess- 

ment [12] , and financial time series analysis [13–16] to name just 

a few. The broad employment of AR modeling is due to the sim- 

plicity of computing unknown model parameters and also excel- 

lent resolution performance. For instance, in [17–19] , methods are 

developed for characterizing and classifying different sets of elec- 

troencephalogram (EEG) signals, as well as detecting artifacts in 

EEG signals using coefficients obtained from AR models. In addi- 

tion to the problem of one-dimensional AR estimation, the prob- 
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lems of multichannel AR estimation and nonlinear AR estimation 

have been subject of active research (see [20–23] ). 

The conventional solution of the AR estimation problem is given 

by the standard least-squares (LS) derived using low-order Yule- 

Walker equations. However, in practical situations, the AR signal is 

contaminated by noise. Because of white observation noise corrup- 

tion, the zero lag autocorrelation is biased, that is, it is leading to 

a biased solution for the Yule-Walker equations [24] . To estimate 

noisy AR parameters, three main types of techniques have been 

developed during past four decades. The techniques from the first 

category are designed to avoid zero lag autocorrelations by using 

high-order Yule-Walker equations. In this category, as the first step, 

the AR signal is modeled by the Autoregressive Moving Average 

(ARMA) model. Then, the AR parameters can be estimated by some 

method such as the Maximum Likelihood (ML) [25] , the Recursive 

Prediction Error (RPE) [26] , or by using the Modified Yule-Walker 

(MYW) equations [1] . Unfortunately, these methods require a lot of 

data for computing high autocorrelation lag estimates, which leads 

to errors in those autocorrelation lags and is problematic in prac- 

tical data analysis applications. 

On the other hand, the second type of the prevalent methods 

use the bias compensation principle (BCP) to estimate the noisy 
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AR model. Removing bias from low-order Yule-Walker equations 

is the main idea of such methods. In general, the second type of 

methods can be divided into two subcategories as well. The meth- 

ods in the first subcategory, which are known as subspace meth- 

ods, are designed to model Yule-Walker equations as an eigenvalue 

problem and estimate both observation noise variance and the AR 

model parameters [5,27,34] . Although these methods provide accu- 

rate estimates in low-level noise case, their performance is poor in 

high-level noise situations [28] . 

Moreover, the methods that belong to the second subcategory 

attempt to find the best estimation of both observation noise vari- 

ance and the AR model parameters by iterating between two sets 

of equations [28–32] . These methods are called improved least- 

squares (ILS) based methods. For instance, an ILS method with a 

direct structure (ILSD) has been suggested in [29] , and extended 

to a fast convergent method in [30] . In [31] , a method which uses 

inverse filtering equations in conjunction with Yule-Walker equa- 

tions to find the desired solution is proposed. This method is called 

the Inverse filtering based improved least-squares (IFILS) method. 

Recently, a novel iterative-based method which obtains a perfect 

solution by solving a nonlinear equation in order to achieve an un- 

biased estimate of AR parameters has been introduced in [28] . The 

authors claimed that their method is able to reach efficient per- 

formance by picking the initial value of observation noise variance 

within a certain region [28] . However, our simulations showed that 

different initial values would lead to different estimates, which are 

not always the efficient ones. In fact, choosing a proper initial value 

is critical in order to achieve the best performance, and this can 

put serious difficulties due to the ambiguity in selecting the suit- 

able initial value. We will clarify this point by means of simula- 

tions in Section 4 . 

The third type of methods exploit the concept named errors-in- 

variables (EIV) to estimate the noisy AR model [36,37] . For example 

in [36] , the variance of observation noise is estimated by minimiz- 

ing a cost function formed by high-order Yule-Walker equations, 

while the AR parameters are estimated via low-order Yule-Walker 

equations. Although, it is a non-iterative method, minimizing the 

proposed cost function leads to a one-dimensional search process, 

which turns this method to a computationally demanding one. 

Based on the discussion above, it can be observed that devis- 

ing new methods for estimating AR parameters in the presence of 

noise is vital for tackling the shortcomings of the existing meth- 

ods. The desirable properties for such new methods are: 1) hav- 

ing certainty about choosing a proper initial value for iterative 

methods; 2) requiring only few iterations to find the best solution; 

3) showing robustness against the presence of high-level observa- 

tion noise; 4) being applicable to noisy AR processes with arbi- 

trary poles locations; 5) showing robustness in scenarios where the 

number of available data is small; 6) having better performance 

compared to the existing state-of-the-art methods. 

In this paper, four new unbiased methods for estimating AR pa- 

rameters in the presence of white observation noise are proposed. 

Three methods are iterative and one is non-iterative. The first one 

is designed to reduce the destructive effect of observation noise 

variance in low-order Yule-Walker equations and it estimates the 

AR parameters in a recursive manner. The second one formulates 

the problem as a constrained LS optimization problem and finds 

the optimum value of the observation noise variance via an iter- 

ative algorithm, and then estimates the AR parameters. The third 

one uses an approximation which reduces the number of unknown 

parameters to only two parameters, and finds the AR parameters in 

a recursive manner. Finally, the fourth one estimates the variance 

of observation noise as the minimum eigenvalue of sufficiently en- 

larged autocorrelation matrix and uses it to estimate the AR pa- 

rameters. Besides achieving on much higher accuracy in the case 

of high-level noise, one of the advantages of the proposed methods 

is that they need far less iterations in order to achieve high accu- 

racy in comparison with other state-of-the-art recursive methods. 

In the case of the fourth non-iterative method, it also can be used 

as a validation tool to evaluate the accuracy of other estimation 

methods. Moreover, the proposed methods can be used for noisy 

AR parameter estimation with arbitrary poles locations. Simulation 

results confirmed that the proposed methods have better perfor- 

mance compared to the other existing estimation methods. 

The remainder of this paper is organized as follows. 

Section 2 introduces the noisy AR model and gives the prob- 

lem formulation. In Section 3 , the proposed methods and the 

corresponding algorithms in addition to a method of choos- 

ing the initial point for the proposed methods are presented. 

Section 4 provides numerical examples for comparing the per- 

formance of the proposed methods with that of three other 

state-of-the-art methods in various scenarios. 

2. Data model 

The noisy p th order real AR model can be represented by 

x (t) = a 1 x (t − 1) + a 2 x (t − 2) + . . . + a p x (t − p) + e (t) 

= a T  x t + e (t) (1) 

y (t) = x (t) + w (t) (2) 

where the driving noise e ( t ) is the zero mean white stationary 

noise with the variance σ 2 
e , a = [ a 1 a 2 · · · a p ] T

 is the vector of co- 

efficients of the AR model (the superscript T denotes the trans- 

pose operation), x t = [ x (t − 1) , · · · , x (t − p)] T , and w (t) is the zero 

mean white stationary observation noise with the variance σ 2 
w 

. 

Moreover, the observation noise w (t) in (2) is assumed to be un- 

correlated with the driving noise e ( t ), that is, E{ w (t) e (n ) } = 0 for 

all the N ’s and T ’s, where E { · } is the expectation operator. 

The autocorrelation function of y ( t ) is given by 

r y (k ) = E { y (t) y (t − k ) } = E { (x (t) + w (t))(x (t − k ) + w (t − k )) } 
= r x (k ) + σ 2 

w 

δ(k ) (3) 

where r x ( k ) is the autocorrelation function of the noiseless AR pro- 

cess x ( t ), and δ( k ) is the delta function. As it can be seen, the au- 

tocorrelation function of y ( t ) at zero lag is biased due to the ex- 

istence of observation noise. In fact, the following equation results 

from (3) : 

r y (0) = E{ y (t) 2 } = E{ x (t) 2 } + σ 2 
w 

. (4) 

Since the driving noise e ( t ) is white and also independent of x (t −
i ) , i > 0, using (1) , it is straightforward to find that 

E{ x (t) 2 } = E{ (x (t))(a T  x t + e (t)) } = r T  x a + σ 2 
e (5) 

where r x = [ r x (1) r x (2) · · · r x (p)] T . 

Substituting (5) into (4) yields 

r y (0) = r T  x a + σ 2 
e + σ 2 

w 

. (6) 

The problem of noisy AR parameter estimation can be accom- 

plished by estimating the noise variances σ 2 
e and σ 2 

w 

, and also es- 

timating the parameters vector a using N noisy observations of the 

process y ( t ). According to [1] , Yule-Walker equations can be writ- 

ten as 

r x (k ) = 

p ∑ 

i =1 

a i r x (k − i ) , k ≥ 1 . (7) 

Evaluating (7) for k = 1 , . . . , p, the following linear system of equa- 

tions is obtained: 

R x a = r x (8) 
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where 

R x = 

⎡ 

⎢ ⎢ ⎣ 

r x (0) r x (−1) · · · r x (1 − p) 
r x (1) r x (0) · · · r x (2 − p) 

. . . 
. . . 

. . . 
. . . 

r x (p − 1) r x (p − 2) · · · r x (0) 

⎤ 

⎥ ⎥ ⎦ 

. (9) 

Combining (3) and (9) , we obtain 

R y = R x + σ 2 
w 

I p (10) 

r y = r x (11) 

where R y and r y are defined in a similar way to R x and r x , respec- 

tively, and I p is the p × p identity matrix. 

The following equation follows from (8), (10) , and (11) : 

R y a − σ 2 
w 

a = r y . (12) 

Multiplying both sides of (12) by R 

−1 
y from the left and rearranging 

the terms, we obtain that 

a = R 

−1 
y r y + σ 2 

w 

R 

−1 
y a . (13) 

The first term at the right-hand side of (13) is known as the LS 

estimate of a , that is, a LS = R 

−1 
y r y [33] . Taking (13) into account one 

can see that a LS is a biased estimate of a . Consequently, it can be 

concluded from (13) that we must have the value of observation 

noise variance σ 2 
w 

in order to remove the bias σ 2 
w 

R 

−1 
y a from a LS = 

R 

−1 
y r y . 

Additionally, q high-order Yule-Walker equations can be ob- 

tained by writing (7) , for p + 1 ≤ k ≤ p + q, and using (3) , as fol- 

lows: 

R 

′ 
y a = r ′ y (14) 

where 

R 

′ 
y = 

⎡ 

⎢ ⎢ ⎣ 

r y (p) r y (p − 1) · · · r y (1) 
r y (p + 1) r y (p) · · · r y (2) 

. . . 
. . . 

. . . 
. . . 

r y (p + q − 1) r x (p + q − 2) · · · r y (q ) 

⎤ 

⎥ ⎥ ⎦ 

(15) 

r ′ y = 

[
r y (p + 1) r y (p + 2) · · · r y (p + q ) 

]ᵀ 

. (16) 

In the following section, new methods, for estimating the param- 

eters of noisy AR models, which will be derived using both low- 

and high-order Yule-Walker equations, are introduced. 

3. The proposed methods 

3.1. The first proposed method 

In this subsection, we propose a method for estimating the pa- 

rameters of noisy AR model, which is based on undermining the 

destructive impact of σ 2 
w 

in (12) . As it can be seen from (12) , the 

term σ 2 
w 

a is the source of both non-linearity (with respect to σ 2 
w 

and a ) and bias in low-order Yule-Walker equations. Motivated by 

this observation, we devise an iterative scheme in which the detri- 

mental effect of the nonlinear part ( σ 2 
w 

a ) is considerably dimin- 

ished over iterations such that eliminating it from the equations 

does not cause large errors in the modeling of the estimation prob- 

lem. Thus, using this approximation, the resultant system of equa- 

tions is linear with respect to a , which can be solved efficiently. 

To do so, consider that if a p × 1 vector c is a good initial esti- 

mate of a , then we can assume that c = a − �, where ‖ �‖ �‖ a ‖ . 
Like for any p × 1 vector, there are p − 1 different vectors b i , ( i = 

1 , . . . , p − 1 ), which satisfy the following conditions: 

b T

 

i 
c = 0 , ‖ b i ‖ 

2 = 1 , b T

 

i 
b j = 0 , i, j = 1 , . . . , p − 1 , i � = j. (17) 

These vectors b i ’s construct an orthonormal basis for the null space 

of c . Multiplying (12) from the left by the vector b T

 

i 
and rearrang- 

ing the terms, the following p − 1 equations are obtained: 

b T

 

i 
R y a = b T

 

i 
r y + σ 2 

w 

b T

 

i 
a , i = 1 , . . . , p − 1 . (18) 

Using the relation a = c + � ( ‖ �‖ �‖ a ‖ ), and (17) , we have 

σ 2 
w 

b T

 

i 
a = σ 2 

w 

b T

 

i 
(c + �) = σ 2 

w 

b T

 

i 
�, i = 1 , . . . , p − 1 . (19) 

Needless to say that as c approaches a , σ 2 
w 

b T

 

i 
a approaches zero. 

In order to obtain an LS solution for a , q high-order Yule-Walker 

equations should be added to the p − 1 equations given by (18) . It 

is clear that q is an arbitrary integer which should be larger than 

or equal to two. By adding the q high-order Yule-Walker equations 

presented in (14) to the p − 1 equations derived in (18) , the system 

of equations can be written in the following vector-matrix form: 

Ha = h (20) 

where 

H = 

[
B (R y − σ 2 

w 

I p ) 
R 

′ 
y 

]
, B = 

[
b 1 b 2 · · · b p−1 

]ᵀ 

, h = 

[
Br y 
r ′ y 

]
. 

(21) 

The LS solution of (20) with respect to a is then given as 

a = (H T

 H ) −1 H T

 h . (22) 

After computing a , the LS estimate of σ 2 
w 

can be obtained using 

(12) as 

σ 2 
w 

= 

a T  R y a − a T  r y 

‖ a ‖ 

2 
. (23) 

Finally, an estimate of σ 2 
e can be obtained using (6) in the follow- 

ing form 

σ 2 
e = r y [0] − r T  y a − σ 2 

w 

. (24) 

The only issue remaining is to determine a way to calculate c , 

which is an initial estimate of a . Without c , we cannot compute 

H and h . Thus, a cannot be obtained from (22) . Using the value 

obtained for c , we will be able to use a recursive algorithm to es- 

timate the AR parameters. This recursive algorithm is summarized 

in Algorithm 2 . The important issue that should be pointed out 

here is that opting proper initial values has a significant effect on 

the performance of all iterative algorithms. Consequently, a perfect 

method for selecting proper initial values should be developed. In 

this case, contrary to most previous iterative AR estimation algo- 

rithms proposed in [29–31] , we suggest to use a different initial 

value from a LS . 

As mentioned in [28] , we know from (10) that R y = R x + σ 2 
w 

I p . 

Therefore, we have 

λmin (R y ) = λmin (R x ) + σ 2 
w 

(25) 

where λmin ( X ) denotes the minimum eigenvalue of matrix X . Since 

both R y and R x are symmetric and positive definite matrices, it 

can be concluded readily that 0 < σ 2 
w 

< λmin (R y ) . We propose to 

choose an initial value for σ 2 
w 

by assuming σ 2 
e = 0 in (24) and solv- 

ing (24) for σ 2 
w 

. We aim to find an upper bound for σ 2 
w 

which is 

tighter than λmin ( R y ), and use it as the initial value of σ 2 
w 

. Since 

both σ 2 
w 

and σ 2 
e are non-negative variables, the maximum value of 

σ 2 
w 

can be considered as the only root of (24) when σ 2 
e is set to 

zero (the minimum value). Using (12) , (24) can be written as 

σ 2 
e = f (σ 2 

w 

) = r y [0] − σ 2 
w 

− r T  y (R y − σ 2 
w 

I p ) 
−1 r y (26) 

It should be pointed out that f (σ 2 
w 

) is a nonlinear function of σ 2 
w 

. 

The following theorem states and proves that this nonlinear func- 

tion has only one root in the interval (0, λmin ( R y )). 

Theorem 1. The nonlinear function f (σ 2 
w 

) presented by (26) has ex- 

actly one real root over the interval (0, λmin ( R y )) . 
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Proof. The first statement that should be proved is that f (σ 2 
w 

) 

is strictly monotonic. The second statement is that f (0) and 

f ( d λmin ( R y )) have different signs, when d approaches 1. After il- 

lustrating these two statements, the proof of the theorem will be 

complete. For proof of the first statement, see [28] . 

Now, we prove that f (0) and f ( d λmin ( R y )) have different signs. In 

the case that σ 2 
w 

= dλmin (R y ) , we can write: 

r T  y (R y − dλmin (R y ) I P ) 
−1 r y = r T  y (Q (� − dλmin (R y ) I P ) Q T

 ) −1 r y 

= (Q T

 r y ) T
 (� − dλmin (R y ) I P ) 

−1 Q T

 r y = v T  (� − dλmin (R y ) I P ) 
−1 v 

= 

p ∑ 

i =1 

1 

λi − dλmin (R y ) 
v 2 i (27) 

where Q is a matrix whose columns are the orthonormal eigen- 

vectors of matrix R y , and � = diag(λ1 , · · · , λp ) is a matrix whose 

diagonal elements are the eigenvalues of matrix R y . It can be seen 

from (27) that as d approaches 1, the right-hand side of (27) ap- 

proaches + ∞ , which results in f ( d λmin ( R y )) to approach −∞ . The 

only part that remains is to show that f (0) has a positive value. 

Inserting σ 2 
w 

= 0 into (26) , we have 

f (0) = r y (0) − r T  y R 

−1 
y r y . (28) 

Taking (13) into account, we reach R 

−1 
y r y = (I P − σ 2 

w 

R 

−1 
y ) a . Thus, 

the second term in the right-hand side of (28) can be written as 

r T  y R 

−1 
y r y = r T  y 

(
I P − σ 2 

w 

R 

−1 
y 

)
a = r T  y 

(
I P − σ 2 

w 

R 

−1 
y 

)(
R y − σ 2 

w 

I P 
)−1 

r y 

= r T  y 

(
R y − σ 2 

w 

I p 
)−1 

r y − σ 2 
w 

r T  y R 

−1 
y 

(
R y − σ 2 

w 

I p 
)−1 

r y . (29) 

Rearranging the terms in (26) , we can write that 

r T  y 

(
R y − σ 2 

w 

I p 
)−1 

r y = r y [0] − σ 2 
e − σ 2 

w 

. (30) 

Finally, combining (28) –(30) , the following relationship is obtained 

for f (0) 

f (0) = r y (0) −
(
r y (0) − σ 2 

e − σ 2 
w 

)
+ σ 2 

w 

r T  y R 

−1 
y 

(
R y − σ 2 

w 

I p 
)−1 

r y 

= σ 2 
e + σ 2 

w 

+ σ 2 
w 

r T  y R 

−1 
y 

(
R y − σ 2 

w 

I p 
)−1 

r y . (31) 

Because both σ 2 
e and σ 2 

w 

are positive, and also R 

−1 
y (R y − σ 2 

w 

I p ) 
−1 

is a Positive Definite (PD) matrix over 0 < σ 2 
w 

< λmin (R y ) , it can be 

concluded that f (0) > 0. �

The significant issue that should be dealt with here is to de- 

termine how to solve the nonlinear equation f (σ 2 
w 

) = 0 and find 

ˆ σ 2(0) 
w 

, which is the initial value of σ 2 
w 

. The classic approach for 

finding roots of a nonlinear function is to use the Newton method. 

However, it is well-known that the performance of the Newton 

method highly depends on the closeness of the initial point to 

the actual root. Therefore, we develop a method to find the root 

of f (σ 2 
w 

) in the interval (0, λmin ( R y )) with arbitrary precision in 

Section 3.1.1 . It should be noted that this initial value for σ 2 
w 

is put 

into (12) to give us an initial estimate for a , which will be consid- 

ered as c . 

3.1.1. The proposed algorithm for finding the initial value of σ 2 
w 

In this subsection, an algorithm, which uses the fact that f (σ 2 
w 

) 

is strictly monotonic and has only one root over the interval (0, 

λmin ( R y )), is suggested for calculating ˆ σ 2(0) 
w 

. The first step of this 

algorithm is to start from the lower and upper bounds of σ 2 
w 

, 

i.e, D 1 = 0 and D 2 = 0 . 9999 λmin (R y )) , and then calculate f ( D 1 ) and 

f ( D 2 ). If f (D = (D 1 + D 2 ) / 2) = 0 , then the initial value is found and 

the algorithm should be terminated. Otherwise, we can substitute 

either D 1 with D if f ( D ) > 0, or D 2 with D if f ( D ) < 0 based on 

Theorem 1 . The aforementioned steps are repeated until the initial 

value is found. It is clear that this algorithm will always converge 

and find a precise solution for f (σ 2 
w 

) = 0 . The proposed algorithm 

is summarized in Algorithm 1 . 

Algorithm 1 The proposed algorithm for finding the initial value 

of σ 2 
w 

. 

1: Compute autocorrelation estimates, using samples 

{ y (1) , y (2) , . . . , y (N) } , that is, ˆ r y (k ) = 

1 
N 

∑ N 
t= k +1 y (t) y (t − k ) 

(k = 0 , 1 , . . . , p + q ) , and then use them to form the estimates ˆ R y , 

and 

ˆ r y . 

2: Set δ0 to be a small positive number. Here we choose the value 

0.001 for δ0 . After that, set i = 0 , where i denotes the iteration 

index. 

3: Set D 1 = 0 and D 2 = 0 . 9999 λmin (R y ) , and calculate f (D 1 ) and 

f (D 2 ) via f (D m 

) = ̂  r y (0) − D m 

− ˆ r T y ( ̂  R y − D m 

I p ) 
−1 ˆ r y ( m = 1 , 2 ). 

4: Set i = i + 1 and calculate D = 

D 1 + D 2 
2 and f (D ) . If | f (D ) | ≤ δ0 , 

set ˆ σ 2(0) 
w 

= D and terminate the iterations. 

Otherwise, go to step 5. 

5: If f (D ) > 0 , set D 1 = D , and if f (D ) < 0 , set D 2 = D and go to 

step 4. 

Algorithm 2 Algorithm for the first proposed method. 

1: Compute autocorrelation estimates, using samples 

{ y (1) , y (2) , . . . , y (N) } , that is, ˆ r y (k ) = 

1 
N 

∑ N 
t= k +1 y (t) y (t − k ) 

(k = 0 , 1 , . . . , p + q ) , and then use them to form the estimates ˆ R y , 
ˆ R 

′ 
y , ˆ r y , and 

ˆ r ′ y . 
2: Set i = 0 . Let the initial variance of observation noise be 

ˆ σ 2(0) 
w 

= D , where D is calculated by Algorithm 1. Then compute 

c = 

ˆ a (0) = ( ̂  R y − ˆ σ 2(0) 
w 

I p ) 
−1 ˆ r y . 

3: Set i = i + 1 and use Singular Value Decomposition (SVD) to find 

b 

(i ) 
j 

’s ( j = 1 , . . . , p − 1) , which constitute an orthonormal basis for 

the null space of ˆ a (i −1) , that is, they must satisfy the conditions 

below 

b 

(i ) T 
j 

ˆ a (i −1) = 0 , ‖ b 

(i ) 
j 

‖ 2 = 1 , b 

(i ) T 
j 

b 

(i ) 
k 

= 0 ( j, k = 1 , . . . , p − 1 , j � = 

k ) . 

4: Use b 

(i ) 
j 

’s, ˆ R y , ˆ σ 2(i −1) 
w 

, ˆ R 

′ 
y , ˆ r y and 

ˆ r ′ y to compute the estimates 

ˆ B 

(i ) , ˆ H 

(i ) and 

ˆ h 

(i ) . 

5: Calculate ˆ a (i ) = ( ̂  H 

(i ) T ˆ H 

(i ) ) −1 ˆ H 

(i ) T ˆ h 

(i ) . 

6: Calculate ˆ σ 2(i ) 
w 

= 

ˆ a (i ) T ( ̂ R y ̂ a (i ) −ˆ r y ) 

‖ ̂ a (i ) ‖ 2 . If 
| ̂ σ 2(i ) 

w − ˆ σ 2(i −1) 
w | 

| ̂ σ 2(i −1) 
w | ≤ δ, where δ is 

an appropriate small positive number, and ‖ · ‖ is the Euclidean 

norm, the iterations must be terminated, and the algorithm must 

be continued through step 7. 

Otherwise, go to step 3. 

7: Calculate ˆ σ 2 
e = ̂  r y [0] − ˆ r T y ̂  a (i ) − ˆ σ 2(i ) 

w 

. 

3.2. The second proposed method 

Similar to the first proposed method, the second one is an iter- 

ative method. The core idea of the second proposed method is to 

set up a constrained optimization problem to find the best solu- 

tion which leads to the minimum error in (12) . In order to do that, 

we propose to use low-order Yule-Walker equations to construct 

the LS cost function, while setting the constraint to satisfy the first 

high-order Yule-Walker equation, as follows: 

minimize 
a σ 2 

w 

((
R y − σ 2 

w 

I p 
)
a − r y 

)ᵀ 

((
R y − σ 2 

w 

I p 
)
a − r y 

)
subject to r̄ T  a = r y (p + 1) (32) 

where r̄ T is the first row of R 

′ 
y in (15) . It is worth noting that we 

tested several combinations of high-order Yule-Walker equations 

as constraints in the second proposed approach and observed that 

using only the first high-order Yule-Walker equation leads to the 

best performance in most of the cases of AR processes. Using the 

Lagrangian multiplier method, the constrained problem (32) can be 
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converted to the problem of finding the proper a and σ 2 
w 

which 

minimize the following Lagrangian function 

L (a , σ 2 
w 

) = 

((
R y − σ 2 

w 

I p 
)
a − r y 

)ᵀ 

((
R y − σ 2 

w 

I p 
)
a − r y 

)
+ λ( a T  r̄ − r y (p + 1) ) 

= a T  
(
R y − σ 2 

w 

I p 
)2 

a − 2 a T  
(
R y − σ 2 

w 

I p 
)
r y + ‖ r y ‖ 

2 

+ λ( a T  r̄ − r y (p + 1) ) (33) 

where λ is a scalar Lagrangian multiplier. In order to find the pa- 

rameters which minimize (33) , the partial derivative of (33) should 

be calculated with respect to both a � and σ 2 
w 

as follows: 

∂L (a , σ 2 
w 

) 

∂a T  
= 2 

(
R y − σ 2 

w 

I p 
)2 

a − 2 

(
R y − σ 2 

w 

I p 
)
r y + λr̄ (34) 

∂L (a , σ 2 
w 

) 

∂σ 2 
w 

= −2 a T  
(
R y − σ 2 

w 

I p 
)
a + 2 a T  r y . (35) 

Setting (34) and (35) to be zero leads us to the solution of (32) . 

First, it is clear that setting (35) to be zero and calculating the LS 

estimate of σ 2 
w 

leads to (23) . Moreover, setting (34) to be zero, we 

have 

(
R y − σ 2 

w 

I p 
)2 

a = 

(
R y − σ 2 

w 

I p 
)
r y − λ

2 

r̄ 

⇒ a = 

(
R y − σ 2 

w 

I p 
)−1 

r y − λ

2 

[ (
R y − σ 2 

w 

I p 
)2 
] −1 

r̄ . (36) 

Since the result of (36) should satisfy the constrain of (32) , substi- 

tuting (36) into the constrain of (32) leads to closed form expres- 

sion for λ, that is, 

r̄ T  
(
R y − σ 2 

w 

I p 
)−1 

r y − λ

2 

r̄ T  
[ (

R y − σ 2 
w 

I p 
)2 
] −1 

r̄ = r y (p + 1) 

⇒ λ = 2 

r̄ T  
(
R y − σ 2 

w 

I p 
)−1 

r y − r y (p + 1) 

r̄ T  
[ (

R y − σ 2 
w 

I p 
)2 
] −1 

r̄ 

. (37) 

Substituting (37) into (36) , we obtain 

a = 

(
R y − σ 2 

w 

I p 
)−1 

r y −

⎛ 

⎜ ⎝ 

r̄ T  
(
R y − σ 2 

w 

I p 
)−1 

r y − r y (p + 1) 

r̄ T  
[ (

R y − σ 2 
w 

I p 
)2 
] −1 

r̄ 

⎞ 

⎟ ⎠ 

×
[ (

R y − σ 2 
w 

I p 
)2 
] −1 

r̄ . (38) 

It can be observed that calculating a and σ 2 
w 

is difficult using 

(38) and (23) directly. As a result, the use of an iterative method 

based on alternations between (38) and (23) is a proper choice. 

The output of this iterative method is a good estimate of σ 2 
w 

. Then, 

the estimated value of σ 2 
w 

can be used in a system of linear equa- 

tions composed of both low- and high-order Yule-Walker equations 

for estimating a as follows: 

H 1 a = h 1 (39) 

where 

H 1 = 

[
R y − σ 2 

w 

I p 
R 

′ 
y 

]
, h 1 = 

[
r y 
r ′ y 

]
. (40) 

Similar to the first proposed method, the LS solution of (39) is ob- 

tained by a = (H T

 

1 
H 1 ) 

−1 H T

 

1 
h 1 . Finally, σ 2 

e can be estimated exactly 

in the same way as in the first proposed method, that is, using 

(24) . The algorithm of the second proposed method is summarized 

in Algorithm 3 . 

Algorithm 3 Algorithm for the second proposed method. 

1: Compute autocorrelation estimates, using samples 

{ y (1) , y (2) , . . . , y (N) } , that is, ˆ r y (k ) = 

1 
N 

∑ N 
t= k +1 y (t) y (t − k ) 

(k = 0 , 1 , . . . , p + q ) , and then use them to form the estimates ˆ R y , 

ˆ R 

′ 
y , ˆ r y , 

ˆ r̄ , and 

ˆ r ′ y . 
2: Set i = 0 . Let the initial variance of observation noise be 

ˆ σ 2(0) 
w 

= D , where D is calculated by Algorithm 1. 

3: Compute ˆ a (i ) = 

(
ˆ R y − ˆ σ 2(i ) 

w 

I p 

)−1 

ˆ r y −

⎛ 

⎜ ⎝ 

ˆ r̄ T ( ̂ R y − ˆ σ 2(i ) 
w I p ) −1 ˆ r y −ˆ r y (p+1) 

ˆ r̄ T 

[(
ˆ R y − ˆ σ 2(i ) 

w I p 

)2 
]−1 

ˆ r̄ 

⎞ 

⎟ ⎠ 

[( ̂  R y − ˆ σ 2(i ) 
w 

I p ) 2 ] −1 ˆ r̄ . 

4: Set i = i + 1 and compute ˆ σ 2(i ) 
w 

= 

ˆ a (i −1) T ( ̂ R y ̂ a (i −1) −ˆ r y ) 

‖ ̂ a (i −1) ‖ 2 . If 

| ̂ σ 2(i ) 
w − ˆ σ 2(i −1) 

w | 
| ̂ σ 2(i −1) 

w | ≤ δ, go to step 5. Otherwise, go to step 3. 

5: Compute the estimates ˆ H 1 and 

ˆ h 1 where σ 2 
w 

= ˆ σ 2(i ) 
w 

. Then 

compute ̂ a = ( ̂  H T

 

1 
ˆ H 1 ) 

−1 ˆ H T

 

1 
ˆ h 1 . 

6: Calculate ˆ σ 2 
e = ̂  r y [0] − ˆ r T y ̂  a (i ) − ˆ σ 2(i ) 

w 

. 

3.3. The third proposed method 

The main idea of the third proposed method is to reduce the 

dimension of the unknown parameters from p to two in each iter- 

ation, regardless of the model order p . Considering (12) , it can be 

seen that a = (R y − σ 2 
w 

I p ) −1 r y , which means that a inversely de- 

pends on the difference between the eigenvalues of R y and σ 2 
w 

. 

Motivated by this observation, we represent a as a linear combina- 

tion of the eigenvectors of R y . In fact, we convert the original un- 

known parameters ( a m 

, m = 1 , · · · , p) to the new unknown param- 

eters ( αm 

, m = 1 , · · · , p), which are dependent on 

1 

λm −σ 2 
w 

( λm 

’s are 

the eigenvalues of R y ). Taking into account that 0 < σ 2 
w 

< λmin (R y ) , 

it can be concluded that different choices of σ 2 
w 

in that interval do 

not change the value of αm 

as long as the corresponding eigen- 

value λm 

is much larger than λmin ( R y ). Consequently, we write 

a = 

p ∑ 

m =1 

αm 

v m 

(41) 

where v m 

’s, m = 1 , · · · , p are the eigenvectors of the matrix R y 

which satisfy the characteristic equation R y v m 

= λm 

v m 

. It is worth 

noting that we assume 

‖ v m 

‖ 

2 = 1 , v T  m 

v k = 0 , m, k = 1 , · · · , p, m � = k (42) 

λ1 < λ2 < · · · < λp . (43) 

Thus, substituting (41) into (12) and using the fact that R y v m 

= 

λm 

v m 

, we obtain 

R y 

p ∑ 

m =1 

αm 

v m 

= r y + σ 2 
w 

p ∑ 

m =1 

αm 

v m 

⇒ 

p ∑ 

m =1 

αm 

λm 

v m 

= r y + σ 2 
w 

p ∑ 

m =1 

αm 

v m 

. (44) 

Multiplying (44) by v T m 

from the left, and using (42) , we have 

αm 

λm 

= v T  m 

r y + σ 2 
w 

αm 

⇒ αm 

= 

v T  m 

r y 

λm 

− σ 2 
w 

, m = 1 , · · · , p. (45) 

As it is stated earlier in Subsection 3.1, it is known that 0 < σ 2 
w 

< 

λ1 . Therefore, one can assume that choosing different values of 

σ 2 
w 

in the interval (0, λ1 ) does not change αm 

for m = 3 , · · · , p

dramatically since with larger m , λm 

is usually much bigger than 

σ 2 
w 

. As a result, we can assume that we are able to calculate 
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αm 

(m = 3 , · · · , p) by choosing a proper value for σ 2 
w 

in the inter- 

val (0, λ1 ) (for example choosing σ 2 
w 

= D according to Algorithm 1 ) 

using (45) . Thus, we can write 

a = α1 v 1 + α2 v 2 + x̄ (46) 

where 

x̄ = 

p ∑ 

m =3 

αm 

v m 

. (47) 

Substituting (46) and (47) into (14) , and using (45) , we can con- 

struct the following system of linear equations: 

H 2 α = h 2 (48) 

where 

α = 

[
α1 

α2 

]
, H 2 = 

[
�̄

R 

′ 
y V 

]
, h 2 = 

[
, V T

 r y 
r ′ y − R 

′ 
y ̄x 

]

�̄ = 

[
λ1 − σ 2 

w 

0 

0 λ2 − σ 2 
w 

]
, V = 

[
v 1 v 2 

]
. (49) 

The LS solution of (48) is obtained by α = (H T

 

2 
H 2 ) 

−1 H T

 

2 
h 2 . Similar 

to both previously proposed methods, we cannot use (48) directly 

to estimate α since the knowledge of the value of σ 2 
w 

is necessary 

for calculating �̄ according to (49) . Thus, it is reasonable to use an 

iterative method to estimate the unknown parameters. As stated 

earlier, D (which is calculated by Algorithm 1 ) is a proper initial 

value for σ 2 
w 

and can be used to calculate αm 

’s ( m ≥ 3), x̄ , and �̄
using (45), (47) , and (49) , respectively. Then, an estimate of α can 

be obtained as the LS solution of (48) . Now, we have an estimate of 

a obtained using (46) , and can compute a new value for σ 2 
w 

using 

(23) , and repeat the aforementioned procedure until a pre-defined 

stopping criteria is satisfied. In addition, σ 2 
e can be estimated via 

(24) . The algorithm of the third proposed method is summarized 

in Algorithm 4 . 

Algorithm 4 Algorithm for the third proposed method. 

1: Compute autocorrelation estimates, using samples 

{ y (1) , y (2) , . . . , y (N) } , that is, ˆ r y (k ) = 

1 
N 

∑ N 
t= k +1 y (t) y (t − k ) 

(k = 0 , 1 , . . . , p + q ) , and then use them to form the estimates ˆ R y , 
ˆ R 

′ 
y , ˆ r y , and 

ˆ r ′ y . Then, apply eigendecomposition of ˆ R y and find λm 

’s 

and v m 

’s ( m = 1 , · · · , p) which satisfy (42) and (43). 

2: Set i = 0 . Let the initial variance of observation noise be 

ˆ σ 2(i ) 
w 

= D , where D is calculated by Algorithm 1. 

3: Set i = i + 1 and compute ˆ α(i ) 
m 

= 

v T
 

m ̂ r y 

λm − ˆ σ 2(i −1) 
w 

for m = 3 , · · · , p. 

Then, calculate ˆ x̄ (i ) = 

∑ p 
m =3 

ˆ α(i ) 
m 

v m 

. 

4: Compute the estimates ˆ H 

(i ) 
2 

and 

ˆ h 

(i ) 
2 

where σ 2 
w 

= ˆ σ 2(i ) 
w 

and 

x̄ = 

ˆ x̄ (i ) . Then compute ˆ α(i ) = ( ̂  H 

(i ) T 
2 

ˆ H 

(i ) 
2 

) −1 ˆ H 

(i ) T 
2 

ˆ h 

(i ) 
2 

. 

5: Compute ˆ a (i ) = V ̂

 α(i ) + ̄x . 

6: Compute ˆ σ 2(i ) 
w 

= 

ˆ a (i ) T ( ̂ R y ̂ a (i ) −ˆ r y ) 

‖ ̂ a (i ) ‖ 2 . If 
| ̂ σ 2(i ) 

w − ˆ σ 2(i −1) 
w | 

| ̂ σ 2(i −1) 
w | ≤ δ, go to step 7. 

Otherwise, go to step 3. 

7: Calculate ˆ σ 2 
e = ̂  r y [0] − ˆ r T y ̂  a (i ) − ˆ σ 2(i ) 

w 

. 

3.4. The fourth proposed method 

Unlike the other proposed methods, the aim of the fourth one 

is to estimate AR parameters in a non-iterative manner. Towards 

this end, we can write 

R y (m ) = R x (m ) + σ 2 
w 

I m 

, m ≥ 1 (50) 

where 

R y (m ) 

= E 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

⎡ 

⎢ ⎢ ⎣ 

y (t) 
y (t − 1) 

. . . 
y (t − (m − 1)) 

⎤ 

⎥ ⎥ ⎦ 

[
y (t) y (t − 1) · · · y (t − (m − 1)) 

]
⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎡ 

⎢ ⎢ ⎣ 

r y [0] r y [ −1] · · · r y [1 − m ] 
r y [1] r y [0] · · · r y [2 − m ] 

. . . 
. . . 

. . . 
. . . 

r y [ m − 1] r y [ m − 2] · · · r y [0] 

⎤ 

⎥ ⎥ ⎦ 

(51) 

and R x ( m ) is built in the same way as R y ( m ) where autocorrelation 

lags r x ( · ) are calculated using noiseless data. It can be observed 

from (50) that minimum eigenvalue of R y ( m ) is equal to minimum 

eigenvalue of R x ( m ) plus σ 2 
w 

. Based on this observation, our aim is 

to prove that by increasing m , both minimum eigenvalues of R y ( m ) 

and R x ( m ) are reduced. Since both R y ( m ) and R x ( m ) are PD matri- 

ces [3] , and σ 2 
w 

is positive, by increasing m , the minimum eigen- 

value of R y ( m ) approaches σ 2 
w 

. The following theorem states and 

proves it. 

Theorem 2. Enlarging the dimension of R y ( m ) by increasing m will 

lead to reducing the minimum eigenvalue of R y ( m ) . 

Proof. We prove the theorem by showing that the minimum 

eigenvalue of R y (k + 1) is smaller than the minimum eigenvalue 

of R y ( k ), where k is an arbitrary number greater than one. To do 

so, we write 

R y (k ) u = λ1 u , R y (k + 1) z = λ′ 
1 z , ‖ u ‖ = ‖ z ‖ = 1 (52) 

where λ1 and u are respectively the minimum eigenvalue of R y ( k ) 

and its corresponding eigenvector. Similarly, λ′ 
1 

and z are respec- 

tively the minimum eigenvalue of R y (k + 1) and its corresponding 

eigenvector. Using the Rayleigh quotient [4] , we only need to prove 

that 

u T

 R y (k ) u > z T  R y (k + 1) z . (53) 

To begin with, we can write the left hand side of (53) as 

u T

 R y (k ) u = 

[
u T

 0 

]
R y (k + 1) 

[
u 

0 

]
. (54) 

Since it is clear from the Rayleigh quotient that the right hand side 

of (54) is equal to or greater than z T R y (k + 1) z , we only need to 

show that 

[
u T

 0 

]
R y (k + 1) 

[
u 

0 

]
� = z T  R y (k + 1) z . (55) 

Let us assume that the left hand side of (55) is equal to the right 

hand side of (55) , which implies that [ u T

 0] T = z T . Therefore, based 

on (52) , it should hold that 

R y (k + 1) 

[
u 

0 

]
= λ′ 

1 

[
u 

0 

]
⇒ R y (k + 1) 

[
u 

0 

]

= u 1 

⎡ 

⎢ ⎢ ⎣ 

r y [0] 
r y [1] 

. . . 
r y [ k ] 

⎤ 

⎥ ⎥ ⎦ 

+ u 2 

⎡ 

⎢ ⎢ ⎣ 

r y [ −1] 
r y [0] 

. . . 
r y [ k − 1] 

⎤ 

⎥ ⎥ ⎦ 

+ · · · u k 

⎡ 

⎢ ⎢ ⎣ 

r y [ −(k − 1)] 
r y [ −(k − 2)] 

. . . 
r y [1] 

⎤ 

⎥ ⎥ ⎦ 

+ 0 

⎡ 

⎢ ⎢ ⎣ 

r y [ −k ] 
r y [ −(k − 1)] 

. . . 
r y [0] 

⎤ 

⎥ ⎥ ⎦ 

(56) 
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where u i is the i th element of u . Taking into account the fact that 

R y (k ) u = λ1 u , (56) can be rewritten as follows 

R y (k + 1) 

[
u 

0 

]
= 

⎡ 

⎣ 

λ1 u 

k ∑ 

i =1 

u i r y [ k + 1 − i ] 

⎤ 

⎦ . (57) 

Eq. (57) states that we should have 

k ∑ 

i =1 

u i r y [ k + 1 − i ] = 0 (58) 

which is not correct and we reached a contradiction. Therefore, 

[ u 

�0] � � = z � and (55) is correct. �

According to Theorem 2 , we can choose a proper value for m 

(for example m = 2 p), and calculate σ 2 
w 

as the minimum eigen- 

value of R y ( m ). Then, we can construct H 1 and h 1 using (40) and 

calculate a = (H T

 

1 
H 1 ) 

−1 H T

 

1 
h 1 . The main advantage of the fourth 

proposed method is that it is a non-iterative method and thus does 

not have any convergence issue. The algorithm of the fourth pro- 

posed method is summarized in Algorithm 5 . 

Algorithm 5 Algorithm for the fourth proposed method. 

1: Choose a proper value for m . Then, compute autocorrela- 

tion estimates, using samples { y (1) , y (2) , . . . , y (N) } , that is, 

ˆ r y (k ) = 

1 
N 

∑ N 
t= k +1 y (t) y (t − k ) (k = 0 , 1 , . . . , max (p + q, m )) , and 

then use them to form the estimate ˆ R y (m ) . 

2: Apply eigendecomposition of ˆ R y (m ) and set ˆ σ 2 
w 

= λmin , where 

λmin is the minimum eigenvalue of ˆ R y (m ) . 

3: Compute the estimates ˆ H 1 and 

ˆ h 1 . Then compute ̂ a = 

( ̂  H T

 

1 
ˆ H 1 ) 

−1 ˆ H T

 

1 
ˆ h 1 . 

3.5. Complexity analysis 

In this subsection, a discussion about the required order 

of computational complexity for implementing each proposed 

method is provided. The corresponding complexity of computing 

the LS estimate of an unknown p × 1 vector using an overdeter- 

mined system of linear equations is O ( p 3 ) (see for example [38] ). 

Likewise, performing an SVD of a p × p matrix requires the same 

amount of computational complexity. Hence, for implementing the 

first proposed method, the overall required computational com- 

plexity is O ( p 3 ) due to calculating the SVD (step 3), and the LS 

estimate of ˆ a (i ) (step 5) in i th iteration of Algorithm 2 . Similarly, 

according to Algorithm 3 , the overall needed computational com- 

plexity is also O ( p 3 ) for the second proposed method since its im- 

plementation requires computing inverse of p × p matrices (step 3) 

in i th iteration, and also calculating the final LS estimate (step 5). 

Moreover, the computations needed to implement the eigende- 

composition of ˆ R y in the third proposed method (step 1), and 

calculate ˆ a (i ) (step 4) is O ( p 3 ) as well. In the case of the fourth 

proposed method, the corresponding computational complexity is 

O ( p 3 ) because of the eigendecomposition of ˆ R y (m ) . The computa- 

tions needed at each iteration of the EIV method [36] , the IFILS 

method [31] , and Xia and Zheng’s method [28] are also of com- 

plexity O ( p 3 ), which means that each iteration of the proposed it- 

erative methods needs the same order of computations as each it- 

eration of the existing iterative methods. The difference arises from 

the fact that our proposed iterative methods require much smaller 

average number of iterations compared to the other iterative meth- 

ods as it will be shown in the simulation section. In the case of the 

fourth proposed method, since m is greater than p (for example 

m = 2 p), it needs more computations in comparison with each it- 

eration of the above mentioned iterative methods. However, as we 

pointed out earlier, the fourth proposed method is a non-iterative 

method, which means that we need to apply the eigendecomposi- 

tion of ˆ R y (m ) just once. Moreover, the constant increase by 2 3 = 8 

is negligible for a practical size p . 

4. Simulation results 

In this section, the performances of the proposed methods are 

compared with that of the EIV method [36] , the IFILS method [31] , 

and Xia and Zheng’s method [28] by means of simulations. In order 

to evaluate the accuracy of the aforementioned methods in esti- 

mating AR parameters, four numerical examples are considered. In 

what follows, M stands for the number of trials and N denotes the 

number of data points available. These values are set to 10 0 0 and 

40 0 0, respectively. The parameter estimation methods are evalu- 

ated in terms of the Relative Prediction Error (RPE), and Normal- 

ized Root Mean Squared Error (NRMSE), which are defined, respec- 

tively, as follows: 

RP E = 

| P E − σ 2 
e | 

σ 2 
e 

(59) 

P E = 

1 

M(N − p) 

M ∑ 

m =1 

N ∑ 

t= p+1 

(y (t) − ˆ a T  m 

y t ) (60) 

NRMSE = 

√ 

(( 
∑ M 

m =1 ‖ ̂

 a m 

− a ‖ 

2 ) /M) 

‖ a ‖ 

(61) 

where y t = [ y (t − 1) , y (t − 2) , . . . , y (t − p)] T , and 

ˆ a m 

denotes the 

estimate of a in the m th trial. Among these two, RPE, which shows 

how well each method predicts the noiseless AR signal, is more in- 

formative and reliable. To calculate RPE, we use 10 0 0 sets of data 

which are independent from the test data whose AR parameters 

are estimated. 

It should be mentioned that σ 2(0) 
w 

is chosen to be ηλmin ( R y ) 

in the Xia-Zheng method, and η is picked within the interval 

[0.55,0.99] (see [28] ). As mentioned before in the introduction sec- 

tion, the main drawback of the Xia-Zheng’s method is that there is 

an uncertainty about choosing the value of η. The initial parame- 

ters of each simulated method tested are the following. In the IFILS 

method, the parameter q is set to 2, and the value of parameter δ, 

which determines when to terminate the iteration process, is set 

to 0.001 in all the examples. As mentioned before, choosing differ- 

ent values for parameters η, δ1 , and δ2 in the Xia-Zheng method 

[28] leads to different performances of the method. Therefore, in 

each example, we choose appropriate values for parameters η, δ1 , 

and δ2 , which lead to the best performance of the the Xia-Zheng’s 

method. In addition, δ is set to 0.1 in all proposed methods which 

are iterative. Moreover, q is respectively set to 3, 3, 4, and 3 for the 

first to fourth proposed methods. Moreover, m is set to 8 for the 

fourth proposed method. 

Example 1. Consider a fourth-order noisy AR process with a = 

[1 . 6771 , −1 . 6875 , 0 . 9433 , −0 . 3164] T and σ 2 
e = 1 . It should be noted 

that e ( t ) is assumed to be a zero mean white Gaussian process in 

all the examples. Two scenarios are considered. In the first one, 

w (t) is assumed to be a zero mean white Gaussian process with 

σ 2 
w 

= 0 . 056 , making signal-to-noise ratio (SNR) to be 

SNR = 10 log 10 
E{ x (t) 2 } 

σ 2 
w 

≈ 20 dB. 

Moreover, to show the reliability and robustness of the proposed 

methods, the situation in which the AR signal is corrupted by high- 

level noise with the variance σ 2 
w 

= 4 . 6 is studied. In this case, the 

SNR is about 1 dB. 

Table 1 displays the means and standard deviations of the esti- 

mates of the AR parameters obtained from 10 0 0 independent tri- 

als together with NRMSE, RPE, and Number of Iterations Per Trial 
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Table 1 

Computed results of estimated parameters for SNR = 20 dB in Example 1 . 

True value EIV IFILS Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV 

a 1 = 1 . 6771 1.6749 ± 0.0358 1.6729 ± 0.0293 1.6771 ± 0.0283 1.6729 ± 0.0436 1.6847 ± 0.0366 1.6846 ± 0.0484 1.7336 ± 0.0321 

a 2 = −1 . 6875 −1 . 6828 ± 0 . 0680 −1 . 6791 ± 0 . 0542 −1 . 6874 ± 0 . 0525 −1 . 6804 ± 0 . 0793 −1 . 6986 ± 0 . 0690 −1 . 6986 ± 0 . 0854 −1 . 7735 ± 0 . 0617 

a 3 = 0 . 9433 0.9385 ± 0.0649 0.9352 ± 0.0510 0.9431 ± 0.0459 0.9371 ± 0.0722 0.9518 ± 0.0648 0.9522 ± 0.0753 1.0082 ± 0.0589 

a 4 = −0 . 3164 −0 . 3143 ± 0 . 0305 −0 . 3130 ± 0 . 0242 −0 . 3165 ± 0 . 0273 −0 . 3140 ± 0 . 0306 −0 . 3185 ± 0 . 0290 −0 . 3187 ± 0 . 0313 −0 . 3352 ± 0 . 0270 

σ 2 
w = 0 . 0560 0.0552 ± 0.0074 0.0559 ± 0.0065 0.0576 ± 0.0062 0.0559 ± 0.0098 0.0635 ± 0.0064 0.589 ± 0.0114 0.0772 ± 0.0059 

σ 2 
e = 1 1.0029 ± 0.0543 1.0053 ± 0.0449 0.9989 ± 0.0435 1.0066 ± 0.0726 0.9761 ± 0.0513 0.9813 ± 0.0845 0.8760 ± 0.0448 

NRMSE (%) 4.0852 3.2780 3.1409 4.6593 4.1397 4.9902 6.0307 

RPE (%) 0.1142 0.0958 0.0873 0.1748 0.1329 0.2442 0.4497 

NIPT – 15.9630 46.9330 2.8600 3.8080 3.3840 - 

Table 2 

Computed results of estimated parameters for SNR = 1 dB in Example 1 . 

True value EIV IFILS Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV 

a 1 = 1 . 6771 1.1552 ± 0.6019 0.3981 ± 0.0829 1.5039 ± 0.1547 1.5879 ± 0.1589 1.6298 ± 0.1604 1.6442 ± 0.1446 1.5224 ± 0.1777 

a 2 = −1 . 6875 −0 . 9966 ± 0 . 7858 −0 . 0481 ± 0 . 0321 −1 . 3542 ± 0 . 3379 −1 . 5241 ± 0 . 2721 −1 . 5967 ± 0 . 2682 −1 . 6138 ± 0 . 2548 −1 . 5094 ± 0 . 2967 

a 3 = 0 . 9433 0.4726 ± 0.5280 −0 . 1416 ± 0 . 0288 0.6325 ± 0.3721 0.8030 ± 0.2258 0.8621 ± 0.2180 0.8698 ± 0.2175 0.7967 ± 0.2412 

a 4 = −0 . 3164 −0 . 1932 ± 0 . 1340 −0 . 0425 ± 0 . 0189 −0 . 1840 ± 0 . 2103 −0 . 2654 ± 0 . 0816 −0 . 2850 ± 0 . 0770 −0 . 2842 ± 0 . 0795 −0 . 2654 ± 0 . 0848 

σ 2 
w = 4 . 6 2.8867 ± 2.1611 −0 . 6246 ± 2 . 4832 4.5279 ± 0.2342 4.5666 ± 0.1992 4.6360 ± 0.2017 4.5986 ± 0.1818 4.5652 ± 0.1921 

σ 2 
e = 1 3.8640 ± 3.5005 9.1475 ± 2.7775 1.3014 ± 0.3862 1.1722 ± 0.2934 1.0502 ± 0.2740 1.0487 ± 0.2498 1.2207 ± 0.3478 

NRMSE (%) 58.3309 91.6373 29.4308 17.9332 15.9501 15.1377 19.4546 

RPE (%) 78.9535 208.8564 10.4519 4.2038 3.5929 2.9560 5.2138 

NIPT – 78.6010 1.4500 1 1 1 - 

(NIPT) for this case. As it can be seen, the performance of all meth- 

ods is satisfactory. Note that η is set to 0.96, and δ1 and δ2 are set 

to 0.001 and 0.01, respectively, for the Xia-Zheng’s method. 

Table 2 displays the means and standard deviations of the es- 

timates of the AR parameters obtained in the presence of high- 

level observation noise together with NRMSE, RPE, and NIPT. The 

parameter η is set to 0.96, and both δ1 and δ2 are set to 0.01 for 

the Xia-Zheng’s method. As it can be seen, the proposed methods 

have much better performances than that of the EIV, the IFILS, and 

the Xia-Zheng’s method in terms of parameters estimation accu- 

racy and also NRMSE, and RPE. Note that selecting any value other 

than 0.96 for η from the interval [0.55,0.99] leads to worse perfor- 

mance for the Xia-Zheng’s method. As we stated, Table 2 confirms 

that the RPE describes the performance of the methods in a more 

complete way. As it can be observed in Table 2 , the NRMSE for 

the IFILS method is about 90 percent, which is about six times, 

larger than that of the third proposed method. However, the RPE 

is about 208 percent, which is about 70 times, larger for the IFILS 

mehod than that of the third proposed method. The interesting 

fact is that the proposed iterative methods require much smaller 

number of iterations compared to IFILS and Xia-Zheng’s method. 

The first reason is that the proposed iterative methods are initial- 

ized properly. Secondly, as the actual value of σ 2 
w 

increases, the 

ratio 
| ̂ σ 2(0) 

w −σ 2 
w | 

σ 2 
w 

decreases. Thus, in high SNR the proposed methods 

need about 3 iterations on average to find their best solution while 

they need 1 iteration on average in low SNR scenario in Example 1. 

As it can be seen, σ 2 
w 

= 0 . 056 in Table 1 , and the average value of 

ˆ σ 2(0) 
w 

in 10 0 0 trials is about 0.15 which makes the average value of 

| ̂ σ 2(0) 
w −σ 2 

w | 
σ 2 

w 
be about 3. However, in the case of Table 2 , the average 

value of ˆ σ 2(0) 
w 

in 10 0 0 trials is about 5.2 which makes the average 

value of 
| ̂ σ 2(0) 

w −σ 2 
w | 

σ 2 
w 

be less than 0.2. Thirdly, we choose the termi- 

nation parameter δ to be 0.1 which avoids our proposed method 

to overfit to the noisy data in low SNR scenarios. 

Example 2. In this example, the performances of the aforemen- 

tioned methods are compared for a more general simulation setup 

to provide more insights into accuracy of parameter estimation by 

these methods. The parameters N and σ 2 
e are set to 40 0 0 and 1, 

Fig. 1. Total NRMSE versus SNR for Example 2 . 

respectively. Additionally, η is set to 0.94, and both δ1 and δ2 are 

set to 0.05 for the Xia-Zheng’s method. A hundred sets of poles, 

each set containing four poles selected randomly inside the unit 

circle, are considered as the poles of a hundred different AR pro- 

cesses. Then, for each AR process, the AR parameters are estimated 

via the aforementioned methods for 10 0 0 trials, and NRMSE is cal- 

culated using (61) . The mean of the resultant NRMSEs of a hundred 

different AR processes is then taken as the total NRMSE in this 

simulation example. We repeat this scenario for different values 

of SNR that varies from 0 dB to 10 dB. Fig. 1 shows the resultant 

total NRMSE versus SNR. Due to poor performance of Xia-Zheng’s 

method, the resultant curve for this method is not shown. More- 

over, Fig. 2 plots mean RPE versus SNR for the aforementioned 

setup. Again, the resultant curves of Xia-Zheng’s method and IFILS 

are not shown because of their very poor performance. 

It can be observed from Fig. 1 that the performance of all meth- 

ods (except Xia-Zheng’s method) is almost same in the terms of 
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Table 3 

Computed results of estimated parameters for SNR = 10 dB in Example 3 . 

True value EIV IFILS Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV 

a 1 = 0 . 5500 0.5494 ± 0.0187 0.5490 ± 0.0206 0.5503 ± 0.0269 0.5488 ± 0.0186 0.5813 ± 0.0258 0.5629 ± 0.0185 0.6210 ± 0.0154 

a 2 = 0 . 1550 0.1543 ± 0.0139 0.1540 ± 0.0135 0.1534 ± 0.0140 0.1545 ± 0.0144 0.1503 ± 0.0141 0.1526 ± 0.0147 0.1500 ± 0.0137 

a 3 = −0 . 5495 −0 . 5484 ± 0 . 0190 −0 . 5474 ± 0 . 0219 −0 . 5488 ± 0 . 0292 −0 . 5476 ± 0 . 0181 −0 . 5852 ± 0 . 0268 −0 . 5635 ± 0 . 0188 −0 . 6342 ± 0 . 0147 

a 4 = 0 . 6241 0.6236 ± 0.0192 0.6222 ± 0.0206 0.6234 ± 0.0267 0.6225 ± 0.0179 0.6519 ± 0.0219 0.6383 ± 0.0181 0.6873 ± 0.0145 

σ 2 
w = 0 . 24 0.2398 ± 0.0286 0.2384 ± 0.0330 0.2395 ± 0.0462 0.2389 ± 0.0277 0.3453 ± 0.0593 0.2663 ± 0.0286 0.3583 ± 0.0206 

σ 2 
e = 1 1.0015 ± 0.0544 1.0050 ± 0.0630 1.0018 ± 0.0896 1.0014 ± 0.0523 0.8359 ± 0.0954 0.9450 ± 0.0535 0.7456 ± 0.0350 

NRMSE (%) 3.5348 3.8647 4.9497 3.4483 7.0851 4.2181 12.9570 

RPE (%) 0.1781 0.0267 0.0632 0.1135 0.5013 0.1742 1.7148 

NIPT – 11.1090 20.6180 2.0060 4.6000 3.9620 - 

Fig. 2. Total RPE versus SNR for Example 2 . 

NRMSE. For example, for SNR = 0 dB, the difference between the 

worst performing method and the best performing method is less 

than 20%. Fig. 1 confirms that NRMSE does not give a complete 

picture about the performance of different methods of noisy AR 

parameter estimation. On the other hand, it can be seen from 

Fig. 2 that the third proposed method has the best performance, 

and EIV has the worst performance in the terms of the RPE. The 

performance difference between the third proposed method and 

EIV is more than 400 percent for SNR = 0 dB . Thus, Fig. 2 shows 

that the proposed methods are more robust in dealing with vari- 

ous kind of AR processes in comparison to the EIV, the IFILS, and 

the Xia-Zheng’s methods for all SNRs. Moreover, since the selected 

value of η is not appropriate for all of AR processes generated in 

this example, the Xia-Zheng’s method does not demonstrate a good 

performance. Thus, this simulation example confirms the depen- 

dency of the performance of Xia-Zheng’s method on the choice of 

initial values, that is, η, δ1 , and δ2 . 

Example 3. Consider a fourth-order noisy AR process with a = 

[0 . 5500 , 0 . 1550 , −0 . 5495 , 0 . 6241] T and σ 2 
e = 1 . The poles of the AR 

model are located at z = 0 . 3 ± 0 . 8 i and z = −0 . 95 and z = 0 . 9 in 

this example. Unlike the two previous examples, the poles of the 

AR model are comparatively close to the unit circle. Two situations 

are studied here. In the first one, SNR is set to 10 dB, leading to 

σ 2 
w 

= 0 . 24 , and in the second one, SNR is set to −5 dB, resulting in 

σ 2 
w 

= 7 . 3 . 

Table 3 shows the means and standard deviations of the esti- 

mates of the AR parameters obtained from 10 0 0 independent trials 

together with the NRMSE, RPE, and NIPT for SNR = 10 dB. The pa- 

rameter η is set to 0.7, and both δ1 and δ2 are set to 0.001 for the 

Xia-Zheng’s method. As illustrated in Table 3 , all the methods ex- 

Fig. 3. NRMSE versus the number of data points for Example 4 . 

cept the second proposed method and the fourth proposed method 

perform well in terms of parameters estimation accuracy and also 

the NRMSE and RPE in the low-level noise scenario. It should be 

noted that the proposed methods need much less average number 

of iterations to achieve their best solution. 

Table 4 lists the means and standard deviations of the estimates 

of the AR parameters obtained in the presence of high level ob- 

servation noise together with the NRMSE, RPE, and NIPT. The pa- 

rameter η is set to 0.885, and δ1 and δ2 are set to 0.05 and 0.02, 

respectively, for the Xia-Zheng’s method. The results presented in 

Table 4 show that the fourth proposed method have the best per- 

formance in the presence of high-level observation noise. 

Example 4. Consider a fourth-order noisy AR process with a = 

[1 . 352 , −1 . 338 , 0 . 662 , −0 . 24] T and σ 2 
e = 1 . The aim of the Exam- 

ple is to evaluate the performance of the aforementioned methods 

in the scenario that the number of observation data points varies 

from 200 to 20 0 0 for SNR = 2 dB . Figs. 3 and 4 , respectively, plot 

the NRMSE and RPE versus number of data points. As it can be 

observed, the proposed methods demonstrate much better perfor- 

mance compared to the three other methods. Therefore, it can be 

concluded that the proposed methods are more robust than the 

other methods in the scenarios with small number of data points 

available. 

Generally, the convergence of the iterative methods is not guar- 

anteed [31,35] . However, it is clear that choosing large values like 

0.1 for δ will increase the chance of convergence. As it can be seen 

from the examples presented in this paper, the proper value of δ
for the iterative proposed methods is equal to 0.1. This fact is an 

advantage for the proposed methods in comparison with other it- 

erative methods like the IFILS and the Xia-Zheng’s methods. 
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Table 4 

Computed results of estimated parameters for SNR = −5 dB in Example 3 . 

True value EIV IFILS Xia-Zheng method Proposed method I Proposed method II Proposed method III Proposed method IV 

a 1 = 0 . 5500 0.5298 ± 0.1044 0.5421 ± 0.1145 0.5194 ± 0.1051 0.5262 ± 0.1040 0.6195 ± 0.0865 0.6097 ± 0.0933 0.5951 ± 0.0859 

a 2 = 0 . 1550 0.1598 ± 0.0521 0.1521 ± 0.0435 0.1549 ± 0.0547 0.1759 ± 0.0893 0.1503 ± 0.0740 0.1701 ± 0.0697 0.1491 ± 0.0621 

a 3 = −0 . 5495 −0 . 5239 ± 0 . 1130 −0 . 5360 ± 0 . 1284 −0 . 5116 ± 0 . 1171 −0 . 5355 ± 0 . 1256 −0 . 6369 ± 0 . 0978 −0 . 6313 ± 0 . 1025 −0 . 6052 ± 0 . 0939 

a 4 = 0 . 6241 0.5958 ± 0.1023 0.6064 ± 0.0964 0.5876 ± 0.1026 0.6169 ± 0.1085 0.6957 ± 0.0846 0.7084 ± 0.0783 0.6710 ± 0.0772 

σ 2 
w = 7 . 3 7.2138 ± 0.4058 7.2113 ± 0.4022 7.1921 ± 0.4688 7.2683 ± 0.3985 7.5950 ± 0.2694 7.4433 ± 0.3112 7.3777 ± 0.3144 

σ 2 
e = 1 1.1312 ± 0.4494 1.1048 ± 0.4490 1.1383 ± 0.5415 1.0403 ± 0.4234 0.5691 ± 0.1726 0.6909 ± 0.2632 0.8347 ± 0.2649 

NRMSE (%) 19.5188 20.1514 20.3137 21.6196 21.5501 21.6643 18.1112 

RPE (%) 4.1017 4.6911 4.5581 5.4780 5.3238 5.7754 3.7692 

NIPT – 27.3280 1.4250 1.0560 1 1 - 

Fig. 4. RPE versus the number of data points for Example 4 . 

5. Discussion and conclusion 

Four new methods have been proposed for estimating the pa- 

rameters of AR processes in the presence of white observation 

noise. The first one has been based on undermining the destructive 

impact of observation noise variance, while the second method has 

estimated the AR parameters using a constrained LS optimization 

approach. The other one exploits an approximation which leads to 

reducing the problem of estimating the AR parameters with arbi- 

trary order p to estimating just two parameters, while the last one 

estimates the variance of the observation noise using the minimum 

eigenvalue of the enlarged autocorrelation matrix. Based on the 

simulations, the performance of the proposed methods have been 

evaluated and compared with three other state-of-the-art methods. 

The simulation results have demonstrated that the proposed meth- 

ods typically had better performances than the other methods in 

terms of requiring a smaller average number of iterations (for it- 

erative methods), having smaller NRMSE and RPE in estimation, 

and also showing better robustness in the presence of high level 

observation noise in various situations with different locations of 

the AR model poles. Unlike the Xia-Zheng’s method, the iterative 

proposed methods have enjoyed the advantage of starting from an 

initial point that makes them more reliable. In addition, the fourth 

proposed method performs well in estimating AR parameters, de- 

spite the fact that it is a non-iterative method. Therefore, the pro- 

posed methods give a range of choices for different data analysis 

situations, when AR modeling is applicable. 

Based on the simulations results, it is recommended to use the 

first and the last proposed methods in the scenarios in which at 

least one of the AR poles is close to the unit circle. Additionally, 

it is seen from the figures that the second and the third pro- 

posed method provide better estimates, and show more robustness 

against observation noise in most of the cases. Therefore, we sug- 

gest to use the second and especially the third proposed methods 

in the cases when there is no prior information about the poles lo- 

cations. Moreover, it is desirable to use the third proposed method 

in the cases when the size of data available is small. Although 

the fourth proposed method usually provides a little worse per- 

formance for small data size, since it is non-iterative, it can be 

used in any scenarios to find a rough and valid estimates of the 

unknown parameters for validation of the result of the other ap- 

plicable methods. 
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Abstract—We consider the problem of estimating the param-
eters of autoregressive (AR) processes in the presence of white
observation noise with unknown variance, which appears in many
signal processing applications such as spectral estimation, and
speech processing. A new non-iterative subspace-based method
named extended subspace (ESS) method is developed. The basic
idea of the ESS is to estimate the variance of the observation
noise via solving a generalized eigenvalue problem, and then
estimate the AR parameters using the estimated variance. The
major advantages of the ESS method include excellent reliability
and robustness against high-level noise, and also estimating the
AR parameters in a non-iterative manner. Simulation results help
to evaluate the performance of the ESS method, and demonstrate
its robustness.

Index Terms—Autoregressive signals, Noisy observations, Yule-
Walker equations, Subspace-based method

I. INTRODUCTION

In many signal processing applications, the autoregressive
(AR) modeling of random signals is used to describe the signal
of interest (SoI) in a simple and effective way. The applica-
tion areas cover array processing, spectral estimation, speech
processing, noise cancellation, image processing, biomedical
signal processing, and communication channel estimation, es-
pecially array processing for pilot decontamination in massive
multiple-input multiple-output systems and mmWave channel
estimation [1]–[9]. The broad usage of AR modeling is due to
its simplicity of computing unknown model parameters and its
excellent resolution performance. In addition to the problem of
one-dimensional AR estimation, the problems of multichannel
AR estimation and nonlinear AR estimation have been subject
of active research [10]–[13]. The conventional solution of
the AR estimation problem is the standard least-squares (LS)
derived by low-order Yule-Walker equations. However, in
practical situations, the AR signal may be contaminated by
noise. Because of white observation noise corruption of the
measurements, the zero lag autocorrelation is biased, leading
to a biased solution of Yule-Walker equations [14].

To estimate noisy AR parameters, three main types of
techniques have been developed in the past decades. Tech-
niques belonging to the first type aim to avoid zero lag
autocorrelations by using high-order Yule-Walker equations.
As the first step, the AR signal is modeled by the AR moving

average (ARMA) model. Then, the AR parameters can be
estimated by some methods such as the maximum likelihood
(ML) method [15], the recursive prediction error (RPE) [16],
as well as using the modified Yule-Walker (MYW) equations
[1]. Unfortunately, these methods suffer from the lack of
data for computing high autocorrelation lags estimates, which
causes the presence of error in those autocorrelation lags.

Methods of the second type use the bias compensation
principle to estimate the noisy AR model. Removing bias from
low-order Yule-Walker equations is the key then. In general,
such methods can be divided into two subcategories. Methods
in the first subcategory, which are known as subspace methods,
model Yule-Walker equations as an eigenvalue problem and
estimate both the observation noise variance and the AR model
parameters [3], [17], [24]. Methods in the second subcategory
attempt to find the best estimation of both observation noise
variance and the AR model parameters by iterating between
two sets of equations [18]–[22]. Such methods are called
improved least-squares (ILS) based methods. In [19], an ILS
method with a direct structure (ILSD) has been suggested,
while in [20] it has been extended to achieve fast convergence.
In [21], the inverse filtering based improved least-squares
(IFILS) method, which uses inverse filtering equations in
conjunction with Yule-Walker equations to find the desired
solution, has been proposed. Recently, a novel iterative-based
method which obtains a perfect solution by solving a nonlinear
equation in order to achieve an unbiased estimate of AR
parameters has been developed in [18]. It is claimed that this
method is able to achieve efficient performance by picking
the initial value of observation noise variance within a certain
region [18]. However, our simulations showed that different
initial values would lead to different estimates, which are not
always the efficient ones.

The third type of methods exploit the concept named errors-
in-variables (EIV) to estimate the noisy AR model [27]- [28].
For example in [27], the variance of observation noise is
estimated by minimizing a cost function formed by high-order
Yule-Walker equations, while the AR parameters are estimated
via low-order Yule-Walker equations. Although, it is a non-
iterative method, minimizing the proposed cost function leads
to a one-dimensional search process, which turns this method



to a computationally demanding one in comparison with the
subspace-based methods.

In this paper, a novel subspace-based method for estimating
the AR parameters contaminated by white noise is developed.
This method tries to estimate the variance of the observation
noise by solving a generalized eigenvalue problem, followed
by using the estimated variance to estimate the AR parame-
ters. This method is non-iterative, computationally efficient,
and it demonstrates excellent robustness against high-level
observation noise. In addition, unlike the iterative methods, the
convergence problem is not existing here. Simulation results
confirm our claims.

II. DATA MODEL

The noisy pth order real AR model can be represented by

x(t) = a1x(t− 1) + a2x(t− 2) + . . . + apx(t− p) + e(t)

= aTxt + e(t) (1)
y(t) = x(t) + w(t) (2)

where e(t) is zero mean white stationary noise with variance
σ2
e ; a = [a1, a2, . . . ap]T is the vector of coefficients of the

AR model (T denotes the transpose operation); xt = [x(t −
1), x(t − 2), · · · , x(t − p)]T ; and w(t) is zero mean white
stationary observation noise with variance σ2

w. Moreover, w(t)
in (2) is assumed to be uncorrelated with the driving noise e(t),
that is, E{w(t)e(n)} = 0 for all the Ns and T s, where E{.}
is the expectation operator.

The autocorrelation function of y(t) can be presented by :

ry[k] = E{y(t)y(t− k)}
= E{(x(t) + w(t))(x(t− k) + w(t− k))}
= rx[k] + σ2

wδ[k] (3)

where rx[k] is the autocorrelation function of the noiseless AR
process x(t), and δ[k] is the delta function. The result obtained
in (3) clearly indicates that the presence of the observation
noise causes zero lag of the autocorrelation function of y(t)
to be biased. By taking into account the fact that e(t) is white
and also independent of x(t− i), i > 0, (3) can be written for
k = 0 as

ry[0] = E{y(t)2} = E{x(t)2}+ σ2
w

= E{(x(t))(xT
t a + e(t))}+ σ2

w = rTx a + σ2
e + σ2

w

(4)

where rx = [rx[1], rx[2], · · · , rx[p]]T . In addition, according
to [1], the well-known Yule-Walker equations can be written
as

rx[k] =

p∑

i=1

airx[k − i], k ≥ 1. (5)

As a result, by evaluating (5) for k = 1, . . . , p, the following
linear system of equations is obtained:

Rxa = rx (6)

where

Rx =




rx[0] rx[−1] · · · rx[1− p]
rx[1] rx[0] · · · rx[2− p]

...
...

. . .
...

rx[p− 1] rx[p− 2] · · · rx[0]


 . (7)

Combining (3), (6) and (7), we obtain

Rya = ry + σ2
wa (8)

where Ry and ry are defined in a similar way as Rx and rx,
and also ry = rx. Note that p equations (8) are called the
low-order Yule-Walker equations. By multiplying both sides
of (8) by R−1y from the left, we obtain

a = R−1y ry + σ2
wR
−1
y a (9)

Additionally, q high-order Yule-Walker equations can be
obtained by evaluating (5), for p+ 1 ≤ k ≤ p+ q, and using
(3) as follows:

Rqa = rq (10)

where rq = [ry[p+ 1], ry[p+ 2], · · · , ry[p+ q]]T , and

Rq =




ry[p] ry[p− 1] · · · ry[1]
ry[p+ 1] ry[p] · · · ry[2]

...
...

. . .
...

ry[p+ q − 1] rx[p+ q − 2] · · · ry[q]


 (11)

III. EXTENDED SUBSPACE METHOD

In this section, we propose a novel non-iterative subspace-
based method for the problem above. This method is primarily
based on combining the low- and high-order Yule-Walker
equations, which are respectively given in (8) and (10), and
estimating σ2

w via converting the resultant linear system of
equations to a generalized eigendecomposition problem. After
obtaining σ2

w, a can be computed as the LS solution of the
aforementioned system of equations.

To begin with, by combining (8) and (10), we obtain

Aa = b + σ2
wc (12)

where

A =

[
Ry

Rq

]
, b =

[
ry
rq

]
, c =

[
a
0q

]
(13)

where 0q denotes a q × 1 vector whose all entries are zero.
Since b is a (p+q)×1 vector, there exist p+q−1 vectors di

(i = 1, 2, · · · , p+q−1) which satisfy the following conditions:

dT
i b = 0 i = 1, · · · , p+ q − 1 (14)

dT
i dj = 0 i 6= j . (15)

Consequently, we can construct a (p+q−1)×(p+q) matrix D
whose rows are dT

i . By premultiplying (12) by D, and taking
advantage of (14), we obtain

DAa = σ2
wDc . (16)



In addition, by taking the definition of c in (13) into account,
(16) can be rewritten as

(DA− σ2
wE)a = 0p+q−1 (17)

where E denotes the matrix constructed by the first p columns
of D. As it can be observed, (17) appears to have the form of
the generalized eigendecomposition problem.

Multiplying both sides of (17) by (DA−σ2
wE)T , we obtain

a quadratic eigenvalue problem as follows:

(G0 + σ2
wG1 + (σ2

w)2G2)a = 0p (18)

where

G0 = ATDTDA, G1 = −(ATDTE + ETDA),

G2 = ETE . (19)

Several approaches have been presented in the literature in
order to solve (18) and find σ2

w [26]. We can rewrite (18) as
a generalized eigenvalue problem in the following way [26]:

(P− σ2
wQ)ā = 02p (20)

where

P =

[
G0 0
0 Ip

]
, Q =

[
−G1 −G2

Ip 0

]
, ā =

[
a
σ2
wa

]
(21)

where Ip is the p×p identity matrix. After solving (20), since
the resultant 2p eigenvalues are real or complex conjugate
[26], the real eigenvalue with the smallest modulus should be
chosen as σ2

w. However, in practical scenarios, due to the finite
number of samples utilized to estimate the autocorrelation
matrix, all of the eigenvalues obtained by solving (20) may
be complex. Therefore, it is reasonable to choose the modulus
of the eigenvalue whose absolute value of the imaginary part
is minimum, as the estimated σ2

w.
The only issue remaining is to define a method for estimat-

ing a. Making use of the estimated σ2
w, (12) can be rearranged

as
Ha = b (22)

where

H =

[
Ry − σ2

wIp
Rq

]
. (23)

Thus, the LS solution of (23) with respect to a is given by

a = (HTH)−1HTb . (24)

After calculating σ2
w and a, σ2

e can be obtained via (4).

IV. SIMULATION RESULTS

In this section, the performances of the proposed ESS
algorithm is compared with that of the subspace method (SS)
[24], the IFILS method [21], and Xia and Zheng’s method [18]
by means of simulations. In order to evaluate the accuracy of
the aforementioned methods in estimating AR parameters, two
numerical examples are considered. The number of trials is set
to M = 1000. Moreover, the parameter estimation methods are
evaluated in terms of relative error (RE), and normalized root

mean squared error (NRMSE), which are defined through the
upcoming procedure:

RE =
‖m(â)− a‖
‖a‖ (25)

m(â) =
1

M

M∑

m=1

âm (26)

NRMSE =

√
((
∑M

m=1 ‖âm − a‖2)/M)

‖a‖ (27)

where âm denotes the estimate of a in the mth trial.
It should be mentioned that σ

2(0)
w is chosen to be

ηλmin(Ry) in the Xia-Zheng method; η is picked within
the interval [0.55, 0.99] (see [18]). As mentioned before, the
main drawback of the Xia-Zheng method is that there is an
uncertainty about choosing the value of η. Therefore, in each
scenario, we choose the appropriate values for parameters η, δ1
and δ2, which lead to the best performance of the Xia-Zheng
method.

The initial parameters of each simulated method are
as follows. In the IFILS method, the parameter q is set
to 2, and the value of parameter δ, which determines
when to terminate the iteration process, is set to 0.001 in
all the examples. The parameter q is set to 8 for the SS
method. In addition, q is set to 3 for the proposed ESS method.

Example 1. Consider a fourth-order noisy AR process
with a = [1.6771,−1.6875, 0.9433,−0.3164]T and σ2

e = 1.
It should be noted that e(t) is assumed to be a zero mean,
white Gaussian process in all the examples. Two scenarios
are considered. In the first one, w(t) is assumed to be a zero
mean, white Gaussian process with σ2

w = 0.056, making
signal-to-noise ratio (SNR) as follows:

SNR = 10 log10
m(x(t)2)

σ2
w

≈ 20 dB

The sample size is set to N = 100 in this situation. Table I
displays the means and standard deviations of the estimates
of the AR parameters obtained from 1000 independent trials
together with RE, and NRMSE for this case. As it can be
noticed, the Xia-Zheng method and the ESS show better
performance in comparison with two other methods. Note that
η is set to 0.96, and δ1 and δ2 are set to 0.001 and 0.01,
respectively, for the Xia-Zheng method.

In the second case, in order to demonstrate the reliability
and robustness of the ESS, we increase σ2

w to 4.6, which leads
SNR to be 1 dB. In this case, N is set to be 4000. Table II
shows the means and standard deviations of the estimates
of the AR parameters obtained from 1000 independent trials
together with RE, and NRMSE for this case. As it can be
observed, the performance of the ESS is much better than
that of the other three methods. The IFILS has very bad
performance in this scenario. In this case, both δ1 and δ2 are
considered to be 0.01 for the Xia-Zheng method. Moreover,
η is set to 0.96.



TABLE I
COMPUTED RESULTS OF ESTIMATED PARAMETERS FOR SNR = 20 dB

WITH N=100 IN EXAMPLE 1

True value SS IFILS Xia-Zheng method ESS

a1 = 1.6771 2.0546± 0.2567 1.5771± 0.2289 1.6538± 0.1962 1.7045± 0.1873

a2 = −1.6875 −2.3323± 0.4017 −1.5266± 0.4073 −1.6668± 0.3521 −1.7219± 0.3522

a3 = 0.9433 1.4755± 0.3053 0.8154± 0.3733 0.9429± 0.3232 0.9650± 0.3388

a4 = −0.3164 −0.4996± 0.1011 −0.2723± 0.1677 −0.3259± 0.1453 −0.3183± 0.1592

σ2
w = 0.0560 0.2218± 0.0652 0.0563± 0.1093 0.0863± 0.0598 0.1103± 0.0520

σ2
e = 1 0.2273± 0.4176 1.1292± 0.4088 1.0023± 0.3043 0.8542± 0.2798

RE(%) 36.2746 9.0271 1.2636 1.9031
NRMSE(%) 42.5794 25.7180 20.8500 21.2980

TABLE II
COMPUTED RESULTS OF ESTIMATED PARAMETERS FOR SNR = 1 dB

WITH N=4000 IN EXAMPLE 1

True value SS IFILS Xia-Zheng method ESS

a1 = 1.6771 1.9133± 0.3722 0.3981± 0.0829 1.5039± 0.1547 1.6088± 0.1445

a2 = −1.6875 −2.0425± 0.6860 −0.0481± 0.0321 −1.3542± 0.3379 −1.5638± 0.2456

a3 = 0.9433 1.2087± 0.6175 −0.1416± 0.0288 0.6325± 0.3721 0.8369± 0.2035

a4 = −0.3164 −0.3966± 0.2508 −0.0425± 0.0189 −0.1841± 0.2103 −0.2772± 0.0745

σ2
w = 4.6 4.6255± 0.1901 −0.6246± 2.4832 4.5279± 0.2342 4.5783± 0.1892

σ2
e = 1 0.5190± 0.6857 9.1475± 2.7775 1.3014± 0.3862 1.1369± 0.2546

RE(%) 19.7227 91.5637 19.5889 7.0255
NRMSE(%) 44.4177 91.6373 29.4308 15.5602

Example 2. Consider a fourth-order noisy AR process
with a = [1.352,−1.338, 0.662,−0.24]T and σ2

e = 1. Two
scenarios are studied here. In the first one, σ2

w is set to
0.38, giving rise to SNR=10 dB. Moreover, N is set to
100. Table III shows the means and standard deviations of
the estimates of the AR parameters. Similar to the previous
examples, the ESS has much better performance in this case.
For the Xia-Zheng method, η, δ1, and δ2 are respectively set
to 0.7, 0.001, and 0.01.

In the second scenario, σ2
w is assumed to be 2.4, yielding

SNR=2 dB. In addition, N is set to 4000. Table IV shows
the means and standard deviations of the estimates of the
AR parameters. Analogous to the previous scenarios, the
performance of the ESS is much better than the other three
methods. Note that η is set to 0.96, and both δ1 and δ2 are
set to 0.05 here for the Xia-Zheng method.

Example 3. In this example, the performance of the
aforementioned methods are compared for a more general

TABLE III
COMPUTED RESULTS OF ESTIMATED PARAMETERS FOR SNR = 10 dB

WITH N=100 IN EXAMPLE 2

True value SS IFILS Xia-Zheng method ESS

a1 = 1.352 2.0411± 1.1262 0.7839± 0.3288 1.2366± 0.3637 1.3933± 0.3017

a2 = −1.338 −2.4366± 1.8283 −0.5626± 0.4276 −1.1973± 0.5554 −1.4045± 0.3836

a3 = 0.662 1.6026± 1.5322 0.0645± 0.3514 0.5722± 0.4811 0.7010± 0.3884

a4 = −0.24 −0.5992± 0.4939 −0.0428± 0.1616 −0.2224± 0.2127 −0.2553± 0.1787

σ2
w = 0.38 0.5524± 0.1246 −0.7137± 2.3966 0.2020± 0.8515 0.4554± 0.3231

σ2
e = 1 −0.0158± 1.2487 2.9012± 2.8150 1.3353± 1.1903 0.8411± 0.2947

RE(%) 80.9451 56.6415 10.0421 4.3774
NRMSE(%) 155.1096 65.4127 42.9537 32.2851

TABLE IV
COMPUTED RESULTS OF ESTIMATED PARAMETERS FOR SNR = 2 dB

WITH N=4000 IN EXAMPLE 2

True value SS IFILS Xia-Zheng method ESS

a1 = 1.352 1.3481± 0.4356 0.4662± 0.1229 1.4521± 0.0928 1.3497± 0.1194

a2 = −1.338 −1.3364± 0.6445 −0.2083± 0.1071 −1.5117± 0.2185 −1.3325± 0.1802

a3 = 0.662 0.6559± 0.5383 −0.1644± 0.0511 0.8263± 0.2466 0.6562± 0.1503

a4 = −0.24 −0.2413± 0.2016 0.0046± 0.0295 −0.3173± 0.1557 −0.2365± 0.0596

σ2
w = 2.4 2.3480± 0.2361 0.3662± 0.8487 2.4215± 0.0870 2.3942± 0.1348

σ2
e = 1 1.0540± 0.7885 4.4457± 1.0818 0.8827± 0.0466 1.0161± 0.2278

RE(%) 0.3711 82.5522 13.3357 0.4449
NRMSE(%) 47.6875 82.9949 22.8363 13.3178

simulation setup to provide more insights into accuracy of
parameter estimation by these methods. The parameters N
and σ2

e are set to 4000 and 1, respectively. Additionally,
η is set to 0.94, and both δ1 and δ2 are set to 0.05 here
for the Xia-Zheng method. A hundred sets of poles, each
set containing four poles selected randomly inside the unit
circle, are considered as the poles of a hundred different AR
processes. Then, for each AR process, the AR parameters
are estimated via the aforementioned methods for 1000 trials,
and NRMSE is calculated using (27). The mean of resultant
NRMSEs of a hundred different AR signals is then taken as
the total NRMSE in this simulation example. We repeat this
scenario for different values of SNR that varies from 0 dB to
10 dB and plot the results in Fig. 1.

It can be observed from Fig. 1 that the proposed method
shows more robust overall performance in dealing with various
kind of AR processes in comparison with the IFILS and
Xia and Zheng’s methods for all SNRs. Note that since the
performance of the SS method is very bad in this example,
we omitted it. Moreover, since the selected value of η is not
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Fig. 1. Total RMSE versus SNR for Example 3.

appropriate for all of AR signals generated in this example, the
Xia and Zheng’s method does not have a good performance.
Thus, this simulation example confirms the dependency of Xia
and Zheng method’s performance to the choice of initial value.

V. CONCLUSION

In this paper, a novel non-iterative subspace-based method
was proposed for estimating the parameters of AR processes
in the presence of white observation noise with unknown
variance. The main notion of this method is to estimate the
variance of the observation noise by solving a generalized
eigenvalue problem as the first step, and then estimate the
AR vector of parameters by finding the LS solution of a linear
system of equations. The performance of the proposed method
has been evaluated and compared with that of three other
methods presented in the literature by means of simulations.
The simulation results have demonstrated the superiority of the
proposed method in terms of having smaller NRMSE, and also
shown better robustness against high level of the observation
noise. Moreover, the proposed method is non-iterative, and
thus there are no convergence issues, unlike it is with the
iterative-base methods.
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Non-Iterative Subspace-Based DOA Estimation
in the Presence of Nonuniform Noise

Majdoddin Esfandiari , Sergiy A. Vorobyov , Fellow, IEEE, Simin Alibani , and Mahmood Karimi

Abstract—The uniform white noise assumption is one of the basic
assumptions in most of the existing direction-of-arrival (DOA) es-
timation methods. In many applications, however, the nonuniform
white noise model is more adequate. Then, the noise variances at
different sensors have to be also estimated as nuisance parameters
while estimating DOAs. In this letter, different from the existing
iterative methods that address the problem of nonuniform noise, a
non-iterative two-phase subspace-based DOA estimation method is
proposed. The first phase of the method is based on estimating the
noise subspace via eigendecomposition (ED) of some properly de-
signed matrix and it avoids estimating the noise covariance matrix.
In the second phase, the results achieved in the first phase are used
to estimate the noise covariance matrix, followed by estimating the
noise subspace via generalized ED. Since the proposed method esti-
mates DOAs in a non-iterative manner, it is computationally more
efficient and has no convergence issues as compared to the exist-
ing methods. Simulation results demonstrate better performance of
the proposed method as compared to other existing state-of-the-art
methods.

Index Terms—Array processing, direction-of-arrival (DOA) es-
timation, subspace-based methods, nonuniform noise, spectral
analysis.

I. INTRODUCTION

D IRECTION of Arrival (DOA) and spectral estimation are
the fundamental problems in array processing and spectral

analysis with many applications in radar, sonar, navigation and
communication systems, as well as acoustic tracking to men-
tion just a few [1]–[5]. There exist several DOA estimation
approaches. Among the most notable are the maximum like-
lihood (ML), beamforming-based, parametric subspace-based,
and sparse representation-based approaches [6]–[10]. Paramet-
ric subspace-based DOA estimation methods, such as multiple
signal classification (MUSIC) [6], [8] and estimation of signal
parameters via rotational invariance technique (ESPRIT) [9] are
well known to provide high accuracy and high resolution for
DOA estimation with low computational complexity in com-
parison to the methods such as ML [6]. In addition to the tra-
ditional far-field narrowband signal assumption, the assumption
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of uncorrelated sources is also critical for the former methods. A
fundamental assumption that applies to all the aforementioned
methods is however the presence of spatially uniform white
noise. Under this assumption, the analytic concentration of the
ML function with respect to the noise variance single parame-
ter becomes possible, while parametric subspace-based methods
are just built on this assumption since it enables separation of
signal and noise subspaces [11], [12].

In diverse practical scenarios, the spatially uniform white
noise assumption may be violated. Indeed, the sensor noise may
be nonuniform [7], [13]–[17], spatially correlated [18], [19], or
block-correlated [20]. Spatially white nonuniform noise arises
when sensor noise powers are non-identical across the array, and
leads to diagonal noise covariance matrix with non-identical en-
tries. To overcome the problem of performance degradation in
the presence of nonuniform noise, a variety of DOA estima-
tion algorithms and techniques have been proposed. In [7] and
[13], two deterministic and stochastic ML estimators are re-
spectively proposed based on iterative procedures. These two
estimators suffer from high computational complexity. Thus,
two iterative subspace estimation algorithms with lower com-
plexity, called iterative maximum likelihood subspace estima-
tion (IMLSE) and iterative least squares subspace estimation
(ILSSE), respectively, based on ML and least squares (LS) have
been proposed in [14] for estimating signal subspace and noise
covariance matrix. These algorithms then use spectral MUSIC
method for performing the DOA estimation.

In this letter, we propose a new subspace-based method for
DOA estimation in spatially nonuniform noise, which is non-
iterative, thus leading to lower computational complexity and
avoiding any convergence issues. The method has two phases. In
the first phase, the noise subspace is initially estimated via eigen-
decomposition (ED) of some properly designed matrix without
knowing the noise covariance matrix. In the second phase, the
noise covariance matrix is then estimated by exploiting the re-
sults of the first phase and then the generalized ED is applied to
the output array covariance matrix and noise covariance matrix.
Simulation results demonstrate the efficiency and superiority of
the proposed method in terms of both performance and com-
plexity over the existing methods.

II. SIGNAL MODEL

Consider an array of M sensors receiving L (L < M is
known) independent narrowband signals impinging from the
sources in far-field. The signal observed at time instance t by
the array is given as

x(t) = A(θ)s(t) + n(t) (1)

where A(θ) � [a(θ1), . . . ,a(θL)] is the M × L matrix whose
columns are the signal steering vectors a(θi), i = 1, . . . , L, θ �

1070-9908 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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[θ1, . . . , θL]T is the vector of unknown source DOA’s, s(t) is
the L × 1 vector of source signals, n(t) is the M × 1 vector of
zero-mean spatially and temporally white Gaussian noise, N is
the number of snapshots, t is the discrete time index, and [·]T
denotes the transpose.

Using (1), the array output covariance matrix can be expressed
as

R � E{x(t)xH(t)} = A(θ)PAH(θ) + Q (2)

where P � E{s(t)sH(t)} and Q � E{n(t)nH(t)} are respec-
tively the L × L signal and M × M noise covariance matrices,
and E{·} and (·)H denote the expectation and Hermitian trans-
pose operators, respectively. For uncorrelated sources, P is a
diagonal matrix. Under the nonuniform uncorrelated noise as-
sumption, Q is also a diagonal matrix of the form

Q = diag
{
σ2
1 , . . . , σ

2
M

}
(3)

where σ2
m, m = 1, . . . , M are the sensor noise variances and

diag{·} denotes a diagonal matrix.

III. NEW PROPOSED METHOD

In parametric subspace-based DOA estimation, the noise sub-
space needs to be first estimated. Under the nonuniform noise,
also the noise covariance matrix possibly needs to be estimated.
Then the orthogonality of the noise subspace basis vectors and
the source steering vectors can be used to estimate the source
DOA’s.

To estimate the noise subspace, recall that in (2), AH(θ) is an
L × M full row-rank matrix, and there are M − L orthonormal
vectors ul, l = 1, . . . , M − L satisfying the following homoge-
neous equation

AH(θ)ul = 0 (4)

where 0 is the vector of zeros. Multiplying both sides of (2) on
the right by ul and using (4), we obtain

Rul = A(θ)PAH(θ)ul + Qul = Qul, l = 1, . . . , M − L.
(5)

According to (5), M − L vectors ul, l = 1, . . . , M − L which
span the range space of the noise subspace are the solutions of
the generalized ED problem for the matrices R and Q, while all
M − L eigenvalues being equal to one. However, since the ma-
trix Q is unknown, ul, l = 1, . . . , M − L cannot be computed
as simple as in the uniform noise case.

We observe, however, that the array output covariance matrix
R can be written as the following sum of two matrices

R = R1 + R2 (6)

where

[R1]i,j =

{
[R]i,j , i �= j

0, i = j
(7)

and

R2 = diag
{

[R]1,1, . . . , [R]M,M

}

= diag

{
L∑

k=1

sk + σ2
1 , . . . ,

L∑

k=1

sk + σ2
M

}
(8)

with sk being the received power of the kth source.
Substituting (6), (7), and (8) into (5), we obtain

R1ul = (Q − R2)ul = −
(

L∑

k=1

sk

)
ul. (9)

It can be seen from (9) that ul, l = 1, . . . , M − L can be ob-
tained by applying ED to the matrix R1 only. As a matter of
fact, since adding the scaled identity matrix of the form b · I to
R1 does not alter eigenvectors and only shifts eigenvalues of
R1, the noise subspace basis vectors ul, l = 1, . . . , M − L can
be computed by applying ED to every matrix whose diagonal
elements are identical and off-diagonal elements are equal to the
off-diagonal elements of R. Thus, after applying ED to R1, the
noise subspace basis vectors ul, l = 1, . . . , M − L, or in matrix
form U � [u1, . . . ,uM−L], can be obtained even without the
need to estimate Q. This novel result is stated and proved in the
following lemma.

Lemma 1: The noise subspace basis vectors ul, l =
1, . . . , M − L are the M − L eigenvectors of R1 whose cor-
responding eigenvalues are the smallest.

Proof: Assume that there exists an M × 1 vector d that sat-
isfies the following conditions

A(θ)PAH(θ)d �= 0 (10)

R1d = λd. (11)

Adding R2d to both sides of (11) and using (6), we obtain

R1d + R2d = Rd = λd + R2d. (12)

Inserting (2) into (12), and rearranging the terms, we have

A(θ)PAH(θ)d = λd + (R2 − Q)d. (13)

Moreover, substituting (3) and (8) into (13), we obtain

A(θ)PAH(θ)d =

(
λ +

L∑

k=1

sk

)
d. (14)

It can be seen from (14) that d is an eigenvector of the matrix
A(θ)PAH(θ) while its corresponding eigenvalue is equal to
λ +

∑L
k=1 sk. Since the matrix A(θ)PAH(θ) has L positive

eigenvalues and the condition (10) has to be satisfied, it can be
concluded that

λ +

L∑

k=1

sk > 0 ⇒ λ > −
L∑

k=1

sk. (15)

In other words, (15) indicates that −∑L
k=1 sk is the lower bound

on the smallest eigenvalue ofR1. Thus, the noise subspace basis
ul, l = 1, . . . , M − L is composed of M − L eigenvectors of
R1 with the smallest eigenvalues. �

Knowing U, the spectral-MUSIC method, for example, can
be used for the source DOA’s estimation by finding the locations
of L peaks in the pseudo-spectrum

S(θ) =
1

aH(θ)UUHa(θ)
. (16)

However, the estimate of U can be further improved using the
results of the initial U estimation and exploiting (5). Indeed,
if there exists an estimate of Q, (5) can be solved by applying
generalized ED to the matrices R and Q. Then more accurate
noise subspace basis vectorsul, l = 1, . . . , M − L can be found
as stated in the following lemma.

Lemma 2: The noise subspace basis vectors ul, l =
1, . . . , M − L are the M − L eigenvectors, obtained by apply-
ing generalized eigendecomposition to the matrices R and Q
whose corresponding eigenvalues are the smallest.

Proof: Similar to the proof of Lemma 1, assume that there
exists an M × 1 vector d that satisfies (10) and Rd = λQd.
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Inserting (2) into Rd = λQd, and rearranging the terms, we
have

A(θ)PAH(θ)d = (λ − 1)Qd. (17)

Multiplying both sides of (17) on the left by dH , we obtain

dHA(θ)PAH(θ)d = d̄HPd̄ = (λ − 1)dHQd (18)

where d̄ = AH(θ)d. Since both P and Q are positive definite
matrices and the condition (10) has to be satisfied, it can be
concluded that

λ − 1 > 0 ⇒ λ > 1. (19)

In other words, (19) indicates that 1 is the lower bound on the
smallest eigenvalue of generalized ED of R and Q. Thus, the
noise subspace basisul, l = 1, . . . , M − L is composed of M −
L eigenvectors with the smallest eigenvalues. �

To apply Lemma 2, we first need to find an estimate of Q.
Towards this end, first we write Q as the following sum of two
diagonal matrices

Q = σ2I + Qnun (20)

where σ2 represents the common part of sensor noise powers,
which is computed later, and Qnun is a diagonal matrix whose
diagonal elements, except for one of them, are nonzero. The
place of this zero element is the place of the smallest diagonal
element of R. As a result, the rank of Qnun is M − 1, and

eTkQnun = 0 (21)

where ek is the M × 1 unit vector such that

[ek]i =

{
0, i �= k

1, i = k
(22)

and k is the index of the smallest diagonal element of R.
Multiplying both sides of (5) by eTk on the left and using (20)

and (21), we obtain

eTkRul = eTk (σ2I + Qnun)ul = σ2eTk ul. (23)

Equation (23) can be written for all vectors ul, l = 1, . . . , M −
L in the following matrix-vector form

eTkRU = σ2eTkU (24)

where U is composed of ul, l = 1, . . . , M − L obtained using
(9). Consequently, σ2 can be computed as

σ2 =

∣∣∣∣
eTkRUUHek
eTkUUHek

∣∣∣∣ (25)

where | · | denotes the absolute value operator. The only issue
remaining is the construction of the matrix Qnun. Let us set
the nonzero diagonal elements of Qnun as the differences of the
corresponding elements inRwith the smallest diagonal element
of R, that is,

Qnun = diag
{

[R]1,1 − c, . . . , [R]M,M − c
}

(26)

where c is the smallest diagonal element of R.
Finally, the matrix Q can be formed by utilizing (20), (25),

and (26). With the matrices R and Q, the noise subspace basis
ul, l = 1, . . . , M − L can be re-estimated as stated in (5) and
Lemma 2. Then the new U can be formed and the source DOA’s
can be estimated by finding, for example, the locations of L
peaks in (16). The corresponding algorithm for DOA estimation
in nonuniform noise is summarized in Algorithm 1, where the
sample data covariance matrix R̂ is used as an estimate of the
array output covariance matrix R. Steps 1 and 2 represent the

Algorithm 1: The proposed method.
1: Compute the sample covariance matrix

R̂ = 1
N

∑N
t=1 X(t)XH(t).

2: Form R̂1 from R̂ as in (7), carry out the ED of R̂1 to
obtain the noise subspace basis ûl, l = 1, . . . , M − L,
and construct the matrix Û.

3: Construct ek and Q̂nun according to (21), (22), and
(26).

4: Using the data sample covariance matrix and Û
obtained in step 2, estimate σ̂2 according to (25).

5: Using, σ̂2 and Q̂nun, estimate Q̂ according to (20).
6: Apply generalized ED to R̂ and Q̂, and obtain the new

estimate of the noise subspace basis ûl,
l = 1, . . . , M − L, i.e., the new estimate of Û.

7: Use spectral-MUSIC, i.e., find the locations of L

peaks in (16), where U is substituted its estimate Û.

first phase of the algorithm that can be followed by step 7 directly.
Steps 3–6 represent the second correction phase of the algorithm.

Complexity analysis: For the proposed method, the ED of R1

or the generalized ED ofR andQ are involved. The correspond-
ing complexity is O(M3) [21]. It is equivalent to the complexity
in each iteration of IMLSE or ILSSE [14]. The difference arises
from the fact that IMLSE and ILSSE are iterative methods (the
number of iterations can be comparable to M in many scenarios
to converge to their best result).

IV. SIMULATION RESULTS

A ULA with M = 8 omnidirectional sensors, which are sep-
arated by half wavelength, is considered. Two far-field uncor-
related narrowband signals (with equal powers) impinge on the
array simultaneously from θ1 = −3◦ and θ2 = 6◦, respectively.

The worst noise power ratio (WNPR), and the signal-to-
noise ratio (SNR) are defined as WNPR = σ2

max/σ2
min and

SNR = σ2
s /M

∑M
m=1(σ

2
m)−1, respectively, where σ2

max and
σ2
min are the maximum and minimum sensors noise powers, re-

spectively, and σ2
s is the signal power. The number of snapshots

(N ) and the number of Monte Carlo trials (K) are set to 500
and 5000, respectively. The root mean squared error (RMSE) of
DOA estimation is defined as

RMSE =

√
1

KL

∑K

k=1

∑L

l=1
(θ̂k,l − θl)2

where θ̂k,l denotes the lth DOA estimate in the kth trial. To val-
idate the performance of the proposed methods, two examples
are considered, and the results are compared to the performance
of the standard spectral-MUSIC as well as IMLSE and ILSSE
methods both after the first iteration only and also after con-
vergence is achieved.1 The number of sources is assumed to be
known for all methods tested.

Example 1: The nonuniform noise covariance matrix is
fixed in all simulation runs and is given as Q =
diag{1, 1, 1, 1, 1, 20, 30, 50}, resulting in WNPR = 50. Fig. 1
shows the RMSEs for the methods tested versus SNR. The
Cramer-Rao bound (CRB) [7] is also shown. It can be seen from

1The performance of ILSSE is plotted only for the SNRs when ILSSE con-
verges for all trials.
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TABLE I
COMPARISON OF AVERAGE RUN TIME OF ONE TRIAL (IN ms)

Fig. 1. The RMSEs of DOA estimation versus SNR in Example 1.

the figure that the proposed method after both phases demon-
strates the best threshold behavior, despite it is non-iterative
and has lower computational complexity. Although the IMLSE
method after the first iteration only possesses as low computa-
tional complexity as the proposed method, its DOA estimation
accuracy is very poor. Thus, multiple iterations have to run for
it to achieve its best result.

Example 2: To provide more comprehensive insights into the
performance of the methods tested, the noise covariance matrix
is chosen in this example multiple times randomly with maxi-
mum WNPR of 30. Then the RMSE results are also averaged
over 50 different realizations of the noise covariance matrix Q
for which of each 5000 Monte Carlo trials are averaged. The
average RMSEs for the methods tested are shown in Fig. 2.2 It
can be seen from the figure that the second phase of the proposed
method shows the best performance and improves the threshold
behavior by about 2 dB as compared to the next best performing
method that is the IMLSE method.

Furthermore, Table I shows the average run time of the meth-
ods tested for SNRs = −5, 0, 5, 10, and 15 dB for the setup
of Example 2. The simulation is performed on a PC running an
Intel(R) Xeon(R) 3.40GHz CPU. It can be observed that the pro-
posed method is superior in terms of the required time which is

2Since the curves in Fig. 2 are resulted also from averaging over different
realization of the nuisance parameters, i.e., Q’s with different WNPRs, the
CRB is not applicable in the setup and is not shown. Indeed, fixed parameters
of interest as well as nuisance parameters have to be assumed for CRB.

Fig. 2. The RMSEs of DOA estimation versus SNR in Example 2.

reduced by orders of magnitude compared to the existing meth-
ods. The average number of iterations for IMLSE and ILSSE
are about 27 and 52, respectively, for SNR = 5 dB, for example.
Inspecting Fig. 2 and Table I together, it can be seen that even
the first phase of the proposed method leads to superior per-
formance with lower complexity compared to the competitive
methods after the first iteration.

V. CONCLUSION

A novel computationally efficient non-iterative two-phase
subspace-based parametric method for DOA estimation in the
presence of unknown spatially nonuniform noise has been pro-
posed. The noise subspace estimation problem is converted in
the first phase of the proposed method to the problem of find-
ing eigenvectors of a properly designed matrix so that the noise
covariance matrix estimation is avoided. In the second phase,
the covariance matrix of the nonuniform noise is first estimated
based on the results of the first phase and then it is used for
finding the noise subspace more accurately by means of gen-
eralized ED of this matrix and the data covariance matrix. It is
of importance that the proposed method has low computational
complexity and is non-iterative, and thus, has no issues with
convergence. Moreover, it is superior to the existing iterative
state-of-the-art methods in both the performance and especially
the computational cost.
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ABSTRACT
Direction-of-arrival (DOA) estimation problem is a challeng-
ing one in the presence of coherent sources, when the sample
size is small, and the signal-to-noise ratio is low. We address
this problem by developing a new method called enhanced
standard ESPRIT (ES ESPRIT), and also its unitary exten-
sion called enhanced unitary ESPRIT (EU ESPRIT). The
proposed methods use statistics of the subspace perturbation.
First, they generate 2K DOA candidates for K sources, and
then discreetly select K of them. Numerical results show the
superiority of EU ESPRIT over other existing methods es-
pecially in improving threshold performance and separating
closely located sources with a small sample size.

Index Terms— DOA estimation, ESPRIT, generalized
least squares (GLS), small sample size

1. INTRODUCTION

Direction-of-arrival (DOA) and spectral estimation are
problems of significant importance in many applications in-
cluding radar, sonar, navigation and wireless communication,
to mention just a few [1]– [2]. The most notable DOA estima-
tion methods are the maximum likelihood, subspace-based,
and sparse representation-based approaches [3]– [4]. Due to
such advantages as low complexity and high estimation pre-
cision, ESPRIT-type algorithms [5], [6] have been wildly ex-
ploited. The essence of ESPRIT-type algorithms is to find
the solution of a linear system of equations, known as shift
invariance equation (SIE), which is a function of the signal
subspace. For solving the SIE, the methods of least squares
(LS) [5] or total least squares (TLS) [7] are usually used.
However, such solutions of the SIE suffer from not consid-
ering the statistics of the subspace perturbation, resulting in
being suboptimal. To alleviate this problem, generalized least
squares (GLS) [8], [9] has been employed in a number of
ESPRIT-based methods [10]– [11], where the covariance ma-
trix of the subspace estimation error is included as the weight-
ing matrix. In [10] and [12], a first-order performance anal-
ysis [13] has been used for optimizing the weighting matrix.
The disadvantage of [10] is that the weighting matrix is opti-
mized only for one of the DOAs, while in the case of [12], no

This work was supported in part by Academy of Finland under Research
Grant 319822.

proof was presented for the resulting formulation. In [14], an
iterative GLS-based solution to the SIE of the standard and
unitary ESPRIT that takes into account the statistics of the
signal subspace perturbation has been also proposed.

Continuing on the developments in [14], we propose in
this paper a new ESPRIT-type method by first transforming
the SIE of the standard and unitary ESPRIT to the discrete
Fourier transform (DFT) domain, and then multiplying the
resulting equation by a selection matrix. The aforementioned
procedure is performed twice for two selection matrices to
generate 2K DOA candidates forK sources. Afterwards, two
DOA selection strategies are employed for extracting the final
K DOAs. Simulation results demonstrate that the proposed
methods outperform the existing methods.

2. SIGNAL MODEL

Consider K narrowband signals emitted by K sources
located in the far field and received by a uniform linear array
(ULA) of M (M > K) sensors. The received signal after
collecting N time snapshots can be expressed as

X = A(µ)S + N ∈ CM×N (1)

where A(µ) , [a(µ1), · · · ,a(µK)] ∈ CM×K is the ar-
ray steering matrix whose columns are the correspond-
ing array response vectors for the spatial frequencies µ ,
[µ1, · · · , µK ]T . Note that each µi, i = 1, · · · ,K is related to
the corresponding θi. In addition, S ∈ CK×N is the source
signals matrix and N ∈ CM×N is the sensor noise matrix.

The essence of the ESPRIT-type algorithms is to esti-
mate the desired spatial frequency by exploiting a property
of the array steering matrix A known as the shift invari-
ance property. The SIE is given as J1AΦ = J2A, where
J1 = [IM−1 0M ] and J2 = [0M IM−1] pick the first and
the last M − 1 rows of A, respectively. Furthermore, the
diagonal matrix Φ is related to the spatial frequencies as
Φ = diag{ejµi}Ki=1. Conducting the truncated singular
value decomposition (TSVD), X can be decomposed as
X = ÛsΣ̂sV̂

H
s , where the columns of Ûs ∈ CM×K and

V̂s ∈ CN×K are respectively the left and the right singular
vectors. Moreover, Σ̂s ∈ RK×K is a diagonal matrix whose
diagonal elements are K principal singular values of X.



Since A is unknown, instead of working with the afore-
mentioned direct expression of the SIE, the fact that both A
and Ûs share the same range space can be exploited to write
A ≈ ÛsT, where T ∈ CK×K is a full-rank matrix. Thus,
the SIE can be written as

J1ÛsΨ ≈ J2Ûs (2)

where Ψ ≈ TΦT−1 is a diagonisable matrix such that its
eigenvalues λi, i = 1, · · · ,K are related to the spatial fre-
quencies via λi = ejµi . Based on this observation, the main
objective of the ESPRIT-type algorithms boils down to esti-
mating Ψ, and then extracting µi’s from its eigenvalues.

3. ENHANCED GLS FOR ESPRIT

We first transform the SIE into the DFT domain to gen-
erate multiple estimates of Ψ by selecting different equations
of transformed SIE (TSIE). In doing so, the statistics of the
subspace estimation errors are taken into account that leads to
finding more precise solution of TSIE. Considering the noise-
less case, (2) with respect to the actual signal subspace Us is
represented by

J1UsΨ = J2Us . (3)

Applying DFT to (3), we obtain

WDJ1UsΨ = WDJ2Us (4)

where WD ∈ CM−1×M−1 is the DFT matrix, i.e.,

WD =




1 1 · · · 1
1 ω · · · ωM−2

...
...

. . .
...

1 ωM−2 · · · ω(M−2)(M−2)


 (5)

with ω = e
−j2π
M−1 . Multiplying both sides of (4) by the select-

ing matrices ZI ∈ R|I|×M−1, which enables us to exploit
diverse subsets of TSIE for estimating Ψ, we obtain

ZIWDJ1UsΨ = ZIWDJ2Us (6)

where I denotes the set containing the indices of the selected
equations and |I| denotes the cardinality of this set, i.e., the
number of its members. Thus, the entries of the ith row of ZI
are all zero except one whose index is determined by the ith
member of I. Since ZI is a selecting matrix, the values of its
nonzero elements are set to be 1.

The important problem that should be addressed now is
determining the method of selecting equations in (6). We pro-
pose to pick the equations based on the absolute value of DFT
of J1u1, where u1 is the left singular vector of X which cor-
responds to the largest singular value. Thus, the members of
I are opted to be the corresponding indices of those elements
of WDJ1u1 with |I| largest absolute values. Using diverse

I’s with varied number of members leads to finding multiple
estimates for Ψ, and consequently for µi’s as well. Albeit it
will be elaborated later, it is worth mentioning here that we
propose to generate two estimates of Ψ by selecting M − 1
and M − 2 equations of (6), i.e., setting |I| to M − 1 and
M − 2. Note that ZI = IM−1 in the former case.

Taking into account the estimation error, Us can be ex-
pressed as Us = Ûs + ∆Us, where ∆Us is the subspace
estimation error. Subsequently, (6) can be rewritten as

ZIWDJ1(Ûs + ∆Us)Ψ = ZIWDJ2(Ûs + ∆Us) .
(7)

Expanding and rearranging (7), we obtain

ZIWDJ1ÛsΨ + E = ZIWDJ2Ûs (8)

where E , ZIWDJ1∆UsΨ−ZIWDJ2∆Us denotes the
error matrix imposed by the observation noise as a function
of ∆Us. Applying the vectorization operator to (8), we have

f̂ , vec{ZIWDJ2Ûs} = F̂ψ + e = F̂ψ + Ĝ∆us (9)

where F̂ , IK ⊗ ZIWDJ1Ûs ∈ C|I|K×K2

, and Ĝ ,
(ΨT ⊗ZIWDJ1)− (IK⊗ZIWDJ2) ∈ C|I|K×MK thanks
to the property that vec{ABC} = (CT ⊗A)vec{B}. In ad-
dition, ψ , vec{Ψ} ∈ CK2×1 and ∆us , vec{∆Us} ∈
CMK×1. Afterwards, the GLS [8], [9], [14] can be used to
find the optimal solution of (9), by taking the second-order
statistic of Ûs into account. In doing so, the GLS optimiza-
tion problem is expressed as

ψ̂GLS = argmin
ψ

(f̂ − F̂ψ)HW(f̂ − F̂ψ) (10)

where

W =
[
E{eeH}

]−1
=
[
E{Ĝ∆us∆uHs ĜH}

]−1

=
[
ĜE{∆us∆uHs }ĜH

]−1

=
[
ĜQĜH

]−1

(11)

with Q , E{∆us∆uHs } ∈ CMK×MK being the covariance
matrix of signal subspace perturbation. Subsequently, the op-
timal solution of (10) is given by

ψ̂GLS =
(
F̂HWF̂

)−1

F̂HWf̂ . (12)

As it can be seen from (11), we need second-order statistic
of ∆us for computing Q. Using the first-order perturbation
expansion of SVD [15], [16] of X in (1) (when the noise is
absent), it can be written that

∆Us ≈ (IM −UsU
H
s )NVsΣ

−1
s . (13)

Therefore, by exploiting (13), Q can be computed as

Q = E{vec{∆Us}vec{∆Us}H}
≈
(
Σ−1
s VT

s ⊗ (IM −UsU
H
s )
)
E{nnH}

×
(
V∗sΣ

−1
s ⊗ (IM −UsU

H
s )
)

(14)



where n , vec{N} ∈ CMK×1 is assumed to be zero-mean
white random noise vector, resulting in E{nnH} = σ2IMN .
Inserting this result into (14), we have

Q = σ2
(
Σ−2
s ⊗ (IM −UsU

H
s )
)

(15)

thanks to the property (A⊗B) · (C⊗D) = (AC)⊗ (BD).
It is worth noting that (15) exactly matches the result reported
in [14] since the same procedure for computing Q has been
used. It is not surprising though, since the dependency of
∆us to n is exploited to compute Q in both GLS ESPRIT
[14] and the proposed method. The differences arise from
choosing various matrices and vectors for F̂, Ĝ, and f̂ , yield-
ing different W as well as different ψ̂.

From (11) and (15), it is clear that ĜQĜH is a
singular matrix for |I| > M − K. Thus, Q̄ =
σ2
(
Σ−2
s ⊗ (IM −UsU

H
s + λIM )

)
can be used in (11) in-

stead of Q with λ 6= {0, 1} being the regularization param-

eter. Hence, W can be replaced by W̄ =
(
ĜQ̄ĜH

)−1

in
(10) and (12), which is a full rank matrix. Based on the same
discussion as in [14] (see Theorem 1), it is straight-forward
to show that any choice of λ ∈ R − {0, 1} leads to the same
solution for ψ̂GLS , if W̄ is used instead of W. Therefore, for
the sake of convenience, W̄ can be replaced by W̃ as

W̃ = lim
λ→∞

[
Ĝ
(
Σ−2
s ⊗ (IM −UsU

H
s + λIM )

)
ĜH

]−1

=
[
Ĝ
(
Σ−2
s ⊗ IM

)
ĜH

]−1

. (16)

Note that σ2 is omitted in (16) as it cancels out in com-
puting ψ̂GLS . After initializing the algorithm by Ψ̂LS =
(ZIWDJ1Ûs)

†ZIWDJ2Ûs, Σs is replaced by its estimate

Σ̂s to construct ˆ̃W =
[
Ĝ
(
Σ̂−2
s ⊗ IM

)
ĜH

]−1

. Inserting
this result into (12), we have

ψ̂GLS =
(
F̂H ˆ̃WF̂

)−1

F̂H ˆ̃Wf̂ (17)

and consequently, Ψ̂GLS = unvec{ψ̂GLS} ∈ CK×K , where
unvec{·} forms a matrix from a vector, i.e., it is an inverse of
vec{·}. Finally, by computing theK eigenvalues λ̂i of Ψ̂GLS ,
the desired special frequencies are obtained as µ̂i = arg{λ̂i}.

Remark 1: To obtain sufficiently precise estimate for
ψ̂GLS , the use of an iterative estimation procedure, where
ˆ̃W is initialized as in (17) with Ψ̂LS followed by updating

Ψ̂GLS and ˆ̃W via alternation, is natural. Based on our simu-
lation results, the sufficient number of iterations for achieving
the accurate estimate is 5.

Remark 2: The proposed ESPRIT-based method can be
extended for the case of unitary-ESPRIT formulation [6]. In
doing so, it is required to modify (6) as

ZIWDK1EsΥ = ZIWDK2Es (18)

where K1 , 2 · Re{QH
M−1J2QM} ∈ R(M−1)×M , K2 ,

2 · Im{QH
M−1J2QM} ∈ R(M−1)×M , and Es is the matrix of

K principal left singular vectors of ϕ(X̃) = QH
MX̃Q2N ∈

RM×2N with QM and Q2N being left Π-real matrices [6].
In addition, X̃ , [X ΠMX∗ΠN ] ∈ CM×2N , where
ΠM ∈ RM×M is the exchange matrix with ones on the an-
tidiagonal and zeros elsewhere [6]. Following the same steps
presented for ES ESPRIT, the corresponding real-valued so-
lution of (18) can be determined as

ν̂GLS =
(

ˆ̃FH ˆ̃W1
ˆ̃F
)−1 ˆ̃FH ˆ̃W1

ˆ̃
f (19)

where ν̂GLS , vec{Υ̂GLS}, ˆ̃F , (IK⊗ZIWDK1Ês), ˆ̃f ,
vec{ZIWDK2Ês}, and ˆ̃W1 ,

[
ˆ̃G( ˆ̃Σ−2

s ⊗ IM ) ˆ̃GH
]−1

with ˆ̃G , (Υ̂T⊗ZIWDK1)−(IK⊗ZIWDK2). Addition-

ally, ˆ̃Σs ∈ RK×K is a diagonal matrix containing the nonzero
singular values of ϕ(X̃), i.e., ϕ(X̃) can be decomposed via

TSVD as ϕ(X̃) = Ês
ˆ̃ΣsD̂

H
s . Similar to the steps presented

for ESE, enhanced unitary ESPRIT (EUE) begins with initial-
izing Υ̂ via Υ̂LS = (ZIWDK1Ês)

†ZIWDK2Ês followed

by updating ν̂GLS and ˆ̃W1 via alternation (5 iterations as sug-
gested for ESE as well). Notice that the spatial frequency es-
timates µ̂i, i = 1, · · · ,K are extracted from the eigenvalues
ω̂i of the final estimate of Υ̂GLS = unvec{ν̂GLS} (i.e., after
5 iterations) by µ̂i = 2 · arctan{ω̂i}.

4. DOA SELECTION STRATEGY

In order to obtain better DOA estimates, we propose to
employ ES ESPRIT (EU ESPRIT) twice with |I| = M − 1
and |I| = M − 2, respectively, to produce 2K DOA candi-
dates. These choices of cardinality generate the most precise
DOA candidates. Then, we employ two selection strategies
to pick up K DOA estimates from 2K previously estimated
DOAs. Following [17], [18], [19], the first selection strat-
egy is using the deterministic ML (DML) cost function [20]
to determine the final DOAs. In doing so, 2K DOAs are di-
vided into PESE(EUE) = 2K!

K!K! different subsets, each subset
Θi, i = 1, · · · , PESE(EUE) containing K different DOAs,
which generate A(Θi), i = 1, · · · , PESE(EUE). The final
DOAs are the members of the subset that minimizes the DML
cost function, i.e.,

Θ̂DML = arg min
Θi

tr((IM −A(Θi)(A(Θi)
HA(Θi))

−1

×A(Θi)
H)R̂), ∀ i = 1, · · · , PESE(EUE)

(20)

where R̂ = 1
NXXH is the sample covariance matrix (SCM),

and tr(·) denotes the trace operator. As it can be concluded
from (20), the use of DML as the selection strategy im-
poses computing PESE(EUE) inverse matrices of dimension
K×K, which is of a considerably high computational burden.



However, notice that PESE(EUE) = 2K!
K!K! and PEPUMA =

(2K+1)!
(K+1)!K! [19], which makes PESE(EUE) approximately half
of PEPUMA, resulting in fifty percent computational saving
via using ESE(EUE) in tandem with DML compared to en-
hanced principal-singular-vector utilization for modal analy-
sis (EPUMA) [19].

For the second selection strategy, we propose to use a
method that we call sequential likelihood ratio (SLR). Us-
ing the method presented in [21], the final K DOAs are se-
lected sequentially one by one from the estimated 2K DOA
candidates. Based on SLR, for determining the lth DOA
(l = 1, · · · ,K), we select θi from the set of 2K − (l− 1) re-
maining DOAs that maximizes the stochastic maximum like-
lihood (SML), i.e.,

θ̂l = arg max
θi

a(θi)
HP⊥l−1R̂P⊥l−1a(θi)

a(θi)HP⊥l−1a(θi)

for i = 1, · · · , 2K − (l − 1) , l = 1, · · · ,K (21)

where

P⊥l−1 ,
{

IM −Al−1(AH
l−1Al−1)−1AH

l−1 l > 1

IM l = 1
(22)

with Al−1 , [a(θ̂1), · · · ,a(θ̂l−1)] ∈ CM×(l−1). Selecting
the lth DOA via SLR imposes computing 2K − (l − 1) in-
verse matrices of dimension (l − 1)× (l − 1). In the case of
l = K, it is required to compute K + 1 inverse matrices of
dimension (K−1)× (K−1) for selecting the Kth DOA. As
a result, using SLR requires much smaller number of arith-
metic computations rather than using DML, especially when
K is relatively large.

5. SIMULATION RESULT

The performance of the standard ESPRIT using GLS (SE
GLS), unitary ESPRIT using GLS (UE GLS) [14], EPUMA
[19], and the proposed ES ESPRIT, and EU ESPRIT is evalu-
ated. The deterministic Cramer-Rao bound (CRB) [20] is in-
cluded as a benchmark. Two examples are considered. In both
examples, we assume that a ULA withM = 16 isotropic sen-
sors separated by half-wavelength spacing receives the sig-
nals. The number of snapshots isN = 4. In addition, the sen-
sor noise is drawn from zero-mean circularly symmetric white
Gaussian distribution and the curves are averaged over 10000
Monte Carlo trials. Fig. 1 displays the root mean square error
(RMSE) versus the SNR for K = 2 uncorrelated signals with
Θ = [5◦ , 7◦]. As it can be observed from Fig. 1, the best
performance is shown by EU ESPRIT and UE GLS.

In Fig. 2, the total RMSE is depicted versus the SNR
considering the case of receiving K = 2 highly correlated
signals with correlation coefficient of ρ = 0.95 from Θ =
[32◦ , 33◦]. It can be seen from Fig. 2 that the best per-
formance is obtained by EU ESPRIT and EPUMA (using
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Fig. 1. RMSEs vs. SNR for K = 2 uncorrelated signals with
Θ = [5◦ , 7◦], M = 16 and N = 4.
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Fig. 2. RMSEs vs. SNR for K = 2 correlated signals (ρ =
0.95) with Θ = [32◦ , 33◦], M = 16 and N = 4.

forward-backward averaging). According to Figs. 1 and 2, it
can be concluded that EU ESPRIT has the best performance
among the considered methods for both uncorrelated and cor-
related sources. Moreover, because the use of both DML and
SLR as the DOA selection strategy results in the same perfor-
mance based on the figures, it is more beneficial to employ
SLR for selecting the final DOAs due to its much smaller
computational burden.

6. CONCLUSION

A novel ESPRIT-type method called ES (EU for the case
of unitary formulation) ESPRIT has been developed for esti-
mating DOAs in the presence of coherent sources, small sam-
ple size and low SNR. It gives reliable performance when the
available sample size is small and/or some of the DOAs are
close to each other. Computer simulations have shown that
the proposed method outperforms other existing method.
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ABSTRACT

A novel algorithm for direction-of-arrival (DOA) estima-
tion in nonuniform sensor noise is developed. The diagonal
nonuniform sensor noise covariance matrix is estimated by an
iterative procedure, which only requires a few iterations. Us-
ing the generalized eigendecomposition of two matrices and
the least squares, the noise subspace is refined and the noise
covariance matrix is estimated iteratively. Since there is no
need for knowledge of true DOAs when estimating the noise
covariance matrix, our method is superior to most existing
approaches. For the proposed noise covariance estimator, we
also derive the asymptotic variance of one iteration. Numeri-
cal simulations are carried out to demonstrate the advantages
of the proposed algorithm over existing state-of-the-art meth-
ods.

Index Terms— DOA estimation, subspace methods,
nonuniform noise.

1. INTRODUCTION

The problem of finding direction-of-arrivals (DOAs) of
desired signals arises in diverse practical applications such as
wireless communication, automotive radar and sonar [1–6],
to name a few. Although multiple rigorous approaches have
been developed to tackle the DOA estimation problem in the
presence of white uniform sensor noise [7–13], the often more
practical assumptions of white nonuniform sensor noise and
unknown noise field have drawn attention rather recently [14,
15]. It is worth mentioning that most of the methods designed
for the former case are not applicable readily to the later cases.
Therefore, devising proper methods which take into consid-
eration the presence of nonuniform sensor noise is vital for
many applications.

Several methods designed for the case of white nonuni-
form sensor noise have been presented recently in the lit-
erature. Particularly, the deterministic maximum likelihood
(ML) estimator and corresponding Cramer-Rao bound (CRB)
for both deterministic and stochastic signals have been de-
rived in [14], while the stochastic ML estimator has been
developed in [16]. A simple method has been devised in [17]

This work was supported in part by Academy of Finland under Research
Grant 319822.

that requires less computational cost than ML estimator and
improves the DOA estimation accuracy. Moreover, via ex-
ploiting the ML and least squares (LS) criteria, two itera-
tive methods referred to as iterative ML subspace estima-
tion (IMLSE) and iterative least squares subspace estimation
(ILSSE) have been developed in [18]. The aim of both the
IMLSE and ILSSE is to estimate the signal subspace and
noise covariance matrices first, followed by finding DOAs
by identifying peaks of the multiple signal classification
(MUSIC) pseudo-spectrum. In addition, it has been shown
in [19] that the signal and noise subspaces can be separated by
applying the eigendecomposition (ED) of the reduced covari-
ance matrix (RCM) when sources are uncorrelated. In [19],
the authors have developed also a rank minimization based
approach for coping with the case of correlated sources.
An efficient method referred to as non-iterative subspace-
based (NISB) method has been developed recently in [20]. It
achieves both high performance and low computational com-
plexity. The essence of the NISB method is to find a proper
estimate of the noise covariance matrix by employing the ED
of the RCM [19], followed by identifying the noise subspace
via applying the generalized eigendecomposition (GED) of
the matrix pair of the sample covariance matrix (SCM) and
the estimated noise covariance matrix.

In this paper, we develop a new method to address the
problem of DOA estimation in the presence of white nonuni-
form sensor noise. The core of our method is to estimate
the noise subspace and noise covariance matrix iteratively.
Specifically, the noise subspace and noise covariance matrix
are refined by exploiting the GED of two matrices and using
the LS criteria, respectively, in iterative manner. A study of
the asymptotic variance of such estimator is also conducted.
Since we do not need to know the actual DOAs to estimate
the noise covariance matrix, our approach can be considered
superior to the majority of existing methods. The proposed
noise covariance matrix estimator works efficiently for sensor
arrays with arbitrary geometries and also in the presence of
correlated sources. Our method is also appealing computa-
tionally because it only requires a few iterations to obtain a
proper noise covariance matrix estimate. Following the com-
putation of the noise subspace, the MUSIC framework is em-
ployed to identify DOAs. Simulation results are included to
demonstrate the effectiveness of the proposed method.



2. SIGNAL MODEL

Consider a uniform linear array (ULA) with M omni-
directional sensors receiving L (L < M ) independent nar-
rowband signals emitted by L sources. The sources are lo-
cated in the far-field at distinguished directions, denoted by
θl, l = 1, · · · , L. Then, the signal received by the sensor
array at the time instant t is given as

x(t) = A(θ)s(t) + n(t) (1)

where s(t) , [s1(t) · · · sL(t)]T ∈ CL is the vector of
source signals, n(t) ∈ CM denotes the sensor noise vec-
tor, θ , [θ1 · · · θL]T contains the source DOAs, and A(θ) ,
[a(θ1) · · ·a(θL)] ∈ CM×L with the steering vector a(θl) =
[1 e−j2πsin(θl)d/λ · · · e−j2π(M−1)sin(θl)d/λ]T ∈ CM cor-
responding to lth DOA. Also here λ stands for the carrier
wavelength and d = λ/2. For notation simplicity, A is used
instead of A(θ) hereafter.

The array covariance matrix can be written as

R , E{x(t)xH(t)} = APAH + Q (2)

where P ∈ CL×L and Q ∈ RM×M , respectively, denote the
signal and noise covariance matrices defined as

P , E{s(t)sH(t)}, Q , E{n(t)nH(t)}. (3)

Considering the case of spatially and temporally uncorrelated
nonuniform sensor noise that is zero-mean Gaussian, the
noise covariance matrix can be written as

Q = diag{[σ2
1 , · · · , σ2

M ]} (4)

where diag{·} stands for a diagonal matrix generated by plug-
ging the entries of the bracketed argument into its main diag-
onal. In (4), σ2

m, m = 1, · · · ,M are the noise variances,
which are considered to be nonidentical, i.e, σ2

i 6= σ2
j for

i 6= j. When σ2
1 = σ2

2 = · · · = σ2
M = σ2, the noise covari-

ance matrix is just a scaled identity matrix Q = σ2IM , i.e.,
the sensor noise is uniform. Whereas the latter case has been
probed to a great extent in the literature, the former has been
received more attention only in the recent years.

Because R is unknown in practice, the SCM is typically
used, and it is given by

R̂ , 1

N

N∑

t=1

x(t)xH(t) =
1

N
XXH . (5)

Here, the matrix signal notation is also used, that is,

X = AS + N (6)

with X , [x(1) · · ·x(N)], S , [s(1) · · · s(N)], N ,
[n(1) · · ·n(N)], and N being the number of snapshots.

3. NOISE COVARIANCE MATRIX ESTIMATION

It is desirable for an algorithm estimating Q that it would
not require any knowledge of the true DOAs while providing
an acceptable accuracy with an affordable computational cost.
Furthermore, such algorithm should provide reliable results
in extreme scenarios. The presence of closely located sources
and small sample size are two examples of extreme scenarios.
To develop such an algorithm, both sides of (2) are multiplied
by U ∈ CM×(M−L) which satisfies the following condition

AHU = 0L×(M−L) (7)

where the constraint UHU = IM−L is also imposed to avoid
ambiguities in obtaining U. It can be seen from (7) that
the columns of U span the noise subspace. For the case of
nonuniform noise, finding U is not as simple as for the uni-
form noise case where U is obtained by just calculating the
eigenvectors of R̂.

Multiplying (2) by U and using (7), we find that [20]

R̂U = QU (8)

where R is replaced by R̂. Knowing Q, it can be observed
from (8) that the columns of the best estimate of U, denoted
as Û, are calculated as theM−L eigenvectors corresponding
to theM−L smallest eigenvalues obtained after applying the
GED to the pair of matrices

{
R̂,Q

}
.

Moreover, according to (8), Q can be estimated by the
LS approach. Towards this end, we formulate the following
LS minimization problem with respect to Q

Q̂ = arg min
Q
‖(R̂−Q)Û‖2F (9)

where U is replaced by Û and ‖·‖F denotes the the Frobenius
norm of a matrix. Problem (9) needs to be solved subject to
the constraint of Q being a diagonal matrix. The objective
function of (9) can be rewritten as

f(Q) ,
∥∥∥(R̂−Q)Û

∥∥∥
2

F

= trace

{(
(R̂−Q)Û

)(
(R̂−Q)Û

)H}

= trace
{

ÛÛHR̂2
}
− trace

{
R̂ÛÛHQ

}

− trace
{

ÛÛHR̂Q
}

+ trace
{

ÛÛHQ2
}

(10)

where trace{·} stands for the trace of a square matrix, and
the properties ‖X‖2F = trace

{
XXH

}
, trace {XY} =

trace {YX}, R̂ = R̂H , and Q = QH are used. The partial
derivative of (10) with respect to Q is obtained as

∂f(Q)

∂Q
= 2D

{
ÛÛH

}
Q−D

{
R̂ÛÛH + ÛÛHR̂

}

(11)



where the operator D{·} generates a diagonal matrix by pre-
serving the main diagonal of the bracketed matrix and setting
all other entries to zero (see details in [21]). Equating (11) to
zero, the optimal estimate of Q is obtained as

Q̂ =
1

2
D
{

R̂ÛÛH + ÛÛHR̂
}
D
{

ÛÛH
}−1

. (12)

Because of the dependencies of calculating Q̂ and Û in
(8) and (12), it is natural to use an iterative scheme for esti-
mating Q̂ and Û. It starts with properly initializing Q̂, de-
noted as Q̂(0). Then Û(0) is estimated as the M −L general-
ized eigenvectors of the pair {R̂, Q̂(0)} corresponding to the
M − L smallest eigenvalues. Next, Q̂(1) is obtained via (12)
after replacing Û with Û(0). The alternations carry on until
a predefined stopping criterion is satisfied. It is worth noting
that any diagonal matrix with positive diagonal entries can be
used as Q̂(0), however, we suggest to employ Q̂(0) = D{R̂}.

Algorithm 1: Noise Covariance Matrix Estimation
1: Compute R̂ = 1/N

∑N
t=1 x(t)xH(t).

2: Set i = 0, Q̂(0) = D{R̂}, and the maximum number
of iterations imax = 5.
while i ≤ imax
3: Carry out the GED of the pair {R̂, Q̂(i))} to obtain
Û(i) as the M − L eigenvectors corresponding to the
M − L smallest eigenvalues.
4: Calculate Q̂(i+1) using (12).
5: set i = i+ 1.
end

The steps of the proposed algorithm for the noise covari-
ance matrix estimation are outlined in Algorithm 1. Carrying
out the GED of the pair {R̂, Q̂)},1 the noise subspace is ob-
tained as the M − L eigenvectors associated with the M − L
smallest eigenvalues. Although any subspace-based method
can be adopted for DOA estimation, we use the spectral MU-
SIC method via finding the locations of L peaks in the fol-
lowing pseudo-spectrum

SMU (θ) =
1

aH(θ)ÛÛHa(θ)
. (13)

The asymptotic mean square error (MSE) of the pro-
posed noise covariance estimation method in (12) is given in
the following proposition.

Proposition 1: The asymptotic variance of estimating
each diagonal element of Q̂ in (12), given a particular Û, is

E
{(

∆σ2
m

)2}
=

1

2Nτ2m

(
R
{

[R]mmvHmRvm
}

+ R
{
vHm(rTm ⊗R)K(dm ⊗ IM )v∗m

})

(14)

1If there exist correlated sources, R̂FB = 1
2

(
R̂+ JM R̂∗JM

)
is pre-

ferred over R̂ where JM is the exchange matrix.

where τm , [ÛÛH ]mm is the entry in the intersection of
the ith row and jth column of the matrix ÛÛH , vm ,
[ÛÛH ]:,m is the mth column of the aforementioned ma-
trix, R{·} returns the real part of the bracketed argument,
rm denotes the mth column of R, ⊗ denotes the Kronecker
product, K is the commutation matrix and dm ∈ RM is a
vector with 1 on the mth position and 0 elsewhere.

Proof: Using (12), the mth diagonal entry of Q̂, denoted
by σ̂2

m, can be written as

σ̂2
m =

(
vHmr̂m + (vHmr̂m)H

)

2τm
=

R{vHmr̂m}
τm

(15)

where r̂m denotes the mth column of R̂. Expressing r̂m as
r̂m = rm + ∆rm, where ∆rm is the estimation error of the
mth column of the SCM, it can be found that

∆σ2
m =

R{vHm∆rm}
τm

(16)

where ∆σ2
m is the difference between the actual σ2

m and the
estimate σ̂2

m, i.e., ∆σ2
m = σ̂2

m − σ2
m. Consequently, the vari-

ance of ∆σ2
m can be expressed as

E
{(

∆σ2
m

)2}
=

1

4τ2m
E
{(

vHm∆rm + vTm∆r∗m
)

×
(
∆rHmvm + ∆rTmv∗m

)}

=
1

4τ2m

(
vHmE

{
∆rm∆rHm

}
vm + vHmE

{
∆rm∆rTm

}
v∗m

+ vTmE
{
∆r∗m∆rHm

}
vm + vTmE

{
∆r∗m∆rTm

}
v∗m

)
.

(17)

According to [22], the asymptotic covariance and pseudo-
covariance matrices of the vector ∆r , vec{(R̂ − R)} ∈
CM2

are

E
{
∆r∆rH

}
=

1

N
(RT ⊗R) (18)

E
{
∆r∆rT

}
=

1

N
(RT ⊗R)K. (19)

Using (18) and (19), it is straightforward to show that [23]

E
{
∆rm∆rHm

}
=

(
[R]mm
N

)
R (20)

E
{
∆rm∆rTm

}
=

1

N
(rTm ⊗R)K(dm ⊗ IM ). (21)

Plugging (20) and (21) into (17) yields (14), which completes
the proof. �

Remark 1: It is worth noting that (12) represents the
power domain (PD) method [17] in an alternative way. The
PD method estimates σ2

m’s as

σ2
m =

(
dTmP⊥Ar̂m + r̂HmP⊥Adm

)

2dTmP⊥Adm
, m = 1, · · · ,M (22)



where P⊥A ∈ CM×M is the orthogonal projection matrix of
the signal subspace, i.e., P⊥A = IM −A(AHA)−1AH . The
primary difference between (12) and (22) is the use of ÛÛH

as an estimate of P⊥A rather than conducting a multidimen-
sional search like in [17] for an ML estimate. In general, such
multidimensional search is known to be very computationally
demanding. Due to its reduced computational requirements,
the proposed method has significant advantage over the PD
technique.

Remark 2: The sufficient number of iterations for
achieving a precise estimate of the noise covariance ma-
trix for Q̂(0) = D{R̂} is 3–5 as will be shown in the next
section.

4. SIMULATION RESULTS

We evaluate the performance of the proposed method
and compare it to that of the other state-of-the-art algorithms.
The methods used for comparison are the “NISB+MUSIC”
method of [20], “IMLSE+MUSIC” method of [18], and
“RTM+MUSIC” method of [19]. The nonuniform stochastic
CRB [14] is used as the benchmark. A ULA with M = 16
sensors separated by half wavelength collecting N = 8 snap-
shots is considered, and 2000 Monte Carlo runs are conducted
to calculate the root mean square error (RMSE) defined as

RMSE = 10log10

√√√√ 1

2000L

L∑

l=1

2000∑

i=1

(θ̂l,i − θl)2.

The SNR is computed as SNR =
σ2
s

M

∑M
m=1

1
σ2
m

where σ2
s rep-

resents the identical powers of different sources. The sensor
noise covariance matrix is set to Q = diag{[6, 2, 0.5, 2.5, 3,
10, 5.5, 30, 11, 1.2, 3.5, 18, 2, 8.5, 36, 6.5]}. As a result,
the worst noise power ratio (WNPR) in these examples is

WNPR =
σ2
max

σ2
min

=
36

0.5
= 72.

Fig. 1 shows the RMSE performance of the methods
tested versus SNR for the setup of two uncorrelated sources
with θ = [−29◦, 18◦]. We observe that the proposed method
achieves a higher threshold performance than other methods
tested. In addition, Fig. 2 shows the strengths of the meth-
ods tested against the presence of closely located sources for
the case of uncorrelated sources. The setup used for produc-
ing Fig. 2 is θ = [18◦, (18 + ∆θ)◦] and SNR = 10 dB with
∆θ varying from 4◦ to 10◦. Compared to the other methods
tested, the performance of the proposed method is better as
illustrated in Fig. 2.

5. CONCLUSION

A novel algorithm is presented to estimate DOAs when
the sensor noise is nonuniform. Our algorithm iteratively es-
timates the nonuniform noise covariance matrix. Each iter-
ation involves estimation of the noise subspace using GED
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Fig. 1. RMSE vs. SNR for L = 2 uncorrelated sources with
θ = [−29◦, 18◦], M = 16, and N = 8.
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Fig. 2. RMSE vs. the angular separation for L = 2 uncor-
related sources with θ = [18◦, (18 + ∆θ)◦], SNR = 10 dB,
M = 16, and N = 8.

first, followed by updating the noise covariance matrix using
LS. In addition to being applicable to a wide variety of array
geometries, the proposed noise covariance matrix estimator
is also fast and easy to implement since it only requires a few
iterations to provide accurate estimates. Simulation examples
show that the proposed algorithm is superior to the existing
approaches.
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ABSTRACT

One-bit analog-to-digital converters enable digital beamform-
ing in millimeter wave (mmWave) multi-input multi-output
communication systems with low power consumption. Con-
ventional signal processing tasks like channel estimation,
though, are challenging due to the extreme quantization, mak-
ing it challenging to implement uplink (UL) multiuser re-
ceivers. We reformulate the UL channel estimation prob-
lem as a multiplication of two specific matrices, and then we
leverage Toeplitz matrix reconstruction in conjunction with
the angular domain sparsity of the UL channel to recover UL
channel via solving a properly designed optimization prob-
lem. Our new approach is called the sparsity enforcing with
Toeplitz matrix reconstruction (SE-TMR) method. Numerical
simulations are carried out to showcase the advantages of SE-
TMR over existing competitive methods in terms of normal-
ized mean squared error in clustered narrowband channels.

Index Terms— Multi-user MIMO, uplink channel esti-
mation, one-bit analog-to-digital converter, angular domain,
Toeplitz matrix reconstruction.

1. INTRODUCTION

Millimeter-wave (mmWave) multiple-input multiple-
output (MIMO) communications is an approach that ex-
tends the high data rate benefits associated with the use of
mmWave to take advantage of multiuser multiplexing pro-
vided by massive MIMO [1–5]. Despite the advantages of-
fered by mmWave MIMO system, the need to deploy high-
resolution analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs) for the large number of antenna el-
ements in the base station (BS) makes system impractical in
terms of the power consumption for the large arrays found
in massive MIMO and the higher bandwidths in mmWave
and sub-THz communications. The use of low-resolution
(1-3 bits) ADCs/DACs is one approach to reduce overall
transceiver power consumption [7, 9–12]. The most benefits
in terms of power consumption and reduced analog hardware
complexity are found with one-bit data converters, where the

This work was supported in part by Academy of Finland under Research
Grant 319822.

conventional treatment of quantization error as additive noise
may be a poor assumption.

Channel estimation is required for most one-bit re-
ceiver designs and has been widely considered in prior works
[8,11,13–17]. Of relevance to our paper, in [13] and [14], the
maximum-likelihood (ML) approach has been used to handle
uplink (UL) channel estimation problem, but the prohibitive
computational cost required for implementing the proposed
algorithms has been the main impediment in practical scenar-
ios. In [15], an algorithm referred to as Bussgang linear mini-
mum mean squared error (BLMMSE) channel estimation has
been developed for both flat and frequency-selective channel
models. The essence of BLMMSE is to approximate the non-
linear one-bit quantizer as a linear function via the Bussgang
decomposition [18]. In [11], the authors have proposed a gen-
eralized approximate message passing (GAMP) based algo-
rithm, where a compressive sensing (CS) approach has been
employed to estimate the angular domain parameters of UL
channel. In [16], an amplitude retrieval (AR) based algorithm
has been derived that is based on completing the lost ampli-
tudes of one-bit measurements along with ML direction-of-
arrival (DOA) estimation method. Recently, an algorithm re-
ferred to as gridless GAMP (GL-GAMP) has been developed
in [17] for UL channel estimation. GL-GAMP utilizes mod-
ified expectation-maximization GAMP (EM-GAMP) method
in conjunction with the well-known RELAX [19] method to
reconstruct the channel. Motivated by the promising use of
the structure-based methods such as the AR and GL-GAMP
methods, we develop a channel estimation approach by lever-
aging the underlying Toeplitz structure of the UL channel
along with angular domain sparsity, which has not been fully
exploited in prior works.

In this paper, we develop a new method referred to as
sparsity enforcing with Toeplitz matrix reconstruction (SE-
TMR) method to address the problem of UL channel esti-
mation for mmWave MIMO communications when one-bit
ADCs are deployed at the BS. The core idea of SE-TMR is to
first reformulate UL channel estimation problem in terms of
multiplication of two specific matrices, followed by using the
combination of Toeplitz matrix reconstruction and UL chan-
nel sparsity in the angular domain. SE-TMR reconstructs ef-
ficiently UL channel up to a scale factor. Numerical simula-



tions validate its performance improvement and compare it to
the existing competitive methods.

Notations: Upper-case and lower-case bold-face letters
denote matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The transpose, and Hermitian
transpose are denoted by {·}T and {·}H , respectively, while
‖ · ‖ and ‖ · ‖1 denote the l2 and l1 norms of a vector, and
‖ ·‖F stands for the Frobenius norm of a matrix. The notation
T (·) stands for an operation of building a square Hermitian
Toeplitz matrix with its first column being the bracketed vec-
tor, and trace{·} stands for the trace of a square matrix. The
n×n identity matrix is denoted by In. The n× 1 vector with
all its entries equal to one is denoted by 1n. The ith entry
of the vector π is denoted by [π]i , while the entry in the in-
tersection of the ith row and jth column of the matrix Π is
denoted as [Π]i,j . The operator vec{·} stacks the columns of
a matrix into a long vector. The operator diag{π} generates
a diagonal matrix by plugging the entries of the vector π into
its main diagonal. Finally, <{·} and ={·} return the real and
imaginary parts of the bracketed argument, respectively.

2. UL CHANNEL ESTIMATION

2.1. System Model

Consider an UL multiuser mmWave MIMO system
equipped with a uniform linear array (ULA) of M antenna
elements at the base station (BS) and K single antenna users.
The BS is equipped with one-bit ADCs, whereas all users de-
ploy high-resolution DACs. Then, the UL channel between
user k and the BS can be formulated as

hk =

Lk∑

l=1

Mk,l
path∑

m=1

γk,l,ma(θk,l,m)

= [A(θk,1), · · · ,A(θk,Lk
)]



γk,1

...
γk,Lk


 = A(θk)γk (1)

where Lk denotes the number of multipath clusters be-
tween the BS and the user k, the lth cluster encompasses
Mk,l

path paths concentrated around an angular area defined
by the corresponding angle spread [20], γk,l,m and θk,l,m
are respectively the gain and DOA of the mth path in
the lth cluster, the steering vector is set as a(θk,l,m) =
[1, e−jπsin(θk,l,m), · · · , e−j(M−1)πsin(θk,l,m)]T ∈ CM×1,
θk,l , [θk,l,1, · · · , θk,l,Mk,l

path
]T ∈ RM

k,l
path×1 for

l = 1, · · · , Lk, A(θk,l) , [a(θk,l,1), · · · ,a(θk,l,Mk,l
path

)] ∈
CM×M

k,l
path , γk,l , [γk,l,1, · · · , γk,l,Mk,l

path
]T ∈

CM
k,l
path×1, θk , [θTk,1, · · · ,θTk,Lk

]T , A(θk) ,
[A(θk,1), · · · ,A(θk,Lk

)], and γk , [γTk,1, · · · ,γTk,Lk
]T . The

overall channel between the BS and K users is

H = [h1, · · · ,hK ] = [A(θ1)γ1, · · · ,A(θK)γK ] . (2)

In the training stage, a pilot sequence of length Ns
(Ns ≥ K) is transmitted by K users. The received signal
at the BS is

Y = Q(HS + N) (3)

whereQ(·) , sign(<{·}) + jsign(={·}) is the element-wise
one-bit quantizer which maps an argument to one of the mem-
bers of the set S = {1+j, 1−j,−1+j,−1−j}, S ∈ CK×Ns

represents the orthogonal pilot matrix, and N ∈ CM×Ns is
the additive circularly symmetric complex-valued Gaussian
noise with zero mean and variance σ2. The aim is to re-
cover (scaled) H ∈ CM×K by processing the received signal
Y ∈ CM×Ns .

2.2. Proposed UL Channel Estimation

Our UL channel estimation method will be developed by
employing the notion of Toeplitz matrix reconstruction com-
bined with the angular domain sparsity of UL channel. Al-
though the actual channel between the BS and the kth user
presented in (1) is composed of many paths, it is still sparse
in an angular-based dictionary (e.g., the normalized discrete
Fourier transform (DFT) matrix). Therefore, hk can be ap-
proximated as an unknown linear combination of a few atoms
of the angular-based dictionary which correspond to those
paths that contribute the most. These paths are entitled as the
“basis paths” henceforth. From this point of view, we repre-
sent the kth column of H ( i.e., hk) as a linear combination
of Lk basis paths with Lk path gains and DOAs. As a result,
(2) can be recast as

H = [h1, · · · ,hK ] = [A(θ̄1)γ̄1, · · · ,A(θ̄K)γ̄K ] (4)

where θ̄k , [θ̄k,1, · · · , θ̄k,Lk
]T ∈ RLk×1 and γ̄k ,

[γ̄k,1, · · · , γ̄k,Lk
]T ∈ CLk×1 are respectively the DOAs and

path gains which correspond to Lk basis paths between the
BS and user k.

To develop our method, we first reformulate (4) as

H = AΓḠ = H̄Ḡ (5)

where

A , [A(θ̄1), · · · ,A(θ̄K)] ∈ CM×L (6)

Γ ,




diag(γ̄1)
. . .

diag(γ̄K)


 ∈ CL×L (7)

Ḡ ,




1L1

1L2

. . .
1LK


 ∈ RL×K (8)

H̄ , AΓ ∈ CM×L (9)



and L ,
∑K
k=1 Lk. The significant point stated in (5) is that

estimating H is equivalent to estimating H̄. Therefore, we de-
velop SE-TMR by formulating an optimization problem with
respect to H̄ because of good properties that H̄ possesses as
it will be elaborated in the sequel.

Due to the special structures of A and Γ, i.e., A and Γ
being respectively Vandermonde and diagonal matrices, it is
straightforward to show that

H̄H̄H = T (u) (10)

where u ∈ CM and [u]1 belongs to the real numbers field.
Moreover, the channel estimation problem can be con-

verted into a sparse recovery problem by defining an angular-
based dictionary [21, 22] as explained above. In the case of
ULA, the normalized DFT matrix can be a proper dictio-
nary [17] because of zero intra-column correlation, i.e., the
DFT matrix columns are orthonormal to each other. Hence,
multiplying H by the DFT matrix, we have

X(θ̄) = FH = FH̄Ḡ (11)

where F ∈ CM×M denotes the normalized DFT matrix. Tak-
ing into consideration (5), it can be concluded that each col-
umn of X(θ̄) defined in (11) is sparse. It is well known that
the optimal way to enforce sparsity is to use l0 pseudo-norm,
however, the corresponding optimization problem is known to
be NP hard. Therefore, we exploit l1 norm to enforce sparsity,
which is a widely used alternative.

Considering (10) and (11), the following optimization
problem is introduced to recover H̄ efficinely given the one-
bit measurement matrix Y

min
H̄,u,ER,EI

‖vec{FH̄Ḡ}‖1 + λ




M∑

i=1

Ns∑

j=1

([ER]i,j + [EI ]i,j)




(12)

s.t. H̄H̄H = T (u) (13)
trace{T (u)} = C (14)

<{[H̄ḠS]i,j}<{[Y]i,j} > −[ER]i,j ,

i = 1, · · · ,M, j = 1, · · · , Ns (15)

={[H̄ḠS]i,j}={[Y]i,j} > −[EI ]i,j ,

i = 1, · · · ,M, j = 1, · · · , Ns (16)

[ER]i,j > 0, i = 1, · · · ,M, j = 1, · · · , Ns (17)

[EI ]i,j > 0, i = 1, · · · ,M, j = 1, · · · , Ns (18)

where λ > 0 is a regularization parameter, the entries of
ER ∈ RM×Ns and EI ∈ RM×Ns are slack variables in-
troduced to handle probable sign flips due to the impact of
noise [23]. In this problem, (14) prevents the scaling ambi-
guity with C > 0, and (15)–(16) are imposed to maintain the
consistency with the observation matrix Y. The optimization
problem (12)–(18) is non-convex because of the constraint

(13) which is difficult to address in an efficient manner. For
alleviating difficulties caused by imposing (13), semi-definite
programming (SDP) relaxation can be exploited to turn the
non-convex constraint (13) into a convex one. Therefore, the
optimization problem (12)–(18) can be modified by means of
SDP relaxation as

min
H̄,u,ER,EI

‖vec{FH̄Ḡ}‖1 + λ




M∑

i=1

Ns∑

j=1

([ER]i,j + [EI ]i,j)




(19)

s.t.
[
IL H̄H

H̄ T (u)

]
� 0 (20)

[u]1 =
C

M
(21)

<{[H̄ḠS]i,j}<{[Y]i,j} > −[ER]i,j ,

i = 1, · · · ,M, j = 1, · · · , Ns (22)

={[H̄ḠS]i,j}={[Y]i,j} > −[EI ]i,j ,

i = 1, · · · ,M, j = 1, · · · , Ns (23)

[ER]i,j > 0, i = 1, · · · ,M, j = 1, · · · , Ns (24)

[EI ]i,j > 0, i = 1, · · · ,M, j = 1, · · · , Ns (25)

where the convex constraint (20) is imposed instead of (13)
via SDP relaxation, and (14) is replaced by (21) as they are
interchangeable. The optimization problem (19)–(25) is con-
vex and therefore can be solved by off-the-shelf solvers like
CVX [24].

After estimating H̄, we recover H using (5). Due to the
angular-based structure of the columns of H, further refine-
ment can be attained through recovering the LHR

k path gains
and LHR

k DOAs associated with the kth column of H for
k = 1, · · · ,K. In doing so, conventional one-dimensional
harmonic retrieval (HR) methods such as RELAX [19] can
be applied to each column of H in order to estimate the LHR

k

path gains and LHR
k DOAs, and then reconstruct the refined

H [17], denoted by Ĥ. Note that LHR
k can be opted greater

than Lk due to the presence of actual larger number of multi-
paths than the basis paths as given in (1). As a matter of fact,
it will be shown in the next section by means of simulation
that choosing LHR

k greater than Lk leads to performance im-
provement of the SE-TMR method. The steps of the proposed
UL channel estimator are outlined in Algorithm 1.

3. SIMULATION RESULTS

We evaluate the performance of the proposed SE-TMR
method and compare it to that of other competitive algo-
rithms. The methods used for comparison are near ML (nML)
[13], AR [16], and zero-forcing (ZF) method of [13]. A
Zadoff-Chu (ZC) sequence with length Ns is used to con-
struct the pilot sequence, such that each row of S is a cir-
cularly shifted replica of the ZC sequence and is therefore



Algorithm 1: SE-TMR Algorithm

Input: Y, Ḡ, λ, Lk’s, LHR
k ’s

1: Obtain H̄, u, ER, and EI by solving the optimization
problem (19)-(25).
2: Calculate H = H̄Ḡ.
Refinement with RELAX:
3: Apply RELAX to each column of H to estimate each
user’s LHR

k DOAs and path gains.
4: Employ the estimated DOAs and path gains of each user
to recover the channel matrix Ĥ.
Output: Ĥ

orthogonal to the other rows.1 The signal-to-noise ratio
(SNR) and normalized mean square error (NMSE) are respec-
tively defined as SNR , 10 log10

(
‖S‖2F
Nsσ2

)
and NMSE ,

1
KN

∑K
k=1

∑N
n=1

∥∥∥∥
ĥ

(n)
k

‖ĥ(n)
k ‖
− hk

‖hk‖

∥∥∥∥
2

, where ĥ
(n)
k is the kth

column of Ĥ estimated in the nth Monte Carlo run, and N
is the total number of Monte Carlo runs which is N = 100
in this paper. We consider λ = 10, and K = 8 in all ex-
amples.2 Moreover, the same number of channel clusters and
within cluster multipaths for each user are considered in the
upcoming examples,3 i.e., L1 = · · · = LK and M1,1

path =

· · · = M1,L1

path = · · · = MK,1
path = · · · = M1,LK

path = 100. All
UL DOAs are generated randomly once and remain the same
throughout the Monte Carlo runs. Moreover, the channel path
gains are distributed as CN (0, 1) for all users. Fig. 1 shows
the NMSE performance of the methods tested versus SNR for
the setup of M = 16, Ns = 128, and Lk = 1. Moreover, the
angle spread within a cluster is 8 degrees. Note that LHR

k is
set as 4 for the SE-TMR method in this example. It shows that
the performance of the proposed SE-TMR method is substan-
tially better than that of the other methods tested. Note that
RELAX method is also applied to nML and ZF methods (see
steps 3 and 4 in Algorithm 1) to reconstruct the structured
estimate of the UL channel. Hence, the original methods
without RELAX-based refinement are called “unstructured”
in the figures.4 The setup considered for Fig. 2 is M = 16,
Ns = 128, and Lk = 2. The angle spread within one clus-
ter is 8 degrees, while it is 10 degrees for the other one. In
Fig. 2, the proposed SE-TMR method outperforms the other

1In our algorithm, the choice of pilot sequence is not of significance, i.e.,
our algorithm also works with other pilot sequences. ZC sequence is selected
here solely due to its popularity.

2It is observed that setting λ much greater than one leads to better perfor-
mance, i.e., λ� 1.

3Different users may have different numbers of channel clusters and mul-
tipaths within clusters. For simplicity, we use the same number of channel
clusters and within cluster multipaths for all users here.

4RELAX method is not applied to AR since the AR algorithm uses an ML
DOA estimator as one step of the channel estimation algorithm, therefore, it
belongs to the category of structured methods.
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methods tested.
4. CONCLUSION

A novel algorithm called SE-TMR is presented to es-
timate UL channel in mmWave multi-user MIMO systems
with one-bit ADCs at the BS. The essence of the SE-TMR
method is to reconstruct UL channel by solving a properly
designed optimization problem, which leverages the Toeplitz
matrix reconstruction and sparsity of UL channel in the DFT
domain. Based on the numerical simulations provided, the
SE-TMR method outperforms existing competitive methods
in different scenarios with diverse number of dominated paths
between the BS and users.
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ABSTRACT

Low-power millimeter wave (mmWave) multi-input multi-
output communication systems can be enabled with the use
of one-bit analog-to-digital converters. Owing to the extreme
quantization, conventional signal processing tasks such as
channel estimation are challenging, making uplink (UL) mul-
tiuser receivers difficult to implement. To address this issue,
we first reformulate the UL channel estimation problem, and
then combine the idea of ℓ1 regularized logistic regression
classification and Toeplitz matrix reconstruction in a properly
designed optimization problem. Our new method is referred
to as ℓ1 regularized logistic regression with Toeplitz matrix re-
construction (L1-RLR-TMR). In addition, we develop a com-
putationally efficient alternating direction method of multi-
pliers (ADMM)-based implementation for the L1-RLR-TMR
method. Numerical results demonstrate the performance of
the L1-RLR-TMR method in comparison with other existing
methods.

Index Terms— Multi-user MIMO, uplink channel esti-
mation, one-bit ADC, angular domain, Toeplitz matrix recon-
struction, ℓ1 regularized logistic regression.

1. INTRODUCTION
Millimeter-wave (mmWave) multiple-input multiple-

output (MIMO) communication is an approach to enhance
the high data rate benefits provided by mmWave while en-
joying the advantages of multi-user multiplexing offered by
massive MIMO [1–4]. One approach to reduce transceiver
power consumption is to use low-resolution ADCs/DACs (1-
3 bits) [6, 8–10]. With one-bit data converters, the power
consumption can be reduced to a minimum. Therefore, the
methods developed for the case of high resolution convert-
ers for tasks like channel estimation or symbol detection have
poor performance in the case of one-bit converters utilization
which emphasize the need for designing methods consistent
with one-bit converters setups.

Most one-bit receiver designs require channel estima-
tion [7, 9, 11–13]. An near maximum-likelihood (nML) was
proposed in [11], but its performance was not good at high
signal-to-noise ratio (SNR). In [12], an algorithm known as
Bussgang linear minimum mean squared error (BLMMSE)

has been proposed that can handle the estimation of both flat
and frequency-selective channels. BLMMSE approximates
the nonlinear one-bit quantizer as a linear function by em-
ploying the Bussgang decomposition [16]. A generalized
approximate message passing (GAMP) based algorithm has
been presented in [9], in which the notion of compressive
sensing (CS) is used to estimate the angular domain parame-
ters of UL channels. Using ML direction-of-arrival estimation
method together with restoring the lost amplitudes of one-bit
measurements, [13] describes a method called the amplitude
retrieval (AR). In [14], the problem of UL channel estimation
is formulated as a binary classification task, in which the con-
ventional support vector machine (SVM) and its modified ver-
sion are adopted to handle the estimation of the uncorrelated
and spatially correlated channels, respectively. Recently, a
method known as the sparsity enforcing with Toeplitz matrix
reconstruction (SE-TMR) has been presented in [15] where
the combination of the angular domain sparsity and Toeplitz
matrix reconstruction is leveraged to derive the SE-TMR esti-
mator. The purpose of our work is to develop an UL channel
estimation that not only has a good performance compared to
other existing methods, but also requires a low computational
complexity to implement.

Inspired by the use of the classification-based methods
such as SVM, for instance in [14], as well as the promis-
ing underlying Toeplitz structure exploited in the SE-TMR
method [15], we develop a computationally efficient UL
channel estimation for one-bit ADCs. This new method
for UL channel estimation for narrowband mmWave MIMO
communications when the BS deploys one-bit ADCs is called
ℓ1 regularized logistic regression with Toeplitz matrix recon-
struction (L1-RLR-TMR). A computationally efficient alter-
nating direction method of multipliers (ADMM)-based im-
plementation of the L1-RLR-TMR method is also devel-
oped. Numerical simulations are included to showcase the
efficiency of the L1-RLR-TMR method compared to existing
competitive methods.

Notations: Upper-case and lower-case bold-face letters
denote matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The transpose, and Hermitian
transpose are denoted by {·}T and {·}H , respectively, while
∥ · ∥2 and ∥ · ∥1 are the ℓ2 and ℓ1 norms of a vector, and



∥ ·∥F stands for the Frobenius norm of a matrix. The notation
T (·) stands for an operation of building a square Hermitian
Toeplitz matrix with its first column being the bracketed vec-
tor. The n×n identity matrix is denoted by In. The n×1 vec-
tor with all its entries equal to one is denoted by 1n. The ith
entry of the vector π is denoted by [π]i , while the entry in the
intersection of the ith row and jth column of the matrix Π is
denoted as [Π]i,j . The operator vec{·} stacks the columns of
a matrix into a long vector, while unvec{·} forms a matrix by
splitting the argument and putting them in the columns of that
matrix. The operator diag{π} generates a diagonal matrix
by plugging the entries of the vector π into its main diago-
nal, while blkdiag{Π1, . . . ,Πn} generates a block-diagonal
matrix using the bracketed matrices. The notation Π ⪰ 0
means that Π is Hermitian positive semidefinite. The least
non-negative remainder in the division of a by b is denoted by
rem(a, b). Finally, ℜ{·} and ℑ{·} return the real and imagi-
nary parts of the bracketed argument, respectively.

2. UL CHANNEL ESTIMATION
2.1. System Model

Consider an UL multi-user mmWave MIMO system
where the BS deploys a uniform linear array (ULA) with M
antenna elements that serves K single antenna users.1 Each
antenna of the BS array is connected to two one-bit ADCs for
converting the real and imaginary parts of the received sig-
nals, while all users are equipped with high-resolution DACs.
The UL channel between user k and the BS is given by

hk =

Lk∑

l=1

Mk,l
path∑

m=1

γk,l,ma(θk,l,m)

= [A(θk,1), · · · ,A(θk,Lk
)]



γk,1

...
γk,Lk


 = A(θk)γk (1)

where Lk indicates the number of multipath clusters between
the BS and the user k, the lth cluster consists of Mk,l

path

paths densely grouped around a mean direction with the
corresponding angle spread [19], γk,l,m and θk,l,m are
respectively the gain and DOA of the mth path in the
lth cluster, the steering vector is given by a(θk,l,m) =
[1, e−jπsin(θk,l,m), · · · , e−j(M−1)πsin(θk,l,m)]T ∈ CM×1,
θk,l ≜ [θk,l,1, · · · , θk,l,Mk,l

path
]T ∈ RMk,l

path×1 for

l = 1, · · · , Lk, A(θk,l) ≜ [a(θk,l,1), · · · ,a(θk,l,Mk,l
path

)] ∈
CM×Mk,l

path , γk,l ≜ [γk,l,1, · · · , γk,l,Mk,l
path

]T ∈
CMk,l

path×1, θk ≜ [θTk,1, · · · ,θTk,Lk
]T , A(θk) ≜

[A(θk,1), · · · ,A(θk,Lk
)], and γk ≜ [γT

k,1, · · · ,γT
k,Lk

]T .
Accordingly, the channel between the BS and K users is

1The assumption of single antenna users is made for simplicity, while a
more practical configuration is to consider users with multiple antennas.

given as

H = [h1, · · · ,hK ] = [A(θ1)γ1, · · · ,A(θK)γK ] . (2)

The users transmit a pilot sequence of length Ns (Ns ≥ K)
during the training stage, and the received signal at the BS is

Y = Q(HS+N) (3)

where Q(·) ≜ sign(ℜ{·})+jsign(ℑ{·}) denotes the element-
wise one-bit quantizer which only preserves the sign of ar-
guments and its output, i.e., takes values from the set S =
{1 + j, 1 − j,−1 + j,−1 − j}, S ∈ CK×Ns represents the
orthogonal pilot matrix, and N ∈ CM×Ns is the additive cir-
cularly symmetric complex Gaussian noise with zero mean
and variance σ2. The task is to restore (scaled) H ∈ CM×K

from the received signal Y ∈ CM×Ns .

2.2. Logistic Regression for Binary Classification

Consider a binary classification task where the goal is to
separate a training data set D = {(xp, yp)}Pp=1 with xp and
yp ∈ {±1} being a feature and a corresponding binary label,
respectively. The logistic regression classifier separates the
data space into two regions via finding vectors w and b that
minimize

min
w,b

P∑

p=1

log
(
1 + e−yp(w

Txp)
)

(4)

where w and b are referred to as the weight vector and the
bias, respectively [17, 18].

2.3. Proposed UL Channel Estimation

Because of the clustered-based representation of hk in
(1), the channel between the BS and the kth user can be still
considered to be sparse with respect to an angular-based dic-
tionary in spite of being composed of many closely located
paths. In other words, hk can be approximated by a linear
combination of a few atoms of a proper angular-based dictio-
nary (e.g., the normalized discrete Fourier transform (DFT)).
We approximate each hk as a linear combination of the cor-
responding Lk basis paths with Lk DOAs and path gains.2

Hence, (2) can be reformulated as

H = [h1, · · · ,hK ] = [A(θ̄1)γ̄1, · · · ,A(θ̄K)γ̄K ] (5)

where θ̄k ≜ [θ̄k,1, · · · , θ̄k,Lk
]T ∈ RLk×1 and γ̄k ≜

[γ̄k,1, · · · , γ̄k,Lk
]T ∈ CLk×1 denote respectively the DOAs

and path gains associating with Lk basis paths between the
BS and user k. Manipulating (5), we obtain

H = AΓḠ = H̄Ḡ (6)

2Note that increasing the number of atoms for approximating each hk

leads to a more accurate modeling indeed, however, it also increases the com-
putational complexity.



where A ≜ [A(θ̄1), · · · ,A(θ̄K)] ∈ CM×L,
Γ ≜ diag{[γ̄T

1 , γ̄
T
2 , . . . , γ̄

T
K ]T } ∈ CL×L, Ḡ ≜

blkdiag{1L1
,1L2

, . . . ,1LK
} ∈ RL×K , H̄ ≜ AΓ ∈ CM×L,

and L ≜
∑K

k=1 Lk. Thanks to A and Γ being respectively
Vandermonde and diagonal matrices, we have

H̄H̄H = T (u) (7)

where u ∈ CM and [u]1 is a real number according to (7). On
the other hand, with the DOA-based structure of H through
A, H can be multiplied by a proper angular-based dictionary
matrix like the normalized DFT matrix to make each column
of the resultant sparse, i.e.,

X(θ̄) = FH = FH̄Ḡ (8)

where F ∈ CM×M denotes the normalized DFT matrix.
Applying the vectorization operator to (3) together with

the use of (6), we have

y ≜ vec{Y} = Q
( (

(ḠS)T ⊗ IM
)
h̄+ n

)
(9)

where h̄ ≜ vec{H̄} and n ≜ vec{N}. For convenience in
later derivations, the notation in (9) is converted to the real
domain as

yR ≜ [ℜ{y}T ,ℑ{y}T ]T = S̄h̄R (10)

where H̄ ≜ H̄R + jH̄I = [h̄1, h̄2, . . . , h̄M ]T , h̄R ≜
[vec{H̄R}T , vec{H̄I}T ]T , and

S̄ ≜
[
ℜ{(ḠS)T ⊗ IM} −ℑ{(ḠS)T ⊗ IM}
ℑ{(ḠS)T ⊗ IM} ℜ{(ḠS)T ⊗ IM}

]

= [s̄1, s̄2, . . . , s̄2MNs
]T . (11)

Note that yR ∈ {±1}2MNs×1 and h̄R ∈ R2ML×1. In addi-
tion, h̄T

m ∈ C1×L with m ∈ {1, . . . ,M} and s̄Tt ∈ R1×2ML

with t ∈ {1, . . . , 2MNs} denote the mth and tth rows of H̄
and S̄, respectively. Using (4), (7)-(8), and (10)-(11), the min-
imization problem associated with the L1-RLR-TMR method
can be written as

min
h̄R,u

∥F̄h̄R∥1 + λ

2MNs∑

t=1

log
(
1 + e−κ[yR]t(s̄

T
t h̄R)

)

s.t.
[

IL (H̄R + jH̄I)
H

H̄R + jH̄I T (u)

]
⪰ 0

∥h̄m∥22 = c , m = 1, . . . ,M (12)

where F̄ ≜
[
ℜ{ḠT ⊗ F} −ℑ{ḠT ⊗ F}
ℑ{ḠT ⊗ F} ℜ{ḠT ⊗ F}

]
, λ > 0 is a reg-

ularization parameter, and κ > 1 is added for accelerating
the convergence of the ADMM-based implementation of the
L1-RLR-TMR method in the next Subsection. Note that the
two constrains of (12) are added to impose (7), where c is a
tunable parameter. We suggest to set c = 1. Moreover, we
set κ = 10. The minimization problem presented in (12) is
non-convex because of the equality constraints.

2.4. The ADMM Implementation

To develop the ADMM-based method, an auxiliary vari-
able Z is first introduced in order to modify (12) as

min
h̄R,u

∥F̄h̄R∥1 + λ

2MNs∑

t=1

log
(
1 + e−κ[yR]t(s̄

T
t h̄R)

)

s.t. Z =

[
IL (H̄R + jH̄I)

H

H̄R + jH̄I T (u)

]

Z ⪰ 0

∥h̄m∥22 = c , m = 1, . . . ,M (13)

Consequently, the scaled augmented Lagrangian of (13) is ex-
pressed as

Lρ(h̄R,u,Z,Λ) = ∥F̄h̄R∥1

+λ

2MNs∑

t=1

log
(
1+e−κ[yR]t(s̄

T
t h̄R)

)

+
ρ

2

∥∥∥Z−
[

IL (H̄R + jH̄I)
H

H̄R + jH̄I T (u)

]
+Λ

∥∥∥
2

F
(14)

where ρ > 0 is a penalty parameter, and Λ is the
dual variable. For convenience, Z and Λ are parti-

tioned as Z =

[
Z0 (ZR+jZI)

H

ZR+jZI Z1

]
, and Λ =

[
Λ0 (ΛR+jΛI)

H

ΛR+jΛI Λ1

]
. Therefore, the updating rules

of the ADMM for solving (12) are
(
h̄l+1
R ,ul+1

)
= arg min

h̄R,u
Lρ(h̄R,u,Z

l,Λl)

s.t. ∥h̄m∥22 = c , m = 1, . . . ,M (15)

Zl+1 =

[
Dl+1 −Λl

]

+

(16)

Λl+1 = Λl + Zl+1 −Dl+1 (17)

where Dl+1 ≜
[

IL (H̄l+1
R +jH̄l+1

I )H

H̄l+1
R +jH̄l+1

I T (ul+1)

]
, and the

notation (·)l represents the estimates at lth iteration. In ad-
dition, [·]+ is a projection function used in (16) to project
the argument onto the positive semidefinite cone via carrying
out the eigenvalue decomposition and setting all the negative
eigenvalues to zero. As it is presented in (15), a minimization
problem has to be solved to estimates h̄l+1

R and ul+1. (15) is
convex with respect to u with the closed-form solution as

ul+1 = W
(
T ∗(Zl

1 +Λl
1)
)

(18)

where W ≜ diag{[ 1
M , 1

2(M−1) , . . . ,
1
2 ]

T }, and T ∗(·) denotes

the Toeplitz adjoint operator. However, estimating h̄l+1
R can

be handled using an inner ADMM formulation for solving



(15) with respect to h̄R. In doing so, an auxiliary variable w
is introduced to modify (15) as

h̄l+1
R = arg min

h̄R

∥w∥1 + λ

2MNs∑

t=1

log
(
1 + e−κ[yR]t(s̄

T
t h̄R)

)

+
ρ

2

∥∥∥Zl −
[

IL (H̄R + jH̄I)
H

H̄R + jH̄I T (ul)

]
+Λl

∥∥∥
2

F

s.t. ∥h̄m∥22 = c , m = 1, . . . ,M

F̄h̄R −w = 0 (19)

Hence, its scaled augmented Lagrangian of (19) is given as

Lρ̄(h̄R,w,v) = ∥w∥1 + λ

2MNs∑

t=1

log
(
1 + e−κ[yR]t(s̄

T
t h̄R)

)

+
ρ

2

∥∥∥Zl −
[

IL (H̄R + jH̄I)
H

H̄R + jH̄I T (ul)

]
+Λl

∥∥∥
2

F

+
ρ̄

2
∥F̄h̄R −w + v∥22 (20)

where ρ̄ > 0 is a penalty parameter associated with the inner
ADMM, and v is the dual variable. In each outer ADMM
iteration l, the inner ADMM update rules are

h̄+
R = arg min

h̄R

Lρ̄(h̄R,w
−,v−)

s.t. ∥h̄m∥22 = c , m = 1, . . . ,M (21)

w+ = S1/ρ̄

(
F̄h̄+

R + v−
)

(22)

v+ = v− + F̄h̄+
R −w+ (23)

where Sα(·) is the soft thresholding operator. Note that the
notation relations to l is omitted for simplicity in (21)–(23),
and also the notation (·)+ is adopted to show the updates re-
lated to the inner ADMM iterations. Finally, we exploit the
projected gradient descent (PGD) to handle the minimization
problem (21) where the gradient of its objective with respect
to h̄R is given as

▽Lρ̄(h̄R) = −λ

2MNs∑

t=1

κ[yR]t

1 + eκ[yR]t(s̄Tt h̄R)
s̄t + 2ρ

(
h̄R − ql

)

+ ρ̄
(
F̄T F̄h̄R − F̄T

(
w− − v−) ) (24)

where ql ≜ [vec{Zl
R+Λl

R}T , vec{Zl
I +Λl

I}T ]T . It is worth
mentioning that we initialize the aforementioned PGD by the
maximum ratio estimate [11] as

h̄
(0)
R =

X̃T
R12MN

∥X̃T
R12MN∥2

√
Mc (25)

where X̃R ≜ diag{yR}S̄. The steps of the proposed UL
channel estimator are outlined in Algorithm 1. The following

definitions of the primal and dual variables are used for the
ADMM implementation [22] in Algorithm 1:

xl+1 ≜
[ (

h̄l+1
R

)T
, vec{ℜ{T (ul+1)}}T ,

vec{ℑ{T (ul+1)}}T
]T

, zl+1 ≜
[
vec{Zl+1

R }T ,

vec{Zl+1
I }T , vec{ℜ{Zl+1

1 }}T , vec{ℑ{Zl+1
1 }}T

]T

yl+1 ≜ ρ
[
vec{Λl+1

R }T , vec{Λl+1
I }T , vec{ℜ{Λl+1

1 }}T ,

vec{ℑ{Λl+1
1 }}T

]T
,

ϵl+1
pri ≜

√
2M(L+M)ϵabs + ϵrelmax{∥xl+1∥2, ∥zl+1∥2}

ϵl+1
dual ≜

√
2M(L+M)ϵabs + ϵrel∥yl+1∥2

Note that in the steps related to the PGD iterations in Algo-
rithm 1, the notation h̃ is adopted for updating h̄R to avoid
confusion. Moreover, the number of iterations is limited to
1000 for the outer ADMM.

3. SIMULATION RESULTS
The proposed L1-RLR-TMR method is evaluated and

compared to other competitive algorithms in this section. The
nML [11], AR [13], and SE-TMR [15] methods are used for
comparison. The pilot sequence is constructed as a circu-
larly shifted replica of a Zadoff-Chu (ZC) sequence of length
Ns where each row is orthogonal to the others, i.e., SSH =
NsIK. The SNR and normalized mean square error (NMSE)
are respectively defined as SNR ≜ 10 log10

(
∥HS∥2

F

MNsσ2

)
and

NMSE ≜ 1
KN

∑K
k=1

∑N
n=1

∥∥∥∥
ĥ

(n)
k

∥ĥ(n)
k ∥2

− hk

∥hk∥2

∥∥∥∥
2

2

, where

ĥ
(n)
k stands for the kth column of Ĥ estimated in the nth

Monte Carlo run with hk being the actual kth column of H,
and N is the total number of Monte Carlo trials considered
as N = 200 here. We consider λ = 1 for the SE-TMR and
L1-RLR-TMR methods, and K = 8. We set the number of
channel clusters and within cluster multipaths for all users
to be the same, i.e., L1 = · · · = LK and M1,1

path = · · · =
M1,L1

path = · · · = MK,1
path = · · · = M1,LK

path = 100. UL DOAs
are generated randomly once and remain the same through-
out all Monte Carlo trials, and the channel path gains are dis-
tributed as CN (0, 1). Fig. 1 depicts the NMSE of the methods
tested versus SNR for the scenario that M = 16, Ns = 128,
Lk = 1 for all users, and the angle spread of 8 degrees within
each cluster. m,,It shows that the performance of L1-RLR-
TMR is comparable to that of the SE-TMR method at high-
SNR regime, although the SE-TMR method is implemented
using CVX and has high complexity [21]. In Fig. 2, the per-
formance of the methods tested is presented for the setup of
M = 16, Ns = 128, Lk = 2, and the within cluster an-
gle spreads are 8 and 10 degrees for all users. The efficiency
of L1-RLR-TMR is confirmed at high-SNR regime compared
to other methods tested. Particularly, Fig. 2 shows that the



Algorithm 1: ADMM implementation for L1-RLR-TMR
Initialization
1: Set the initial h̄(0)

R as (25). In addition, set λ = 1,
ρ = 10, ρ̄ = 1, c = 1, and κ = 10.
2: Set imax = 10, the step size β = 0.01 and the
termination threshold ϵ = 10−3 for the PGD. In addition,
set the termination thresholds of the outer ADMM as
ϵabs = ϵrel = 10−4.
3: Set

Z0
0 = IM , Z0

R = H̄0
R = unvec

{[
h̄
(0)
R

]
1:ML

}
,

Z0
I = H̄0

I = unvec

{[
h̄
(0)
R

]
ML+1:2ML

}
, w− = F̄h̄

(0)
R ,

u0 = W
(
T ∗ (H̄0

R + jH̄0
I

))
, Z0

1 = T (u0), h̄−
R = h̄

(0)
R .

4: Initialize Λ0 and v− as all zero matrix and vector,
respectively. In addition, set l = 0.
Outer ADMM
5: while el+1

pri ≥ ϵl+1
pri & el+1

dual ≥ ϵl+1
dual

Inner ADMM
6: for i = 1 : imax

7: Reset k = 1.
8: while ∥h̃(k) − h̃(k−1)∥2 ≥ ϵ∥h̃(k−1)∥2
9: h̃(k) = h̃(k−1) − β ▽Lρ̄(h̃

(k−1)) via (24).

10: H̃1 ≜ unvec
{[

h̃(k)
]
1:ML

}
.

11: H̃2 ≜ unvec

{[
h̃(k)

]
ML+1:2ML

}

12: H̃ = H̃1 + jH̃2.
13: for m = 1 : M

14: [H̃]m,: =
[H̃]m,:

∥[H̃]m,:∥2

√
c

15: end for
16: h̃(k) = [vec{ℜ{H̃}}T , vec{ℑ{H̃}}T ]T
17: if rem(k,10) = 0
18: β = β

2
19: end if
20: end while
21: Set h̄+

R = h̃(k). Update w+ and v+ via (22) and
(23), respectively.

22: end for
23: Set h̄l+1

R = h̄+
R. Update ul+1, Zl+1, and Λl+1

using (18), (16), and (17), respectively.
24: Construct xl+1, zl+1, yl+1, ϵl+1

pri , and ϵl+1
dual.

Then, calculate
el+1
pri = ∥xl+1 − zl+1∥2, el+1

dual = ∥ρ(zl+1 − zl)∥2
25: if el+1

pri > 2 el+1
dual

26: ρ = 2ρ and Λl+1 = 1
2Λ

l+1

27: else if el+1
dual > 2 el+1

pri

28: ρ = ρ
2 and Λl+1 = 2Λl+1

29: end if
30: end while
31: Reshape H̄, and recover H using (6).
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Fig. 1. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 1.
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Fig. 2. NMSE vs. SNR for M = 16, Ns = 128, and Lk = 2.

performance of L1-RLR-TMR implemented by the ADMM
is comparable with that of the SE-TMR implemented using
CVX.

4. CONCLUSION
A novel method called L1-RLR-TMR is proposed for

estimating UL channels in mmWave multi-user MIMO com-
munications when the BS uses one-bit ADCs. The main idea
of the L1-RLR-TMR method is to recover the UL channel
as the solution of an optimization problem designed by con-
sidering the ℓ1 regularized logistic regression classification as
well as the notion of Toeplitz matrix reconstruction. To make
the use of L1-RLR-TMR method practical, we developed an
ADMM-based implementation for it with low computational
cost. Numerical results validate the efficiency of the L1-RLR-
TMR method compared to other competitive methods.
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Abstract— The problem of direction-of-arrival (DOA) estima-
tion using uniform linear array in the presence of unknown noise
fields is considered, a novel unified approach is developed, and
its use for the cases of nonuniform and block-diagonal sensor
noise are demonstrated. The approach consists of three phases.
First, the noise covariance matrix is estimated using an alternative
procedure. Second, a forward-only rooting-based DOA estimator
as well as its forward-backward extension are developed for DOA
estimation. The DOA estimators take advantage of using second-
order statistics of signal subspace perturbation in constructing a
weight matrix of a properly designed generalized least squares
minimization problem. Despite the fact that these DOA estimators
are iterative, only few iterations are sufficient to reach accurate
results. The asymptotic performance of these DOA estimators is also
investigated. Third, a newly designed DOA selection strategy with
reasonable computational cost is developed to select L actual sources
out of 2L candidates generated at the second phase. Numerical
simulations are conducted in order to establish the significant
superiority of the proposed approach over the existing state-of-
the-art methods, especially in challenging scenarios, in uniform,
nonuniform, and block-diagonal sensor noise.

Index Terms—DOA estimation, subspace method, nonuniform
noise, block-diagonal noise, generalized least squares (GLS), small
sample size.

I. Introduction

D IRECTION-of-arrival (DOA) estimation is an ac-
tive field of research for decades due to multiple

traditional and new important applications and due to
significance of source localization in many practical sce-
narios. The notable current applications of interest are, for
example, wireless communication, automotive radar, and
sonar where DOA estimation is an essential task [1]–[7].

In the context of DOA estimation, several assumptions
can be regarded concerning the structure of the second-
order statistics of the observation noise. Most common
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assumptions are uniform white and nonuniform white.
Moreover, a spatially block-correlated noise assumption
may be more accurate in some applications [8].

For the uniform white noise assumption, i.e., when the
noise powers are identical across all array sensors, many
well-known subspace-based methods such as MUSIC
[9]–[11], root-MUSIC [12]–[14], and ESPRIT [15], [16]
have been developed, and are based on decomposing the
signal or its sample covariance matrix (SCM) into two
disjoint subspaces of noise and signal. The popularity
of the subspace-based methods over, for example, near
optimal maximum likelihood (ML) estimators [17]–[19],
comes from the fact that they achieve good estimation
accuracy along with affordable computational complexity
in contrast to the prohibitive computational cost of imple-
menting ML estimators.

In recent years, several works have proposed competi-
tive algorithms to fill the aforementioned performance gap
between subspace-based methods and ML estimators in-
cluding root-swap root-MUSIC [20], enhanced principal-
singular-vector utilization for modal analysis (EPUMA)
[21], standard ESPRIT using generalized least squares
(SE GLS) and unitary ESPRIT using generalized least
squares (UE GLS) [22], partial relaxation (PR)-based
approaches [23], [24], root-clustering algorithm and root-
certificate algorithm [25]. The aim of the aforemen-
tioned methods is to achieve an adequate performance
in challenging scenarios like scarcity of available data
samples, low signal-to-noise ratio (SNR), and/or presence
of some correlated or even coherent sources. Noteworthy
to mention that most of the subspace-based methods can
be revised to use forward-backward averaging (FBA) [28],
and forward-backward spatial smoothing (FBSS) [29]
techniques for coping with the cases of correlated or
coherent signals.

In this context, in [20], a new concept called root swap
has been introduced and recognized as the main reason
behind the collapse of the root-MUSIC algorithm in find-
ing the correct roots in the challenging environments. To
remedy this phenomena, the root-swap root-MUSIC was
proposed which identifies the correct roots associated with
the sources’ DOAs by exploiting the deterministic ML
(DML) or stochastic ML (SML) [26] objective functions
instead of deciding based on the closeness of the absolute
values of the roots to unity. In [25], a new criterion for
root selection based on the algebraic structure of the noise
subspace has been proposed. Using this criterion and
the relationship between the source localization problem
and the problem of computing the approximate greatest
common divisor (GCD) for polynomials, algorithms that
learn the number of sources and estimate their locations
have been proposed.

Furthermore, in [21], the authors have developed a
method called EPUMA via solving a particular general-
ized least squares (GLS) problem by taking into account
the second-order statistics of the estimated signal sub-
space, and also producing more DOA candidates than
the number of sources and then selecting final DOAs
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using DML or SML cost functions. Similar to EPUMA,
the authors of [22] have extended ESPRIT and unitary
ESPRIT to their generalized versions by exploiting the
signal subspace perturbation as the source of error in
the shift invariance equation (SIE). The aforementioned
error has been minimized using the GLS. Adopting the
main idea of [22], enhanced ESPRIT-based methods have
been developed in [27], which first produces 2L DOA
candidates for L sources and then selects the final L
DOAs. Recently, the PR framework has been introduced
in [23] to relax the manifold structure of sources partially,
resulting in four methods by applying the PR concept to
four previously presented in the literature DOA estimation
techniques.

The uniform noise assumption can be, however, vio-
lated in some practical scenarios, which appear increas-
ingly more often, and the case of nonuniform white noise
has drawn considerable attention in the last two decades.
The deterministic ML estimator along with Cramer-Rao
bound (CRB) for both deterministic and stochastic source
models have been proposed in [30], while [31] have
developed the stochastic ML algorithm for the case of
nonuniform noise. A simple method has been devised
in [32] possessing less computational cost than ML es-
timators as well as improving the precision of the DOA
estimates.

In [33], the authors have developed two iterative
methods referred to as iterative ML subspace estimation
(IMLSE) and iterative least squares subspace estimation
(ILSSE), which estimate the signal subspace and noise
covariance matrices based on the ML and least squares
(LS) criteria, respectively. Moreover, it has been shown
in [34] that the signal and noise subspaces are separable
via applying the eigendecomposition (ED) of the so-called
reduced covariance matrix for the case of uncorrelated
sources, while a rank minimization approach has been
suggested for the correlated sources case. The perfor-
mance degradation caused by correlated and/or coherent
sources can also be mitigated via using spatial smoothing
[35], and covariance matrix differencing [36]. Recently,
a method referred to as non-iterative subspace-based
(NISB) [42] method has been proposed where the signal
subspace and noise covariance matrix are identified by ex-
ploiting a two steps approach with the first step consisting
of using the ED of the reduced covariance matrix [34] for
estimating noise covariance matrix judiciously, followed
by applying the generalized eigendecomposition (GED) of
the matrix pair of the SCM and estimated noise covariance
matrix from the first step.

In addition, bearing in mind the fact that the desired
spatial directions can be modeled via sparse represen-
tation, sparse signal reconstruction (SSR) based meth-
ods have been developed [37]–[41]. Particularly, the
so-called “hyperparameter-free sparse estimation” ap-
proaches, namely the sparse iterative covariance-based
estimation method (SPICE), likelihood-based estimation
of sparse parameters (LIKES), sparse learning via itera-
tive minimization (SLIM) and iterative adaptive approach

(IAA) [39] have drawn much attention due to having
good statistical properties along with not requiring any
hyperparameters to tune.

There are also several colored noise modeling-based
ML DOA estimation techniques [43]–[46]. It is known
that the analytic concentration of the log-likelihood (LL)
function with respect to all noise nuisance parameters
is impossible [8]. Moreover, because of the large num-
ber of nuisance parameters, the numeric concentration
is challenging. In [43] and [44], the noise is modeled
using auto-regressive (AR) process, whereas in [45], it
is assumed that the noise can be parameterized using a
small number of Fourier coefficients. Another ML-based
approach that does not require any structural assumptions
on the received signals and the noise covariance matrix
was proposed in [47]. However, it uses an inconsistent ad
hoc estimate of the noise covariance matrix.

In this paper, we propose a novel unified procedure
for addressing the DOA estimation problem using uni-
form linear array (ULA) in the presence of unknown
(nonuniform and also block-diagonal) sensor noise that
copes with the limitations of existing methods, such as
high sensitivity to the presence of correlated sources,
requirement of prohibitive computation complexity, poor
performance in scenarios with closely located sources,
small sample size, and low SNR. The procedure consists
of three phases adjusted to each other, and it provides su-
perior performance compared to the existing state-of-the-
art methods. In the first phase, the noise covariance matrix
is estimated. Indeed, a proper estimation of this matrix
gives the necessary information enabling us to facilitate
the DOA estimation task by diminishing the detrimental
impact of the sensor noise effectively. Although there
exist numerous DOA estimators such as MUSIC, ESPRIT,
root-MUSIC, ML and their variations, the motivation of
the second phase of our unified procedure is to design
a novel method that employs the available information
about the noise covariance matrix more wisely than it can
be done by simply using a straightforward combination
of noise covariance matrix estimation with the traditional
DOA estimation methods. It leads to estimating unknown
DOAs with higher precision. Then the DOA estimator
from the second phase is exploited (twice) to generate
(double) DOA candidates. Along with the DOA selection
strategy from the third phase, it helps us to attain a
better performance. At last, the DOA selection strategy
selects the best final DOA estimates out of the candidates
generated in the second phase. The main contributions of
the paper are summarized in the next subsection.

A. Main Contributions

1. A novel unified approach that consists of three key
phases is devised for addressing the problem of DOA
estimation using ULA in unknown noise fields. The pro-
posed procedure provides reliable estimates in scenarios
with small sample size and/or relatively low SNR and/or
closely located sources. The joint design of three phases
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is matched to the challenges that need to be addressed
for developing an effective DOA estimator. Specifically,
in unknown noise field, the unknown noise covariance
matrix needs to be estimated and then DOA estimator
that exploits all the available information needs to be
developed. We address the unknown noise covariance
estimation problem in the first phase, and the DOA is
estimated in the second and third phases as it is detailed
in the following main contributions.

2. In the first phase, the nonuniform noise covariance
matrix is estimated by alternations via obtaining the
noise subspace using the GED of two matrices, followed
by updating the noise covariance matrix using LS. The
proposed noise covariance matrix estimator is applicable
to sensor arrays with arbitrary geometry. Indeed, the pro-
posed noise covariance matrix estimator can be utilized
alongside other DOA estimation frameworks than the
proposed approach in the second phase described below,
which is specific for ULA, but have low computational
complexity. We also extend the concept proposed for the
nonuniform noise covariance estimation to develop an
estimator of the block-diagonal noise covariance matrix.

3. Using the noise covariance matrix estimate, in the
second phase, the DOA estimation problem is converted
into the uniform noise DOA estimation problem by means
of pre-whitening. Then a novel DOA estimation approach
is designed by taking into consideration the signal sub-
space perturbation in conjunction with the use of the
discrete Fourier transform (DFT) for both developing a
new rooting-based method and also selecting the active
equations for generating DOA candidates. The method
proposed in phase 2 utilizes the GLS for estimating the
coefficients of the desired polynomial. Moreover, to deal
with possibly correlated sources, we derive the FB exten-
sion of the core DOA estimator. The motivation of phase 2
is to generate double DOA candidates judiciously to assist
in improving the resolution of the DOA estimation in
conjunction with phase 3, especially in the cases of small
sample size and low SNR.

4. In the last phase, a double number of DOA can-
didates is generated, and a DOA selection strategy is
developed and used to pick the final DOAs. The objective
of the third phase is to judiciously select the final DOAs
by the assist of the conventional beamformer (CB) in
tandem with the ML optimization. In particular, the role
of the CB is to clean outliers that may exist, while the
ML optimization is used to ensure the selection of the
best final DOAs.

5. It is demonstrated by conducting extensive nu-
merical simulations for various challenging setups that
the proposed DOA estimation procedure (i.e., employing
the three phases combined) provides superior estimation
accuracy for the uniform, nonuniform, and block-diagonal
noise cases compared to the existing state-of-the-art tech-
niques.

B. Paper Organization

The rest of the paper is organized as follows. The
signal model and problem formulation are given in Sec-
tion II. In Section III, alternative methods for estimating
the sensor noise covariance matrix are devised. The
forward-only subspace-based DOA method as well as its
FB extension are developed in Section IV. Moreover, the
asymptotic performance of the proposed DOA estimator is
studied and a new DOA selection strategy is also designed
to select the final DOAs in the section. Numerical simu-
lations are provided in Section V. The paper is concluded
in Section VI.

C. Notations

Upper-case and lower-case bold-face letters denote
matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The expectation, trans-
pose, conjugate, Hermitian transpose, and Moore-Penrose
pseudo-inverse are denoted by E{·}, {·}T , {·}∗, {·}H ,
and {·}†, respectively, while ∥ · ∥2, ∥ · ∥F, and | · | denote
the Euclidean norm of a vector, the Frobenius norm of a
matrix, and the absolute value of a scalar. If the argument
is a set, | · | denotes the set cardinality. The Kronecker
product is denoted by ⊗ and trace{·} stands for the trace
of a square matrix. The n × n identity and exchange
matrices are denoted by In and Jn, respectively. The
n × m matrix with all elements equal zero and n × 1
zero vector are denoted as 0m×n and 0n, respectively.
The ith entry of the vector π is denoted by [π]i. The ith
row and ith column of the matrix Π are denoted by [Π]i,:
and [Π]:,i, respectively, while the entry in the interaction
of the ith row and jth column is denoted as [Π]i,j . The
operator vec{·} stacks the columns of a matrix into a long
vector, while unvec{·} forms a matrix by splitting the
bracketed vector and putting them in the columns of that
matrix. The operator diag{π} generates a diagonal matrix
by plugging the entries of the vector π into its main
diagonal, while the operator D{Π} creates a diagonal
matrix by preserving the main diagonal of the matrix Π
and setting all other entries to zero. The block-diagonal
matrix is denoted as bdiag{·}. The operator DFT{π}
stands for the DFT of the vector π, while R{·} returns
the real part of the bracketed argument.

II. SIGNAL MODEL and UNIFIED SCHEME

Consider a ULA composed of M omni-directional
sensors receiving L (L < M , and L is assumed to be
known) narrowband signals radiated by L sources. It is
assumed that the sources are located in the far-field and
have distinguished directions, denoted as θl, l = 1, . . . , L.
Then, the signal observed by the sensor array at the time
instant t is written as

x(t) = A(θ)s(t) + n(t) (1)

where s(t) ≜ [s1(t) . . . sL(t)]
T ∈ CL denotes the

source signals, n(t) ∈ CM is the sensor noise vec-
tor, the source DOAs are stacked in the vector θ ≜
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[θ1 . . . θL]
T , A(θ) ≜ [a(θ1) . . .a(θL)] denotes the array

manifold whose lth column is the steering vector a(θl) =
[1 e−j2πsin(θl)d/λ . . . e−j2π(M−1)sin(θl)d/λ]T ∈ CM

associated with lth DOA. Here λ denotes the carrier
wavelength and d = λ/2. For notation simplicity, A is
used instead of A(θ) hereafter, unless the argument of A
is different from θ.

The array covariance matrix can be written as

R ≜ E{x(t)xH(t)} = APAH +Q (2)

where P ∈ CL×L and Q ∈ RM×M , respectively, stand
for the signal and noise covariance matrices defined as

P ≜ E{s(t)sH(t)}, Q ≜ E{n(t)nH(t)}. (3)

The critical part of most of the methods designed for
the nonuniform and block-diagonal noise cases is to
estimate Q efficiently, and the source DOA estimates are
dependent on how precise the estimate of Q is. Moreover,
when the number of available snapshots is small and/or
some of the DOAs are closely located to each other and/or
SNR is relatively low, the impact of estimated Q is more
notable.

Because R is unknown in practice, the SCM is
considered, and it is given by R̂ ≜ 1

N

∑N
t=1 x(t)x

H(t) =
1
NXXH . Here, the matrix signal notation is also used

X = AS+N (4)

with X ≜ [x(1) . . .x(N)], S ≜ [s(1) . . . s(N)], N ≜
[n(1) . . .n(N)], and N being the number of snapshots.

We stress that the proposed framework consists of
three phases. The first phase is dedicated to estimating
the unknown noise covariance matrix. The second phase
employs the estimated noise covariance matrix from the
first phase to pre-whiten the data and then generates
double DOA candidate estimates. The third phase selects
the best DOA estimates from the double DOA candidates
generated in the second phase. These are three key
phases in designing a DOA estimator in unknown noise
fields, and they should be designed jointly to thoroughly
exploit all the available information at every phase of the
procedure.

III. NOISE COVARIANCE MATRIX ESTIMATION

A. Nonuniform Sensor Noise

Considering the case of nonuniform sensor noise
that is spatially and temporally uncorrelated and zero-
mean Gaussian, the noise covariance matrix is Q =
diag{[σ2

1 , . . . , σ
2
M ]} where σ2

m, m = 1, . . . ,M are the
noise variances, which are not necessarily identical, i.e,
σ2
i ̸= σ2

j for i ̸= j. It is desirable that a method estimating
Q would not require any knowledge of the true DOAs,
while providing an acceptable accuracy with an affordable
computational cost. Moreover, such method should be
robust in extreme scenarios. Some examples of extreme
scenarios are small sample size and presence of closely
located sources. To devise such a method, we begin by
multiplying both sides of (2) by U ∈ CM×(M−L) which

satisfies the following condition

AHU = 0L×(M−L) . (5)

It is clear then that the columns of U constitute a basis
for the noise subspace. As A is unknown, finding U
for the case of nonuniform noise is not as simple as
for the uniform noise case, when U is estimated by just
calculating the eigenvectors of R̂. Multiplying (2) by U,
and exploiting (5), we have

RU = QU . (6)

Since R is unknown, (25) can be expressed for R̂ as

R̂U ≈ QU . (7)

As both Q and U are unknown, it is natural to use
the alternating minimization approach to find them, i.e.,
alternatively update one matrix at a time while the other
is set as the estimate calculated in the previous iteration.

Recalling that the GED of any two square matrices
{G,Y} is defined as

GF = YFD (8)

where the columns of F are the eigenvectors and D
is a diagonal matrix which consists of the eigenvalues.
Therefore, given an estimate of Q in the ith alternation,
which is denoted by Q̂(i), we write (7) in the form of (8)
as

R̂Û(i) = Q̂(i)Û(i)Λ̂
(i)

(9)

where Û(i) is the estimate of U in the ith alternation.
According to (9), Û(i) is the collection of M −L eigen-
vectors corresponding to the M −L smallest eigenvalues
obtained by carrying out the GED of the pair of matrices{
R̂, Q̂(i)

}
, and Λ̂

(i) ∈ R(M−L)×(M−L) is a diagonal
matrix which consists of the associated eigenvalues. As
multiplying Û(i) by a positive scalar does not affect
(9), we normalize Û(i) to ensure that ∥Û(i)∥F = 1
in each iteration. This boosts the convergence of the
proposed iterative nonuniform noise covariance estimator
(see Algorithm 1). Moreover, the introduction of Λ̂

(i)
is

necessary to revise (7) in the form of (8) to come up to
the exact equality (9) in the ith alternation. Noteworthy
to mention that (9) is inspired by (25), which follows the
GED formulation with the identity matrix as the diagonal
eigenvalue matrix.

On the other hand, the LS approach based on (7)
can be employed to estimate Q. In doing so, the sub-
problem which corresponds to the update Q in the (i+1)st
alternation is given as

Q̂(i+1) = argmin
Q

∥(R̂−Q)Û(i)∥2F . (10)

Problem (10) needs to be solved subject to the constraint
on Q to be a diagonal matrix. The cost function of (10)
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can be expressed as

f(Q) ≜
∥∥∥(R̂−Q)Û(i)

∥∥∥
2

F

= trace

{(
(R̂−Q)Û(i)

)(
(R̂−Q)Û(i)

)H}

= trace
{
Û(i)(Û(i))HR̂2

}
−trace

{
R̂Û(i)(Û(i))HQ

}

− trace
{
Û(i)(Û(i))HR̂Q

}
+trace

{
Û(i)(Û(i))HQ2

}

(11)

where the properties ∥G∥2F = trace
{
GGH

}
,

trace {GY} = trace {YG}, R̂ = R̂H , and Q = QH

are used. As elaborated in Appendix A, the partial
derivative of (11) with respect to Q is given as
∂f(Q)

∂Q
= 2D

{
Û(i)(Û(i))H

}
Q

−D
{
R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂

}
. (12)

Therefore, by equating (12) to zero and solving the
resulting equation for Q, we find the optimal estimate
as

σ̂2 (i+1)
m = dT

m

(
1

2
D
{
R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂

}

×D
{
Û(i)(Û(i))H

}−1
)
dm, m = 1, . . . ,M (13)

where dm ∈ RM denotes a vector with one on the mth
position and zero elsewhere. The steps of the proposed
method for the nonuniform noise covariance matrix esti-
mation are outlined in Algorithm 1, where the iteration
loop is terminated when the criteria |f (i+1) − f (i)| < ϵ
is satisfied. Note that in the ith iteration, only the mth
diagonal entry of Q is updated where m = rem(i,M)+1
with rem(a, b) being the least non-negative remainder in
the division of a by b, while the whole matrix of U is
updated in each iteration. Updating Q using the aforemen-
tioned element-wise manner accelerates the convergence
of the algorithm.

Algorithm 1: Nonuniform Noise Covariance Matrix Estimation
1: Compute R̂ = 1/N

∑N
t=1 x(t)xH(t). Set i = 0 and

Q̂(0) = D{R̂}.
repeat
2: Carry out the GED of the pair of matrices {R̂, Q̂(i))} to
obtain Û(i) as the M − L eigenvectors corresponding to the
M − L smallest eigenvalues. Then, normalize Û(i) as
Û(i) = Û(i)/∥Û(i)∥F.
3: Compute f(i) = ∥(R̂− Q̂(i))Û(i)∥2F.
4: Set m = rem(i,M) + 1.

5: Construct Q̂(i+1) = diag{σ̂2 (i)
1 , . . . , σ̂

2 (i+1)
m , . . . , σ̂

2 (i)
M }

where σ̂
2 (i+1)
m is calculated using (13).1

6: Compute f(i+1) = ∥(R̂− Q̂(i+1))Û(i)∥2F.
7: Set i = i+ 1.
until |f(i+1) − f(i)| < ϵ

1Note that σ̂
2 (i)
j for j ̸= m denote entries of Q̂ from the previous

alternation that remain unchanged in the current one.

Remark 1: The estimate of Q̂(i+1) in (13) is an alter-
native representation of the power domain (PD) method
[32], that is,

σ2
m =

(
dT
mP⊥

Ar̂m + r̂HmP⊥
Adm

)

2dT
mP⊥

Adm
, m = 1, . . . ,M

(14)

where r̂m is the mth column of R̂, and P⊥
A ∈ CM×M is

the orthogonal projection matrix of the signal subspace,
i.e., P⊥

A = IM − A(AHA)−1AH . The main difference
between (13) and (14) is the use of Û(i)(Û(i))H as a
proper estimate of P⊥

A instead of conducting a multidi-
mensional search for finding an ML estimate as in [32].
It is well-known that performing such multidimensional
search is a very computationally demanding task. There-
fore, the proposed method is advantageous compared to
PD technique in the sense that it requires significantly less
computations.

Remark 2: The relationship between σ̂
2 (i+1)
m and

Q̂(i) can be obtained via exploiting (9) and (13) as follows

σ̂2 (i+1)
m = dT

m

(
1

2
D
{
R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂

}

×D
{
Û(i)(Û(i))H

}−1
)
dm (15)

=dT
m

(
D
{
Û(i)Λ̂

(i)
(Û(i))H

}
D
{
Û(i)(Û(i))H

}−1

Q̂(i)

)
dm

where the properties Q̂(i) = (Q̂(i))H and Λ̂
(i)

= (Λ̂
(i)
)H

have been used. Since R̂ and Q̂(i) are positive semi-
definite Hermitian and positive definite Hermitian ma-
trices, respectively, the eigenvalues obtained by carrying
out the GED of the pair of matrices

{
R̂, Q̂(i)

}
are non-

negative real numbers [49]. Taking into account this fact,
it is straightforward to show that σ̂2 (i+1)

m is non-negative
real number when the diagonal entries of Q̂(i) are non-
negative real numbers. Therefore, initializing the noise
covariance matrix as Q̂(0) = D{R̂} guarantees the non-
negativity of the diagonal entries of Q̂(i) for i ≥ 1.

Remark 3: In terms of convergence, it is worth
noting that the update of any given matrix (Q̂ or Û)
may either improve or maintain but cannot worsen the
current estimate as the solutions to the corresponding
sub-problems are found optimally. Monotone convergence
(to a stationary point, but not necessarily to the global
minimum) of the proposed noise covariance estimator
follows directly from this fact.

B. Block-diagonal Sensor Noise

We aim now to develop an alternative noise covariance
matrix estimator for the case where the sensor noise
covariance matrix has the block-diagonal structure. We
begin with expressing the block-diagonal noise covariance
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matrix as

Qbdiag =



Q1 0

. . .
0 Qq


 = bdiag{Q1, . . . ,Qq}

(16)

where Qj ∈ Cnj×nj . Inspired by the idea presented in the
previous subsection, we rewrite (7) for the block-diagonal
noise covariance matrix as

R̂U ≈ QbdiagU (17)

Similar to the nonuniform noise case, (17) suggests to
use an alternating approach to estimate Qbdiag and U.
Given an estimate of Qbdiag in the ith alternation, which
is denoted by Q̂

(i)
bdiag, we convert (17) into an equality

relation that has the form of (8) as

R̂Û(i) = Q̂
(i)
bdiagÛ

(i)Λ̂
(i)

(18)

where Û(i) is the estimate of U in the ith alternation.
According to (18), Û(i) is the collection of M − L
eigenvectors corresponding to the M −L smallest eigen-
values obtained by carrying out the GED of the pair
of matrices

{
R̂, Q̂

(i)
bdiag

}
, and Λ̂

(i) ∈ R(M−L)×(M−L)

is a diagonal matrix which consists of the associated
eigenvalues. Analogous to the nonuniform noise case,
we normalize Û(i) in each iteration in order to boost
the convergence of the proposed iterative block-diagonal
noise covariance estimator (see Algorithm 2).

According to (17), Qbdiag can be updated in the
(i + 1)st alternation using the LS approach by solving
the problem

Q̂
(i+1)
bdiag = arg min

Qbdiag

∥(R̂−Qbdiag)Û
(i)∥2F . (19)

The objective function of (19) can be expanded as

fbdiag(Qbdiag) ≜
∥∥∥(R̂−Qbdiag)Û

(i)
∥∥∥
2

F

= trace

{(
(R̂−Qbdiag)Û

(i)
)(

(R̂−Qbdiag)Û
(i)
)H}

= trace
{
Û(i)(Û(i))HR̂2

}

− trace
{
R̂Û(i)(Û(i))HQbdiag

}

− trace
{
Û(i)(Û(i))HR̂Qbdiag

}

+ trace
{
Û(i)(Û(i))HQ2

bdiag

}
(20)

Defining R
(i) ≜ R̂Û(i)(Û(i))H + Û(i)(Û(i))HR̂ and

V
(i) ≜ Û(i)(Û(i))H , we can recast (20) as

fbdiag(Qbdiag) =

q∑

j=1

trace
{
V

(i)

jj Q
2
j −R

(i)

jj Qj

}
(21)

where V
(i)

jj and R
(i)

jj are respectively the jth block on the

main diagonal of V
(i)

and R
(i)

with the same size as Qj ,
and also the constant term is eliminated. It can be seen
from (21) that estimation of Qj in the (i+1)st alternation

only depends on V
(i)

jj and R
(i)

jj , enabling us to obtain an
estimate of Qj , j = 1, . . . , q in the (i + 1)st alternation
separately. Using the complex-valued derivative properties
[50], the partial derivative of (21) with respect to the
Hermitian matrix Qj is given as

∂fbdiag(Qbdiag)

∂Qj
= Q∗

j (V
(i)

jj )
T + (V

(i)

jj )
TQT

j − (R
(i)

jj )
T ,

j = 1, . . . , q (22)

Applying the transposition operator to (22), and then
equating the result to zero, we have

V
(i)

jj Qj +QjV
(i)

jj = R
(i)

jj , j = 1, . . . , q (23)

where the Hermitian property of Qj’s is also used. The
estimates of Qj for j = 1, . . . , q obtained by solving (23)
are Hermitian matrices but not necessarily are positive
semi-definite matrices. Thus, obtaining Hermitian positive
semi-definite estimates of Qj for j = 1, . . . , q requires
modifying (23) slightly. Since the following discussion is
true for any j ∈ {1, . . . , q}, we only present it for one
value of j = d here, and then extend it to all values
of j ∈ {1, . . . , q}. Let y ∈ Cnd×1 and µ ∈ R be
an eigenvector and the corresponding eigenvalue of the
matrix Qd, respectively. Therefore, we have

Qdy = µy . (24)

Left-multiplying and right-multiplying the equation in
(23) which corresponds to j = d by yH and y, respec-
tively, and then using (24), we obtain

µ =
yHR

(i)

ss y

2yHV
(i)

ss y
H

. (25)

Given the assumption that ns < M − L (see Remark 4),
the denominator of (25) is positive. Therefore, non-
negativity of µ is guaranteed by enforcing R

(i)

ss to be
positive semi-definite. As a result, for having positive
semi-definite estimates of Qj’s, (23) should be modified
as

V
(i)

jj Qj +QjV
(i)

jj =
[
R

(i)

jj

]
+

, j = 1, . . . , q (26)

where [·]+ is an operator which projects the bracketed
matrix onto the positive semi-definite cone via carrying
out the eigenvalue decomposition and setting all the
negative eigenvalues to zero. Applying the vectorization
operator to (26), we obtain

V
(i)
j qj = r

(i)
j , j = 1, . . . , q (27)

where V
(i)
j ≜

[(
(V

(i)

jj )
T ⊗ Inj

)
+
(
Inj ⊗V

(i)

jj

)]
, qj ≜

vec{Qj}, and r
(i)
j ≜ vec{

[
R

(i)

jj

]
+
}. According to (27),

we have

Q̂
(i+1)
j = unvec

{
(V

(i)
j )†r(i)j

}
, j = 1, . . . , q. (28)

Analogous to the proposed nonuniform noise covari-
ance matrix estimator, the proposed block-diagonal noise
covariance matrix estimator can be initialized by any
proper matrix Q̂

(0)
bdiag. We stick to Q̂

(0)
bdiag = D{R̂}. The
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steps of the proposed method for the block-diagonal noise
covariance matrix estimation are outlined in Algorithm 2.
To accelerate the convergence of Algorithm 2, only the
jth block of Qbdiag is updated in the ith iteration where
j = rem(i, q)+1, while the whole matrix of U is updated
in each iteration.

Algorithm 2: Block-diagonal Noise Covariance Matrix Estimation
1: Compute R̂ = 1/N

∑N
t=1 x(t)xH(t).

2: Set i = 0 , and Q̂
(0)
bdiag = D{R̂}.

repeat
3: Carry out the GED of the pair of matrices {R̂, Q̂

(i)
bdiag} to

obtain Û(i) as the collection of M − L eigenvectors corresponding
to the M − L smallest eigenvalues. Then, normalize Û(i) as
Û(i) = Û(i)/∥Û(i)∥F.
4: Compute f

(i)
bdiag = ∥(R̂− Q̂

(i)
bdiag})Û(i)∥2F.

5: Construct V(i)
j and r

(i)
j for j = rem(i, q) + 1.

6: Calculate Q̂
(i+1)
j using (28).

7: Construct Q̂(i+1)
bdiag = bdiag

{
Q̂

(i)
1 , . . . , Q̂

(i+1)
j , . . . , Q̂

(i)
q

}
. 2

8: Compute f
(i+1)
bdiag = ∥(R̂− Q̂

(i+1)
bdiag)Û

(i)∥2F.
9: Set i = i+ 1.

until
∣∣∣∣f

(i+1)
bdiag − f

(i)
bdiag

∣∣∣∣ < ϵ

Remark 4: Noteworthy to mention that there is a
limitation to the use of Algorithm 2, that is, the rank
of each sub-matrix Qj should not exceed M − L.

IV. SUBSPACE-BASED DOA ESTIMATION VIA GLS

A. Forward-only Algorithm for DOA Estimation

The received signal can be preprocessed by multiply-
ing (4) by Q− 1

2 to enforce the uniform noise. Thus, the
received signal becomes

X ≜ Q− 1
2X = Q− 1

2AS+Q− 1
2N = Q− 1

2AS+N
(29)

where the columns of N are Gaussian random vectors
with zero mean and the covariance matrix is IM .

The truncated SVD of X is given as

X = UsΣsV
H
s (30)

where Us ∈ CM×L and Vs ∈ CN×L denote respectively
the left and right singular vectors associated with the L
principal singular values on the diagonal of Σs ∈ RL×L.

According to (29) and (30), the columns of Us,
denoted as up for p = 1, . . . , L, and the columns of
Q− 1

2A span the same column space, i.e., span(Us) =
span(Q− 1

2A). In other words, Us and Q− 1
2A are related

as

Us = Q− 1
2AG (31)

where G ∈ CL×L is a non-singular matrix. Multiplying
(31) from the left by Q

1
2 , we obtain

Ũs = AG (32)

2Note that Q̂(i)
m for m ̸= j denote blocks of Q̂bdiag from the previous

alternation that remain unchanged in the current one.

where Ũs ≜ Q
1
2Us ∈ CM×L. We denote the pth column

of Ũs as ũp.
Using (32), the mth entry of the pth column of Ũs,

denoted as [ũp]m, can be written as

[ũp]m =[A]m,: gp =

L∑

l=1

[gp]l e
−j2πdsin(θl)(m−1)/λ,

p = 1, . . . , L, m = 1, . . . ,M (33)

where gp ∈ CL is the pth column of G.
Next, the DFT can be applied to each column of

Ũs as, for example, in [51], [52]3. Using (33) and the
definition of DFT, the kth bin of the DFT of ũp can be
expressed as

[ūp]k =
L∑

l=1

[gp]l
1− ejMβl

1− e−j 2πk
M ejβl

=

L∑

l=1

αl

1− γlW k
M

,

k = 1, . . . ,M (34)

where ūp ≜ DFT{ũp} = WDũp, p = 1, . . . , L and

WD =




1 1 . . . 1

1 e
−j2π
M . . . e

−j2π(M−1)
M

...
...

. . .
...

1 e
−j2π(M−1)

M . . . e
−j2π(M−1)(M−1)

M


 .

(35)

In addition, αl ≜ [gp]l
(
1− ejMβl

)
, γl ≜ ejβl , βl ≜

−2πd sin(θl)/λ , and W k
M ≜ e−j 2πk

M in (34). Unifying
the L rational functions into one, we recast (34) as

[ūp]k =

L∑

l=1

αl

L∏

v=1
v ̸=l

(1− γvW
k
M )

L∏

l=1

(1− γlW
k
M )

(36)

where the common denominator is the product of the
L denominators of each rational function. Noticing the
special structure of (36), the nominator and denominator
can be expanded as two polynomials of degrees L − 1
and L, respectively, that is,

L∑

l=1

αl

L∏

v=1
v ̸=l

(1− γvW
k
M ) =

L∑

l=1

bpl(W
k
M )l−1

= w⊺
kbp (37)

L∏

l=1

(1− γlW
k
M ) = 1 +

L∑

l=1

al(W
k
M )l

= 1 +w⊺
ka (38)

where wk ≜ [1 W k
M (W k

M )2 . . . (W k
M )L−1]T ,

wk ≜ [W k
M (W k

M )2 (W k
M )3 . . . (W k

M )L]T , bp ≜
[bp1 . . . bpL]

T , and a ≜ [a1 . . . aL]
T .

3It is worth mentioning that the methodology utilized in this work is
different from [52].
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It can be seen from (38) that estimating a is the key
for finding γl’s, l = 1, . . . , L, since γl’s are the roots of
the polynomial defined by the entries of a as

γL +

L∑

l=1

[a]l γ
L−l = 0. (39)

Finally, knowing γl’s, θl’s can be extracted using the re-
lation θl = arcsin(− βlλ

2πd) where βl is the phase argument
of γl as it is defined above.

The objective now is to find an estimate of a. Multi-
plying both sides of (36) by the denominator, we have

[ūp]k(1 +w⊺
ka) = w⊺

kbp. (40)

Piling up all the equations that can be generated for k =
1, . . . ,M based on (40), we can write

ūp + diag(ūp)Waa = Wbp, p = 1, . . . , L (41)

where Wa ≜ [w1w2 . . .wM ]T ∈ CM×L and W ≜
[w1w2 . . .wM ]T ∈ CM×L.

We suggest to generate two sets of estimates for θl’s
as the most probable candidates first, and then pick up
the best candidates via using a proper selection criteria. In
doing so, we introduce the selection matrix ZI ∈ R|I|×M .
Here I denotes the set containing the indices of the
selected equations. The matrix ZI is used to consider
different sets of (41) for estimating a. Since ZI is a
selection matrix, all the entries of the ith row of ZI are
zeros except one entry whose index is the ith member of
I. The only nonzero entry of each row is set to 1. The
proposed method for selecting two sets of indices to serve
as I will be clarified in the sequel.

Given a particular set I, the selected subset of (41)
can be written as

ZIūp+diag(ZIūp)ZIWaa = ZIWbp,

p = 1, . . . , L. (42)

To avoid estimating bp’s in (42), B ∈ C|I|×(|I|−L) can be
obtained using SVD such that BHZ̃I = 0(|I|−L)×L with
Z̃I ≜ ZIW ∈ C|I|×L. Thus, multiplying both sides of
(42) by BH and using the property BHZ̃I = 0(|I|−L)×L,
yields

BH(ZIūp+diag(ZIūp)ZIWaa) = 0(|I|−L),

p = 1, . . . , L. (43)

The impact of bp’s is eliminated in (43) independent
of the value of p because of the definition of Z̃I ,
which is independent of p. This property enables us to
combine the L sets of linear equations generated via
(43). Rearranging the terms in (43), we get the system
of linear equations Hpa = hp, p = 1, . . . , L, where
Hp ≜ BHdiag(ZIūp)ZIWa ∈ C(|I|−L)×L and hp ≜
−BHZIūp ∈ C(|I|−L). Stacking the L matrices Hp and
the L vectors hp into a larger matrix H and a longer
vector h, respectively, we have

Ha = h (44)

where H ≜ [HT
1 . . .HT

L]
T ∈ CL(|I|−L)×L and h ≜

[hT
1 . . .hT

L]
T ∈ CL(|I|−L).

However, only an estimate of Q, denoted by Q̂, can be
obtained in practice.4 Replacing Q by Q̂, (29) is modified
as

X̂ ≜ Q̂− 1
2X = Q̂− 1

2AS+ Q̂− 1
2N = Q̂− 1

2AS+ N̂ .
(45)

Thus, only an estimate of Us (denoted by Ûs), which
spans the column space of Q̂− 1

2A, can be obtained via
the truncated SVD of X̂ due to the presence of errors.
Hence, the truncated SVD of X̂ is given as

X̂ = ÛsΣ̂sV̂
H
s (46)

where Ûs = [û1 . . . ûL] ∈ CM×L is the matrix of L
left singular vectors associated with the L largest singular
values on the diagonal of Σ̂s ∈ RL×L. Accordingly, ˆ̃

Us

is defined as
ˆ̃
Us ≜ Q̂

1
2 Ûs =

[
(Q̂

1
2 û1) . . . (Q̂

1
2 ûL)

]
∈ CM×L. (47)

Replacing ũp by ˆ̃up in (44) and generating Ĥ and ĥ,
(44) turns into an approximate equality, i.e.,

Ĥa ≈ ĥ. (48)

The optimal value of a can now be obtained employing
the GLS technique [53], [54]. Using (48), the GLS
optimization problem can be formulated as

â = argmin
a

(Ĥa− ĥ)HW(Ĥa− ĥ) (49)

where W ≜
(
E{êêH}

)−1 ∈ CL(|I|−L)×L(|I|−L) and
ê ≜ Ĥa − ĥ ∈ CL(|I|−L). The solution of (49) is given
by

â = (ĤHWĤ)−1ĤHWĥ. (50)

To use (50), an estimate of W is required. However, it
is clear from the definitions of W and ê that an estimate
of W depends on the unknown vector a. Thus, it is natural
to utilize an iterative scheme to estimate â in one step,
followed by estimating Ŵ in the other step by employing
â obtained in the previous step. The alternation between
these two steps is then carried on until a termination
criteria is satisfied.

To figure out a principle for finding Ŵ, we take into
consideration the first-order subspace estimation error by
expressing ûp as ûp ≜ up + ∆up for p = 1, . . . , L.
Exploiting this definition, we have

êp ≜ Ĥpa− ĥp = BH
(
ZI ˆ̄up + diag{ZI ˆ̄up}ZIWaa

)

= BH
(
ZIWDQ̂

1
2 ûp + diag{ZIWDQ̂

1
2 ûp}ZIWaa

)

= BH
(
ZIWDQ̂

1
2 ûp + diag{ZIWaa}ZIWDQ̂

1
2 ûp

)

= BH
(
I|I| + diag{ZIWaa}

)
ZIWDQ̂

1
2 ûp

= C(a)ûp , p = 1, . . . , L (51)

where C(a) ≜ BH
(
I|I| + diag{ZIWaa}

)
ZIWDQ̂

1
2 ∈

C(|I|−L)×M . In (51), we also used the property

4Algorithm 1 and 2 can be utilized to find Q̂ in the cases on nonuniform
and block-diagonal noise, respectively.
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diag{x}y = diag{y}x as well as the equality
ˆ̄up = WD

ˆ̃up = WDQ̂
1
2 ûp.

Using the definition of C(a), (43) can be recast as

C(a)[u1u2 . . .uL] = C(a)Us = 0(|I|−L)×L. (52)

According to the definitions of W, ê and C(a), and using
(51) as well as (52), ê can be found as

ê = vec{[ê1ê2 . . . êL]} = vec{C(a)Ûs}
= vec{C(a)(Us +∆Us)} = vec{C(a)∆Us}
= (IL ⊗C(a))vec{∆Us} = (IL ⊗C(a))∆us (53)

where ∆Us ≜ [∆u1 . . .∆uL] ∈ CM×L and ∆us ≜
vec{∆Us} ∈ CML. The identity vec{XYZ} = (ZT ⊗
X)vec{Y} has also being used in (53). Moreover, ac-
cording to the definitions of W and ê, and using (53),
W can be expressed as

W =
[
(IL ⊗C(a))E{∆us∆uH

s } (IL ⊗C(a))
H
]−1

.

(54)

Using the first-order perturbation expansion for SVD
[22], [55], we can write that

∆Us ≈ (IM −UsU
H
s )NVsΣ

−1
s . (55)

Applying the vectorization operator to (55), we have

∆us = vec{∆Us} ≈
(
Σ−1

s VT
s ⊗ (IM −UsU

H
s )
)
n̄

(56)

where n̄ ≜ vec{N} ∈ CMN . Inserting (56) into (54)
yields

W ≈ [(IL ⊗C(a))(Σ−1
s VT

s ⊗ (IM −UsU
H
s ))

× E{n̄n̄H}(V∗
sΣ

−1
s ⊗ (IM −UsU

H
s ))(IL ⊗CH(a))]−1

= [(Σ−1
s VT

s ⊗C(a)(IM −UsU
H
s ))(IN ⊗ IM )

× (V∗
sΣ

−1
s ⊗ (IM −UsU

H
s )CH(a))]−1 (57)

where E{n̄n̄H} = IMN = (IN ⊗ IM ). The property
(X⊗Y)(Z⊗T) = (XZ⊗YT) has been used for deriving
(57). Using this property again together with (52), (57)
can be further simplified as

W ≈ [(Σ−1
s VT

s V
∗
sΣ

−1
s ⊗C(a)CH(a))]−1

= (Σ−2
s ⊗C(a)CH(a))−1 = (Σ2

s ⊗ (C(a)CH(a))−1).
(58)

The identities VT
s V

∗
s = IL and (X⊗Y)−1 = (X)−1 ⊗

(Y)−1 have also been used here.
However, since the matrix Σs is unknown, we replace

it with Σ̂s obtained from (46). Eventually, Ŵ is expressed
as

Ŵ = (Σ̂
2

s ⊗ (C(a)CH(a))−1). (59)

It can now be seen from (59) that Ŵ is a function of a.
As a result, an iterative scheme should be used to estimate
â and Ŵ via (50) and (59) in alternative manner. The LS
solution of (48) can be used as the initial vector for â,
i.e.,

â(0) ≜ âLS = Ĥ†ĥ. (60)

Initializing C(a) by inserting (60) into the definition of
C(a), enables us to obtain

Ŵ(0) = (Σ̂
2

s ⊗ (C(â(0))C(â(0))H)−1). (61)

Subsequently, a new estimate of â is generated by substi-
tuting (61) into (50). The iterations carry on until a proper
termination criteria is satisfied.5

The remaining problem is still how to determine the
members of I, i.e., the indices of the selected equations of
(41) to be employed for estimating DOAs. Given the car-
dinality |I|, it is reasonable to select those indices which
correspond to the entries of ˆ̄u1 = DFT{ˆ̃u1} with |I|
largest absolute values. According to (47), ˆ̃u1 = Q̂

1
2 û1

with û1 denoting the left singular vector of X̂ which
corresponds to the largest singular value. The logic of
this choice is rooted in (32), where it is indicated that
each ˆ̃up can be expressed as a linear combination of the
columns of A. Therefore, picking the indices of ˆ̄u1 with
largest absolute values is a sensible choice because of
the following three reasons. 1) The structure of the DFT
basis is completely matched with the columns of A, and
consequently ˆ̃up’s, which makes the absolute values of
ˆ̄up’s the best option to be used for selecting the most
relevant equations. 2) Choosing the indices with largest
absolute values guarantees picking equations with the
most contributions. 3) The estimation error of finding û1

is the smallest among ûp’s since it associates with the
largest singular values, resulting in smaller error. Finally,
the steps required for implementing the proposed DOA
estimation method are summarized in Algorithm 3.

To provide a theoretical measure for performance of
the proposed forward-only DOA estimation method, the
asymptotic variance of the lth DOA estimated by the
proposed forward-only algorithm is derived under a high
SNR assumption in the following proposition.

Proposition 1: The asymptotic variance of the pro-
posed forward-only DOA estimation algorithm, for a
particular matrix ZI , is given as

E{∆θ2l } ≈ 1

2

(
λ

2πd cos(θl)

)2
γT
l (H

HWH)−1γ∗
l

|ϕl|2
(62)

where γl ≜ [γL−1
l . . . 1]T and ϕl ≜ LγL−1

l + (L −
1)[a]1γ

L−2
l + . . .+ [a]L−1.

Proof: See Appendix B. ■
We aim to generate double number of DOA candi-

dates6 by running the proposed Algorithm 2 twice for
two different values of |I|. Then a proper DOA selection

5Although any common termination criteria can be adopted, we observe
that performing 3 to 5 iterations are usually sufficient to obtain a precise
result. Therefore, in the numerical examples, 5 is opted as the number
of iterations for implementing the proposed methods. It should also be
pointed out that the discussion provided in Remark 3 is also valid here,
hence the monotone convergence is guaranteed.
6In fact, the number of DOA candidates can be arbitrary, but from
diverse numerical simulations conducted, we find that generating more
candidates than 2L does not improve the DOA estimation accuracy
considerably.
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Algorithm 3: Forward-only DOA Estimation
1: Compute R̂ = 1/N

∑N
t=1 x(t)xH(t) and estimate Q̂ using

Algorithm 1.

2: Calculate X̂ = Q̂− 1

2 X and construct Wa as well as W.
3: For a pre-chosen |I|, determine ZI and obtain B via performing
the SVD of the matrix Z̃I = ZIW so that the condition
BH Z̃I = 0 is satisfied.

4: Carry out the SVD of X̂ to obtain Ûs and Σ̂s, where the
former contains the L left singular vectors corresponding to the L
largest singular values on the diagonal of the latter.

5: Utilize (47) for computing ˆ̃
Us. Apply DFT on the columns of

ˆ̃
Us to obtain ˆ̄up’s.
6: Form Ĥ and ĥ using the estimates ˆ̄up’s instead of ūp’s.
7: Set i = 0 and â(0) = Ĥ†ĥ. In addition, set the maximum
number of iterations imax = 5.
while i ≤ imax

8: Compute C
(
â(i)

)
and Ŵ(i).

9: Generate a new estimate:

â(i+1) =
(
ĤHŴ(i)Ĥ

)−1
ĤHŴ(i)ĥ.

10: set i = i+ 1.
end
11: Find the L roots of the polynomial γL +

∑L
l=1[â]l γL−l = 0,

denoted by γ̂l, l = 1, . . . , L.

12: Obtain the L DOA estimates as θ̂l = arcsin
(
− βlλ

2πd

)
, where

βl is the phase argument of γ̂l, l = 1, . . . , L.

strategy should be employed to determine the final DOA
estimates. First, consider the following example to get a
more through wisdom about how different choices of |I|
affect the DOA estimation accuracy.

Illustrative Example 1: Consider a scenario where
the signals of two uncorrelated sources located in
θ = [−2◦, 7◦] are received by a ULA consisting
M = 8 sensors with half waveform adjacent distances.
The sensor noise covariance matrix is set as Q =
diag{[10, 1.2, 3.5, 18, 2, 8.5, 24, 6.5]}, the sample size is
N = 40, and 2000 Monte Carlo runs are conducted to
calculate RMSE defined as

RMSE = 10log10

√√√√ 1

2000L

L∑

l=1

2000∑

i=1

(θ̂l,i − θl)
2. (63)

We also include the deterministic CRB [30] as a bench-
mark. In Fig. 1, higher accuracy in DOA estimation can
be observed for larger |I|. From this observation, we con-
clude that |I| = M − 1 and |I| = M are the best choices
in the sense of providing the most precise estimates for
generating double number of DOA candidates.

B. DOA Selection Strategy

After running Algorithm 3 twice with |I| = M − 1
and |I| = M , 2L DOA candidates are generated. The
natural question is how to select L final DOA estimates.
Two known conventional approaches to DOA selection
are based on the CB [14], [56]–[58] and ML cost function
minimization [20], [21], [59]. Recently, another method,
which has been originally proposed for joint source
number detection and DOA estimation [60], has been
employed as the DOA selection scheme. It is based on
the generalized likelihood ratio (GLR), which extracts
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Fig. 1: RMSE performance of the proposed method for
different |I| vs. SNR for L = 2 uncorrelated sources with
θ = [−2◦, 7◦], M = 8, and N = 40.

the final L DOAs sequentially [27]. The computational
complexity of such DOA selection strategy is much lower
than that of based on the ML cost function minimization.
Besides, the performance provided by the GLR is compa-
rable with that provided by the ML-based methods. Here
we aim to design a DOA selection strategy which takes
advantage of the three aforementioned approaches, i.e, it
uses the CB, deterministic ML cost function, and GLR
technique.

In doing so, the following three-step DOA selection
strategy is proposed.

Step 1: Denote the vector containing all 2L DOA
candidates by θ2L. Calculate the CB output7 for a proper
number of equidistant points to cover the whole interval
of interest8, i.e., [−π

2 ,
π
2 ]. Then, find the (L + 1)st peak

and define a threshold, denoted by η, as the CB output at
the (L+1)st peak. Afterwards, calculate the CB output for
entries of θ2L and stack those entries with output larger
than η in a new vector θ̃. If the total number of peaks
in the CB output is smaller than (L + 1) as well as the
number of entries in θ̃ is either less than L or equal to 2L,
then let θ̃ contain only the L DOA candidates generated
by |I| = M .

Step 2: Determine the first DOA as that entry of θ̃
which maximizes the GLR, i.e.,

θ̂1 = argmax
θ

aH(θ)Q̂−1R̂Q̂−1a(θ)

aH(θ)Q̂−1a(θ)
, θ ∈ θ̃. (64)

The GLR in (64) is a straightforward unknown noise
extension of the GLR in [60] for the case of uniform
noise.

Step 3: Denote the remaining entries of θ̃ as θ̄, and
the size of θ̄ as L̄. Then, divide the L̄ DOA candidates
in θ̄ into Ḡ = L̄

(L−1)!(L̄−L+1)!
subsets containing (L− 1)

7The CB output for the direction θ is calculated as L(θ) =
a(θ)HR̂a(θ).
8We use 314 equidistant points in this paper.
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different DOAs each. Denote these subsets as Θ1, . . . ,ΘḠ

and associate them with A(Θ1), . . . ,A(ΘḠ). The subset
that minimizes the following deterministic ML cost func-
tion9 determines the (L− 1) remaining DOAs

Θ̂R = argmin
ΘS

trace
[(

P⊥
Ã(ΘS)

− ν1ν
H
1

)
Q̂− 1

2 R̂Q̂− 1
2

]
,

S ∈ {1, . . . , Ḡ} (65)

where

P⊥
Ã(ΘS)

≜ IM − Ã(ΘS)
(
Ã(ΘS)

HÃ(ΘS)
)−1

Ã(ΘS)
H .

(66)

and

Ã(ΘS) ≜ Q̂− 1
2A(ΘS) (67)

ν1 ≜
P⊥

Ã(ΘS)
Q̂− 1

2a(θ̂1)

∥P⊥
Ã(ΘS)

Q̂− 1
2a(θ̂1)∥2

. (68)

In (65), the contribution of previously estimated θ̂1 on the
deterministic ML cost function is isolated in ν1 thanks
to the properties of the orthogonal projection matrix [61].
In addition, Q̂− 1

2 R̂Q̂− 1
2 is used instead of R̂ to consider

the general case of unknown noise.
Finally, θ̂1 and Θ̂R obtained via (65) form together

the final L DOA estimates.

C. FB Extension

FB is a natural extension/improvement of the forward-
only-based DOA estimation methods [16], [28], [35],
[62]–[64]. The essence of FB is to first transform the
observed signal or SCM into a new centro-Hermitian
signal matrix or centro-Hermitian covariance matrix, re-
spectively, followed by computationally simplified and
more accurate DOA estimation. Higher DOA estimation
accuracy is a consequence of decorrelating possibly cor-
related source pairs and obtaining more accurate SCM
estimation.

The FB covariance matrix is given as [13]

RFB =
1

2
(R+ JMR∗JM )

=
1

2

(
APAH +Q+ JM (A∗P∗AT +Q∗)JM

)
.

(69)

It can be readily verified that RFB is centro-Hermitian,
i.e., RFB = JMR∗

FBJM . Rearranging (69), we have

RFB =
1

2

(
APAH +Q+ADP∗DHAH + JMQ∗JM

)

= AP̃AH +
1

2
Q̃ (70)

where P̃ ≜ 1
2(P+DP∗DH), Q̃ ≜ Q+JMQ∗JM , D ≜

diag
{
e−j(2π/λ)d(M−1) sin(θ1), . . . , e−j(2π/λ)d(M−1) sin(θL)

}
.

9Since the difference of employing the deterministic ML and stochastic
ML is marginal, the deterministic ML is discussed here because it also
has lower complexity.

According to (70), a proper centro-Hermitian matrix
similar to X̂ defined in (45), can be formed as

X̂FB =

[
ˆ̃
Q

− 1
2

X
ˆ̃
Q

− 1
2

JMX∗JN

]
(71)

where ˆ̃
Q ≜ Q̂ + JMQ̂∗JM is used instead of Q̃. The

matrix X̂FB can be decomposed by applying the truncated
SVD as X̂FB = ÊsΠ̂sT̂

H
s where Ês = [ê1 . . . êL] ∈

CM×L is composed of L left singular vectors associated
with L largest singular values on the diagonal of Π̂s ∈
RL×L. The columns of Ês and the columns of ˆ̃

Q
− 1

2

A
span the same vector space. Thus, similar to the forward-

only case, the relationship between Ês and ˆ̃
Q

− 1
2

A can

be written as Ês =
ˆ̃
Q

− 1
2

AG. Multiplying both sides of

the latter equation by ˆ̃
Q

1
2

, we obtain the FB analog of

(32), that is, ˆ̃
Es ≜ ˆ̃

Q

1
2

Ês = AG.
Following the same steps as in Subsection A, the DFT

of the columns of ˆ̃
Es can be found as

Ês = [ˆ̄e1 . . . ˆ̄eL] ≜ DFT{ ˆ̃Es} = DFT{ ˆ̃Q
1
2

Ês}

=

[
(WD

ˆ̃
Q

1
2

ê1) . . . (WD
ˆ̃
Q

1
2

êL)

]
∈ CM×L. (72)

Considering a specific value for |I|, a system of linear
equations similar to (48) can be formulated as

ˆ̃
Ha ≈ ˆ̃

h (73)

where ˆ̃
Hp = BHdiag(ZI ˆ̄ep)ZIWa ∈ C(|I|−L)×L,

ˆ̃
hp = −BHZI ˆ̄ep ∈ C(|I|−L), ˆ̃

H =

[
ˆ̃
H

T

1 . . .
ˆ̃
H

T

L

]T
∈

CL(|I|−L)×L, ˆ̃
h =

[
ˆ̃
h
T

1 . . .
ˆ̃
h
T

L

]T
∈ CL(|I|−L) with the

entries of a being the coefficients of the polynomial
presented in (39). Finally, the GLS solution of (73) is
given by

â =

(
ˆ̃
H

H

ŴFB
ˆ̃
H

)−1
ˆ̃
H

H

ŴFB
ˆ̃
h (74)

where ŴFB ≈ Π̂
2

s ⊗
(
CFB(a)CFB(a)

H
)−1

, CFB(a) ≜

BH
(
I|I| + diag{ZIWaa}

)
ZIWD

ˆ̃
Q

1
2 ∈ C(|I|−L)×M .

After finding â using (74), the L DOA estimates
θ̂l, l = 1, . . . , L are obtained as θ̂l = arcsin

(
− βlλ

2πd

)

with βl denoting the phase argument of γ̂l. In addition,
γ̂l denotes the lth root of the polynomial defined as
γL +

∑L
l=1[â]l γ

L−l = 0.

D. Computational Complexity

For implementing the proposed DOA estimation
method, Algorithms 1 or 2 should be implemented
first that requires O

(
M2N

)
flops for calculating R̂

and O
(
M3
)

flops for computing GED of the pair
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of matrices
{
R̂, Q̂(i)

}
in the ith alternation. Thus,

the total computational complexity of Algorithm 1
is O

(
I1(M

3) +M2N
)

with I1 being the number
of alternations. The computational complexity of
performing SVD of X̂ is O

(
max(M,N)min(M,N)2

)
,

and the computational complexity of computing B
is O

(
|I|L2

)
. Applying DFT on the columns of

ˆ̃
U s requires O (LM log2(M)) flops. In addition,
the main source of computational complexity for
calculating Ŵ is the inversion of the matrix
C(a)CH(a), which involves O

(
(|I| − L)3

)
flops,

making the computational complexity of computing
Ŵ be O

(
L(|I| − L)3

)
. Determining â requires

O
(
L3(2(M − L) + 1) + L2(2(M − L)2 + (M − L))

)

flops. As the proposed DOA estimation algorithm
is run twice with |I| = M − 1 and |I| = M ,
by considering |I| ≈ M , the total complexity
required to generate 2L DOA candidates is
O
(
M2N + I1(M

3) + (max(M,N)min(M,N)2) +ML2+
LM log2(M) + I2(M

3L+ML3 − L4)
)

where
I2 denotes the number of iterations needed for
finding the best â. At last, the complexity of
DOA selection is mainly in step 3, which is about
O
(
Ḡ(M3 + 3M(L− 1)2 + (L− 1)3)

)
. Finally, the

total complexity of DOA estimation is reduced to
O
(
M2N + ḠM3

)
in the case that Ḡ ≫ max(I1, I2)

and M ≫ L. The significant point here is that Ḡ is
approximately four times smaller than the parameter G
in [21], resulting in the computational complexity of
our method being approximately a quarter of what is
required for implementing the EPUMA.

V. SIMULATION RESULTS

The aim of this section is to evaluate the performance
of the proposed method and compare it to that of the
state-of-the-art algorithms in terms of diverse numerical
simulation examples especially for challenging scenarios.
Our examples address uniform, nonuniform, and block-
diagonal sensor noise cases. For the uniform noise case,
the performance of the forward-only and FB versions
of the proposed method is compared with that of the
unitary root-MUSIC method [13], the root-swap unitary
root-MUSIC method [20], the FB EPUMA method [21],
and the UE GLS [22]. For the nonuniform noise case,
the “NISB+MUSIC” method [42], the “IMLSE+MUSIC”
method [33], the SPICE, LIKES and SLIM methods [39]
are used for comparison. In addition, for achieving better
DOA estimations as well as providing an evidence on the
effectiveness of phases 2 and 3 over traditional super-
resolution methods, the combinations of both the IMLSE
and proposed nonuniform noise covariance estimator (see
Algorithm 1) with the unitary root-MUSIC framework
are considered for the nonuniform noise case. For the
block-diagonal noise case, the approximate technique
by Agrawal and Prasad [47], and the combinations of
both the “extended IMLSE” and proposed block-diagonal

noise covariance estimator (see Algorithm 2) with the
unitary root-MUSIC framework are used for compari-
son. The uniform stochastic CRB [26], the nonuniform
stochastic CRB [30], and stochastic CRB in unknown
noise fields [48] are used as the benchmarks in the
corresponding examples. The number of trials used for
calculating the RMSE is 2000 in all examples. If not
further specified, a ULA with M = 10 sensors separated
by half wavelength collecting N = 10 snapshots is
considered for the uniform noise examples, while M = 8
for the nonuniform noise examples. The SNR is com-
puted as SNR =

σ2
s

σ2 for the uniform noise case, as
SNR =

σ2
s

M

∑M
m=1

1
σ2
m

for the nonuniform noise case, and

as SNR =
σ2
s

M

∑M
m=1

1
[Qbdiag]m,m

for the block-diagonal
noise case. Here the powers of different sources are
considered to be identical and denoted by σ2

s . Moreover,
ϵ is set to 10−4 in Algorithms 1 and 2.

The first three examples are associated with the
uniform sensor noise case. In the first example, three
uncorrelated sources located at θ = [19◦, 34◦, 36◦] are
considered. It can be seen in Fig. 2 that the SNR threshold
performance of the proposed methods is outstandingly
better than that of the other methods tested. As illustrated
in Fig. 3, the impact of the number of snapshots on
the performance of the methods tested is investigated
via setting θ = [34◦, 38◦], ρ = 0.95 for the fixed
SNR = 2 dB, where ρ is the correlation coefficient
throughout the paper. It displays that the FB version
of the proposed method provides robust estimates even
when the number of snapshots is about one order of
magnitude smaller than that of the other methods tested.
In the next setup, the capability of the methods tested to
deal with the scenario of two closely located sources is
investigated. In doing so, we regard the setup in which
θ = [0◦, 34◦, (34 + ∆θ)◦], ρ = 0.95, and SNR = 15 dB
with ∆θ varying from 0.8◦ to 6◦. It can be seen in Fig. 4
that the FB version of the proposed method has the best
performance.

Unless otherwise stated, to study the impact of the
nonuniform noise, the sensor noise covariance matrix
is set as Q = diag{[6, 2, 0.5, 2.5, 3, 1, 5.5, 10]} for the
follow up examples [33]. The worst noise power ratio
(WNPR) used in these examples is given as WNPR =
σ2
max

σ2
min

= 10
0.5 = 20. First, Fig. 5 shows the RMSE

performance of the methods tested versus SNR for the
setup of θ = [33◦, 36◦] and ρ = 0. As it can be observed,
the threshold performance of the proposed methods is
substantially better than that of the other methods tested.
Moreover, in Fig. 6, the same scenario as that shown in
Fig. 5 is considered for the case of correlated sources
θ = [33◦, 38◦] and ρ = 0.95. Fig. 6 demonstrates the
superiority of the FB version of the proposed method
over the other methods tested. Moreover, Figs. 5 and 6
confirm the necessity of the second and third phases since
the combination of the noise covariance matrix estimator
and the unitary root-MUSIC does not provide as accurate
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Fig. 2: RMSE vs. SNR for L = 3 uncorrelated sources
with θ = [19◦, 34◦, 36◦], M = 10, and N = 10.
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Fig. 3: RMSE vs. the number of snapshots for L = 2
correlated sources with θ = [34◦, 38◦], ρ = 0.95, SNR =
2 dB, and M = 10.

results as that of by the proposed method. Additionally,
comparing the performance of the combination of the
noise covariance estimator and the unitary root-MUSIC
with that of the combination of the IMLSE and the unitary
root-MUSIC shows that the proposed noise covariance
estimator is as accurate as the IMLSE. Fig. 7 depicts
how different methods perform depending on the number
of snapshots for the scenario of θ = [33◦, 38◦], ρ = 0,
and SNR = 0 dB. Fig. 8 illustrates this dependency
also for the scenario of θ = [33◦, 48◦], ρ = 0.95, and
SNR = −4 dB. Based on Figs. 7 and 8, it can be
concluded that the reliability of the proposed methods
to the scarcity of the number of snapshots is higher for
the case of uncorrelated sources compared to the other
methods tested, while the FB version of the proposed
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Fig. 4: RMSE vs. the angular separation for L = 3 partly
correlated sources with θ = [0◦, 34◦, (34+∆θ)◦], SNR =
15 dB, ρ = 0.95 for the last two directions, M = 10, and
N = 10.

method copes with the correlated sources more efficiently.
Moreover, Figs. 9 and 10 show the strengths of the
methods tested against the presence of closely located
sources for the cases of uncorrelated and correlated
signals, respectively. The setup regarded for Fig. 9 is
θ = [−10◦, 34◦, (34 + ∆θ)◦], ρ = 0, and SNR = 15 dB
with ∆θ varying from 1◦ to 12◦. It can be observed
that the performance of the proposed method almost
achieves the CRB. Fig. 10 depicts the results obtained
from conducting the same setup as for Fig. 9 with the
difference that ρ = 0.95 for the last two directions. The
superiority of the FB version of the proposed method
over other methods tested can be seen to be substantial.
To ensure the identifiability of the proposed procedure,
Figs. 11 and 12 are dedicated to scenarios where the
number of sources is large and close to the number
of sensors. Towards this end, the setup regarded for
Fig. 11 is θ = [21◦,−22◦, 46◦, 0◦,−60◦,−40◦, 65◦],
Q = diag{[6, 2, 0.5, 2.5, 3, 1, 5.5, 10, 4, 9]}, ρ = 0, M =
10 and N = 10. In addition, Fig. 12 depicts the impact of
varying WNPR (from 10 to 100) on the performance of
the methods tested by considering the setup where θ =
[34◦, 36◦, 17◦,−2◦,−27◦,−49◦], ρ = 0, SNR = 20 dB,
M = 8 and N = 10. According to Figs. 11 and 12, the
proposed procedure possess the best performance among
the methods tested even in the cases when the number
of sources is close to the number of sensors and/or the
WNPR is large.

For block-diagonal noise case, we assume
M = 20 and that the noise covariance
matrix has the block-diagonal form Qbdiag =
bdiag {Q1, 10, 3, 2, 3, 1,Q2, 7, 5, 4, 7, 1, 1,Q3} where
Q1, Q2, and Q3 are the 4× 4, 3× 3, and 2× 2 matrices,
respectively, constructed as [Qi]j,k = σ2

i e
−(j−k)2ζi . The

values σ2
1 = 5, σ2

2 = 3, σ2
3 = 1, ζ1 = 0.7, ζ2 = 1,
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Fig. 5: RMSE vs. SNR for L = 2 uncorrelated sources
with θ = [33◦, 36◦], M = 8, and N = 10.
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Fig. 6: RMSE vs. SNR for L = 2 correlated sources with
θ = [33◦, 38◦], ρ = 0.95, M = 8, and N = 10.

and ζ3 = 0.5 are assumed. Fig. 13 shows the RMSE
performance of the methods tested versus SNR for the
setup of θ = [34◦, 36◦,−10◦] and ρ = 0.95 for the
first two directions. Fig. 14 shows the performance
versus the number of snapshots for the scenario of
θ = [7◦, 9◦,−18◦], ρ = 0.95 for the first two directions,
and SNR = 2 dB. Figs. 13 and 14 confirm the efficiency
of the proposed method (Algorithm 2 combined with
phases 2 and 3) in coping with the presence of the
block-diagonal sensor noise.

To study the convergence of the proposed noise co-
variance matrix estimators, the cost functions of the pro-
posed nonuniform and block-diagonal noise covariance
estimators versus the number of iterations are depicted in
Sub-Figures. 15a and 15b, respectively. It can be observed
that the cost functions of the proposed noise covariance
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Fig. 7: RMSE vs. the number of snapshots for L = 2
uncorrelated sources with θ = [33◦, 38◦], SNR = 0 dB,
and M = 8.
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Fig. 8: RMSE vs. the number of snapshots for L = 2
correlated sources with θ = [33◦, 48◦], ρ = 0.95, SNR =
−4 dB, and M = 8.

matrix estimators converge to their corresponding optimal
values relatively fast.

VI. Conclusion and Discussion

A unified procedure for DOA estimation in the pres-
ence of unknown noise fields (nonuniform and block-
diagonal sensor noise) is introduced. The proposed pro-
cedure works in three phases. The goal of the first
phase is to devise a robust yet computationally efficient
algorithm to estimate the noise covariance matrix in an
alternative manner. In each alternation, the noise sub-
space is estimated using GED first and then the noise
covariance estimate is updated as the solution of an LS
minimization problem. Compared to the state-of-the-art
estimators, the proposed noise covariance estimator is
robust in confronting both uncorrelated and correlated
sources. After the noise covariance matrix is estimated,
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Fig. 9: RMSE vs. the Angular Separation for L = 3
uncorrelated sources with θ = [−10◦, 34◦, (34 + ∆θ)◦],
SNR = 15 dB, M = 8, and N = 10.
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Fig. 10: RMSE vs. the Angular Separation for L = 3
partly correlated sources with θ = [−10◦, 34◦, (34 +
∆θ)◦], SNR = 15 dB, ρ = 0.95 for the last two directions,
M = 8, and N = 10.

2L DOA candidates are estimated using a rooting-based
DOA estimation method based on the combination of
the GLS and the first-order signal subspace perturbation.
The noise covariance estimate obtained in the first phase
is used for pre-whitening the array signal. The basic
motivation behind generating double number of DOA
candidates is to improve the resolution of the DOA esti-
mation approach especially in the cases of small sample
size and low SNR. In addition, the forward-only DOA
estimation method is extended using FB. Furthermore, the
asymptotic performance of both the forward-only and FB
versions of the proposed method is studied. In the third
phase, the final best L DOA estimates out of 2L DOA
candidates generated in the second phase are selected
using a properly designed DOA selection strategy. This
crucial task is accomplished in a novel manner by the
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Fig. 11: RMSE vs. SNR for L = 7 uncorrelated sources
with θ = [21◦,−22◦, 46◦, 0◦,−60◦,−40◦, 65◦], M =
10, and N = 10.

10 20 30 40 50 60 70 80 90 100

WNPR

-30

-25

-20

-15

-10

-5

0
 R

M
S

E
 (

d
B

)

NISB+MUSIC

IMLSE+MUSIC

IMLSE+Unitay root-MUSIC

Proposed noise+Unitary root-MUSIC

Proposed Method

FB Proposed Method

SPICE

LIKES

SLIM

CRB [30]

Fig. 12: RMSE vs. WNPR for L = 6 uncorrelated sources
with θ = [34◦, 36◦, 17◦,−2◦,−27◦,−49◦], SNR =
20 dB, M = 8, and N = 10.

assist of the CB, GLR, and DML. In particular, the role
of the CB is to clean outliers that may exist in DOA
candidates, while the GLR and DML are used to ensure
the selection of the best final DOAs. The limitation of the
methodology presented in the second phase is the ULA
assumption, and this limitation does not apply to the noise
covariance matrix estimators in phase 1 and the DOA
selection strategy in phase 3, which can work without any
modifications for arrays of arbitrary geometry. Numerical
simulation examples are included to show the superiority
of the proposed algorithm compared to the state-of-the-
art approaches for cases of the uniform, nonuniform, and
block-diagonal sensor noise. The remarkable performance
improvement is the result of all three phases together,
since each sub-algorithm in these three phases is devel-
oped in a way to fulfill the corresponding goal with a full
use of available information at each phase.
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Fig. 13: RMSE vs. SNR for L = 3 partly correlated
sources with θ = [34◦, 36◦,−10◦], ρ = 0.95, M = 20,
and N = 100.
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Fig. 14: RMSE vs. the number of snapshots for L = 3
partly correlated sources with θ = [7◦, 9◦,−18◦], ρ =
0.95, SNR = 2 dB, and M = 20.
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(a) Convergence of Algorithm 1 for
M = 8 and N = 500.
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Fig. 15: Convergence behavior of the proposed noise
covariance matrix estimators for L = 3 uncorrelated
sources with θ = [16◦,−3◦,−16◦] and SNR = 2 dB.

Appendix A: Proof of (12)
Taking into account the fact that Q is a real-valued

diagonal matrix and also using the derivative properties
[65], the partial derivatives of the terms related to Q in
(11) can be found to be

∂trace
{
R̂Û(i)Û(i)HQ

}

∂Q
=

∂trace
{
D
{
R̂Û(i)Û(i)H

}
Q
}

∂Q

= D
{
R̂Û(i)Û(i)H

}
(75)

∂trace
{
Û(i)Û(i)HR̂Q

}

∂Q
=

∂trace
{
D
{
Û(i)Û(i)HR̂

}
Q
}

∂Q

= D
{
Û(i)Û(i)HR̂

}
(76)

∂trace
{
Û(i)Û(i)HQ2

}

∂Q
=

∂trace
{
D
{
Û(i)Û(i)H

}
Q2
}

∂Q

= 2D
{
Û(i)Û(i)H

}
Q. (77)

Using (75)–(77), the partial derivative of (11) with respect
to Q can be straightforwardly found to be (12).

Appendix B: Proof of Proposition 1

The proof goes in the same steps as that in [21]
(Appendix A), and is included for the sake of com-
pleteness. As θl and γl are related to each other as
γl = e−j2πdsin(θl)/λ, we perform Taylor’s expansion
and keep only the terms containing up to the first-order
perturbation terms to obtain ∆θl ≈ − λ

2πd cos(θl)
∆γl

jγl
. To

enforce ∆θl to be a real-valued quantity, it is reasonable
to define

∆θl ≜
1

2
(∆θl +∆θ∗l ) =

1

2

jλ

2πd cos(θl)
(γ∗

l ∆γl − γl∆γ∗
l ).

(78)

Using (78), the variance of ∆θl can be written as

E{∆θ2l } ≈ 1

2

(
λ

2πd cos(θl)

)2

×
(
E{|∆γl|2} −R{E{∆γ2

l }(γ∗
l )

2}
)
. (79)

Next we need to find an expression that connects ∆γl
and ∆a ≜ â − a, as (79) is dependent to the statistics
of ∆γl which are related to the statistics of ∆a. Towards
this end, using the first-order approximation of (39) when
γ is replaced by γl, we obtain

γT
l ∆a+ ϕl∆γl ≈ 0 (80)

where ∆a ≜ [∆[a]1 · · ·∆[a]L]
T , γl ≜ [γL−1

l · · · 1]T ,
ϕl ≜ LγL−1

l + (L − 1)[a]1γ
L−2
l + · · · + [a]L−1. From

(80), we obtain ∆γl ≈ −γT
l ∆a
ϕl

. Thus, it can be written
that

E{|∆γl|2} ≈ γT
l E{∆a∆aH}γ∗

l

|ϕl|2
. (81)

Let us define

f(a) = (Ĥa− ĥ)HW(Ĥa− ĥ). (82)
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Since â is the vector that minimizes (82), f ′(â) can be
approximated under the assumption of high SNR using
Taylor’s expansion as [21], [68]

0 = f ′(â) ≈ f ′(a) + f ′′(a)∆a (83)

where f ′(a) and f ′′(a) denote respectively the first and
second derivatives of f(a) with respect to a, which are
given as

f ′(a) = 2ĤHW(Ĥa− ĥ) = 2ĤHWê

= 2ĤHW (IL ⊗C(a))∆us (84)

f ′′(a) = 2ĤHWĤ. (85)

Combining (83), (84) and (85), we get for high SNR
that

E{∆a∆aH} ≈ (HHWH)−1HHW (IL ⊗C(a))

× E{∆us∆uH
s }
(
IL ⊗CH(a)

)
WH(HHWH)−1.

(86)

Based on (54) and (86), it can be written that

E{∆a∆aH} ≈ (HHWH)−1. (87)

Consequently, substituting (87) into (81), we have

E{|∆γl|2} ≈ γT
l (H

HWH)−1γ∗
l

|ϕl|2
. (88)

The final part is to compute E{∆γ2
l }, which has the

following form

E{∆γ2
l } ≈ γT

l E{∆a∆aT }γl

ϕ2
l

(89)

where E{∆a∆aT } ≈ (HHWH)−1HHW (IL ⊗C(a))
×E{∆us∆uT

s }
(
IL ⊗C(a)T

)
WTH∗(HHWH)−T . It

follows from (56) that

E{∆us∆uT
s } ≈

(
Σ−1

s VT
s ⊗ (IM −UsU

H
s )
)
E{n̄n̄T }

×
(
VsΣ

−1
s ⊗ (IM −U∗

sU
T
s )
)
. (90)

Since E{n̄n̄T } = 0MN×MN , (90) becomes a zero matrix
which gives rise to

E{∆γ2
l } ≈ 0. (91)

As a result, by combining (79), (88) and (91), we obtain
(62), which completes the proof.
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Abstract—Owing to their low power consumption and cost,
the use of one-bit analog-to-digital converter (ADC) has been
considered as a viable alternative to high resolution counterparts
in realizing and commercializing massive multiple-input multiple-
output (MIMO) systems. However, the issue of discarding the
amplitude information by one-bit quantizers has to be compen-
sated/reversed in order to make their usage plausible. As a result,
carefully tailored methods need to be developed for the problems
such as one-bit channel estimation and data detection as the
conventional ones cannot be used. To address these issues, the
problems of one-bit channel estimation and data detection for
MIMO orthogonal frequency division multiplexing (OFDM) sys-
tem that operates over uncorrelated frequency selective channels
is investigated in this work. We first develop channel estimators
that exploit Gaussian discriminant analysis (GDA) classifier and
two approximated versions of it as the so-called weak classifiers
in an adaptive boosting (AdaBoost) approach. Particularly, the
combination of the approximated GDA classifiers with AdaBoost
offers the benefit of scalability with the linear order of com-
putations, which is critical in massive MIMO-OFDM systems.
We then take advantage of the same idea for proposing the
data detectors. Numerical results validate the efficiency of the
proposed channel estimators and data detectors compared to
other existing methods, where the proposed methods provide
comparable performance to that of the state-of-the-art methods
but require dramatically lower computational complexities and
run times.

Index Terms—One-bit ADC, channel estimation, data detec-
tion, massive MIMO-OFDM, frequency selective channel, Ad-
aBoost

I. INTRODUCTION

UTilization of a large number of antennas at the base
station (BS) in communication systems have been ex-

plored for the purpose of enhancing data rates and net-
work capacity [1], [2]. Massive multiple-input multiple-output
(MIMO) communication systems have been demonstrated
to offer remarkable advantages, but the hardware cost and
high power consumption are two main difficulties (among
others), hindering their commercial usage. To address these
issues, first analog-to-digital converters (ADCs) have been
recognized as one of the parts of the receivers that have
high power consumption and expensive price [3], [4]. Then,
employing low-resolution (ADCs) has been suggested as a
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viable alternative instead of using high-resolution counterparts
[5], [6]. However, the use of low-resolution ADCs in multi-
user MIMO-OFDM systems poses several challenges in the
receiver design. For instance, the non-linearities caused by few
bit quantizers may prohibit us from exploiting conventional
receivers like zero-forcing (ZF) and minimum mean square
error (MMSE) detectors [7]. The reason is that the conven-
tional procedure of isolating narrowband OFDM subcarries
using a discrete Fourier transform (DFT) at the receiver is not
valid when low-resolution ADCs are used. Instead, different
receiver architectures need to be employed/designed to process
the baseband time-domain signals for the tasks such as channel
estimation, and/or data detection.

Channel estimation and/or data detection in massive MIMO
systems with one-bit ADCs have been explored in several
papers, considering the cases of single-carrier (SC) and multi-
carriers (MC) signalling. The authors of [8] have revised
the non-convex optimization problem of the maximum like-
lihood (ML) channel estimator and proposed a sub-optimal
channel estimator referred to as near-ML (nML). The same
methodology has been used to develop the nML-based data
detector as well. Convex optimization approaches have been
exploited in [9] for estimating MC-OFDM, whereas a data
detector has been developed based on a soft-output MMSE
algorithm. In [10], the Bussgang decomposition [11] has been
employed to develop Bussgang-based minimum mean-squared
error (BMMSE) channel estimators and data detectors for both
SC and MC-OFDM systems. Analogous to [10], the authors
of [12] took advantage of the Bussgang decomposition to
estimate the optimal nonzero thresholds in the problem of
one-bit quantizer design. Multiple works such as [13]- [16]
have considered the problem of joint channel estimation and
data detection, where the known pilot sequence is augmented
with a portion of detected data to build a longer virtual pilot
sequence and subsequently utilize it to refine the channel
estimate. For instance, the authors of [13] have developed a
bilinear generalized approximate message passing (BiGAMP)
method, while the authors of [15] have proposed a variational
Bayesian (VB) algorithm to do so.

One interesting idea presented by different researchers is to
treat one-bit channel estimation and data detection as binary
classification problems, where the output of one-bit ADCs can
be viewed as class labels. Moreover, a proper transformation
of the known pilots or channel state information (CSI) plays
the role of the classification features, while the unknown
channel/data vectors act as the corresponding separating hy-
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perplanes. For instance, the binary soft-margin support vector
machine (SVM) has been considered by the authors of [16]
and [17] as a powerful method to estimate the one-bit channel
estimation and data detection in SC and MC-OFDM scenarios.
Although the soft-margin SVM-based estimators have good
properties, their performance relies on careful hyperparamer
selection. Deep neural networks (DNN) have been also used
for one-bit channel estimation in several works such as [18]-
[20]. The main disadvantage of such estimators is that not
only a sufficiently large data set is required for the training
process, but the offline training procedure needs to be executed
carefully. In [21]- [23], several blind/semi-blind learning-based
data detectors have been presented for massive MIMO systems
that employ one-bit ADCs.

Angular domain channel estimators have been reported in
[24]- [31]. In [24] and [25], compressive sensing (CS) tech-
niques have been adopted to recover sparse millimeter wave
(mmWave) channels quantized by few-bit ADCs. The authors
of [29] have considered the combination of harmonic retrieval
methods with a modified expected-maximization GAMP (EM-
GAMP) to devise an angular domain one-bit mmWave chan-
nel estimation approach called gridless GAMP (GL-GAMP).
For such channels, a sparsity enforcing with Toeplitz matrix
reconstruction (SE-TMR) method was also presented in [30]
recently. Moreover, the authors of [31] have used the Toe-
plotz matrix reconstruction notion from [30] together with
ℓ1 regularized logistic regression classification method [32]
to come up with a novel angular domain channel estimator
called ℓ1 regularized logistic regression with Toeplitz matrix
reconstruction (L1-RLR-TMR) for one-bit mmWave systems.
They also have employed the alternating direction method
of multipliers (ADMM) [33] for solving the optimization
problem of L1-RLR-TMR in an efficient manner.

Despite the significance of scalability and efficiency in
one-bit massive MIMO-OFDM systems, the existing channel
estimators and data detectors may not fulfill the requirement of
having low computational complexity in challenging scenarios
with large number of unknowns. In other words, there is a gap
between the desirable computational complexity and that of
the existing methods to the best of our knowledge. Therefore,
the objective of this work is to fill the aforementioned gap
by proposing one-bit channel estimators and data detectors
that have linear order of computations with respect to the
system parameters including the number of antennas at BS,
the number of users, and the number of OFDM sub-carriers.

In this paper, we develop channel estimation and data detec-
tion algorithms for MIMO-OFDM systems that exploit one-bit
ADCs at the BS. The channel considered here is a frequency
selective channel. Inspired by outstanding properties that
classification/learning-based methods have shown in solving
one-bit channel estimation and data detection, we design Gaus-
sian discriminant analysis (GDA)-based classification method
[34] (known also as linear discriminant analysis (LDA)) and its
approximations as so-called weak classifiers, employed in each
iteration of an adaptive boosting (AdaBoost)-based scheme
[32], [35]. The low computational complexity required for
implementation of both GDA-based classifiers and AdaBoost
make the proposed algorithms efficient, and easily scalable.

In addition, flexibility in selecting the number of AdaBoost
iterations enables us to gain competitive accuracy with low
computational complexity.

The main contributions of our work are the following:

• An AdaBoost-based channel estimation approach for one-
bit MIMO-OFDM system that operates over uncorrelated
frequency selective fading channels is proposed. In each
iteration of the AdaBoost-based approach, the GDA clas-
sification method along with two efficient approximations
are considered as the weak classifiers. These approxi-
mate classifiers are derived by manipulating the GDA
estimator. The combination of AdaBoost and GDA (and
especially its approximations) enables us to estimate the
channel in a remarkably efficient and yet precise manner.
Specifically, using the approximations of GDA as weak
classifiers at the heart of our AdaBoost approach results
in having the linear order of computational complexity
with respect to the problem dimension. This makes the
proposed AdaBoost-based approach a versatile and also
powerful tool that can be used in one-bit MIMO-OFDM
systems with large number of channel entries. Numerical
results validate the efficiency of the proposed AdaBoost-
based channel estimator compared to other existing meth-
ods. Particularly, the AdaBoost-based channel estimator
possesses similar normalized MSE (NMSE) in channel
estimation as the SVM-based method of [16], whereas
the computational complexity required to implement our
method is substantially less than that of the SVM-based
method in scenarios with large dimensions.

• We then tailor the main idea of the proposed AdaBoost-
based channel estimator to fit the one-bit MIMO-OFDM
data detection problem. Analogous to the proposed one-
bit channel estimator, we design the data detector as an
AdaBoost-based approach with considering GDA and its
approximations as the weak classifiers in each iteration.
The proposed one-bit data detector has desirable proper-
ties like scalablility (with linear order of computations)
and providing accurate data estimates. These properties
are very useful in feasibility of designing one-bit MIMO-
OFDM systems with high bandwidth and large number of
sub-carriers. Numerical results demonstrate the strength
of the proposed AdaBoost-based data detector compared
to other existing methods.

The rest of the paper is organized as follows. The considered
system model is presented in Section II. A brief review of
GDA and AdaBoost are also presented in Section II. The
proposed AdaBoost-based one-bit channel estimator and data
detector are designed in Section III. Simulation results and
the conclusion are presented in Section IV and Section V,
respectively.

Notation: Upper-case and lower-case bold-face letters de-
note matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The mathematical expectation,
transpose, and inverse of a square matrix are denoted by
E{·}, {·}T , and (·)−1, respectively, while ∥ · ∥2 and ∥ · ∥F
denote the Euclidean norm of a vector and the Frobenius
norm of a matrix. The Hadamard product is denoted by ⊙.
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The n × n identity matrix is denoted by In. The operator
diag{π} generates a diagonal matrix by plugging the entries
of the vector π into its main diagonal. The operators ℜ{·}
and ℑ{·} return respectively the real and imaginary parts of
the bracketed argument. The function 1{·} is the indicator
function that is equal to 1 if its argument is true and 0
otherwise.

II. SYSTEM MODEL AND PRELIMINARIES

A. One-Bit Massive MIMO-OFDM System Model

We assume a massive MIMO system comprising of K users,
each equipped with a single-antenna, and an M -antenna base
station (BS) where users deploy high-resolution ADCs. Each
antenna of the BS converts the real and imaginary components
of the received signal from the users separately through a
pair of one-bit ADCs. We specifically examine an uplink
multiuser OFDM system with Nc sub-carriers that operates
over a frequency selective channel. The OFDM symbol in
the frequency domain from the kth user is represented by
xFD
k ∈ CNc×1. To avoid confusion, we use the notations

”TD” and ”FD” to distinguish between time and frequency
domains, respectively. We add a cyclic prefix (CP) of length
Ncp and assume that the number of channel taps Ltap satisfies
the condition Ltap−1 ≤ Ncp ≤ Nc. It is assumed that Ltap is
known. Upon removing the CP, the one-bit quantized received
signal at the ith antenna of the BS in the time domain can be
expressed as follows:

yTD
i = Q

(
K∑

k=1

GTD
i,k F

HxFD
k + nTD

i

)
(1)

where F ∈ CNc×Nc denotes the normalized DFT matrix,
and GTD

i,k is a circulant matrix whose first column is defined
by gTD

i,k = [(hTD
i,k )

T , 0, . . . , 0]T . Here, hTD
i,k ∈ CLtap×1

is a vector that contains the Ltap channel taps associated
with the kth user. The entries of hTD

i,k are considered to be
independent and identically distributed (i.i.d.), generated form
the distribution CN

(
0, 1

Ltap

)
. Moreover, nTD

i ∼ CN (0, INc
)

represents additive Gaussian noise at the ith antenna at the
BS, whereas the notation Q(·) ≜ sign(ℜ{·}) + jsign(ℑ{·})
represents the element-wise one-bit quantizer. The output of
the operator sign(·) is +1 when the argument is a non-negative
number, otherwise, the output is −1.

We stress here that because of the nonlinear distortion
imposed by one-bit quantizers, different OFDM sub-carriers
are not separable by the FFT operation as opposed to the
conventional MIMO-OFDM systems. As a result, we are
obliged to develop the proposed channel estimators and data
detectors based on the wideband time domain representation
instead of exploiting the narrowband frequency domain signals
associated with each sub-carrier.

B. Binary Classification via GDA

GDA (also known as LDA) is a classification approach that
models the training examples associated with each class as
samples of a normal distribution. Consider a training set that
contains m training examples with n features and two classes

denoted by {x(j)}j=1,··· ,m and y(j) ∈ {1,−1}j=1,··· ,m,
respectively. GDA assumes that the corresponding training
examples x(j) for each class of y(j) are normally distributed
with different means µ1 and µ−1, respectively, and the same
covariance matrix Σ. Therefore, depending on y(j), the condi-
tional probability density function (PDF) of x(j) can be given
as one of the following equations:

p(x(j)|y(j) = −1) =
1

(2π)n/2|Σ|1/2 exp
(
− 1

2
(x(j) − µ−1)

T

×Σ−1(x(j) − µ−1)
)

(2)

p(x(j)|y(j) = 1) =
1

(2π)n/2|Σ|1/2 exp
(
− 1

2
(x(j) − µ1)

T

×Σ−1(x(j) − µ1)
)

(3)

To implement binary GDA, we need to estimate µ−1, µ1,
and Σ from the training data. The means and the covariance
matrix can be estimated as follows [34]

µ̂−1 =

m∑

j=1

1{y(j) = −1}x(j)

m∑

j=1

1{y(j) = −1}
(4)

µ̂1 =

m∑

j=1

1{y(j) = 1}x(j)

m∑

j=1

1{y(j) = 1}
(5)

Σ̂ =
1

m

m∑

j=1

(x(j) − µ̂y(j))(x(j) − µ̂y(j))T . (6)

The decision boundary is then given as

hGDA = Σ̂
−1 (

µ̂1 − µ̂−1

)
. (7)

C. AdaBoost

The objective of AdaBoost is to iteratively train a set
of weak classifiers on the same data set to create a strong
classifier. A weak classifier is identified as a classifier whose
classification performance is only marginally better than ran-
dom guessing. A new weak classifier is trained on a weighted
version of the training data set, where the weights associated
with the misclassified examples in the previous iteration are
increased. Given a training set with m examples, AdaBoost
learns a weak classifier in the tth iteration which is denoted
by ht(x). The AdaBoost algorithm is outlined in Algorithm 1.
Here, w(t)

j is the weight of the jth example at the tth iteration,
ϵ(t) is the weighted error of the tth weak classifier, and α(t)

is the weight of the tth weak classifier. Moreover, Z(t+1) is a
normalization constant that ensures that the weights sum up to
1. Despite there exists various ways to define the update rule
for w

(t+1)
j , Algorithm 1 employs the exponential function to

do so.
In our derivations, we use GDA and its approximate ver-

sions as weak classifiers, although there are many linear binary
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classifiers available in the literature that can be considered
as weak classifiers. The main reason for the aforementioned
choice is that these classifiers can be implemented with low
computational complexities, particularly when the dimension
of the unknown variables scales up.

Algorithm 1 AdaBoost Algorithm
Input: Training set S, number of weak classifiers T
Output: Final classifier HAda

Initialize weights w
(1)
j = 1/m for j = 1, 2, ...,m

for t = 1 to T do
Train weak classifier h(t)(x) on the weighted training set
(S, w).
Compute error as ϵ(t) =

∑m
j=1 w

(t)
j 1(h(t)(x(j)) ̸= y(j)).

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j = w

(t)
j exp(α(t)1(h(t)(x(j)) ̸= y(j))), ∀j.

Compute Z(t+1) =
∑m

j=1 w
(t+1)
j and normalize weights

as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Output HAda(x) =

∑T
t=1 α

(t)h(t)(x)

III. PROPOSED CLASSIFICATION-BASED WIDEBAND
CHANNEL ESTIMATION AND DATA DETECTION WITH

ONE-BIT ADCS

A. Proposed Classification-Based Channel Estimation

For estimating the frequency selective channels explained in
Section II that is utilized in the OFDM system, the frequency
domain pilot vector xFD

k ∈ CNc×1 is first transformed into the
time domain using the inverse fast Fourier transform (IFFT)
operation. The resultant time domain vector is then transmitted
by the kth user. The one-bit quantized received signal at the
ith antenna of the BS in (1) can be reorganized as

yTD
i = Q

(
K∑

k=1

ΦTD
k gTD

i,k + nTD
i

)

= Q
(

K∑

k=1

ΦTD
k,Ltap

hTD
i,k + nTD

i

)

= Q
(
ΦTD

Ltap
hTD
i + nTD

i

)
(8)

where ΦTD
k ∈ CNc×Nc is a circulant matrix whose first

column is ϕTD
k ≜ FHxFD

k , ΦTD
k,Ltap

∈ CNc×Ltap denotes
a matrix which contains only the first Ltap columns of
ΦTD

k , ΦTD
Ltap

∈ CNc×KLtap and hTD
i ∈ CKLtap×1 re-

spectively concatenate ΦTD
k,Ltap

and hTD
i,k for k = 1, . . . ,K

as ΦTD
Ltap

≜ [ΦTD
1,Ltap

,ΦTD
2,Ltap

, . . . ,ΦTD
K,Ltap

] and hTD
i ≜

[(hTD
i,1 )

T , (hTD
i,2 )

T , . . . , (hTD
i,K)T ]T .

To simplify our derivations, we use the notation “R” as
subscript when scalars, vectors, or matrices are composed of
real numbers. Therefore, we transform (8) into the real domain
as

yTD
i,R = sign

(
ΦTD

R hTD
i,R + nTD

i,R

)
(9)

where

yTD
i,R ≜

[
ℜ{yTD

i }T ,ℑ{yTD
i }T

]T
=
[
yTD
i,R,1, . . . , y

TD
i,R,2Nc

]T

∈ {±1}2Nc×1 (10)

ΦR ≜
[
ℜ{ΦTD

Ltap
} −ℑ{ΦTD

Ltap
}

ℑ{ΦTD
Ltap

} ℜ{ΦTD
Ltap

}

]

=
[
ϕTD

R,1,ϕ
TD
R,2, . . . ,ϕ

TD
R,2Nc

]T
∈ R2Nc×2KLtap (11)

hTD
i,R ≜

[
ℜ{hTD

i }T ,ℑ{hTD
i }T

]T ∈ R2KLtap×1 (12)

nTD
i,R ≜

[
ℜ{nTD

i }T ,ℑ{nTD
i }T

]T ∈ R2Nc×1. (13)

Note that
(
ϕTD

R,j

)T
with j ∈ {1, 2, . . . , 2Nc} is the jth row

of ΦR here. Additionally, as suggested by (12), estimating
{hTD

i }i=1,2,...,M is equivalent to estimating {hTD
i,R}i=1,2,...,M .

We emphasize that binary classification methods can be
employed for estimating hTD

i,R in (9). Here, ϕTD
R,j and yTD

i,R,j

with j ∈ {1, 2, . . . , 2Nc} serve as the training examples and
the class labels, respectively. In other words, (9)-(12) can be
viewed as a binary classification problem with the training
set Si = {x(j) = ϕTD

R,j , y
(j) = yTD

i,R,j}j=1,2,...,2Nc
and the

decision boundary hTD
i,R based on the definitions provided in

the prequel. Hence, we can exploit the GDA classification
method as the weak classifier in each iteration of an AdaBoost-
based approach for estimating hTD

i,R . The computation of the
means and covariance matrix (4)-(6) then should be revised in
the tth iteration of the proposed AdaBoost-based approach as

µ̂
(t)
−1 =

2Nc∑

j=1

1{yTD
i,R,j = −1}w(t)

j ϕ
TD
R,j (14)

µ̂
(t)
1 =

2Nc∑

j=1

1{yTD
i,R,j = 1}w(t)

j ϕ
TD
R,j (15)

Σ̂
(t)

=

2Nc∑

j=1

w
(t)
j (ϕTD

R,j − µ̂(t)

yTD
i,R,j

)(ϕTD
R,j − µ̂(t)

yTD
i,R,j

)T (16)

ĥ
TD,(t)
i,R =

(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂(t)

−1

)
(17)

where w
(t)
j represents the weight of the jth training example

at the tth iteration.
To implement (17), the inverse of the matrix Σ̂

(t)
should

be calculated, which requires the computational complexity
of O

(
(2KLtap)

3
)
. The cubic computational complexity can

considerably restrict the time efficiency of implementing (17),
especially when the multiplication of K and Ltap grows larger.
At the same time, as a weak classifier is required to be
slightly better than random guesses, the accurate knowledge
of the inverse of Σ̂

(t)
is not needed. Thus, it is reasonable to

consider approximating (17) to avoid the cubic computational

complexity of calculating
(
Σ̂

(t)
)−1

. Towards this end, two
approximations of (17) are introduced in the following.

Approximation 1: As the first approximation, we propose to
modify (16) as

Σ̂
(t)

1 ≜ diag
{
σ̂

(t)
1

}
(18)
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where

σ̂
(t)
1 =

2Nc∑

j=1

w
(t)
j

(
(ϕTD

R,j − µ̂(t)

yTD
i,R,j

)⊙ (ϕTD
R,j − µ̂(t)

yTD
i,R,j

)
)

(19)

The essence of this approximation is to set all off-diagonal
elements of Σ̂

(t)
in (16) to zero and preserve only its diagonal

elements. In other words, only the diagonal elements of the
original matrix Σ̂

(t)
in (16) need to be computed as the vector

σ̂
(t)
1 in (19), and Σ̂

(t)

1 is defined using σ̂(t)
1 as (18). Then, (17)

is modified as

ĥ
TD,(t)
i,R,app1 ≜

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂(t)

−1

)
(20)

Note that the use of Σ̂
(t)

1 instead of the original Σ̂
(t)

con-
siderably reduces the computational complexity of computing
ĥ
TD,(t)
i,R .

Approximation 2: We propose to set Σ̂
(t)

= I2KLtap
in (17).

Then, the modified estimate of hTD,(t)
i,R is expressed as

ĥ
TD,(t)
i,R,app2 ≜ µ̂(t)

1 − µ̂(t)
−1 (21)

where the weak classifier of (17) is approximated as the
distance between the mean vectors of the two classes in
(21). We stress here that the later requires substantially less
computations compared to that of the former.

The steps of the proposed methods are outlined in Algo-
rithm 2. It should be noted that Algorithm 1 presents the
generic procedure of the AdaBoost approach for using weak
binary classifiers/learners h(t)(x) to build a strong binary
classifier/learner HAda(x), whereas we exploit the core idea
of AdaBoost to use the weak channel estimates h

(t)
i to build

a strong channel estimate ĥTD
i,R in Algorithm 2. We emphasize

here the difference of h(t)(x) and HAda(x) with h
(t)
i and ĥTD

i,R ,
that is, the former represents binary classifier while the later
denotes the separating hyperplane in a binary classification
problem.

Note that a normalization step is applied to the output of the
AdaBoost-based methods outlined in Algorithm 2. The reason
for this is that the estimates provided by these methods only
specify the direction of hTD

i,R , while the magnitude remains
unknown since the one-bit ADCs preserve only the sign of the
received signals. Therefore, βhTD

i,R for any β > 0 will yield
the same yTD

i,R as in (10). Here, since we assume that 2KLtap

elements of hTD
i,R are independent with variance 1/(2Ltap),

the last normalization step is added to ensure that the channel
estimates have squared norm of K.

Remark 1: To ensure the clarity of presentation, we used
a loop to estimate hTD

i,R for i ∈ {1, 2, . . . ,M} in Algorithm 2.
However, it is important to note that these M channel vectors
can be estimated in parallel, resulting in a reduction in the
overall run time of the channel estimation procedure.

Remark 2: The key feature of AdaBoost that allows us to
approximate (17) as (20) and (21) without sacrificing estima-
tion performance is that it can incorporate weak classifiers that
are only slightly better than random guessing and combine
them to form a strong classifier. The approximation of (20)
and (21) are justifiable because they are certainly better than

Algorithm 2 One-bit GDA-AdaBoost Algorithm for Channel
Estimation

Input: Si = {x(j) = ϕTD
R,j , y

(j) = yTD
i,R,j}j=1,2,...,2Nc

for
i ∈ {1, 2, . . . ,M} whose elements are defined in (10) and
(11), and number of weak classifiers T .
Output: ĥTD

i,R for i ∈ {1, 2, . . . ,M}.
for i = 1 to M do

Initialize weights w
(1)
j = 1

2Nc
for j ∈ {1, 2, ..., 2Nc}.

for t = 1 to T do
Use the training set Si to compute µ̂(t)

−1, µ̂(t)
1 , Σ̂

(t)
,

and Σ̂
(t)

1 via (14)-(16) and (18), respectively. Then,
compute the tth weak classifier as:

one-bit GDA-AdaBoost
h
(t)
i =

(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂(t)

−1

)

one-bit GDA-AdaBoost-1
h
(t)
i =

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂(t)

−1

)

one-bit GDA-AdaBoost-2
h
(t)
i = µ̂

(t)
1 − µ̂(t)

−1.
Compute error as

ϵ(t) =
∑2Nc

j=1 w
(t)
j 1

(
(ϕTD

R,j)
Th

(t)
i ̸= y(j)

)
.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w(t+1)
j =w

(t)
j exp

(
α(t)1

(
(ϕTD

R,j)
Th

(t)
i ̸=y(j)

))
,

∀j.
Compute Z(t+1) =

∑2Nc

j=1 w
(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct h̃TD

i,R =
∑T

t=1 α
(t)h

(t)
i , and then normalize as

ĥTD
i,R =

√
Kh̃TD

i,R

∥h̃TD
i,R∥2

.
end for

random guessing, hence they can be treated as weak classifiers.
In this regard, AdaBoost is a powerful approach to build a
strong classifier out of weak classifiers with low computational
complexity.

B. Proposed Classification-Based Data Detection

In this section, we propose AdaBoost-based methods for
one-bit data detection in OFDM systems with frequency se-
lective channels. To begin with, the one-bit quantized received
signal at the ith antenna of the BS in (1) can be rewritten as

yTD
i = Q

(
K∑

k=1

GTD
i,k F

HxFD
k + nTD

i

)

= Q
(
GFD

i xFD + nTD
i

)
(22)

where GFD
i ≜ [GTD

i,1 F
H , . . . ,GTD

i,KFH ] ∈ CNc×KNc and
xFD ≜ [(xFD

1 )T , (xFD
2 )T , . . . , (xFD

K )T ]T ∈ CKNc×1. The
former represents the pre-estimated/known CSI, while the later
is the symbol vectors transmitted over Nc subcarriers by the K
users. The objective here is to recover the vector xFD and then
identify the symbols transmitted. Placing all {yTD

i }i=1,2,...,M
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in a vector as yTD ≜ [(yTD
1 )T , (yTD

2 )T , . . . , (yTD
M )T ]T ∈

CMNc×1, we obtain

yTD = Q
(
GFDxFD + nTD

)
(23)

where GFD ≜ [(GFD
1 )T , (GFD

2 )T , . . . , (GFD
M )T ]T ∈

CMNc×KNc . The real domain transformation of (23) is given
as

yTD
R = sign

(
GFD

R xFD
R + nTD

R

)
(24)

where

yTD
R ≜

[
ℜ{yTD}T ,ℑ{yTD}T

]T
=
[
yTD
R,1, . . . , y

TD
R,2MNc

]T

∈ {±1}2MNc×1 (25)

GFD
R ≜

[
ℜ{GFD} −ℑ{GFD}
ℑ{GFD} ℜ{GFD}

]

=
[
gFD
R,1,g

FD
R,2, . . . ,g

FD
R,2MNc

]T ∈ R2MNc×2KNc (26)

xFD
R ≜

[
ℜ{xFD}T ,ℑ{xFD}T

]T ∈ R2KNc×1 (27)

nTD
R ≜

[
ℜ{nTD}T ,ℑ{nTD}T

]T ∈ R2MNc×1. (28)

Here
{(

gFD
R,j

)T}
j=1,...,2MNc

is the jt row of GFD
R .

Analogous to the problem of estimating hTD
i,R in (9), the

problem of estimating xFD
R in (24) can be treated as a binary

classification problem where xFD
R serves as the separating

hyperplane between two classes. Therefore, we can consti-
tute the binary classification training set as Sd = {x(j) =
gFD
R,j , y

(j) = yTD
R,j}j=1,2,...,2MNc

based on (24)-(26) with
the aim of estimating xFD

R as the corresponding separating
hyperplane. Thus, the GDA classification method along with
two approximations derived in Subsection III-A can be used
as weak classifiers in each iteration of an AdaBoost-based
approach for recovering xFD

R . In this regard, the counterparts
of (17), (20), and (21) with respect to xFD

R are respectively
expressed as

x̂
FD,(t)
R =

(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(29)

x̂
FD,(t)
R,app1 =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(30)

x̂
FD,(t)
R,app2 = µ̂

(t)
d,1 − µ̂

(t)
d,−1 (31)

where

µ̂
(t)
d,−1 =

2MNc∑

j=1

1{yTD
R,j = −1}w(t)

j gFD
R,j (32)

µ̂
(t)
d,1 =

2MNc∑

j=1

1{yTD
R,j = 1}w(t)

j gFD
R,j (33)

Σ̂
(t)

d =

2MNc∑

j=1

w
(t)
j (gFD

R,j − µ̂(t)

d,yTD
R,j

)(gFD
R,j − µ̂(t)

d,yTD
R,j

)T (34)

Σ̂
(t)

d,1 = diag
{
σ̂

(t)
d,1

}
(35)

σ̂
(t)
d,1 =

2MNc∑

j=1

w
(t)
j

(
(gFD

R,j − µ̂(t)

d,yTD
R,j

)⊙ (gFD
R,j − µ̂(t)

d,yTD
R,j

)
)
.

(36)

Note that w
(t)
j is the weight assigned to the jth training

example in the tth iteration. In addition, the notation “d”
is used as subscript in (29)-(36) to avoid confusion with
channel estimation part’s of equations. Let x̃FD

R represents
the output of the AdaBoost procedure using either one of the
weak classifiers in (29)-(31). A normalization step is needed
to match the power of the estimated signal with that of the
actual transmitted signal.1 Then, we have

x̄FD
R =

√
KNcx̃

FD
R

∥x̃FD
R ∥2

= [x̄FD
R,1, x̄

FD
R,2, . . . , x̄

FD
R,2KNc

]T . (37)

The final step is to detect the transmitted symbols by mapping
the elements of x̄FD

R to one member of the transmitted signal
constellation set denoted by F by solving the following
optimization problem symbol-by-symbol:

x̂FD
R,k = argmin

x∈F
|x− (x̄FD

R,k + jx̄FD
R,k+KNc

)|

for k = 1, 2, . . . ,KNc (38)

where x̂FD
R,k is the kth entry of the final estimate, i.e., x̂FD

R ≜
[x̂FD

R,1, x̂
FD
R,2, . . . , x̂

FD
R,KNc

]T . The steps of the proposed data
detection methods are listed in Algorithm 3.

We emphasize that the last loop in Algorithm 3 is only
included for the sake of presentation clarity, and the symbol-
by-symbol detection can be executed concurrently. It is also
worth noting that post-processing can be performed for re-
fining the outputs of (38) as have been suggested in [8] and
[16]. The former has exploited the ML criterion to select the
final data symbol from a properly designed data candidate set
[8], whereas the latter has resorted to a minimum weighted
Hamming distance-based criterion [36] to pick up the refined
data symbol from a data candidate set. Despite the efficiency
of the aforementioned post-processing data refinement, we do
not use it here and the simulation results for the proposed
methods are provided without considering the post-processing
in the next section.

Remark 3: One of the advantages of the proposed
AdaBoost-based algorithms is that the sufficient number of
weak classifiers for obtaining a reasonable accuracy is of order
of a few tens. In other words, increasing T more than some
value usually does not change the performance of the proposed
AdaBoost-based algorithms dramatically. We propose to set
T = 40 for the proposed channel estimator and data detector,
as using these values has been found to be effective in reaching
accurate results. The impact of using different values of T for
channel estimation and data detection will be examined in the
next section though.

IV. SIMULATION RESULTS

In this section, numerical result that demonstrate the ef-
ficiency as well as superiority of the proposed wideband
channel estimators and data detectors compared to other
existing techniques are presented. In terms of computational
complexity and run time, the AdaBoost-based methods are
highly efficient, particularly when considering one-bit large-
scale MIMO-OFDM systems. We use T = 40 for the proposed

1Such normalization is also used in [8] and [16] for example.
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Algorithm 3 One-bit GDA-AdaBoost Algorithm for data
detection

Input: Sd = {x(j) = gFD
R,j , y

(j) = yTD
R,j}j=1,2,...,2MNc

whose elements are defined in (25) and (26), and number
of weak classifiers T .
Output: x̂FD

R .
Initialize w

(1)
j = 1

2MNc
for j ∈ {1, 2, ..., 2MNc}.

for t = 1 to T do
Use the training set Sd to compute µ̂(t)

d,−1, µ̂(t)
d,1, Σ̂

(t)

d ,

and Σ̂
(t)

d,1 via (32)-(35), respectively. Then, compute the
tth weak classifier as:

one-bit GDA-AdaBoost
x
(t)
d =

(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)

one-bit GDA-AdaBoost-1
x
(t)
d =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)

one-bit GDA-AdaBoost-2
x
(t)
d = µ̂

(t)
d,1 − µ̂

(t)
d,−1.

Compute error as
ϵ(t) =

∑2MNc

j=1 w
(t)
j 1

(
(gFD

R,j)
Tx

(t)
d ̸= y(j)

)
.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j = w

(t)
j exp

(
α(t)1

(
(gFD

R,j)
Tx

(t)
d ̸=y(j)

))
,

∀j.
Compute Z(t+1) =

∑2MNc

j=1 w
(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct x̃FD

R =
∑T

t=1 α
(t)x

(t)
d , and then normalize as

x̄FD
R =

√
KNcx̃

FD
R

∥x̃FD
R ∥2

. Denote the k th entry of x̄FD
R as x̄FD

R,k

for k ∈ {1, 2, . . . , 2KNc}.
for k′ = 1 to KNc do

Solve the optimization problem (38) to detect x̂FD
R,k′ .

end for
Construct x̂FD

R = [x̂FD
R,1, x̂

FD
R,2, . . . , x̂

FD
R,KNc

]T .

AdaBoost-based channel estimators and data detectors, unless
otherwise stated. For channel estimation figures, orthogonal
pilots are employed analogous to those suggested in [5, Eq.
(23)]. In addition, quadrature phase shift keying (QPSK) con-
stellations are used as the frequency domain symbols in data
detection figures. The hyperparameter C is set to 1 for SVM-
based channel estimator and data detector of [16]. Further-
more, the modified finite Newton (MFN) method [37] is used
for implementing the ℓ2-SVMs as it is one of the most efficient
algorithms [16]. Performance of different channel estimators
and data detectors are compared in terms of normalized MSE
(NMSE) and bit-error-rate (BER), respectively. The former is
defined as

NMSE =
E{∥H− Ĥ∥2F}

KM

where H ≜ [hTD
1 ,hTD

2 , . . . ,hTD
M ] and Ĥ ≜

[ĥTD
1 , ĥTD

2 , . . . , ĥTD
M ]. The block-fading interval is divided

into two parts, where the first part and second part are
used for channel estimation and data detection, respectively.
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Fig. 1. Performance comparison of different channel estimators with K = 2,
M = 16, Nc = 256, and Ltap = 8.
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Fig. 2. Average run time comparison of the proposed one-bit GDA-Ada-1
and one-bit GDA-Ada-2 with SVM in estimating channel between users and
one antenna of the BS vs. the number of users K, considering the scenario
where Nc = 512, and Ltap = 16.

Noteworthy to mention that the performance of one-bit
GDA-Ada method (when the covariance matrix has to be
computed exactly) is not reported in data detection figures
as its computational complexity is higher than that of the
proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2
methods for achieving similar performance.

In Fig. 1, the NMSE of the proposed AdaBoost-based
channel estimators are compared with those of BMMSE [10]
and SVM [16]. It can be observed that the performance of
BMMSE is worse than other methods tested, while SVM
possesses the best performance. The AdaBoost-based channel
estimators are very marginally outperformed by SVM that
has no effect on the follow up data detection. The one-bit
GDA-Ada-2 method provides the worst performance among
the proposed Adaboost-based channel estimators.
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Despite having comparable channel estimation performance,
the proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2 re-
quire substantially lower computational complexity compared
to that of the SVM-based method as depicted in Fig. 2. We
compare the required average run time for estimating channel
between users and one antenna of the BS (i.e., average run
time for estimating hTD

i ’s). Although the average run times
for performing the channel estimation task are comparable for
all methods tested when K ≤ 5, the SVM-based channel esti-
mator needs much higher computational complexity than those
of one-bit GDA-Ada-1 and one-bit GDA-Ada-2 when K > 5.
We stress here that this advantage of the proposed methods
is rooted in using low computation demanding techniques as
weak classifiers in Algorithm 2. Moreover, the computational
complexity order of different channel estimators tested is listed
in Table I, where κ(·) represents a super-linear function.

TABLE I: Order of Computational Complexity for Different
Channel Estimators.

Method Complexity
BMMSE O

(
M2KLtabNc

)

SVM-based O (MKLtabNcκ(Nc))
one-bit
GDA-Ada O

(
TMmax{(KLtab)

2.373, (KLtab)
2Nc}

)

one-bit
GDA-Ada-1 O (TMKLtabNc)

one-bit
GDA-Ada-2 O (TMKLtabNc)

In Fig. 3, a performance comparison of different proposed
AdaBoost-based channel estimators is presented for the values
of T = 1, T = 10, and T = 40. It can be seen that the NMSE
associated with T = 1 is the worst, whereas the difference
between T = 10 and T = 40 is negligible for the channel
estimation task. Combining the results of Figs. 2 and 3 shows
that the run time superiority of the proposed one-bit GDA-
Ada-1 and one-bit GDA-Ada-2 over SVM studied in Fig. 2
can be even more considerable by setting T = 10 instead of
T = 40 without sacrificing performance.

Fig. 4 compares the NMSE of the proposed AdaBoost-based
channel estimators with SVM for Nc = 256 and Nc = 1024,
where the NMSEs of the methods tested are decreased for
about 4 dB at high SNRs by increasing Nc from 256 to
1024. Analogous to Fig. 1, the proposed AdaBoost-based
channel estimators possess quite similar performance to the
performance of the SVM-based channel estimator.

Fig. 5 compares the one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 data detectors with the SVM data detector for both
cases of estimated CSI and perfect CSI. It should be noted
here that the estimated CSI of each method is found by their
corresponding channel estimators. It can be seen in Fig. 5 that
the BERs of the proposed AdaBoost-based data detectors are
quite close to the BER of the SVM data detector for both cases
of estimated CSI and perfect CSI. Moreover, Fig. 5 shows that
the performance of the one-bit GDA-Ada-1 method is slightly
better than that of the one-bit GDA-Ada-2 method at high
SNRs.
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Fig. 3. NMSE comparison of the proposed Adaboost-based channel estimators
for different values of T with K = 4, M = 32, Nc = 512, and Ltap = 16.
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Fig. 4. Performance comparison between the AdaBoost-based channel esti-
mators and SVM with K = 2, M = 32, Ltap = 16, and Nc ∈ {256, 1024}.

An average run time comparison for implementing the one-
bit GDA-Ada-1, one-bit GDA-Ada-2, and SVM data detectors
is presented in Fig. 6, where K ∈ {2, 3, . . . , 8}. For K ≤ 7,
the average run time of the SVM data detector is comparable
with the average run times of the one-bit GDA-Ada-1 and one-
bit GDA-Ada-2, whereas the average run time of the SVM
data detector is substantially higher than those of the other
two methods when K > 7. Fig. 6 also shows that the average
run time of the one-bit GDA-Ada-2 method is approximately
half of the average run time of the one-bit GDA-Ada-1 method.
The computational complexity order of different data detectors
tested is listed in Table II.

The impact of choosing different T on the performance of
the proposed AdaBoost-based data detectors is investigated in
Fig. 7. Contrary to the comparison presented in Fig. 3 for
the channel estimation task, it is observed in Fig. 7 that the
BER improves by increasing T from 10 to 40. Moreover,
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Fig. 5. Performance comparison of different data detectors with K = 2,
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Fig. 6. Average run time for implementing different data detectors with
various K, Nc = 512, M = 32, and Ltap = 8.

TABLE II: Order of Computational Complexity for different
data detectors.

Method Complexity
SVM-based O

(
MKN2

c κ(MNc)
)

one-bit GDA-Ada O
(
Tmax{(KNc)

2.373,MK2N3
c }
)

one-bit GDA-Ada-1 O
(
TMKN2

c

)

one-bit GDA-Ada-2 O
(
TMKN2

c

)

the performance gap of using T = 1 with other values of
T is significant. We stress here that setting T larger than 40
marginally improves the data detection performance based on
our observations, hence T = 40 is a proper choice.

V. CONCLUSION

In this paper, we have found out and demonstrated that
the GDA classifier/approximated GDA classifier together with
the AdaBoost technique result in developing efficient and
reliable channel estimators and data detectors, specifically
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Fig. 7. The impact of different T on the performance of the proposed
AdaBoost-based data detectors with K = 4 , Nc = 512, M = 32,
Ltap = 16, and QPSK modulation.

in large scale scenarios such as MIMO-OFDM systems that
operate over frequency selective channels. It was shown that
two of the proposed AdaBoost-based channel estimators and
data detectors named one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 require dramatically lower run time compared to those
of the SVM-based methods, while maintaining the accuracy.
Numerical results were presented to showcase the efficiency
and robustness of the proposed methods in large scale MIMO-
OFDM systems.
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