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1. Introduction

1.1 Big Data and Optimization

In today’s digital age, we are surrounded by a massive amount of data.
This phenomena comes at large as a result of the spreading of the use
of online social media, internet, and global communication [1]. The need
to make use of all this available data for the purpose of building more
efficient and robust models has fueled the field of data-driven statistical
learning [2]. Enabling efficient ways to harness the information available
in the "big data" has reshaped many aspects of the modern world, such
as businesses which are now using data-driven approaches to adapt their
strategies [3], researchers who are revolutionizing methodologies [4], and
governments who are making more informed decisions [5].

Recent research on big data keeps revealing its boundless potential.
Researchers have shown that exploiting the information available in the
data can result in substantial economic growth and improve the daily life
for everyone in myriads of ways [6]. For instance, in the medical fields
we can use the information available in the data to aid the fight against
the spread of different diseases in a more effective manner [7]. Another
area that has witnessed significant impact is online marketing [8]. We
can also delve deep and obtain a better understanding of the mechanisms
that influence the financial markets [9], create complex networks that
are easier to understand [10], analyze social-computational systems [11],
and ensure the robustness and security of important systems such as the
internet and power grids [12].

As discussed above, harnessing the power of big data is reshaping en-
tire industries, steering government policies, and paving path to more
sustainable societies [13]. Considering the ongoing data-driven industrial
revolution, understanding and being able to efficiently utilize this data
are the essential elements for succeeding in this changing environment
[14]. Optimization problems emerge naturally across various fields of engi-
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neering and science. We often find ourselves looking for the best possible
solution to a problem that we face, or situation that we encounter. In this
case, our own intuition is casting an optimization problem and seeking to
find a solution for it. In a very similar way, in engineering and science we
find ourselves converting this intuition into a mathematical formulation,
i.e., we cast different optimization problems [15]. These problems arise
often in various disciplines such as signal processing, control, wireless
communications and many more [2, 16, 17].

Obtaining mathematical models for different problems is important, how-
ever, we are typically interested in finding the optimal solution, which
is far from straightforward. One of the major challenges faced along the
path of finding the optimal solution for an optimization problem, is the
fact that many of these problems are unsolvable. This leads us to seek
for approximate solutions [18]. As is normal with all approximations, a
natural question that arises is: "How reliable are the obtained solutions?"
Answering such a question is tightly coupled with understanding the com-
putational aspects and limitations associated with solving an optimization
problem [19].

Coupling the computational aspects with the problem of creating a mathe-
matical model for the problem of interest typically takes significant amount
of time and effort. It is often the case, that researchers need to trade off
between an "exact" formulation which might not be solvable, with an ap-
proximate" model, which can be solved efficiently. In practice, the latter
models are typically preferred [20].

Such solutions have been observed in different fields in science and
engineering, with the Linear Model serving as the canonical example. Their
popularity is attributed to their simple nature, which also enables solvable
models. Another inherent benefit of linear methods is that it is usually
possible to interpret the obtained solution [21]. However, as we know
from the outburst of data-driven algorithms, the linear approximations
tend to be limited, and are not very successful at capturing the non-linear
structures which are present in the data [22].

1.2 Background

All the optimization problems that are encountered in science and en-
gineering, can be either non-convex or convex [20, 32, 24]. Despite the
recent advances in optimization theory, finding and certifying their global
solutions remain challenging [25]. On the other hand, the class of con-
vex optimization problems has gathered significant attention in the re-
search community [20, 25, 26]. Different from the case of non-convex
problems, for the class of convex problems it is possible to find and certify
the global solutions (or an arbitrarily tight approximation of them) [20].
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Such problems arise often in the context of applications in several fields
such as signal processing, information theory and wireless communica-
tions [27, 28, 29, 30, 31, 32]. A myriad of the aforementioned problems
can be solved exactly. Nevertheless, in the context of modern engineering
applications which are enabled by big data, we are more interested in
finding approximate solutions, which can be computed efficiently [33].

Depending on the size of the underlying datasets, it is natural to seek
to optimize the trade-off between a high per-iteration complexity and
convergence speed. Methods that exhibit a higher per iteration complexity,
such as Newton and/or quasi-Newton type methods (e.g., L-BFGS) also
exhibit fast convergence. However, as the size of the datasets grows large,
it becomes necessary to seek to devise methods that exhibit a low per-
iteration complexity, and as fast as possible convergence. One of the
most popular tools used to solve the large-scale optimization problems, are
gradient-based methods designed to be agnostic to the problem formulation,
i.e., considering the black-box framework. At each iteration, these methods
query a black-box oracle to obtain relevant insight about the function that
is being minimized [19]. To build efficient gradient-based methods, the
following aspects need to be considered: i) They need to converge to a
neighborhood of the optimal solution; ii) The number of first-order oracle
calls, together with additional computations, need to be minimized [25, 26].
The performance bounds for different black-box gradient-based methods
for different types of convex problems have been thoroughly investigated
and established in [19, 29, 30, 34].

In this thesis, we consider the problem of devising accelerated methods
for solving smooth and non-smooth convex optimization problems. Con-
sidering only the problem of devising efficient gradient-based methods for
solving convex optimization problems with smooth objective, one of the
most celebrated results is the development of the Fast Gradient Method
(FGM) [35]. Based on the framework devised in [19], FGM is referred to
as an optimal method, i.e., the method minimizes the calls of a first-order
oracle while exhibiting a convergence rate O(1/k2), where k is the iteration
counter. On a framework level, one of the most significant advances was the
development of the estimating sequences framework, initially introduced
in [36] and later refined in [15, 37]. Using this framework, further variants
of FGM constructing for solving optimization problems which have smooth
and strongly convex cost functions [36], [15, Constant Step Scheme I].
These variants of FGM require at most

√
κ
(︁
ln 1

ϵ +O(1)
)︁

iterations to con-
verge to a point x with f(x) − f∗ ≤ ϵ, where κ = L

µ and L, µ denote the
Lipschitz constant and strong convexity parameter.

Despite the consideration that the complexity bounds reached by FGM-
type methods are only proportional to the fundamental performance bounds
introduced in [19], FGM and its different variants have always been re-
garded in the literature to be optimal methods. Interestingly, these meth-
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ods started gathering more attention only after the publication of the
seminal work on smoothing techniques [38], wherein the author approxi-
mated a non-smooth convex cost function by another smooth convex cost
function. FGM was then used to minimize the approximated function.
The authors in [39] further extended the work by devising new interior
gradient algorithms which also exhibit an accelerated convergence rate.
In another line of work, detailed in [40, 41, 42], several researchers have
studied the problem of robustness of FGM-type methods with respect to the
usage of inaccurate gradients of the objective function in the minimization
process.

More recently, in addition to the estimating sequences framework, re-
searchers have also focused on studying other approaches that can be
used to accelerate gradient-based methods. In the line of work presented
in [43, 44, 45], existing links between the integration of ordinary differ-
ential equations (ODE) and optimization were considered in the context
of devising a different perspective on acceleration of first-order methods.
More specifically, in [44] the authors derive a second-order ODE which
is the limit of FGM. In [43], the authors show that different accelerated
gradient methods can be reformulated as constant parameter second-order
ODEs. Moreover, they show the equivalence between the stability of such
systems and the accelerated convergence rate. Last, in [45] the authors
demonstrate that different variants of FGM can be viewed as a structured
approach to transition from the continuous-time curves created by the
Bregman Lagrangian to accelerated algorithms. In another line of work,
the authors of [46] show that it is possible to devise different variants of
FGM by making use of the linear coupling between mirror and gradient de-
scent. Yet another line of work has been introduced in [47, 48]. Specifically,
the authors of [47] develop an accelerated gradient method by extend-
ing the results exiting for the ellipsoid method. The resulting method
called Geometric Descent is more efficient than FGM, however suffers
the drawback that it requires an exact line search to ensure accelerated
convergence. The links between the Geometric Descent Method (GDM)
introduced in [47] and the strongly-convex variants of FGM were later
established in [48]. Another line of work presented in [49] used principles
of robust control theory to derive convergence rate results for accelerated
gradient methods. The authors in [50] use the analysis presented in [49] to
construct a more efficient method, which they name as Triple Momentum
Method (TMM). TMM is more efficient than FGM, in the sense that it
exhibits a faster convergence rate, however it suffers the drawback that it
is defined only for strongly convex objective functions. Even for this class of
problems, when the value of the condition number is large, TMM exhibits
slower convergence than FGM (for more details see [51, Figure 1]).

Another interesting line of work has been introduced in [52]. Therein,
the authors cast a semidefinite program (SDP) which is used to model the
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improvement of the worst accuracy that a black-box numerical method can
exhibit. Later, in [53] the authors analyze the tightness of the worst-case
accuracies that the SDP yields. These results paved path to the devel-
opment of new classes of optimal methods for minimizing smooth and
non-strongly convex cost functions [54, 55]. Using the framework intro-
duced in [52], the authors of [51] develop an optimal method for solving
smooth and strongly convex optimization problems. The method proposed
therein reaches the complexity bounds established in [19], however it suf-
fers from several drawbacks. First, it is difficult to extend the framework
to broader and more practical optimization setups, such as non-smooth op-
timization, stochastic optimization, etc. Second, the results demonstrated
for the method are achieved by assuming that parameters relevant to the
objective function (e.g., µ, L) are known. The sensitivity and robustness
of the method to the inexact values of these parameters in the context of
practical deployments requires further analysis and evaluation.

Different from all the other frameworks which have been used to develop
accelerated gradient-based algorithms, estimating sequences have been
consistently used to develop numerical methods that exhibit a competitive
performance in a myriad of applications and optimization setups. In the
context of applications, a myriad of novel results have been presented
in [56, 57, 58, 59]. Specifically, in [56] the authors devise an accelerated
gradient method used for minimizing a smooth loss function regularized by
the trace norm of the matrix variable. In [57], the authors develop efficient
distributed methods and show that their results match the existing results
for FGM, with the additional cost coming from the communication con-
strains. Moreover, the authors in [58] consider the coupling of FGM-type of
acceleration, multi-consensus and gradient tracking to devise algorithms
that achieve optimal computation complexity and near-optimal communi-
cation complexity. Last, in [59] the authors develop an efficient variant of
FGM by using the principle of differential quantization.

Estimating sequence-based approaches have also been successfully ex-
tended to other optimization setups. A myriad of interesting results have
been established in the context of stochastic optimization [60, 61, 62]. In
[60], the authors develop a stochastic accelerated gradient method for
solving regularized risk minimization problems. An accelerated stochastic
approximation algorithm based on FGM is presented in [61]. A new class
of stochastic estimating sequences is presented in [62]. These stochastic
estimating sequences are then used to devise efficient and robust stochas-
tic methods. The development of non-Euclidean methods has also been
widely studied in the recent years [63, 64]. The new estimating functions
introduced in [64] are used to devise a novel bound on the nonlinear metric
distortion to devise a Riemannian version of FGM. The method proposed
therein exhibits accelerated convergence rate for finding the optimal so-
lution of geodesically convex problems, which are smooth and strongly
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convex. In [64], the authors present new estimating functions, which are
used to devise the first global accelerated gradient method for Riemannian
manifolds. Another relevant setup to which the estimating sequences
framework has been successfully extended is the design of higher-order
methods [37, 65, 66]. In [37], the author presents a unified framework
which can be used for studying estimating sequences methods, and shows
how to use the framework to devise a myriad of accelerated algorithms.
An accelerated version of the Newton method is presented in [65]. More-
over, accelerated high-order proximal methods developed using the inexact
oracle framework are presented in [66]. Another setup wherein the accel-
eration effect obtained by utilizing the estimating sequences framework
becomes relevant is related to non-convex problems [67, 68]. The general-
ization of FGM to non-convex setups is introduced in [67]. Moreover, for
nonconvex function with Lipschitz continuous first and second derivatives,
the authors present a Hessian-free accelerated gradient method [68].

Estimating sequences can also be considered to devise efficient methods
to solve constrained optimization problems. The fundamentals behind such
extensions are introduced in [15, Chapters 2.2.4 - 2.2.5]. The key behind
such extension lies in exploring the coupling of the estimating sequences
framework together with the gradient mapping framework [19]. A similar
approach can also be used for solving problems with convex composite ob-
jective functions. Extensions of these frameworks to solving such problems
are introduced in [69, 70, 71]. In [69], the author also introduces a new
class of estimating sequences and uses them to devise an accelerated gradi-
ent method called AMGS. Together with AMGS, the author also introduces
a backtracking strategy which is used to estimate the value of the Lipschitz
constant. In the same work, the author also presents an efficient technique
for approximating the strong convexity parameter of the cost function. The
main drawback of AMGS comes due to its high per iteration complexity
because for each iteration it needs two projection-like operations. This
issue has been mitigated with the development of FISTA. The method
exhibits an accelerated rate of convergence and a lower per iteration com-
plexity. Despite the attractive properties, FISTA does not convergence as
fast as AMGS when considered in practical deployments [72, 73]. Another
class of composite estimating sequences are introduced in [71]. Different
from the estimating sequences presented in [69], the composite estimating
sequences are used to devise accelerated gradient-based schemes which
require one projection-like operation per iteration. Moreover, the method
constructed therein, converges faster than both AMGS and FISTA when
tested on practical problems and real-world datasets.

A plethora of gradient-based methods have already been studied in
the literature in the context of different applications and optimization
setups. Despite the framework that is used for designing the methods,
in order for them to be considered as optimal when considering smooth
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convex optimization the following are important: i) the method achieves
an accelerated convergence rate; ii) the estimated number of iterations
is proportional to the complexity bounds given in [19]. In the context of
composite objectives with non-smooth term, it is desirable for the resulting
methods to exhibit an accelerated convergence rate. A unified framework
that can be used for devising gradient-based algorithms is presented in [74].
In [53], the authors compute the exact worst-case bounds for the variant
of FGM presented in [35]. As we discussed earlier, the variant of FGM
built using the estimating sequences framework is presented in [36, 15].
In [15], the author argues that one of the most relevant considerations for
designing optimal methods relates to parsing global topological information
about the cost function. The collection of such information is enabled by the
estimating sequences. They consist of the sequences {λk}k and {ϕk(x)}k,
which enable the computation of the rate of convergence for the iterates
and accumulation of information around them.

Considering the popularity of estimating sequence methods, one can
easily conclude that such an intuition is correct. A major challenge with the
framework arises because the estimating functions are not unique. Finding
a structure for estimating functions that always result in the most efficient
(both when considering the theoretical bounds and practical performance)
methods that can be devised for the corresponding problem classes remains
an open question. As we have already discussed, different variants FGM ,
e.g., the ones presented in [15, Constant Step Scheme I], [35], [69], etc., are
built using different estimating functions. Nevertheless, they are all very
efficient and enjoy the accelerated convergence rate properties. Despite
the different structures for the estimating functions, all variants of FGM
share the commonality that the parameters in iteration k + 1, are updated
by considering the values of the parameters in iteration k.

1.3 Objectives

Considering the plethora of frameworks for devising accelerated first-
order methods, together with the possibilities to construct more efficient
estimating functions, it is natural to ask: “Is it possible to construct more
efficient methods by changing the structure of the estimating functions?".
This is a central question in the thesis which is positively answered in
terms of minimizing smooth and convex cost functions, as well as composite
objective functions with a non-smooth term. The main contributions of the
thesis are summarized in the next Section.
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1.4 Contributions

• In Publication I, we introduce the generalized estimating sequences
which contain additional momentum terms and show how they can be
utilized to devise a generalized version of FGM. We also show how to
derive FGM based on our proposed framework.

• In Publication II, we formalize the generalized estimating sequences
framework and provide links between the momentum terms used to
construct the proposed generalized estimating sequences with the heavy-
ball momentum. Moreover, therein we establish the convergence results
of our proposed method and prove that it converges faster than FGM.
We also demonstrate numerically on real data and popular problems the
robustness of the methods devised within our proposed framework to the
inexact information on L and µ.

• In Publication III, we present the composite estimating sequences and
show how it can be coupled with the gradient mapping framework to con-
struct an accelerated gradient method for minimizing convex composite
cost functions.

• In Publication IV, we prove new results and implications of using our
proposed composite estimating sequences. Furthermore, we formalize
and establish the convergence of our proposed composite objective mul-
tistep estimating sequence technique (COMET). We show that COMET
requires only one projection-like operation per iteration and is more ef-
ficient than existing numerical methods for minimizing functions with
composite structure.

• In Publication V, we show how to further extend the generalized es-
timating sequences framework for minimizing convex and composite
cost functions. We embed the heavy-ball type of momentum introduced
in Publications I and II into the composite estimating sequences pre-
sented in Publications III and IV. We use the new estimating functions
to construct another numerical method and demonstrate its efficiency in
solving practical problems with real-world datasets.

1.5 Thesis structure

The remainder of the thesis is organized as follows. Chapter 2 introduces
the generalized estimating sequences framework for smooth functions. In
the same Chapter, we also present the associated method and establish its
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convergence. Chapters 3 and 4 focus on further extending the framework
to composite objectives. Chapter 3 uses a tight bound for the cost function
and the gradient mapping framework, to construct composite estimating
sequences and the corresponding method for minimizing convex and com-
posite cost functions. Chapter 4 further extends the work and introduces
the generalized composite estimating sequences. Using these estimating
sequences, we build yet another algorithm and establish its accelerated
rate. Chapter 5 presents our final remarks of the work and highlights
several remaining open problems.
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2. Generalizing the estimating
sequences

A myriad of accelerated gradient-based algorithms have been devised based
on the estimating sequences framework [35, 35, 15, 37]. In this Chapter,
we begin by looking at the simplest case of smooth and strongly convex
objective functions and highlight the main findings of Publications I and
II. We have already discussed in Chapter 1.2 that the existing variants
of FGM that are built using different estimating sequences share the
commonalty that updates at iteration k + 1 are obtained by considering
only the updates at iteration k. Considering the existing results on the
heavy-ball method [75], we thus formulate the first research questions of
this thesis: i) Can we construct estimating sequences which also consider
information coming from the past iterates? ii) How does this impact the
resulting optimization method?

In the sequel, we present our answers to the aforementioned questions.1

The main contributions are summarized as follows:

• We introduce new estimating functions, whose values are dependent on
the history of iterates.2

• We revisit the lemmas and theorems derived in the context of the clas-
sical estimating sequences framework and introduce new approaches
to establish our findings. We also highlight the intuition behind the
selection of the estimating sequences and design of the corresponding
methods.

• For black-box optimization, we introduce a novel type of heavy-ball
momentum, and show how to couple it with the estimating sequences
framework. Different from the framework presented in [75], wherein

1Note that the detailed derivations used to establish the Lemmas and Theo-
rems presented in the rest of the Thesis are provided as part of the individual
contributions.
2The proposed framework allows for embedding any form of information that can
accelerate the convergence of iterates.
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the heavy-ball momentum stabilizes the iterates, our newly introduced
momentum stabilizes the estimating functions themselves.

• We introduce a new gradient-based algorithm which allows for embed-
ding our newly introduced momentum term into the classical FGM. We
also show how FGM can be derived by discarding the additional memory
terms.

• We improve upon the existing convergence results for FGM. We establish
the optimality of our proposed method, and prove that the bound on the

iterations becomes
√︂

L
2µ

(︃
ln
(︁µR2

0
2ϵ

)︁
+ln(5)

)︃
, where R0 = ||x0 − x∗|| and

ϵ ≤ µ
2R

2
0. This results in an improvement over the bound reached from

FGM by more than 1√
2
.

• The newly introduced convergence results allow for setting γ0 = 0. In
our publications, we show numerically that this result alone enables a
faster convergence over FGM. We note that such result is an extension of
the existing analysis for FGM, wherein the convergence was established
only for γ0 ∈ [µ, 3L + µ]. Moreover, it enables the robustness of the
initialization of our method to the inexact estimate of µ.

• In our simulations, we highlight the efficiency of utilizing our method to
solve problems that arise often in signal processing. Both simulated and
publicly available datasets are used.

2.1 Proposed method

Let us beging by considering the following problem

minimize
x∈Rn

f(x), (2.1)

where f : Rn → R has strong convexity parameter µ and Lipschitz contin-
uous gradient L, defined by a deterministic black-box oracle.

First, let I = x0 + span{∇f(x0), . . .∇f(xk−1)} for k = 0, 1, 2, . . . , t, where
t is the current iteration. Next, we highlight the following definition.

Definition 1. The sequences {Φk}k and {λk}k, λk ≥ 0, are called general-
ized estimating sequences of the function f(·), if there exists a sequence of
bounded functions {ψk}k, λk → 0, and x ∈ I, ∀k we have

Φk(x) ≤ λkΦ0(x) + (1− λk) (f(x)− ψk(x)) . (2.2)

Using ψk(x) in (2.2) allows for including more information on the cost
function that can enable the faster convergence. Let us now show how to
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Generalizing the estimating sequences

use the generalized estimating sequences to measure the rate of conver-
gence for the iterates formed during the minimization process.

Lemma 1. If for some sequence of points {xk}k we have f(xk) ≤ Φ∗
k ≜

min
x∈I

Φk(x), then f(xk)− f(x∗) ≤ λk [Φ0(x
∗)− f(x∗)]− (1− λk)ψk(x∗), where

x∗ = arg min
x∈Rn

f(x).

Let us next proceed to presenting our proposed definitions for the terms
that comprise the generalized estimating sequences.

Lemma 2. Assume that there exist sequences {αk}k, where αk ∈ (0, 1) and∑︁∞
k=0 αk =∞, and {yk}k, where yk ∈ Rn, and a sequence of functions {ψk}k,

with an upper bound Ψk, such that ψk(x) ≥ 0, ∀k. Let ψ0(x) = 0 and λ0 = 1.
Then, the sequences {Φk}k and {λk}k, which are defined recursively as

λk+1 = (1− αk)λk, (2.3)

Φk+1(x)=(1−αk)(Φk(x)+ψk(x))−ψk+1(x)−Ψk+αkψk(x)

+αk

(︂
f(yk)+∇f(yk)T (x− yk) +

µ

2
||x− yk||2

)︂
, (2.4)

are generalized estimating sequences.

Recall that the structure for {Φk(x)}k has not been presented yet. As dis-
cussed in [15], accelerated methods needs to exploit some of the topological
features of the cost function. Such observation can be validated based on
existing results on second-order methods. Considering Newton’s method,
as shown in [20, Fig. 9.19], making use of the information available in
the Hessian enables the construction of ellipsoids around each iterate.
Such ellipsoids facilitate corrections of the selected descent direction. For
gradient-based methods, which do not have access to Hessian-related in-
formation, we can devise balls around each xk, without “discriminating”
the different search directions. Mathematically, this is modeled by using
isotropic functions, which scan with radius γk. The resulting Hessian then
becomes ∇2ϕk(x) = γkI. The estimating function is

ϕk(x) = ϕ∗k +
γk
2
||x− vk||2, ∀k, (2.5)

and has minimum value ϕ∗k, radius γk ∈ R+ and is centered around vk ∈ Rn.
Similar structure as (2.5) is also used for constructing FGM [15]. Different
from (2.5), we let

Φk(x) = ϕ∗k +
γk
2
||x− vk||2 − ψk(x). ∀k, (2.6)

The added term ψk(x) is

ψk(x) ≜
k−1∑︂

i=0

βi,k
γi
2
||x− vi||2. ∀k, (2.7)
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A simple example for βi,k is

βi,k =

⎧
⎨
⎩
min

(︂
1, µ

γk−1

)︂
, if i = k − 1,

0, otherwise.
(2.8)

Considering the black-box setting, wherein prior knowledge of the structure
of the objective function is not available, we allow our newly introduced
scanning functions to “self-regulate" and encompass information that was
already available from the earlier iterates. Selecting βi,k according to (2.8)
ensures that (2.7) remains finite since only the estimating function in
iteration k − 1 is used.

Let us now present the recursive relations for ϕ∗k, γk, and vk.

Lemma 3. Assume that the coefficients βi,k are selected according to (2.8),
and let Φ0(x) = ϕ∗0 +

γ0
2 ||x − v0||2. Then, the process defined in Lemma 2

preserves the quadratic canonical structure of the scanning function in-
troduced in (2.5). Moreover, the sequences {γk}k, {vk}k and {ϕ∗k}k can be
computed as

γk+1 = (1− αk)γk + αk

(︄
µ+

k−1∑︂

i=0

βi,kγi

)︄
, (2.9)

vk+1 =
1

γk+1

(︄
(1− αk)γkvk + µαk

(︄
yk −

1

µ
∇f(yk) +

k−1∑︂

i=0

βi,kγi
µ

vi

)︄)︄
,

(2.10)

ϕ∗k+1 = αkf(yk) + (1− αk)ϕ∗k +
αkγk(1− αk)(µ+

∑︁k−1
i=1 βi,kγi)

2γk+1
||yk − vk||2

(2.11)

+
α3
k

γk+1

k−1∑︂

i=0

βi,kγi||vi − yk|| ||∇f(yk)|| −
α2
k||∇f(yk)||2

2γk+1

+
αk(1−αk)γk

γk+1

(︄
(vk − yk)T ∇f(yk)+

k−1∑︂

i=0

βi,kγi||yk − vi||||yk − vk||
)︄

+(1− αk)
γk
2
||x∗Φk

−vk||2 + αk

k−1∑︂

i=0

βi,kγi
2
||yk − vi||2

+
(1− αk)α2

k

γk+1

k−1∑︂

i=0

βi,kγi(vi − yk)T∇f(yk) +
k−1∑︂

i=0

βi,k
γi
2
||x∗Φk

−vi||2.

We will choose {xk}k, {yk}k and {vk}k to ensure that f(xk) ≤ Φ∗
k, ∀k. For

iteration k, suppose that ϕ∗k ≥ f(xk). At iteration k + 1, by relaxing (2.11)
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Generalizing the estimating sequences

and making some algebraic manipulations, we reach

ϕ∗k+1≥f(yk)+(1−αk)∇f(yk)T(xk−yk)−
α2
k

2γk+1
||∇f(yk)||2 (2.12)

+
αk(1−αk)γk

γk+1
(vk−yk)T∇f(yk)+(1− αk)

α2
k

γk+1

k−1∑︂

i=0

βi,kγi(vi−yk)T∇f(yk).

The necessary conditions of Lemma 1 are fulfilled if ϕ∗k+1 ≥ f(xk+1). Thus,
we further relax the lower bound by making use of

f(yk)−
1

2L
||∇f(yk)||2 ≥ f(xk+1). (2.13)

To ensure that (2.13) is satisfied, it suffices to take a gradient step for yk
[15, Theorem 2.1.5]. This allows for computing αk as

αk =

√︃
γk+1

L
. (2.14)

Considering (2.9), we can write

αk =

(︂
µ+

∑︁k−1
i=1 βi,kγi − γk

)︂

2L
+

√︃(︂
µ+

∑︁k−1
i=1 βi,kγi − γk

)︂2
+ 4Lγk

2L
. (2.15)

Substituting the expression for αk presented in (2.15), we can revise (2.12)
as

ϕ∗k+1≥f(xk+1) + (1− αk)∇f(yk)T ((xk − yk) (2.16)

+
αkγk
γk+1

(vk − yk) +
α2
k

γk+1

k−1∑︂

i=0

βi,kγi(vi − yk)
)︄
.

The terms of {yk}k can be acquired from

xk−yk+
αkγk
γk+1

(vk − yk)+
α2
k

γk+1

k−1∑︂

i=0

βi,kγi(vi − yk)=0.

This yields

yk =
γk+1xk + αkγkvk + α2

k

∑︁k−1
i=0 βi,kγivi

γk+1 + αkγk + α2
k

∑︁k−1
i=0 βi,kγi

. (2.17)

The complete procedure is presented in Algorithm 1.
Let us next compare Algorithm 1 with [15, (2.2.19)]. First, observe that

the relations for computing αk and γk are different due to the different
estimating functions. A similar observation can be made by looking at the
recurrent relation for computing yk, ∀k. An important difference is the
range of values for which γ0 can be selected. The existing convergence
results for FGM are limited to the range γ0 ∈ [µ, 3L + µ]. Our algorithm
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Generalizing the estimating sequences

Algorithm 1 Proposed Method
1: Input x0 ∈ Rn, set γ0 ∈ [0, µ[∪[2µ, 3L+ µ] and v0 = x0.
2: while stopping criterion is not meet do

3: αk ← (µ+
∑︁k−1

i=1 βi,kγi−γk)+
√︂
(µ+

∑︁k−1
i=1 βi,kγi−γk)

2
+4Lγk

2L

4: γk+1 ← (1− αk)γk + αk

(︂
µ+

∑︁k−1
i=0 βi,kγi

)︂

5: yk ← γk+1xk+αkγkvk+α
2
k

∑︁k−1
i=0 βi,kγivi

γk+1+αkγk+α
2
k

∑︁k−1
i=0 βi,kγi

6: xk+1 ← yk − 1
L∇f(yk)

7: vk+1 ← 1
γk+1

(︃
(1− αk)γkvk + µαk

(︂
yk− 1

µ∇f(yk) +
∑︁k−1

i=0
βi,kγi
µ vi

)︂)︃

8: end while
9: Output xk+1

converges for a larger range of γ0. The extension of the convergence
results to cover also the case where γ0 = 0 enables the robustness of the
initialization of our method when using an inexact µ. Computing the
exact value for µ would require additional computations. Moreover, the
additional terms coming from using {ψk}k appear as multipliers of α2

k.
They are also present in the update of vk+1. Last, observe that FGM can
be derived by letting βi,k = 0, ∀i, k.

2.2 Bounds on convergence rate

Let us now present the key convergence results for our proposed method.
First, we show that the convergence of the iterates obtained during the
minimization process is dependent on both {λk}k and {ψk}k.

Theorem 1. If we let λ0 = 1 and λk =
∏︁k−1
i=0 (1− αi), Algorithm 1 generates

a sequence of points {xk}k such that

f(xk)− f∗ ≤ λk
[︂
f(x0)− f(x∗) +

γ0
2
||x0 − x∗||2

]︂
− (1− λk)ψk(x∗). (2.18)

From Lemma 2, we have that {λk}k → 0 when k →∞. The estimate of
the rate of convergence for {λk}k is given in the following Lemma.

Lemma 4. For all k ≥ 0, Algorithm 1 guarantees that

λk≤
2µ

L

(︄
e

k+1
2

√︃
µ+

∑︁k−1
i=1

βi,kγi
L − e−

k+1
2

√︃
µ+

∑︁k−1
i=1

βi,kγi
L

)︄2 (2.19)

≤ 2µ(︂
µ+

∑︁k−1
i=1 βi,kγi

)︂
(k + 1)2

.

Last, we demonstrate that Algorithm 1 is optimal.
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Theorem 2. In Algorithm 1, let µ > 0. Then, the scheme generates a
sequence of points such that

fk − f∗≤
µ||x0 − x∗||2

(︄
e
k+1
2

√︃
µ+

∑︁k−1
i=1

βi,kγi
L −e−

k+1
2

√︃
µ+

∑︁k−1
i=1

βi,kγi
L

)︄2 − (1− λk)ψk(x∗). (2.20)

where fk = f(xk) and f∗ = f(x∗). This means that the method is optimal
when the accuracy ϵ ≤ µ

2 ||x0 − x∗||2.

For the class of problems considered in this Chapter, FGM reaches the
following bound [15, (2.2.17)]

kFGM ≥
√︄
L

µ

(︃
ln
(︃
µR2

0

2ϵ

)︃
+ ln(23/3)

)︃
. (2.21)

On the other hand, if we select βi,k according to (2.8), the proposed method
reaches the following bound on the iterations

kProposed ≥
√︄

L

µ+min (γk−1, µ)

(︃
ln
(︃
µR2

0

2ϵ

)︃
+ ln(5)

)︃
. (2.22)

Observe that the bound presented in (2.22) is impacted by the rate of
increase for the terms in {γk}k. As we demonstrate in our Publications I
and II, the terms {γk}k grow exponentially in k, and converge to 2µ. Thus,
the bound to the required number of iterations converges to

kProposed →
√︄

L

2µ

(︃
ln
(︃
µR2

0

2ϵ

)︃
+ ln(5)

)︃
. (2.23)

Comparing the convergence results presented in (2.20) to the existing
lower bound for FGM given in (2.21), we highlight the improvement by at
least a factor of 1/

√
2.

31





3. Extending the existing estimating
sequence framework to composite
objectives

In this Chapter, we focus on a broader class of convex problems, which
are expressed as the sum of a smooth convex function together with a
non-smooth convex function. In the sequel, we present the main find-
ings of Publications III and IV. For this class of problems, several esti-
mating sequences methods have been introduced in [69, 72, 73]. Links
between methods that were not originally devised by using the estimating
sequences framework, such as FISTA, with estimating sequences methods
have been presented in [73]. Despite these methods being devised using
different frameworks, they all share in common the accelerated rate of
convergence. Nevertheless, when comparing their performance in solving
practical problems with real-world data, we have observed that they ex-
hibit different convergence properties. Moreover, comparing the original
FGM with FISTA and AMGS for minimizing smooth convex functions, we
have observed that FGM is more efficient. Thus, it becomes relevant to
extend the estimating sequences framework used for devising FGM to the
setup of composite objectives.

In the sequel, we introduce our proposed composite estimating sequences
and show how to construct a composite objective estimating sequence
technique that exhibits an accelerated rate of convergence. The main
contributions are summarized as follows:

• We present new estimating sequences that are useful for devising nu-
merical methods for minimizing the broader class of composite functions.

• We introduce new composite estimating functions, devised by coupling
the gradient mapping framework introduced in [19] together with a tight
bound on the composite cost function.

• Different from the “classical” functions used in [15], our proposed com-
posite estimating functions exploit a tight bound on the composite cost
function, together with its subgradients. This allows for devising accel-
erated gradient-based methods applicable to more general optimization
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problems.

• Based on the composite estimating sequences, we devise the Composite
Objective Multi-step Estimating-sequence Techniques (COMET). Our
proposed method, is equipped with an efficient step-size adaption strategy.
Different from AMGS, COMET requires only one projection-like operation
per iteration.

• We prove that COMET exhibits an accelerate rate despite the inexact
information of the Lipschitz constant.

• Through computational experiments, we highlight the robustness of
COMET to the inexact information of µ.

• Moreover, we conduct extensive computational experiments for differ-
ent practical data processing problems modeled through composite and
convex cost functions. We demonstrate the superior performance of our
proposed method relative to the existing benchmarks. To highlight the
efficiency and robustness of our proposed method in a reliable manner,
we consider real-world datasets.

3.1 Preliminaries

The problems of interest have the following structure

minimize
x∈Rn

F (x) = f(x) + τg(x), τ > 0, (3.1)

Transferring the strong convexity parameter of g(x) inside F (x) yields

F (x)=
(︂
f(x) +

τµg
2
||x−x0||2

)︂
+τ
(︂
g(x)−µg

2
||x−x0||2

)︂
= f̂(x) + τ ĝ(x).

(3.2)

Considering the above-mentioned strong convexity transfer, we can write
Lf̂ = Lf + τµg and µf̂ = µf + τµg. Moreover, we observe that µĝ = 0.

Recall that for f̂(x) we can write

f̂(x) ≤ f̂(y) +∇f̂(y)T (x− y) +
Lf̂
2
||y − x||2, (3.3)

f̂(x) ≥ f̂(y) +∇f̂(y)T (x− y) +
µf̂
2
||y − x||2. (3.4)

In a similar manner, by definition of the subgradient of a function, we can
write

ĝ(x) ≥ ĝ(y) + s(y)T (x− y), (3.5)
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where s(y) denotes a subgradient of ĝ(y). Furthermore, consider

mL(y;x)≜ f̂(y)+∇f̂(y)T(x−y)+
L

2
||x−y||2+τ ĝ(x), (3.6)

where L ≥ Lf̂ . Substituting (3.3) in (3.6), yields

mL(y;x) ≥ F (x), ∀x, y ∈ Rn. (3.7)

Next, let us introduce the composite gradient mapping

TL(y) ≜ arg min
x∈Rn

mL(y;x). (3.8)

Morever, we define the composite reduced gradient

rL(y) ≜ L (y − TL(y)) . (3.9)

Considering the special case τ = 0, (3.2) results in f̂(x) = f(x). Observe
that this would be the case wherein mL(y;x) would be differentiable in
its variables. Applying the optimality condition for (3.8), we can write
∇mL(y;x) = 0. Replacing (3.6) in (3.8), and evaluating the first order
condition, yields TL(y) = y − ∇f̂(y)

L . Replacing such result in (3.9), we
obtain rL(y) = ∇F (y) = ∇f(y). Considering the broader case where τ ̸= 0,
based on the optimality criteria for (3.8), we can write

∂mL(y;TL(y))
T (x− TL(y)) ≥ 0,

(︂
∇f̂(y)+L(TL(y)−y)+τsL(y)

)︂T
(x−TL(y))≥0, (3.10)

where ∂ is the subdifferential of mL(y;TL(y)) and sL(y) ∈ ∂ĝ(TL(y)). Lettin
g the first factor of (3.10) be equal to 0, together with utilizing (3.9), results
in

rL(y) = L(y − TL(y)) = ∇f̂(y) + τsL(y). (3.11)

The next theorem introduces a tighter lower bound than the one given in
(3.4) for F (x).

Theorem 3. Let F (x) be a composition of an Lf̂ -smooth and µf̂ -strongly
convex function f̂(x), and a simple convex function ĝ(x), as given in (3.2).
For L ≥ Lf̂ , and x, y ∈ Rn we have

F (x) ≥ f̂(TL(y)) + τ ĝ(TL(y)) + rL(y)
T (x− y) +

µf̂
2
||x− y||2 + 1

2L
||rL(y)||2.

(3.12)

3.2 Proposed method

Similar to the previous Chapter, let us define the following.
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Definition 2. The sequences {ϕk}k and {λk}k, λk ≥ 0, are called composite
estimating sequences of the function F (·) defined in (3.2), if λk → 0 as
k →∞, and ∀x ∈ Rn, ∀k ≥ 0, we have

ϕk(x) ≤ λkϕ0(x) + (1− λk)F (x). (3.13)

Observe that the proposed composite estimating sequences can estimate
the rate of convergence of {xk}k. This is captured in the sequel.

Lemma 5. If for some sequence of points {xk}k we have F (xk) ≤ ϕ∗k ≜
min
x∈Rn

ϕk(x), then F (xk)−F (x∗)≤λk [ϕ0(x∗)−F (x∗)], where x∗=arg min
x∈Rn

F (x).

The terms comprising the composite estimating sequences are computed
recursively as shown below.

Lemma 6. Assume that there exists a sequence {αk}k, where αk ∈ (0, 1) ∀k,
such that

∑︁∞
k=0 αk =∞, and an arbitrary sequence {yk}∞k=0. Furthermore,

let λ0 = 1 and assume that the estimates Lk, ∀k, of the Lipschitz constant Lf̂
are selected in a way that inequality (3.3) is satisfied for all the iterates xk
and yk. Then, the sequences {ϕk}k and {λk}k, which are defined recursively
as

λk+1 = (1− αk)λk, (3.14)

ϕk+1(x) = (1− αk)ϕk(x) + αkF (TLk
(yk)) + αk

1

2Lk
||rLk

(yk)||2 (3.15)

+ αk

(︂
rLk

(yk)
T (x− yk) +

µf
2
||x− yk||2

)︂
,

are composite estimating sequences.

Let us now compare our findings presented in Definition 2, Lemma 5 and
Lemma 6 with the results obtained in [15, Definition 2.2.1, Lemma 2.2.1,
Lemma 2.2.2]. If the objective function were differentiable, the proposed
Definition 2 and Lemma 5 would reduce to the baseline results introduced
for FGM, which are obtained under the assumption of smooth objective
function. From this viewpoint, our proposed framework extends results
introduced in [15] to a broader setup. Second, based on the results proved
for Lemma 5, the rate of convergence of {xk}k would be characterized by
the rate that λk → 0. Third, (3.15) highlights the effect of using the tighter
bound introduced in Theorem 3. Last, the objective function given in
(3.15) is now computed based on the composite gradient mapping. Unlike
the case of FGM, the proposed composite estimating functions exploit the
subgradients of the non-smooth cost function to build {ϕk}k.

The terms of the sequence {ϕk}k can be computed as follows

ϕk(x) = ϕ∗k +
γk
2
||x− vk||2, ∀k = 1, 2, . . . . (3.16)

We highlight that there could be choices for ϕk(x), which can lead to
different algorithms (see [63, 64]). We can now proceed to presenting the
recursive relations for the terms {γk}k, {vk}k, and {ϕ∗k}k.
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Lemma 7. Let ϕ0(x) = ϕ∗0 + γ0
2 ||x − v0||2, where γ0 ∈ R+ and v0 ∈ Rn.

Then, the process defined in Lemma 6 preserves the canonical form of the
function presented in (3.16), where the sequences {γk}k, {vk}k, and {ϕ∗k}k
can be computed as follows

γk+1 = (1− αk)γk + αkµf̂ , (3.17)

vk+1=
1

γk+1

(︂
(1− αk)γkvk + αk

(︂
µf̂yk − Lk(yk − TLk

(yk))
)︂)︂

, (3.18)

ϕ∗k+1 = (1− αk)ϕ∗k +αk
(︃
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2
)︃
−L

2
kα

2
k

2γk+1
||yk−TLk

(yk)||2

+
µf̂αkγk(1−αk)

2γk+1
||yk−vk||2 +

Lkαkγk(1− αk)
γk+1

(yk−vk)T (yk−TLk
(xk)).

(3.19)

Different from the results given in [15], our proposed framework also
allows for the line search adaptation.1 To enable faster convergence to the
optimal solution, it would be desirable to choose the smallest value Lk for
which (3.3), wherein Lf̂ = Lk, is satisfied ∀k = 0, 1, . . .. Then, it would be
desirable to control the increase of its value throughout the minimization
process. Such approach would enforce the algorithm to perform “larger
steps towards x∗” during the first few iterations. In the later iterations,
i.e., when xk is closer to x∗, having large Lk would prevent the method
from overshooting past x∗. Unfortunately, such approach relies on the
assumption that Lf̂ is perfectly known. This makes it unsuitable for
practical setups. Instead, we choose a line search strategy which enables
the following: i) Robustness of the algorithm with respect to the selection
of L0; ii) Dynamic changes of the values of Lk, ∀k = 0, 1, . . .. Our proposed
line search strategy utilizes ηu > 1, which increases the value of Lk, and
ηd ∈]0, 1[, which decreases the value of Lk. As we have shown in our
articles, the impact of the additional backtracks is minimal. This has also
been observed in [72, 73]. The proposed algorithm for solving problems
with composite objectives is given in Algorithm 2. In line 3 of Algorithm
2, we use Kmax to denote the maximum allowed number of iterations. Its
value can be chosen to optimize the trade-off between the needed accuracy,
and computations/processing time. Comparing the method devised in this
Chapter to FGM (CSS I in [15]), we can observe that {αk}k and {γk}k share
similar recursive structures. The update of yk is different. In the case of
our proposed method, yk is computed independently of the value of µf̂ . The
update rule for the iterates xk is also different. Because of the structure of
the cost function, the next iterate is obtained through a proximal gradient
step. The assumption on the simplicity of the non-smooth term g(x) ensures
that the proximal term can be computed with complexity O(n) [76]. The

1A myriad of backtracking line search strategies have already been presented in
the literature (see [69, 70]).
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Algorithm 2 Proposed Method
1: Input x0 ∈ Rn, L0 > 0, µf̂ , γ0 ∈ [0, 3L0 + µf̂ ],
ηu > 1 and ηd ∈]0, 1[.

2: Set k = 0, i = 0 and v0 = x0.
3: while k ≤ Kmax do
4: L̂i ← ηdLk
5: while True do

6: α̂i ←
(µf̂−γk)+

√︂
(µf̂−γk)2+4L̂iγk

2L̂i

7: γ̂i+1 ← (1− α̂i)γk + α̂iµf̂

8: ŷi ←
γ̂i+1xk+α̂iγkvk
γ̂i+1+α̂iγk

9: x̂i+1 ← prox 1
L̂i
ĝ

(︂
ŷi − 1

L̂i
∇f(ŷi)

)︂

10: v̂i+1 ← 1
γ̂i+1

(︂
(1− α̂i)γkvk+α̂i

(︂
µf̂ ŷi − L̂i (ŷi−x̂i+1)

)︂)︂

11: if F (x̂i+1) ≤ mL̂i
(ŷi, x̂i+1) then

12: Break from loop
13: else
14: L̂i+1 ← ηuL̂i
15: end if
16: i← i+ 1

17: end while
18: Lk+1 ← L̂i, xk+1 ← x̂i, αk ← α̂i−1,

yk ← ŷi−1, i← 0, k ← k + 1

19: end while
20: Output xk

update vk is also computed differently. In the case of our proposed method,
we can observe the effect of using the composite reduced gradient. Last,
observe that our proposed convergence analysis enables the converge of
the proposed method for a wider selection of γ0. This is different from the
existing results presented in [15, Lemma 2.2.4], wherein convergence is
established only for γ0 ∈ [µf̂ ; 3Lf̂ + µf̂ ]. Choosing γ0 = 0, also enables the
robustness of the initialization of our proposed algorithm with respect to
the imperfect knowledge of µf̂ .

3.3 Bounds on the convergence rate

First, we demonstrate that the convergence rate of the minimization pro-
cess is characterized by the rate that λk → 0.

Theorem 4. If we let λ0 = 1 and λk =
∏︁k−1
i=0 (1− αi), Algorithm 2 generates

a sequence of points {xk}∞k=0 such that

F (xk)− F (x∗) ≤ λk
[︂
F (x0)− F (x∗) +

γ0
2
||x0 − x∗||2

]︂
. (3.20)
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Since λk → 0, Theorem 4 suffices to conclude that the iterates generated
by our proposed method converge to x∗. We are now ready to estimate the
rate at which λk → 0.

Lemma 8. For all k ≥ 0, Algorithm 2 guarantees that

1. If γ0 ∈ [0, µf̂ [, then

λk ≤
2µf̂

Lk

(︄
e

k+1
2

√︃
µ
f̂

Lk − e−
k+1
2

√︃
µ
f̂

Lk

)︄2 ≤
2

(k + 1)2
. (3.21)

2. If γ0 ∈ [µf̂ , 3L0 + µf̂ ], then

λk≤
4µf̂

(γ0 − µf̂ )
(︄
e

k+1
2

√︃
µ
f̂

Lk − e−
k+1
2

√︃
µ
f̂

Lk

)︄2 ≤
4Lk

(γ0 − µf̂ )(k + 1)2
. (3.22)

Contrasting the results in Lemma 8 with their counterpart, i.e., [15,
Lemma 2.2.4], we have the following main differences. First, we prove
the convergence of the iterates also in the absence of the exact knowledge
of the Lipschitz constant. Moreover, we prove the convergence of the
minimization process for a wider range of γ0. Such a finding is important
for several reasons: i) The proposed method enjoyes a faster theoretical and
practical convergence when γ0 = 0; ii) Setting γ0 = 0 provides robustness
to the inexact knowledge of µf̂ .

The following lemma yields an upper bound on the distance F (x0)−F (x∗).

Lemma 9. Let F (x) be a convex function with composite structure as shown
in (2.1). Moreover, let TL(y) and rL(y) be computed as given in (3.8) and
(3.11), respectively. Then, for any starting point x0 in the domain of F (x),
we have

F (x0)− F (x∗) ≤
L0

2
||x0 − x∗||2. (3.23)

Combining Lemmas 8 and 9 with Theorem 4, yields the following conver-
gence rate for our proposed method.

Theorem 5. Algorithm 2 generates a sequence of points such that

1. If γ0 ∈ [0, µf̂ [, then

F (xk)− F (x∗) ≤
µf̂ (L0 + γ0)||x0 − x∗||2

Lk

(︄
e

k+1
2

√︃
µ
f̂

Lk − e−
k+1
2

√︃
µ
f̂

Lk

)︄2 . (3.24)
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2. If γ0 ∈ [µf̂ , 3L0 + µf̂ ], then

F (xk)−F (x∗)≤
2µf̂ (L0+γ0)||x0−x∗||2

(γ0−µf̂ )
(︃
e
k+1
2

√︂
µ
Lk − e−

k+1
2

√︂
µ
Lk

)︃2 . (3.25)

Based on Theorem 5, we can observe that our proposed method converges
over a wider interval than its counterpart devised for the class of smooth
and strongly convex functions. Initializing γ0 = 0 guarantees the fastest
convergence of the method. Such a result is relevant in the context of
practical deployments of the proposed method, since µf̂ and Lf̂ are not
known and their values need to be derived based on the available data.
The convergence rate of the iterates is also dependent on the value of L0.
Based on (3.24) and (3.25), we can see that choosing small values for L0

enables faster convergence of the proposed method.

40



4. Generalizing the estimating
sequences framework for problems
with composite objectives

In this Chapter, we further extend the results presented in Chapters 2
and 3. So far, we have proposed estimating sequences constructions that
extend in different directions. In Chapter 2, we proposed a new class of
generalized estimating sequences that support the embedding of a heavy-
ball type of momentum into the classical estimating sequences. Based on
the framework introduced in Chapter 2, we established that it is possible to
devise a method that enjoys a provably faster convergence rate than FGM.
In Chapter 3, we proposed a new class of estimating sequences that can be
used for solving optimization problems with composite objectives. Therein,
we showed that our proposed black-box method also enjoys the same
acceleration as the existing benchmarks among black-box methods, i.e.,
AMGS and FISTA, however it is more efficient than them. The remaining
question of interest relates to exploring the coupling of the frameworks
introduced in Chapters 2 and 3.

In the sequel, we present the final class of estimating sequences that
we devise in this thesis, which we name generalized composite estimating
sequences, and show that they enable the construction of a class of very
efficient accelerated algorithms. The main contributions are summarized
as follows:

• We introduce a new structure for the estimating functions, which we call
the generalized composite estimating functions. The proposed estimating
functions are constructed by making use of the generalized estimating
sequences, which contain a heavy-ball type of momentum embedded in
them, together with the gradient mapping technique [19]. Similar to
Chapter 3, we use a tighter global lower bound on the objective function
than the one obtained from the Taylor series expansion of a convex
function.

• We use the proposed generalized composite estimating sequences to de-
vise a new class of accelerated gradient methods, which are also equipped
with an efficient backracking line-search technique. Similarly to the
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Generalizing the estimating sequences framework for problems with composite objectives

method introduced in Chapter 3, and different from AMGS, our proposed
method also requires one projection-like operation per iteration.

• Independent from the knowledge of the true value of the Lipschitz
constant, we prove that our proposed method enjoys the accelerated
convergence rate.

• We prove that the initialization of our proposed method can be made
robust to the imperfect knowledge of the strong convexity parameter.
This reduces the computational burden of computing a tight estimate of
the strong convexity parameter.

• We also demonstrate numerically the superiority of our proposed method
when compared to the existing benchmarks. Such superiority is also
visible when the performance of the methods is tested on real-world
datasets and when inexact values of the strong convexity parameter and
the Lipschitz constant are selected.

4.1 Proposed method

Let us now present the last structure of estimating sequences that we have
devised in this thesis.

Definition 3. The sequences {Φk}k and {λk}k, λk ≥ 0, are called general-
ized composite estimating sequences of the function F (·) defined in (3.2), if
there exists a sequence of bounded functions {ψk}k, λk → 0 as k →∞, and
∀x ∈ I, ∀k ≥ 0 we have

Φk(x) ≤ λkΦ0(x) + (1− λk) (F (x)− ψk(x)) . (4.1)

Similar to other estimating sequences, we can use the generalized com-
posite estimating sequences to characterize the convergence rate of the
minimization process.

Lemma 10. If for some sequence {xk}k we have F (xk) ≤ Φ∗
k ≜min

x∈Q
Φk(x),

then F (xk) − F (x∗) ≤ λk [Φ0(x
∗)− F (x∗)] − (1 − λk)ψk(x

∗), where x∗ =

argmin
x∈Q

F (x).

To construct our proposed method, we will need the following recurrent
definitions of the estimating functions.

Lemma 11. Assume that there exist sequences {αk}k, where αk ∈ (0, 1)

∀k, such that
∑︁∞

k=0 αk = ∞, {ψk}k with an upper bound Ψk, such that
{ψk}k ≥ 0 and an arbitrary sequence {yk}k. Furthermore, let ψ0(x) = 0,
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λ0 = 1 and assume that the estimates Lk, ∀k = 0, 1, . . ., of the Lipschitz
constant Lf̂ are selected in a way that inequality (3.3) is satisfied for all
the iterates xk and yk, ∀k = 0, 1, . . .. Then, the sequences {Φk}k and {λk}k,
which are defined recursively as

λk+1 = (1− αk)λk, (4.2)

Φk+1(x) = (1− αk) (Φk(x) + ψk(x))− ψk+1(x)−Ψk + αk

(︃
µf̂
2
||x− yk||2

)︃

+αk

(︃
F
(︁
TLk

(yk) + rLk
(yk)

T (x− yk)
)︁
+ ψk(x) +

1

2Lk
||rLk

(yk)||2
)︃
,

(4.3)

are generalized composite estimating sequences.

Observe that the estimating sequences used for devising FGM in [15,
Lemma 2.2.4] are obtained as the special case of our generalized composite
estimating sequences when τ = 0 and ψk(x) = 0, ∀k = 0, 1, . . .. Similarly,
the generalized estimating sequences devised in Chapter 2 give the special
case of our proposed generalized composite estimating sequences obtained
when τ = 0. Last, the composite estimating sequences presented in Chap-
ter 3 correspond to the special case obtained when {ψk}k = { 0}k. In this
sense, the generalized composite estimating sequences presented in this
Chapter encompass different variants of estimating sequences presented
in the literature.

Considering γk ∈ R+, vk ∈ Rn, ∀k = 0, 1, . . ., let us choose {Φk}k as (2.5),
{ψk(x)}k as (2.7), and βi,k as (2.8). Based on these selections, the minimal
value of the estimating function introduced in (2.5) is

Φ∗
k = min

x
Φk(x) = ϕ∗k +

γk
2
||x∗Φk

− vk||2 −
k−1∑︂

i=1

βi,kγi
2
||x∗Φk

−vi||2, (4.4)

where x∗Φk
= argminxΦk(x). The recursive relations for the parameters of

{ϕk}k are presented in the following Lemma.

Lemma 12. Let ϕ0(x) = ϕ∗0 +
γ0
2 ||x − v0||2, where γ0 ∈ R+ and v0 ∈ Rn.

Then, the process defined in Lemma 11 preserves the canonical form of the
function {Φk(x)}k presented in (2.5), where the sequences {γk}k, {vk}k and
{ϕ∗k}k can be computed as follows

γk+1 = (1− αk)γk + αk

(︄
µf̂ +

k−1∑︂

i=1

βi,kγi

)︄
, (4.5)

vk+1 =
1

γk+1

(︄
(1−αk)γkvk+αk

(︃
µf̂yk+

k−1∑︂

i=1

βi,kγi − L(yk − TLk
(yk))

)︃)︄
, (4.6)

ϕ∗k+1=(1− αk)ϕ∗k +αk
(︄
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑︂

i=1

βi,kγi||yk − vi||2
)︄
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− L
2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(︂
µf̂ +

∑︁k−1
i=1 βi,kγi

)︂

2γk+1
||yk−vk||2

+
(1−αk)γk
γk+1

||x∗Φk
− vk||2 +

k∑︂

i=1

βi,k+1γi
2

||x∗Φk+1
− vi||2

+
α2
k(1− αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi − yk)T rLk
(yk)

+
α3
k

γk+1

k−1∑︂

i=1

βi,kγi||vi − yk|| ||rLk
(yk)||

+
αkγk(1− αk)

γk+1

(︄
(vk − yk)T rLk

(yk) +

k−1∑︂

i=1

βi,kγi||yk − vi|| ||yk − vk||
)︄
.

(4.7)

Comparing between our results presented in Lemma 12 to that of [15,
Lemma 2.2.3], we can highlight that the recursive relations obtained for
computing the terms {vk}k and {ϕ∗k}k now reflect the usage of a new lower
bound on the function that is being minimized. The impact of using the
proposed reduced composite gradient is also visible. Moreover, observe that
the computation of the terms {γk}k, {vk}k, and {ϕ∗k}k highlight the presence
of the heavy-ball type of momentum term that was used to construct them.
Comparing the above obtained results to the ones devised in Chapter 2,
we can observe the presence of the subgradients of the objective function
together with the multistep nature of our newly obtained method. Last,
different from the results highlighted in Chapter 3, we can observe the
additional terms coming from the newly introduced heavy-ball type of
momentum.

Similar to the previous Chapters, we will devise our proposed method by
using an induction-based argument. Suppose that at step k we have

Φ∗
k

(4.4)
= ϕ∗k +

γk
2
||x∗Φk

− vk||2 −
k−1∑︂

i=1

βi,kγi
2
||x∗Φk

−vi||2 ≥ F (xk). (4.8)

We need to prove that Φ∗
k+1 ≥ F (xk+1). Using (4.8) and (3.9) in (4.7), we

obtain

ϕ∗k+1≥(1−αk)F (xk)+αk
(︄
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑︂

i=1

βi,kγi||yk − vi||2
)︄

− L
2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(︂
µf̂ +

∑︁k−1
i=1 βi,kγi

)︂

2γk+1
||yk−vk||2

+
(1−αk)γk
γk+1

||x∗Φk
− vk||2 +

k∑︂

i=1

βi,k+1γi
2

||x∗Φk+1
− vk||2
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+
α2
k(1− αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi−yk)T rLk
(yk)

+
α3
k

γk+1

k−1∑︂

i=1

βi,kγi||vi−yk||||rLk
(yk)||

+
αkγk(1− αk)

γk+1

(︄
(vk − yk)T rLk

(yk) +
k−1∑︂

i=1

βi,kγi||yk − vi||||yk − vk||
)︄
.

(4.9)

Substituting (3.12) into (4.9), we have

ϕ∗k+1≥(1−αk)
(︃
F (TLk

(yk))+rLk
(yk)

T (xk−yk)+
µ

2
||xk−yk||2+

1

2Lk
||rLk

(yk)||2
)︃

+αk

(︄
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑︂

i=1

βi,kγi||yk − vi||2
)︄

− L
2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(︂
µf̂ +

∑︁k−1
i=1 βi,kγi

)︂

2γk+1
||yk−vk||2

+
(1−αk)γk
γk+1

||x∗Φk
− vk||2 +

k∑︂

i=1

βi,k+1γi
2

||x∗Φk+1
− vk||2

+
α2
k(1− αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi−yk)T rLk
(yk)

+
α3
k

γk+1

k−1∑︂

i=1

βi,kγi||vi−yk||||rLk
(yk)||

+
αkγk(1− αk)

γk+1

(︄
(vk − yk)T rLk

(yk) +

k−1∑︂

i=1

βi,kγi||yk − vi||||yk − vk||
)︄
.

(4.10)

Making some manipulations in (4.10), we reach

ϕ∗k+1 ≥F (TLk
(yk))+(1− αk)rLk

(yk)
T (xk−yk)+

k∑︂

i=1

βi,k+1γi
2

||x∗Φk+1
−vi||2

+

(︃
1

2Lk
− α2

k

2γk+1

)︃
||rLk

(yk)||2 +
α2
k(1− αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi − yk)T rLk
(yk)

+
αkγk(1− αk)

γk+1
(vk − yk)T rLk

(yk). (4.11)

Next, we add γk+1

2 ||x∗Φk+1
−vk+1||2 to the LHS of (4.11) and move

∑︁k
i=1

βi,k+1γi
2
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||x∗Φk+1
−vi||2 to the LHS of (4.11). This results in

Φ∗
k+1 ≥F (TLk

(yk))+(1− αk)rLk
(yk)

T (xk−yk) +
(︃

1

2Lk
− α2

k

2γk+1

)︃
||rLk

(yk)||2

+
α2
k(1−αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi−yk)TrLk
(yk)+

αkγk(1−αk)
γk+1

(vk−yk)T rLk
(yk).

(4.12)

We can simplify (4.12) by letting

αk =

√︃
γk+1

Lk
. (4.13)

Plugging (4.5) into (4.13), yields the following recurrent relation for αk

αk =
µf̂ +

∑︁k−1
i=1 βi,kγi − γk +

√︃(︂
µf̂ +

∑︁k−1
i=1 βi,kγi − γk

)︂2
+ 4Lkγk

2Lk
. (4.14)

Thus, we can re-write (4.12) as

Φ∗
k+1≥F (TLk

(yk))+(1−αk)rLk
(yk)

T (xk−yk)

+
α2
k(1− αk)
γk+1

k−1∑︂

i=1

βi,kγi(vi−yk)T rL(yk) +
αkγk(1− αk)

γk+1
(vk − yk)T rL(yk).

Letting

xk − yk +
αkγk
γk+1

(vk − yk) +
α2
k

γk+1

k−1∑︂

i=1

βi,kγi(vi − yk) = 0, (4.15)

results in the following recurrent relation for yk.

yk =
γk+1xk + αkγkvk + α2

k

∑︁k−1
i=1 βi,kγivi

γk+1 + αkγk + α2
k

∑︁k−1
i=1 βi,kγi

. (4.16)

Finally, to establish Φ∗
k+1 ≥ F (xk+1), we can now simply let xk+1 = TLk

(yk).
Our proposed method is summarized in Algorithm 3.

Comparing between our proposed method and FGM, we highlight based
on lines 6 and 7 in Algorithm 3, that the updates for αk and γk are now
computed differently from the ones for FGM. For our proposed method,
their values exhibit dependency on the heavy-ball type of momentum term
that is utilized in building the estimating sequences. The update for yk
is also computed differently. Furthermore, the value is not dependent
on µf̂ . Another significant difference is the update for xk, which is now
obtained through a proximal gradient step. The last difference can be
observed from the update of vk, whose value now reflects our selected
subgradient. Further, comparing between our proposed method in this

46



Generalizing the estimating sequences framework for problems with composite objectives

Algorithm 3 Proposed Method
1: Input x0 ∈ Rn, L0 > 0, µf̂ , γ0 ∈ [0, µf̂ [∪[2µf̂ , 3L0 + µf̂ ],
ηu > 1 and ηd ∈]0, 1[.

2: Set k = 0, i = 0 and v0 = x0.
3: while k ≤ Kmax do
4: L̂i ← ηdLk
5: while True do

6: α̂i ←
µf̂+

∑︁k−1
i=1 βi,kγ̂i−γk+

√︃(︂
µf̂+

∑︁k−1
i=1 βi,kγ̂i−γk

)︂2
+4L̂iγk

2L̂i

7: γ̂i+1 ← (1− α̂i)γk + α̂i

(︄
µf̂ +

∑︁k−1
i=1 βi,kγ̂i

)︄

8: ŷi ←
γ̂i+1xk+α̂iγkvk+α̂

2
i

∑︁k−1
i=1 βi,kγ̂ivi

γ̂i+1+α̂iγk+α̂
2
i

∑︁k−1
i=1 βi,kγ̂i

9: x̂i+1 ← prox 1
L̂i
ĝ

(︂
ŷi − 1

L̂i
∇f(ŷi)

)︂

10: v̂i+1 ← 1
γ̂i+1

(︂
(1− α̂i)γkvk+α̂i

(︂
µf̂ ŷi +

∑︁k−1
i=1 βi,kγ̂i − L̂i (ŷi−x̂i+1)

)︂)︂

11: if F (x̂i+1) ≤ mL̂i
(ŷi, x̂i+1) then

12: Break from loop
13: else
14: L̂i+1 ← ηuL̂i
15: end if
16: i← i+ 1

17: end while
18: Lk+1 ← L̂i, xk+1 ← x̂i, αk ← α̂i−1, yk ← ŷi−1, γk+1 ← γ̂i, vk+1 ← v̂i,

i← 0, k ← k + 1

19: end while
20: Output xk

Chapter and the one presented in Chapter 2, we highlight the differences
coming due to the usage of the proposed subgradient of the objective
function and due to the multistep structure of our proposed generalized
composite estimating sequences. Last, comparing between the method
proposed in this Chapter and the one presented in Chapter 3, we can see
that the biggest differences arise from the usage of the heavy-ball type of
momentum term. Observe that the recursive relations obtained for our
method presented in Algorithm 3 reduce to the ones obtained for FGM
when τ = 0 and ψk(x) = 0, ∀k = 0, 1, . . .. Further, observe that our method
presented in Algorithm 3 reduces to the method introduced in Chapter 2
when τ = 0. Last, observe that our method presented in Algorithm 3
reduces to the one presented in Chapter 3 when ψk(x) = 0,∀k = 0, 1, . . .. In
this sense, the method presented in Algorithm 3 is a generalization of all
the aforementioned algorithms.
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4.2 Convergence Analysis

Based on Lemma 10, we can deduce that the convergence rate of the
minimization process is dependent on the sequences {λk}k and {ψk}k. This
is clarified in the following Theorem.

Theorem 6. If we let λ0 = 1 and λk =
∏︁k−1
i=0 (1− αi), Algorithm 3 generates

a sequence of points {xk}k such that

F (xk)− F (x∗) ≤ λk
(︂
F (x0)− F (x∗) +

γ0
2
||x0 − x∗||2

)︂
− (1− λk)ψk(x).

(4.17)

The rate of convergence for {λk}k is characterized in the sequel.

Lemma 13. For all k ≥ 0, Algorithm 3 guarantees that

1. If γ0 ∈ [0, µf̂ [, then

λk ≤
2µf̂

Lk

⎛
⎜⎝e

k+1
2

√︄(︃
µ
f̂
+
∑︁k−1

i=1
βi,kγi

)︃

Lk −e−
k+1
2

√︄(︃
µ
f̂
+
∑︁k−1

i=1
βi,kγi

)︃

Lk

⎞
⎟⎠

2 ≤
2

(k + 1)2
.

(4.18)

2. If γ0 ∈ [2µf̂ , 3L0 + µf̂ ], then

λk≤
4µf̂

(γ0 − µf̂ )

⎛
⎜⎝e

k+1
2

√︄(︃
µ
f̂
+
∑︁k−1

i=1
βi,kγi

)︃

Lk −e−
k+1
2

√︄(︃
µ
f̂
+
∑︁k−1

i=1
βi,kγi

)︃

Lk

⎞
⎟⎠

2

≤ 4Lk
(γ0 − µf̂ )(k + 1)2

. (4.19)

Comparing to [15, Lemma 2.2.4], the results obtained in this Chapter
in Lemma 13 highlight the following benefits: i): The method presented
in Algorithm 3 converges also when the exact value of Lf̂ is not known.
ii) The method presented in Algorithm 3 converges for a wider range of
γ0. Such finding is important as it suggests that the initialization of our
method presented in Algorithm 3 is robust to the inexact knowledge of µf̂ .

To establish the accelerated convergence rate of our method presented
in Algorithm 3 it suffices to combine Lemma 13 and Theorem 3 with
Theorem 6 to come to the following finalizing theorems.

Theorem 7. Algorithm 3 generates a sequence of points such that
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1. If γ0 ∈ [0, µf̂ [, then

F (xk)− F (x∗) ≤
µf̂ (L0 + γ0)||x0 − x∗||2

Lk

(︄
e

k+1
2

√︃
µ
f̂

Lk − e−
k+1
2

√︃
µ
f̂

Lk

)︄2 . (4.20)

2. If γ0 ∈ [2µf̂ , 3L0 + µf̂ ], then

F (xk)−F (x∗)≤
2µf̂ (L0+γ0)||x0−x∗||2

(γ0−µf̂ )
(︃
e
k+1
2

√︂
µ
Lk − e−

k+1
2

√︂
µ
Lk

)︃2 . (4.21)
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5. Conclusion

In this Thesis we have presented several accelerated first-order estimat-
ing sequence methods that can be used for minimizing different classes
of convex functions. In Chapter 2, we have established the generalized
estimating sequences framework, and have shown that it enables the co-
existence of two different fundamental principles of accelerating first-order
methods, i.e., the heavy-ball momentum and Nesterov’s acceleration in
a single algorithm. We have proven that coupling the two acceleration
principles results in schemes that minimize regularized versions of the
objective function. For our proposed method, we have proven a faster
convergence than FGM, and have demonstrated through our publications
the achievability of our theoretical findings also in terms of computational
experiments. In Chapter 3 we have presented the class of composite
estimating sequences and have shown that they can be used to devise
efficient accelerated methods for minimizing convex function with com-
posite structure. Then, in Chapter 4, we have introduced the generalized
composite estimating sequences, which encompass all the previously intro-
duced classes of estimating sequences. These estimating sequences have
also been used to define an accelerated gradient-based method, which is
more efficient than the existing benchmarks. Based on the convergence
results presented in this Thesis, we have established that for non-strongly
convex problems our proposed methods retains the O(1/k2) convergence
rate. However, for arbitrarily small values of the strong convexity parame-
ter, our proposed methods exhibit an accelerated linear convergence rate.
Moreover, different from classical FGM-type of methods, the initialization
of our proposed methods can be made robust to the imperfect knowledge of
the strong convexity parameter. Moreover, for the methods presented in
Chapters 3 and 4, we have also introduced an efficient backtracking line
search strategy.

We now conclude this Thesis by introducing several open problems that
arise based on our newly introduced framework.

• Several open questions relate to the selection of the structure for the

51



Conclusion

terms {ψk(x)}k and the choice of the coefficients βi,k. Obtaining more
efficient constructions for these terms can be used to devise more effi-
cient first-order methods. It would also be of interest to evaluate their
impact in designing methods that are optimal in decreasing the norm of
the gradient for the case of smooth objective functions. Devising such
methods is particularly riveting in the context of nonconvex optimization
[67, 77, 78], which aim to find stationary points of the objective function.

• Finding alternative constructions for ψk(x) would also be of interest,
both in the context of black-box optimization and beyond. A related
concept is introduced in [79], wherein the authors develop the notions
of relative smoothness and relative strong convexity. Considering twice
differentiable functions, the relative smoothness and strong convexity
parameters are influenced by the weighted difference of the Hessians of
the objective function with a differentiable and convex reference function
[79, Proposition 1.1]. In this Thesis, we used a similar approach in
establishing our estimating functions, with the main difference being
that our proposed construction for ψk(x) is dynamically changing over
iterations. From the perspective of the framework introduced in [79], our
selection of the coefficients βi,k suggests that the relative strong convexity
parameter between f(x) and ψk(x) is not unique. As a mater of fact, it
is contained in an interval which diminishes as the value of k increases,
and as k →∞, it is restrained in [0, 1]. Thus, it is desirable to assess the
co-existence aspects of these frameworks.

• In practice, the performance of FGM-type methods can be improved by
restarting them. Several restarting conditions have been presented in
the literature [80, 81]. It is of interest to assess if similar conditions can
be devised for our proposed algorithm and measure the improvements
in their performance. In this Thesis, we purposely avoided making
use of heuristic approaches such as restarting for further improving the
efficiency of our proposed methods. Nevertheless, we believe that it would
be beneficial to devise restarting conditions applicable to our proposed
methods.

• We also think that it would be relevant to extend our proposed frame-
works to broader optimization setups, such as nonconvex, stochastic
and distributed optimization. We have already discussed in the thesis
that several extensions of the estimating sequences framework used for
devising FGM have already been presented in the literature. Consid-
ering the gains observed for the foundational setups, we believe that it
would be of interest to extend our proposed estimating sequences to such
optimization setups.
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Abstract—We present a new type of heavy-ball momentum
term, which is used to construct a class of generalized estimating
sequences. These allow for accelerating the minimization process
by exploiting the information accumulated in the previous
iterates. Combining a newly introduced momentum term with
the estimating sequences framework, we devise, as an example,
a new black-box accelerated first-order method for solving
smooth unconstrained optimization problems. We prove that the
proposed method exhibits an improvement over the rate of the
celebrated fast gradient method by at least a factor of 1√

2
, and

establish that lower bound on the number of iterations carried
through until convergence is O (√

κ
2

)
. Finally, the practical

performance benefits of the proposed method are demonstrated
by numerical experiments.

Index Terms—estimating sequences, black-box methods, com-
plexity analysis, optimization

I. INTRODUCTION

Large-scale optimization is the basic enabling tool in many

areas of information sciences, wherein a large amount of

data needs to be processed efficiently. To comply with the

complexity requirements, large-scale data processing methods

are typically limited by first-order algorithms, which consist

of sequential procedures that repeatedly query a black-box

oracle for information about the objective function [1], [2].

The oracle can be deterministic, i.e., providing the exact value

of the objective function and its gradient, or stochastic. In

information theory, the fundamental bounds on the oracle

complexity in the presence of deterministic and stochastic

oracles have been investigated [2]–[5]. The performance of

different first-order methods has also been analyzed in the case

of minimizing non-convex objectives [6]. In the context of

minimizing smooth and strongly convex objectives, Gradient

Descent (GD) converges at the suboptimal rate of O(κ), where

κ is the condition number [7]. The rate of GD has been

accelerated by the Fast Gradient Method (FGM) [8], which

is optimal in view of classic complexity theory for convex

optimization [2] and reaches the complexity of O (
√
κ).

FGM and its variants introduced in [7], [9]–[11] have been

successfully applied for solving a myriad of machine learning

and data analysis problems [12]–[14].

Understanding the intuition and machinery behind the

acceleration principle utilized in FGM is challenging, and

many of the recent works have focused on providing new

perspectives on it, as well as different reasons behind accel-

eration [15]–[19]. In [15], the authors have introduced a new

accelerated gradient method which is inspired by the ellipsoid

method. Using theory from robust control, the convergence

rates for FGM have been obtained in [16], [17]. In [18],

the continuous time-limit of FGM is modelled as a second-

order ordinary differential equation. Another framework for

the study and analysis of accelerated gradient methods, which

relies on the observation that the worst-case performance of a

first-order black-box optimization method is itself a semidef-

inite program, has appeared in [19]. Within this framework,

for the case of strongly-convex problems, optimal methods

with faster rates than FGM have been introduced in [20].

However, the complexity of the method proposed therein

can significantly exceed that of FGM for the case of ill-

conditioned problems (see [20, Table 2]).

The key behind constructing optimal methods is the accu-

mulation of global information of the function that is being

minimized [7]. In our framework of interest [21], this is

achieved by utilizing the estimating sequences, consisting of

the pair {φk(x)}k and {λk}k, which allow for constructing

upper bounds around the iterates, and simultaneously measure

the convergence rate of the iterates. In the existing estimating

sequence methods, the advancement of the iterates at step

k + 1 is done by utilizing only the information available

at step k. From the existing results on other principles of

acceleration, such as the heavy-ball method [22], it has been

shown that accounting for the information contained in the

previous iterates improves the performance.

In this work, we show that the original construction of the

estimating functions can be generalized by incorporating extra

terms that depend on the previous iterates. Within the black-

box setting, we introduce a new type of heavy-ball momentum,

which is captured by the terms of a new sequence {ψk}k.

Using the newly introduced heavy-ball type of momentum

term within the estimating sequences framework, we construct

a new method and show that FGM can be obtained as the
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special case when the memory terms are not considered. We

prove that our proposed method is optimal, and show that

it outperforms FGM by at least a factor of 1√
2

. Moreover,

we show that the initialization of our proposed method is

robust to the imperfect knowledge of μ, which is of a high

importance in practice, since accurate estimation of μ is

typically computationally expensive.

II. PROPOSED METHOD

In this work, we focus on the problem of minimizing the

smooth and strongly convex objective function, that is,

minimize
x∈Rn

f(x), (1)

where f : Rn → R is a μ-strongly convex function with

L-Lipschitz continuous gradient defined by a deterministic

black-box oracle.

Let us begin by assuming that there exists a procedure that

produces points x ∈ Rn and let I = conv(x0, x1, x2, . . . , x
∗)

be a closed convex set which is comprised of the convex

hull of the finite number of iterates that are formed during

the minimization process. Next, we define the generalized

estimating sequences as follows.

Definition 1. The sequences {Φk}k, and {λk}k, λk ≥ 0, are
called generalized estimating sequences of the function f(·),
if ∃ψk : I → Q ⊂ R+, λk → 0, and ∀x ∈ I, ∀k we have

Φk(x) ≤ λkΦ0(x) + (1− λk) (f(x)− ψk(x)) . (2)

Thus, the inclusion of ψk(x) in the definition of the estimat-

ing sequences allows for embedding additional information

that can aid in improving the convergence properties of the

methods. As discussed earlier, one of the major benefits

of the estimating sequences, is the fact that they allow for

estimating the convergence rate of the minimization process.

The following Lemma yields a precise characterization.

Lemma 1. If for some sequence of points {xk}k we
have f(xk) ≤ Φ∗

k � min
x∈I

Φk(x), then f(xk) −
f(x∗) ≤ λk [Φ0(x

∗)− f(x∗)]−(1− λk)ψk(x
∗), where x∗ =

arg min
x∈Rn

f(x).

All the proofs of the lemmas and theorems in this short

paper can be found in our full paper [24].

Prior to presenting the structure of the estimating sequences

that are utilized for constructing our proposed method, let us

define the following upper bound on the terms in the sequence

{ψk(x)}k

Ψk =

⎧⎨
⎩

sup
m∈{1,2,...k},x∈I

ψm(x), if k > 0,

0, otherwise.
(3)

In words, Ψk is the supremum of the infinite sequence of finite

values of ψm(x). An explicit construction for ψm(x) will be

presented later in the paper. At this point, we can introduce

our proposed construction for the generalized estimating se-

quences.

Lemma 2. Assume that there exist sequences {αk}k, where
αk ∈ (0, 1) and

∑∞
k=0 αk = ∞, and {yk}k, where yk ∈ Rn,

and a sequence of functions {ψk}k such that ψk(x) ≥ 0, ∀k.
Let ψ0(x) = 0 and λ0 = 1. Then, the sequences {Φk}k and
{λk}k, which are defined recursively as

λk+1 = (1− αk)λk, (4)

Φk+1(x)=(1−αk)(Φk(x)+ψk(x))−ψk+1(x)−Ψk+αkψk(x)

+αk

(
f(yk)+∇f(yk)

T (x− yk) +
μ

2
||x− yk||2

)
,

(5)

are generalized estimating sequences. Here, (·)T denotes the
transposition operator and ||·|| stands for the Euclidean norm
of a vector.

We note that the structure for the terms in the sequence

{Φk(x)}k has not been introduced yet. From Lemma 1,

we can see that their importance lies in the fact that they

allow for constructing upper bounds on f(xk). As discussed

in [7], accelerated methods must make use of some global

topological properties of the objective function. This intuition

is also asserted by the performance of second-order methods.

For instance, in the case of Newton’s method, by utilizing

the information in the Hessian it is possible to construct

ellipsoids around each iterate [23, Fig. 9.19]. These ellipsoids

then aid in correcting the search direction. In the case of

first-order methods, wherein the Hessian information is not

available, we can consider constructing balls in the locality

around each iterate xk, without “discriminating” any search

direction. This can be achieved by utilizing a sequence of

isotropic scanning functions with scanning radius γk, whose

Hessian is ∇2φk(x) = γkI . The canonical structure of such

scanning functions can be written as

φk(x) = φ∗
k +

γk
2
||x− vk||2, ∀k, (6)

where φ∗
k is the minimal value, γk ∈ R+ is the radius and

vk ∈ Rn is the center of the scanning function. We note

that this is also the canonical form of scanning function,

which has been utilized in constructing FGM [7]. We have

already discussed that the goal of the paper is to devise a new

class of algorithms, which can benefit from both Nesterov’s

acceleration and the heavy-ball momentum. To achieve this

goal, we introduce the following structure for the scanning

function

Φk(x) = φ∗
k +

γk
2
||x− vk||2 − ψk(x), ∀k, (7)

where the heavy-ball type of momentum term ψk(x) is

ψk(x) �
k−1∑
i=0

βi,k
γi
2
||x− vi||2, ∀k, (8)

and

βi,k =

{
min

(
1, μ

γk−1

)
, if i = k − 1,

0, otherwise.
(9)
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Indeed, since in the black-box setting there is no prior infor-

mation about the function that can be exploited to improve

the convergence of the method, we construct the terms in our

proposed scanning functions such that they can “self-regulate”

by accounting for the information that has been obtained in the

previous iterations. Lastly, we note that the terms βi,k ensure

that only the estimating function constructed at step k − 1
is accounted, which asserts that the values in the summation

given in (8) remain finite.

Let us now formally express that the estimating sequences

presented in Lemma 2 preserve the quadratic structure of our

scanning functions Φk(x), and show how the terms φ∗
k, γk and

vk can be calculated. This is depicted in the sequel.

Lemma 3. Assume that the coefficients βi,k are selected
according to (9), and let Φ0(x) = φ∗

0+
γ0

2 ||x−v0||2. Then, the
process defined in Lemma 2 preserves the quadratic canonical
structure of the scanning function introduced in (7). Moreover,
the sequences {γk}k, {vk}k and {φ∗

k}k can be computed as
given by (10), (11) and (12) shown at the top of the next page.

In the sequel, we will select the sequences {xk}k, {yk}k
and {vk}k such that f(xk) ≤ Φ∗

k, ∀k. Let us assume that

for some step k, we have φ∗
k ≥ f(xk). Then, at step k + 1,

relaxing (12), as well as making some manipulations, we can

write1

φ∗
k+1≥f(yk)+(1−αk)∇f(yk)

T(xk−yk) (13)

− α2
k

2γk+1
||∇f(yk)||2+αk(1−αk)γk

γk+1
(vk−yk)

T∇f(yk)

+ (1− αk)
α2
k

γk+1

k−1∑
i=0

βi,kγi(vi − yk)
T∇f(yk).

To satisfy the necessary conditions for Lemma 1, we need to

ensure that φ∗
k+1 ≥ f(xk+1). For this reason, let us relax the

lower bound even further by utilizing the relation

f(yk)− 1

2L
||∇f(yk)||2 ≥ f(xk+1), (14)

which can be guaranteed by a gradient descent step on yk [7,

Theorem 2.1.5]. Thus, we obtain αk as

αk =

√
γk+1

L
. (15)

Utilizing the recursion (10), we have

αk =

(
μ+

∑k−1
i=1 βi,kγi − γk

)
2L

(16)

+

√(
μ+

∑k−1
i=1 βi,kγi − γk

)2

+ 4Lγk

2L
.

1For more detailed derivations see [24].

Algorithm 1: Proposed Method
1: Choose x0 ∈ Rn, set γ0 = 0 and v0 = x0.
while stopping criterion is not met do
2: Compute αk ∈ [0, 1] as

αk=

(
μ+

∑k−1
i=1 βi,kγi−γk

)
+

√(
μ+

∑k−1
i=1 βi,kγi−γk

)2
+4Lγk

2L
.

3: Set γk+1 = (1− αk)γk + αk

(
μ+

∑k−1
i=0 βi,kγi

)
.

4: Choose yk =
γk+1xk+αkγkvk+α2

k

∑k−1
i=0 βi,kγivi

γk+1+αkγk+α2
k

∑k−1
i=0 βi,kγi

.

5: Set xk+1 = yk − 1
L
∇f(yk)

5: Set vk+1 = 1
γk+1

(
(1− αk)γkvk

+μαk

(
yk− 1

μ
∇f(yk) +

∑k−1
i=0

βi,kγi

μ
vi

))
.

end while

Choosing αk as given in (16), we can rewrite (13) as

φ∗
k+1≥f(xk+1) + (1− αk)∇f(yk)

T ((xk − yk) (17)

+
αkγk
γk+1

(vk − yk) +
α2
k

γk+1

k−1∑
i=0

βi,kγi(vi − yk)

)
.

Finally, we can obtain the update for {yk}k by letting

xk−yk+
αkγk
γk+1

(vk − yk)+
α2
k

γk+1

k−1∑
i=0

βi,kγi(vi − yk)=0.

This results in

yk =
γk+1xk + αkγkvk + α2

k

∑k−1
i=0 βi,kγivi

γk+1 + αkγk + α2
k

∑k−1
i=0 βi,kγi

. (18)

Our findings are summarized in Algorithm 1.

Comparing Algorithm 1 with [7, (2.2.19)], we can see that

the computation of the terms αk and γk reflects the different

types of estimating sequences that were used in constructing

the methods. This is also reflected in the computation of the

points yk, ∀k. Another important difference is the initialization

of the parameter γ0. In the case of FGM, the scheme is

guaranteed to converge for γ0 ∈ [μ, 3L + μ]. On the other

hand, as we will show in Section III, our proposed method is

guaranteed to converge even when γ0 = 0. This ensures the

robustness of the initialization of our proposed method with

respect to the imperfect knowledge of the strong convexity

parameter μ, whose exact value is difficult to be estimated

efficiently in practice. Moreover, in our proposed method,

the extra terms contributed from the generalized estimating

sequences come up as coefficients of α2
k. Such additional

terms are also observed in the computation of vk+1. Lastly,

we note that FGM is obtained by setting the terms βi,k = 0,

∀i, k. Such a result is coherent with the fact that the estimating

sequences utilized in constructing FGM are the special case

of the generalized estimating sequences that we used in con-

structing our proposed method, which arises when ψk(x) = 0,

∀k.

III. BOUNDS ON CONVERGENCE RATE

In this section we introduce the main convergence results

of our proposed method. Let us begin by showing that the
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γk+1 = (1− αk)γk + αk

(
μ+

k−1∑
i=0

βi,kγi

)
, (10)

vk+1 =
1

γk+1

(
(1− αk)γkvk + μαk

(
yk − 1

μ
∇f(yk) +

k−1∑
i=0

βi,kγi
μ

vi

))
, (11)

φ∗
k+1 = αkf(yk) + (1− αk)φ

∗
k +

αkγk(1− αk)(μ+
∑k−1

i=1 βi,kγi)

2γk+1
||yk − vk||2 + α3

k

γk+1

k−1∑
i=0

βi,kγi||vi − yk|| ||∇f(yk)||

− α2
k||∇f(yk)||2

2γk+1
+
αk(1−αk)γk

γk+1

(
(vk − yk)

T ∇f(yk)+

k−1∑
i=0

βi,kγi||yk − vi||||yk − vk||
)
+(1− αk)

γk
2
||x∗

Φk
−vk||2

+ αk

k−1∑
i=0

βi,kγi
2

||yk − vi||2 + (1− αk)α
2
k

γk+1

k−1∑
i=0

βi,kγi(vi − yk)
T∇f(yk) +

k−1∑
i=0

βi,k
γi
2
||x∗

Φk
−vi||2. (12)

convergence rate of the minimization process will depend on

both the sequences {λk}k and {ψk}k.

Theorem 1. If we let λ0 = 1 and λk =
∏k−1

i=0 (1− αi),
Algorithm 1 generates a sequence of points {xk}k such that

f(xk)− f∗ ≤ λk

[
f(x0)− f(x∗) +

γ0
2
||x0 − x∗||2

]
(19)

− (1− λk)ψk(x
∗).

From Lemma 2, we can see that the terms in the sequence

{λk}k will converge to 0 as k → ∞. The bound on the rate at

which the terms in the sequence {λk}k decrease is presented

in the following Lemma.

Lemma 4. For all k ≥ 0, Algorithm 1 guarantees that

λk≤ 2μ

L

(
e

k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L − e−

k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L

)2

(20)

≤ 2μ(
μ+

∑k−1
i=1 βi,kγi

)
(k + 1)2

. (21)

The optimality of Algorithm 1 is established next.

Theorem 2. In Algorithm 1, let μ > 0. Then, the scheme
generates a sequence of points such that:

fk − f∗≤ μ||x0 − x∗||2(
e
k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L −e−

k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L

)2 (22)

− (1− λk)ψk(x
∗).

where fk = f(xk) and f∗ = f(x∗). This means that the
method is optimal when the accuracy ε ≤ μ

2 ||x0 − x∗||2.

For the problem of minimizing smooth and strongly convex

objective functions, FGM reaches the following bound on the

number of iterations [7, (2.2.17)]

kFGM ≥
√

L

μ

(
ln

(
μR2

0

2ε

)
+ ln(23/3)

)
. (23)

On the other hand, when the coefficients βi,k are selected as

given in (9), the lower bound on the number of iterations for

our proposed method becomes

kProposed ≥
√

L

μ+min (γk−1, μ)

(
ln

(
μR2

0

2ε

)
+ ln(5)

)
.

(24)

From (24), we can see that the lower bound of the number

of iterations is influenced by the increase of the values of the

terms in the sequence {γk}k. As we thoroughly establish in

our full paper [24], and illustrate numerically in Section IV,

the growth of the terms in the sequence {γk}k is exponential

in the iteration counter k, and it converges to 2μ. Therefore,

(24) converges to

kProposed →
√

L

2μ

(
ln

(
μR2

0

2ε

)
+ ln(5)

)
. (25)

Comparing the convergence rate given in (22), and the lower

bound on the number of iterations that need to be carried

through until convergence for our proposed method, to the re-

sults presented for FGM in (23), we can see the improvement

by at least a factor of 1/
√
2.

IV. SIMULATION RESULTS

In this section, we consider the classical task in data

analysis of minimizing a regularized quadratic loss function

minimize
x∈Rn

1

2m

m∑
i=1

(aTi x− yi)
2 +

τ

2
||x||2, (26)

where ai ∈ Rn is a vector containing the data points, x ∈ Rn

is a vector consisting of the parameters that need to be

estimated, yi ∈ R corresponds to the labels and τ ≥ 0 is a
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regularization parameter. We benchmark against two instances

of FGM Constant Step Scheme I (CSS1), which is obtained

when γ0 = L and is referred to as FGM CSS1, as well as

γ0 = μ, which also corresponds to FGM CSS3 [7, Chapter

2.2]. For our proposed method, we consider the case β0,k = 1
and βi,k = 0, ∀i = 1, . . . k, which is referred to as Proposed0.

We note that when γ0 = 0, this algorithm corresponds

to FGM. However, the original analysis of FGM does not

guarantee convergence of the method with this selection of

γ0. Such a fact is important as it ensures the robustness of

the initialization of our proposed method with respect to the

imperfect knowledge of μ. We also consider the instance

obtained when the terms βi,k are selected according to (9),

which is referred to as Proposedk−1. Lastly, the starting point

x0 is randomly selected and all algorithms are initiated in it.

To control the condition number of the data matrix A,

we generate a symmetric positive definite diagonal matrix

A ∈ Rmxm, whose elements aii are drawn from the discrete

set {100, 10−1, 10−2, . . . 10−ξ} uniformly at random. This

ensures κ = 10ξ. Moreover, this results in L = 1 and

μ = 10−ξ. We obtain the elements of the labels vector

y ∈ Rm by sampling them uniformly at random from the box

[0, 1]n. Lastly, to simulate a large and ill-conditioned problem,

we set m = 1000, ξ ∈ {3, 4} and τ ∈ {10−3, 10−4}. Our

results are reported in Fig. 1.

From Fig. 1, we can distinguish the efficiency of our

proposed method. First, observe that all instances of the

proposed method require a lower number of iterations to

decrease the norm of the gradient. Second, we can see that the

memoryless version of the proposed method, behaves similar

to the considered instances of FGM, however, it exhibits

a faster convergence. These results confirm the theoretical

findings presented in Section III. Let us now focus on the

variant of the proposed method that utilizes the information

accumulated at step k−1. From Figs. 1(a) and 1(b), we can see

that the proposed method with memory term γk−1 converges

approximately 30% faster than FGM CSS3, which is the

fastest instance of FGM. This result is again coherent with

the theoretical asymptotic bound obtained in (25), that also

suggests an approximate improvement of 30% over FGM. An

important observation can be made from Figs. 1(c) and 1(d),

which depict the exponential convergence of the term γk−1 as

the iteration counter k grows large. As we already discussed

in Section III, this ensures that the convergence to the bound

presented in (25) is fast. Lastly, we note that the number

of iterations that need to be carried through until conver-

gence, increases significantly with the condition number of the

problem. For instance, in the case when κ = 103, Fig. 1(a)

depicts that the performance difference between algorithms

tested is of the order of hundreds of iterations. Then, as

the condition number of the objective function increases to

κ = 104, Fig. 1(b) illustrates even larger differences between

algorithms, as measured by the number of iterations that need

to be carried through until convergence.

0 200 400 600 800
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 f
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0

Proposed
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(a) Decreasing the norm of the
gradient, κ = 103.

0 500 1000 1500 2000 2500
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FGM CSS3
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0

Proposed
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gradient, κ = 104.

(c) Convergence of {γk}∞k=0,

κ = 103.

(d) Convergence of {γk}∞k=0, κ =
104.

Fig. 1. Comparison between various features of interest of the algorithms. The
goal is to minimize the quadratic loss function, for which A ∈ R1000×1000

and its entries are randomly generated.

V. CONCLUSION AND FUTURE WORK

A new form of heavy-ball momentum term has been

introduced and it has been shown that it can be used to

construct a newly introduced class of generalized estimating

sequences. This has paved path to constructing a new class of

optimal gradient methods. At their core, our proposed method

benefits from the co-existence of two fundamentally different

acceleration principles, i.e., the heavy-ball momentum and

Nesterov’s acceleration. We have shown that FGM can be

obtained as the special case of our proposed method when the

momentum term is not utilized. Moreover, we have managed

to prove that the convergence rate, as well as the lower bound

on the number of iterations, of the proposed method are

better than FGM by at least a factor of 1/
√
2. The practical

superiority of all instances of the proposed method over FGM

has been established throughout the simulations.

As future work, it would be of interest to characterize

the amount of information that is captured at each iteration

by the terms in the sequence {ψk(x)}k. We believe that

this would pave path to finding the optimal selection of the

coefficients βi,k, which can enable further improvements of

the efficiency of the proposed method. It would also be of

interest to explore the possibility of finding new constructions

for {ψk(x)}k, which can exploit both black and white box

information about the function that is being minimized, and

use it to further accelerate the minimization process. Last,

it is also of interest to consider extensions of the results

presented herein to account for stochastic oracles, as well as

investigate extensions to other optimization setups such as the

design of new methods for solving nonsmooth and potentially

nonconvex problems.
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{xk}k f(xk) ≤ Φ∗
k �

x∈I
Φk(x)

f(xk)− f(x∗) ≤ λk [Φ0(x
∗)− f(x∗)]− (1− λk)ψk(x

∗)

f(xk)≤Φ∗
k=

x∈I
Φk(x)

(6),

≤
x∈I

[λkΦ0(x) + (1− λk) (f(x)− ψk(x))]

≤ [λkΦ0(x
∗) + (1− λk) (f(x

∗)− ψk(x
∗))] .

{αk}k αk ∈ (0, 1) ∀k∑∞
k=0 αk = ∞ {yk}k {ψk(x)}k ψk(x) ≥ 0 ∀k Ψk

{ψk(x)}k ψ0(x) = 0 λ0

{Φk(x)}k {λk}k

λk+1 = (1− αk)λk,

Φk+1(x) = (1− αk) (Φk(x) + ψk(x))− ψk+1(x)−Ψk + αkψk(x)

+ αk

(
f(yk) +∇f(yk)

T (x− yk) +
μ

2
||x− yk||2

)
,

k = 0 ψ0(x) = 0

Ψ0 = 0 λ0 = 1 Φ0(x) ≤ λ0Φ0(x)+

(1− λ0) f(x) � Φ0(x) k

Φk(x)− (1− λk) f(x) ≤ λkΦ0(x)− (1− λk)ψk(x).



k + 1

Φk+1(x) ≤ (1− αk) (Φk(x) + ψk(x))− ψk+1(x)−Ψk + αk (f(x) + ψk(x)) .

ψk(x)

Q ⊂ R+

Ψk

Φk+1(x) ≤ (1− αk)Φk(x)− ψk+1(x) + αkf(x) + (1− αk)(1− λk)f(x)

− (1− αk)(1− λk)f(x)

= (1−αk) [Φk(x)−(1−λk)f(x)]−ψk+1(x)+(αk+(1−λk)(1−αk)) f(x).

Φk+1(x)+ψk+1(x)≤(1−αk) (λkΦ0(x)−(1−λk)ψk(x))+(1−λk+αkλk)f(x).

Φk+1(x) + ψk+1(x) ≤ λk+1Φ0(x) + (1− λk+1)f(x).

λk ∈ [0, 1]

Φk+1(x) ≤ λk+1Φ0(x) + (1− λk+1) (f(x)− ψk+1(x)) .

βi,k

Φ0(x) = φ∗
0 +

γ0

2 ||x− v0||2



{φ∗
k}k {γk}k {vk}k

φ∗
k+1 = αkf(yk) + (1− αk)φ

∗
k +

αkγk(1− αk)(μ+
∑k−1

i=1 βi,kγi)

2γk+1
||yk − vk||2

+
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi − yk|| ||∇f(yk)|| −α2
k||∇f(yk)||2

2γk+1

+
αk(1−αk)γk

γk+1

(
(vk−yk)

T ∇f(yk)+
k−1∑
i=1

βi,kγi||yk−vi||||yk−vk||
)

+(1−αk)
γk
2
||x∗

Φk
−vk||2 +αk

k−1∑
i=1

βi,kγi
2

||yk−vi||2

+
(1−αk)α

2
k

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T∇f(yk)+

k∑
i=1

βi,k+1
γi
2
||x∗

Φk+1
−vi||2,

γk+1 = (1− αk)γk + αk

(
μ+

k−1∑
i=1

βi,kγi

)
,

vk+1 =
1

γk+1

(
(1− αk)γkvk + μαk

(
yk − 1

μ
∇f(yk) +

k−1∑
i=1

βi,kγi
μ

vi

))
.

{Φk}k k = 0 ψ0 = 0

∇2Φ0(x) = ∇2φ0(x) = γ0I

k ∇2Φk(x) = γk − ∑k−1
i=1 βi,kγi

(13),

≥ 0

∇2Φk+1(x) = (1− αk)γkI −
k∑

i=1

βi,kγiI + αk

(
μ+

k−1∑
i=1

βi,kγi

)
I.

∇2Φk+1(x) = γk+1I −
k∑

i=1

βi,kγiI.

βi,k

∇2Φk+1(x) ≥ 0



{vk}k

φ∗
k+1 +

γk+1

2
||x− vk+1||2 =(1−αk)

(
φ∗
k+

γk
2
||x−vk||2

)
−Ψk

+αk

(
f(yk)+∇f(yk)

T (x−yk) +
μ

2
||x−yk||2 + ψk(x)

)
.

x x

0

x

γk+1(x−vk+1)=γk(1−αk)(x−vk)+αk

(
μ(x−yk)+∇f(yk)+

k−1∑
i=1

βi,kγi(x−vi)
)
.

yk x

x

vk+1 =
1

γk+1

(
(1− αk)γkvk + μαk(yk − 1

μ
∇f(yk) +

k−1∑
i=1

βi,kγi
μ

vi)
)
.

{vk}k
{yk}k

φ∗
k+1

φ∗
k+1

Θk(yk) {yk}k
{Φk(x)}k

k

Θk(yk) = θ∗k +
γk
2
||yk − vk||2 −

k−1∑
i=1

βi,k
γi
2
||yk − vi||2.



x = yk

Θk+1(yk)=(1−αk) (Θk(yk)+ψk(yk))−ψk+1(yk)−Ψk+αk (f(yk)+ψk(yk)) .

θ∗k+1 +
γk+1

2
||yk − vk+1||2 ≤ (1− αk)

(
θ∗k +

γk
2
||yk − vk||2

)

+ αk

(
f(yk) +

k−1∑
i=1

βi,kγi
2

||yk − vi||2
)
.

vk+1−yk=
1

γk+1

(
(1−αk)γkvk+μαk

(
yk− 1

μ
∇f(yk)+

k−1∑
i=1

βi,kγi
μ

vi
)−γk+1yk

)
.

γk+1

vk+1 − yk =
1

γk+1

(
(1− αk)γk (vk − yk)− αk∇f(yk) + αk

k−1∑
i=1

βi,kγi
μ

(vi − yk)
)
.

|| · ||2

||vk+1−yk||2= || (γk(1−αk)(vk−yk))+αk

∑k−1
i=1 βi,kγi(vi−yk)−αk∇f(yk)||2
γ2
k+1

.

γk+1

2



γk+1

2
||vk+1 − yk||2 =

(1− αk)
2γ2

k

2γk+1
||vk − yk||2 + α2

k

2γk+1
||

k−1∑
i=1

βi,kγi(vi − yk)||2

− 2αk(1− αk)γk
2γk+1

(vk − yk)
T∇f(yk) +

α2
k

2γk+1
||∇f(yk)||2

+
(1− αk)αkγk

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T (vk − yk)

− α2
k

γk+1

k−1∑
i=1

βi,kγi(yk − vi)
T∇f(yk).

θ∗k+1 ≤ αkf(yk) + (1− αk)θ
∗
k +

(1− αk)γk
2

[
γk+1

γk+1
− (1− αk)γk

γk+1

]
||yk − vk||2

+ αk

k−1∑
i=1

βi,kγi
2

||yk − vi||2 − α2
k

2γk+1
||

k−1∑
i=1

βi,kγi
2

(yk − vi)||2

− α2
k

2γk+1
||∇f(yk)||2 + α2

k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T∇f(yk)

+
αk(1− αk)γk

γk+1

(
(vk − yk)

T∇f(yk)−
k−1∑
i=1

βi,kγi(yk − vi)
T (yk − vk)

)
.

θ∗k+1

θ∗k+1≤αkf(yk)+(1−αk)θ
∗
k+

αkγk(1− αk)(μ+
∑k−1

i=1 βi,kγi)

2γk+1
||yk − vk||2

+αk

k−1∑
i=1

βi,kγi
2

||yk − vi||2 − α2
k

2γk+1
||∇f(yk)||2

+
(1−αk)α

2
k

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T∇f(yk)+

α3
k

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T∇f(yk)

+
αk(1− αk)γk

γk+1

(
(vk − yk)

T∇f(yk)−
k−1∑
i=1

βi,kγi(yk − vi)
T (yk − vk)

)
.



θ∗k+1≤αkf(yk)+(1− αk)θ
∗
k+

αkγk(1− αk)(μ+
∑k−1

i=1 βi,kγi)

2γk+1
||yk − vk||2

+αk

k−1∑
i=1

βi,kγi
2

||yk − vi||2− α2
k

2γk+1
||∇f(yk)||2

+
(1− αk)α

2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T∇f(yk) +

k∑
i=1

βi,k+1
γi
2
||x∗

Φk+1
−vi||2

+
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi−yk|| ||∇f(yk)||+(1−αk)
γk
2
||x∗

Φk
−vk||2

+
αk(1− αk)γk

γk+1

(
(vk − yk)

T ∇f(yk) +

k−1∑
i=1

βi,kγi||yk − vi|| ||yk − vk||
)
.

θk+1

φ∗
k = θ∗k, ∀k

λ0 = 1 λk =
∏k−1

i=1 (1− αi)

{xk}k

f(xk)− f∗ ≤ λk

[
f(x0)− f(x∗) +

γ0
2
||x0 − x∗||2

]
− (1− λk)ψk(x

∗).

φ∗
0 = f(x0) k = 0

f(x0) ≤ Φ0(x) = f(x0) +
γ0

2 ||x − x0||2
f(xk) ≤ Φ∗

k



βi,k

h(k) =

(
e

k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L − e−

k+1
2

√
μ+

∑k−1
i=1

βi,kγi
L

)2

k ≥ 0

γ0 ∈ [0, μ[ λk≤ 2μ
Lh(k)

γ0 ∈ [2μ, 3L+ μ] λk≤ 4(μ+
∑k−1

i=1 βi,kγi)
(γ0−μ−

∑k−1
i=1 βi,kγi)h(k)

γ0 ∈ [0, μ[∪[2μ, 3L+
μ]

γk+1 −
(
μ+

k−1∑
i=1

βi,kγi

)
=(1−αk)γk+αk

(
μ+

k−1∑
i=1

βi,kγi

)
−

(
μ+

k−1∑
i=1

βi,kγi

)

=(1−αk)λ0

[
γk−

(
μ+

k−1∑
i=1

βi,kγi

)]
.

γk+1−
(
μ+

k−1∑
i=1

βi,kγi

)
=λk+1

[
γ0−

(
μ+

k−1∑
i=1

βi,kγi

)]
.

λk+1 = (1 − αk)λk

αk = 1− λk+1

λk
=

√
γk+1

L
=

√√√√μ+
∑k−1

i=1 βi,kγi
L

+
γk+1−

(
μ+

∑k−1
i=1 βi,kγi

)
L

=

√√√√μ+
∑k−1

i=1 βi,kγi
L

+λk+1

γ0−
(
μ+

∑k−1
i=1 βi,kγi

)
L

.

λk − λk+1

λk
=

√
λk+1

√√√√μ+
∑k−1

i=1 βi,kγi
λk+1L

+
γ0 −

(
μ+

∑k−1
i=1 βi,kγi

)
L

,

λk − λk+1

λkλk+1
=

1√
λk+1

√√√√μ+
∑k−1

i=1 βi,kγi
λk+1L

+
γ0 −

(
μ+

∑k−1
i=1 βi,kγi

)
L

.



λk−λk+1

λkλk+1
= 1

λk+1
− 1

λk

(
1√
λk+1

− 1√
λk

)(
1√
λk+1

+
1√
λk

)
=

1√
λk+1√√√√μ+
∑k−1

i=1 βi,kγi
λk+1L

+
γ0−

(
μ+

∑k−1
i=1 βi,kγi

)
L

.

1√
λk

1√
λk+1

2√
λk+1

(
1√
λk+1

− 1√
λk

)
≥ 1√

λk+1

√√√√μ+
∑k−1

i=1 βi,kγi
λk+1L

+
γ0−

(
μ+

∑k−1
i=1 βi,kγi

)
L

.

γ0

R1 = [0, μ[ R2 = [2μ, 3L + μ]

γ0 ∈ R1

2√
λk+1

− 2√
λk

≥

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
−γ0

L

√√√√√ L
(
μ+

∑k−1
i=1 βi,kγi

)
Lλk+1

(
μ+

∑k−1
i=1 βi,kγi−γ0

)−1.

ξk �
√√√√ L[(

μ+
∑k−1

i=1 βi,kγi

)
− γ0

]
λk

.

√
L

μ+
∑k−1

i=1 βi,kγi−γ0

ξk+1 − ξk ≥ 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
− 1.

γ0 ∈ R1 0



ξk

ξk ≥
√
2

4δ

√
L

μ

[
e(k+1)δ − e−(k+1)δ

]
,

δ � 1
2

√
μ+

∑k−1
i=1 βi,kγi

L k = 0

ξ0 =

√
L

(μ+γ−1−γ0)λ0
=

√
L

μ−γ0
≥ 1

2

√
L

μ

[
e

√
2

2 −e−
√

2
2

]
≥

√
2

4δ

√
L

μ

[
eδ−e−δ

]
,

λ0 = 1 γk = 0 ∀k < 0

γ0 ≥ 0 γ0 ∈ R1

1

δ δ <
√
2
2

k

k + 1 ω(t) = 1
4δ

√
L
μ

[
e(t+1)δ − e−(t+1)δ

]

ω(t)≤ξk ≤ ξk+1− 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
−1.

ξk+1 < ω(t+1)

ω(t) < ω(t+ 1)− 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
− 1.

δ

ω(t) ≤ ω(t+ 1)− 1

2

√√√√
4δ2

[√
2

4δ

√
L

μ

(
e(t+2)δ − e−(t+2)δ

)]2

− 1

= ω(t+ 1)− 2

4

√
L

μ

[
e(t+2)δ + e−(t+2)δ

]

= ω(t+ 1) + ω(t+ 1)′ (t− (t+ 1)) ≤ ω(t),



ξk+1 < ω(k+1), ∀k

λk =
L(

μ+
∑k−1

i=1 βi,kγi − γ0

)
ξ2k

.

γ0 ∈ R1

L(
μ+

∑k−1
i=1 βi,kγi − γ0

)
ξ2k

≤ μ(4δ)2

2
(
μ+

∑k−1
i=1 βi,kγi

) [
e(k+1)δ − e−(k+1)δ

]2 ,
δ

γ0 ∈ R2

2√
λk+1

− 2√
λk

≥
√

γ0−μ−∑k−1
i=1 βi,kγi
L

√√√√√ L
(
μ+

∑k−1
i=1 βi,kγi

)
Lλk+1

(
γ0−μ−∑k−1

i=1 βi,kγi

)+1.

ξk �
√√√√ L[(

γ0 − μ−∑k−1
i=1 βi,kγi

)]
λk

.

√
L

γ0−μ−∑k−1
i=1 βi,kγi

ξk+1 − ξk ≥ 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
+ 1.

γ0 ∈ R2 0



ξk

ξk ≥ 1

4δ

[
e(k+1)δ − e−(k+1)δ

]
,

δ � 1
2

√
μ+

∑k−1
i=1 βi,kγi

L k = 0

ξ0 =

√
L

(γ0−μ−γ−1)λ0
=

√
L

γ0−μ
≥

√
1

3
≥ 1

2

[
e

1
2 −e−

1
2

]
≥ 1

4δ

[
eδ−e−δ

]
,

λ0 = 1 γk = 0 ∀k < 0 γ0 ≥
0 γ0 ∈ R2

δ δ < 1
2

k

k + 1 ω(t) = 1
4δ

[
e(t+1)δ − e−(t+1)δ

]

ω(t)≤ξk ≤ ξk+1− 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
+1.

ξk+1 < ω(t+1)

ω(t) < ω(t+ 1)− 1

2

√√√√(
μ+

∑k−1
i=1 βi,kγi

)
ξ2k+1

L
+ 1.

δ

ω(t) ≤ ω(t+ 1)− 1

2

√√√√
4δ2

[√
2

4δ

√
L

μ

(
e(t+2)δ − e−(t+2)δ

)]2

+ 1

= ω(t+ 1)− 2

4

√
L

μ

[
e(t+2)δ + e−(t+2)δ

]

= ω(t+ 1) + ω(t+ 1)′ (t− (t+ 1)) ≤ ω(t),

ξk+1 < ω(k+1), ∀k



λk =
L(

γ0 − μ−∑k−1
i=1 βi,kγi

)
ξ2k

.

γ0 ∈ R2

L(
γ0 − μ−∑k−1

i=1 βi,kγi

)
ξ2k

≤ L(4δ)2(
γ0 − μ−∑k−1

i=1 βi,kγi

) [
e(k+1)δ − e−(k+1)δ

]2 ,

δ

μ > 0

γ0 ∈ [0, μ[

f(xk)− f(x∗) ≤ μ||x0 − x∗||2
h(k)

− (1− λk)ψk(x
∗).

γ0 ∈ [2μ, 3L+ μ]

f(xk)−f(x∗)≤ 2L(μ+
∑k−1

i=1 βi,kγi)||x0 − x∗||2
(γ0 − μ−∑k−1

i=1 βi,kγi)h(k)
− (1− λk)ψk(x

∗).

ε

0 < ε ≤ μ

2
R2

0.

kSFGM ≥
√

L

μ+
∑k−1

i=1 βi,kγi

( (
μR2

0

2ε

)
+ (5)

)

f(x0) − f∗ ≤
L
2 ||x0 − x∗||2

f(xk)−f(x∗)≤ λk(L+ γ0)

2
||x0 − x∗||2 − (1− λk)ψk(x

∗)

γ0 ∈ [0, μ[

λk



γ0

γ0 = 0

f(xk)− f(x∗) ≤ 2μ||x0 − x∗||2

e(k+1)

√
μ+

∑k−1
i=1

βi,kγi
L − 1

.

kSFGM >√
L

μ+
∑k−1

i=1 βi,kγi

(
1+

2μR2
0

ε

)
(
1 +

2μR2
0

ε

)
≤

(
μR2

0

2ε
+

2μR2
0

ε

)
=

(
5μR2

0

2ε

)
.

kSFGM ≥
√

L

μ+
∑k−1

i=1 βi,kγi

( (
μR2

0

2ε

)
+ (5)

)

{γk}k μ

x∗

βi,k∑k−1
i=1 βi,kγi μ

x∗√
L
2μ

( (
μR2

0

2ε

)
+ (5)

)

kbound ≥
√

L/μ− 1

4

(
μR2

0

2ε

)
.

γ0 ∈ [0, μ[

γ0 ∈ [2μ, 3L + μ]

λk

γ0∑k−1
i=1 βi,kγi γ0 = 3L + μ

∑k−1
i=1 βi,kγi = 0



f(xk)− f(x∗) ≤ 10μ||x0 − x∗||2

3

(
e(k+1)

√
μ+

∑k−1
i=1

βi,kγi
L − 1

) ,

γ0 ∈ [2μ, 3L+ μ]
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A new accelerated gradient-based estimating sequence technique for
solving large-scale optimization problems with composite structure

Endrit Dosti, Sergiy A. Vorobyov and Themistoklis Charalambous

Abstract— Various problems arising in control and data
analysis can be formulated as large-scale convex optimization
problems with a composite objective structure. Within the
black-box optimization framework, such problems are typically
solved by using accelerated first-order methods. The celebrated
examples of such methods are the Fast Gradient Method and
the Accelerated Multistep Gradient Method, designed by using
the estimating sequences framework. In this work, we present
a new class of estimating sequences, which are constructed by
making use of a tighter lower bound on the objective function
together with the gradient mapping technique. Based on the
newly introduced estimating sequences, we construct a new
method, which is also equipped with an efficient line-search
strategy that provides robustness to the imperfect knowledge
of the Lipschitz constant. Our proposed method enjoys the
accelerated convergence rate, and our theoretical results are
corroborated by numerical experiments conducted on real-
world datasets. The experimental results also demonstrate the
robustness of the initialization of the proposed method to the
imperfect knowledge of the strong convexity parameter of the
objective function.

I. INTRODUCTION

Consider large-scale convex optimization problems with a

composite objective of the type

minimize
x∈Rn

{F (x) = f(x) + g(x)}, (1)

where the function f : Rn → R has Lipschitz continuous

gradients with Lipschitz constant Lf and is strongly convex

with parameter μf , where 0 < μf ≤ Lf . The regularizer

g : Rn → R is a “simple” convex lower semi-continuous

function with strong convexity parameter μg ≥ 0. The

simplicity of g implies that its proximal map,

proxτg � arg min
z∈Rn

(
g(z) +

1

2τ
||z − x||2

)
, (2)

where x ∈ Rn and τ > 0, is computed with complexity

O(n) [1]. Here ||·|| refers to the l2 norm. Problems that have

a composite objective, as shown in (1), arise in various areas

of control, such as model predictive control, adaptive control,

distributed systems, etc., [2], [3], and are solved iteratively

using different first-order optimization algorithms [4].

A large portion of the recent research in first-order opti-

mization has been targeted at investigating different reasons

behind acceleration, as well establishing alternative frame-

works [5]–[10]. Among the existing frameworks for the
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nal Processing and Acoustics, Aalto University, Espoo, Cyprus. Emails:
firstname.lastname@aalto.fi.

T. Charalambous is with the Department of Electrical and
Computer Engineering, University of Cyprus, Nicosia, Cyprus and
the Department of Electrical Engineering and Automation, School
of Electrical Engineering, Aalto University, Espoo, Finland. Email:
themistoklis.charalambous@aalto.fi.

acceleration of first-order methods, the estimating sequences

framework has grasped a significant interest (see [4] and

references therein). Several reasons that have led to the

popularity of methods built within this framework are the

following. First, gradient-based methods built based on the

estimating sequences framework are optimal in the sense

of [11]. Second, as shown in [12], they can be combined

with backtracking line search strategies, while maintaining

their efficient convergence properties. Third, the estimating

sequences framework can be used to build efficient acceler-

ated second-order methods [13], and higher-order methods

[14]. Last, they have demonstrated competitive performance

even when extended to other settings, such as distributed

optimization [15], nonconvex optimization [16], stochastic

optimization [17], non-Euclidean optimization [18], etc. De-

spite their wide applicability and many desirable properties

from the perspective of designing accelerated methods, esti-

mating sequences are not unique and suffer from the lack of

a systematic methodology for devising them. Thus, selecting

the right construction for estimating functions can lead to

more efficient algorithms compared to the existing state-of-

the-art methods for solving problems of the type of (1).

The framework for the study and analysis of estimat-

ing sequence-based methods has been established in [20].

Among the existing estimating sequence methods devised

for solving problems of the form of (1), a popular algorithm

is the Accelerated Multistep Gradient Scheme (AMGS) [22,

Method (4.9)]. It exhibits the theoretical accelerated rate of

convergence O( 1
k2 ) and is also very efficient in practice.

However, it suffers from the increase in the computational

burden due to the fact that it requires two projection-like

operations per iteration. As the dimensionality of the prob-

lems increases, this can significantly affect the run-time of

the minimization process. This issue has been addressed with

the development of the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) [21], which exhibits the accelerated con-

vergence rate with one projection-like operation per iteration.

Comparing AMGS to the Fast Gradient Method (FGM),

which has been devised for minimizing smooth convex func-

tions [19, Constant Step Scheme I], it can be observed that

despite both exhibiting the accelerated convergence rate, the

equations for updating the iterates are significantly different.

These dissimilarities arise because the methods were devised

using different variants of the estimating sequences and

cause the practical performance of the methods to vary

when they are compared on real-world problems. Based

on our numerical experiments, we have observed that for

smooth and strongly convex problems, FGM outperforms
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both AMGS and FISTA. Thus, it is of interest to extend the

variant of estimating sequences introduced in [19] and devise

methods that can be used to find the optimal solution of (1).

In this work, we show that by utilizing the aforementioned

variant of estimating sequences it is possible to devise

very efficient accelerated gradient-based algorithms. More

specifically, we present a new structure for the estimating

functions, which we call the composite estimating functions

hereafter and show that they satisfy the properties of the

estimating sequences. Different from the classical estimating

functions devised in [19], our proposed composite estimating

functions make use of the subgradients, as well as a tighter

lower bound of the objective function. Utilizing the newly

introduced estimating functions together with the gradient

mapping framework, we devise our proposed method, which

enjoys the accelerated convergence rate even when the true

value of the Lipschitz constant is not known. The efficiency

of our proposed algorithm in solving problems with com-

posite structure is illustrated based on real-world datasets.

Our numerical results also demonstrate the robustness of

the initialization of the proposed algorithm with respect to

the imperfect knowledge of the strong convexity parameter.

Note that the need to estimate the true value of the strong

convexity parameter comes with an additional increase in the

computational complexity in practical implementations [23].

We remark that in this work we only present the proofs of

the statements which are crucial in the development of the

algorithm. The remaining proofs can be found in our full

paper [24].

II. FOUNDATIONS FOR COMPOSITE OBJECTIVE

OPTIMIZATION

First, we transfer the strong convexity of g(x) within the

objective function in (1). Let x0 ∈ Rn and consider

F (x)=
(
f(x) +

τμg

2
||x−x0||2

)
+τ

(
g(x)−μg

2
||x−x0||2

)
= f̂(x) + τ ĝ(x). (3)

This strong convexity transfer also yields Lf̂ = Lf + τμg

and μf̂ = μf + τμg , as well as μĝ = 0.

Next, the following bounds for the smooth and strongly

convex function f̂(x) are introduced.

f̂(x) ≤ f̂(y) +∇f̂(y)T (x− y) +
Lf̂

2
||y − x||2, (4)

f̂(x) ≥ f̂(y) +∇f̂(y)T (x− y) +
μf̂

2
||y − x||2, (5)

where y ∈ Rn. Similarly, using the definition of the

subgradient, the term ĝ(x) is bounded below as

ĝ(x) ≥ ĝ(y) + s(y)T (x− y), (6)

where s(y) is a subgradient of the function ĝ(y). Moreover,

let L ≥ Lf̂ , and define the following

mL(y;x)� f̂(y)+∇f̂(y)T(x−y)+
L

2
||x−y||2+τ ĝ(x). (7)

Utilizing (4) in (7), we have

mL(y;x) ≥ F (x), ∀x, y ∈ Rn. (8)

Then, the composite gradient mapping can be introduced as

TL(y) � arg min
x∈Rn

mL(y;x), (9)

and the composite reduced gradient can be defined as

rL(y) � L (y − TL(y)) . (10)

Observe that when τ = 0, in (3) we have f̂(x) = f(x).In
this case, note that the function mL(y;x) would also be

differentiable in both x and y. Thus, the optimality condition

for (9), would be ∇mL(y;x) = 0. Substituting the definition

of mL(y;x) given in (7) into (9), and analyzing the first order

condition, we can write TL(y) = y − ∇f̂(y)
L . Substituting

this into (10), results in rL(y) = ∇F (y) = ∇f(y), i.e.,

the composite reduced gradient becomes the gradient of the

objective function. On the other hand, when τ �= 0, utilizing

the first-order optimality conditions for (9), we have

∂mL(y;TL(y))
T (x− TL(y)) ≥ 0,(

∇f̂(y)+L(TL(y)−y)+τsL(y)
)T

(x−TL(y))≥0, (11)

where ∂ denotes the subdifferential of mL(y;TL(y)),
sL(y) ∈ ∂ĝ(TL(y)) is a subgradient belonging to the

subdifferential of ĝ(TL(y)). Setting the first bracket of (11)

to 0 and using (10), we can compute the composite reduced

gradient as

rL(y) = L(y − TL(y)) = ∇f̂(y) + τsL(y). (12)

In words, the choice of the subgradient rL(y) as in (12)

ensures that 0 ∈ ∂mL(y;TL(y)).
Now, we present the following lower on the objective

function F (x), which is tighter than utilizing (5).

Theorem 1. Let F (x) be a composition of an Lf̂ -smooth
and μf̂ -strongly convex function f̂(x), and a simple convex
function ĝ(x), as given in (3). For L ≥ Lf̂ , and x, y ∈ Rn

we have
F (x) ≥ f̂(TL(y)) + τ ĝ(TL(y)) + rL(y)

T (x− y)

+
μf̂

2
||x− y||2 + 1

2L
||rL(y)||2. (13)

III. PROPOSED METHOD

First, we introduce the composite estimating sequences.

Definition 1. The sequences {φk}∞k=0 and {λk}∞k=0, λk ≥ 0,
are called composite estimating sequences of the function
F (·) defined in (3), if λk → 0 as k → ∞, and ∀x ∈ Rn,
∀k ≥ 0 we have

φk(x) ≤ λkφ0(x) + (1− λk)F (x). (14)

These sequences can be used to measure the rate of conver-

gence of the iterates, as shown in the following lemma.

Lemma 1. If for some sequence of points {xk}∞k=0 we
have F (xk) ≤ φ∗

k � min
x∈Rn

φk(x), then F (xk) − F (x∗) ≤
λk [φ0(x

∗)− F (x∗)], where x∗ = arg min
x∈Rn

F (x).

The following recursive definition for the proposed com-

posite estimating sequences is introduced.
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Lemma 2. Assume that there exists a sequence {αk}∞k=0,
where αk ∈ (0, 1) ∀k, such that

∑∞
k=0 αk = ∞, and an

arbitrary sequence {yk}∞k=0. Furthermore, let λ0 = 1 and
assume that the estimates Lk of the Lipschitz constant Lf̂
are selected in a way that inequality (4) is satisfied for all
the iterates xk and yk. Then, the sequences {φk}∞k=0 and
{λk}∞k=0, which are defined recursively as

λk+1 = (1− αk)λk, (15)

φk+1(x) = (1− αk)φk(x) + αkF (TLk
(yk)) (16)

+ αk

(
rLk

(yk)
T (x− yk) +

μf

2
||x− yk||2

)
+ αk

1

2Lk
||rLk

(yk)||2,
are composite estimating sequences.

We proceed by contrasting our results introduced in Def-

inition 1, Lemmas 1 and 2 with their counterpart devised

for minimizing smooth convex functions presented in [19,

Definition 2.2.1, Lemma 2.2.1, Lemma 2.2.2]. First, note that

Definition 1 and Lemma 1 would reduce to the corresponding

results introduced by Nesterov, which are limited to the

case of minimizing differentiable objective functions. In

this sense, the framework proposed here extends the work

presented in [19] to solve a more general class of problems.

Second, as established in Lemma 1, the rate of convergence

of the iterates depends on the rate at which λk → 0.

Third, in (16) we can see the impact of the tighter lower

bound on the objective function presented in Theorem 1.1

Last, the cost function in (16) is now evaluated at the

points given by the composite gradient mapping. Moreover,

unlike FGM, which is defined only when the computation

of the gradient of the objective function is possible, we can

observe that our proposed composite estimating functions

utilize subgradients of the non-smooth objective function to

construct the sequence {φk}∞k=0.

Let us now introduce the following structure for the

functions in the sequence {φk}∞k=0

φk(x) = φ∗
k +

γk
2
||x− vk||2, ∀k = 1, 2, . . . . (17)

Note that the selection for the terms in {φk(x)}∞k=0 is not

unique and that different choices for φk(x) can lead to

different accelerated methods (see [18], [25]). Let us then

show how the terms in the sequences {γk}∞k=0, {vk}∞k=0 and

{φ∗
k}∞k=0 can be computed recursively.

Lemma 3. Let φ0(x) = φ∗
0 + γ0

2 ||x − v0||2, where γ0 ∈
R+ and v0 ∈ Rn. Then, the process defined in Lemma 2
preserves the canonical form of the function {φk(x)}∞k=0

presented in (17), where the sequences {γk}∞k=0, {vk}∞k=0

and {φ∗
k}∞k=0 can be computed as follows

γk+1 = (1− αk)γk + αkμf̂ , (18)

vk+1=
1

γk+1

(
(1−αk)γkvk+αk

(
μf̂yk−Lk(yk−TLk

(yk))
))
,

(19)

1When F (x) is a convex and differentiable function, the composite
reduced gradient becomes the same as the gradient of the function.

φ∗
k+1 = (1− αk)φ

∗
k +αk

(
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2
)

−L2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
μf̂αkγk(1−αk)

2γk+1
||yk−vk||2

+
Lkαkγk(1− αk)

γk+1
(yk−vk)

T (yk−TLk
(xk)). (20)

Proof: See Appendix I.

Due to space limitations, some derivations have been

omitted at this point. They can which be found in our full

paper [24]. Moreover, to obtain more intuition behind the

estimating sequences and methods obtained by utilizing this

framework, we refer the reader to [20], [26], [27].

Unlike the analysis presented in [19], the results obtained

in this work also allow for the line search adaptation.2 To

achieve a faster progress to the optimal solution, it would

be preferable to select the smallest constant Lk such that

(4), with value Lf̂ = Lk, is satisfied ∀k = 0, 1, . . ., and then

slightly increase its value across the iterations. This approach

would ensure that the algorithm makes ”larger steps towards

the optimal solution” in the initial iterations. Then, as xk

approaches x∗, the larger values of Lk would ensure that the

algorithm does not overshoot past x∗ and behave erratically.

Unfortunately, such an approach is not feasible because the

true value of Lf̂ is not known. Therefore, we introduce

a line search strategy that has the following benefits: i)
Guarantees the robustness of the method with respect to

the initialization of the estimate of the Lipschitz constant.

ii) Ensures a dynamic update of the step size across the

iterations. The line search strategy that is utilized in this work

makes use of a constant ηu > 1, which increases the value

of the estimate and a constant ηd ∈]0, 1[, which decreases

the value of the estimate of the Lipschitz constant. Finally,

our proposed algorithm is presented in Algorithm 1.

Contrasting our proposed method and FGM, i.e., Constant

Step Scheme I in [19], we can see that the terms in {αk}∞k=0

and {γk}∞k=0 are updated in a similar manner. The first

dissimilarity can be observed in the updates of {yk}∞k=0,

which for the proposed method are independent of μf̂ . The

second dissimilarity can be noticed from the update of xk.

Because of the composite structure of F (x), the next iterate

is now computed by taking a proximal gradient step. Note

that the assumption on the simplicity of g(x) ensures that

the proximal term can be computed efficiently. The third

dissimilarity is the way {vk}∞k=0 is computed. It reflects

the usage of the proposed composite reduced gradient. Last,

we note that the proposed convergence analysis ensures

the converge of our proposed method for a wider range

of values for γ0 than what is supported by the existing

convergence results for FGM [19, Lemma 2.2.4], which

ensure convergence for γ0 ∈ [μf̂ ; 3Lf̂ + μf̂ ]. As we will

2Several backtracking strategies have been proposed in the literature (see
for instance [21], [22]).

3We note that Kmax denotes the maximum number of iterations. De-
pending on the application, the value of Kmax can be selected to trade-
off between the required accuracy, and the needed processing time and
computations.
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Algorithm 1 Proposed Method

1: Input x0 ∈ Rn, L0 > 0, μf̂ , γ0 ∈ [0, 3L0 + μf̂ ],
ηu > 1 and ηd ∈]0, 1[.

2: Set k = 0, i = 0 and v0 = x0.

3: while k ≤ Kmax
3 do

4: L̂i ← ηdLk

5: while True do
6: α̂i ←

(μf̂−γk)+
√
(μf̂−γk)2+4L̂iγk

2L̂i

7: γ̂i+1 ← (1− α̂i)γk + α̂iμf̂

8: ŷi ← γ̂i+1xk+α̂iγkvk
γ̂i+1+α̂iγk

9: x̂i+1 ← prox 1
L̂i

ĝ

(
ŷi − 1

L̂i
∇f(ŷi)

)
10: v̂i+1 ←

1
γ̂i+1

(
(1− α̂i)γkvk+α̂i

(
μf̂ ŷi − L̂i (ŷi−x̂i+1)

))
11: if F (x̂i+1) ≤ mL̂i

(ŷi, x̂i+1) then
12: Break from loop

13: else
14: L̂i+1 ← ηuL̂i

15: end if
16: i ← i+ 1
17: end while
18: Lk+1 ← L̂i, xk+1 ← x̂i, αk ← α̂i−1,

yk ← ŷi−1, i ← 0, k ← k + 1
19: end while
20: Output xk

see later, setting γ0 = 0, ensures the robustness of the

initialization of the proposed method with respect to the

imperfect knowledge of the strong convexity parameter.

Let us also analyze the behavior of the estimate of the

Lipschitz constant. Depending on the selection of L0, two

possibilities exist. First, if L0 ∈]0, Lf̂ [, then from line 11 in

Algorithm 1, we observe that the estimate of the Lipschitz

constant at iteration k increases only if Lk−1 ≤ Lf̂ . Thus,

it can be written that

L0 ≤ L̂i ≤ Lk ≤ ηuLf̂ . (21)

Second, if L0 ≥ Lf̂ , then the condition in line 11 of Algo-

rithm 1 is satisfied, and estimate of the Lipschitz constant

cannot increase further. Therefore, we would have

Lk ≤ ηdL0. (22)

Combining (21) and (22), we note that despite of the value

of L0, we have

Lk ≤ Lmax � max{ηdL0, ηuLf̂}. (23)

Finally, we can characterize the convergence rate of the

proposed method as follows.

Theorem 2. Algorithm 1 generates a sequence of points such
that

1) If γ0 ∈ [0, μf̂ [, then

F (xk)− F (x∗) ≤ μf̂ (L0 + γ0)||x0 − x∗||2

Lk

(
e

k+1
2

√
μ
f̂

Lk − e
− k+1

2

√
μ
f̂

Lk

)2

(24)

2) If γ0 ∈ [μf̂ , 3L0 + μf̂ ], then

F (xk)−F (x∗)≤ 2μf̂ (L0+γ0)||x0−x∗||2

(γ0−μf̂ )

(
e
k+1
2

√
μ
Lk − e

− k+1
2

√
μ
Lk

)2

(25)

From Theorem 2 we observe that, compared to FGM, the

proposed method converges over a larger selection of values

of the term γ0. Moreover, we can see that initializing γ0 = 0
exhibits the best theoretical performance. This is important

from a practical perspective, since in most cases the true

values of μf̂ and Lf̂ are not known and should be estimated.

The convergence rate is also affected from the selection of

L0. From (24) and (25) we can see that the smaller L0, the

faster the convergence of the method. At this point, we stress

that L0 cannot be arbitrarily small, as it should still be chosen

in a way that the upper bound (4) is satisfied. Moreover, it

should also have a larger value than our estimate of the strong

convexity parameter μf̂ .

IV. NUMERICAL STUDY

In this section, we test the performance of several instances

of our proposed method in solving

minimize
x∈Rn

1

2

m∑
i=1

(aTi x−yi)
2+

τ1
2
||x||2+τ2||x||1, (26)

where || · ||1 denotes the l1 norm. The performance of our

proposed method is compared to the state-of-the-art black-

box methods, i.e., AMGS and FISTA. For the proposed

method, we consider the variant that yields the best theo-

retical performance, i.e., when we initialize γ0 = 0. In the

plots, it is named “Proposed, variant 1”. We also examine

the variant for which (in theory) the convergence rate is

slowest, i.e., we choose γ0 = 3L0 + μf̂ , and it is named

Proposed, variant 2”. Lastly, we examine the instance of the

proposed method that is obtained when γ0 = μf̂ , which is

named “Proposed, variant 3”. For both AMGS and FISTA we

utilize the line-search strategies presented in the respective

papers [21], [22]. We demonstrate the robustness of the line-

search strategy that is used in the proposed method, we

depict the following instances. i) We initialize the estimate

of the Lipschitz constant to be 10-times smaller than the

true value, i.e., L0 = 0.1Lf̂ . ii) We initialize the estimate

of the Lipschitz constant to be 10-times larger than the

true value, i.e., L0 = 10Lf̂ . Moreover, we choose the

parameters ηu = 2 and ηd = 0.9 based on [30] because they

ensure “a good performance of the methods across many

applications”. Regarding the strong convexity parameter, we

have already discussed that, from a computational viewpoint,

μf̂ is expensive to estimate in practice. Therefore, to decrease

the number of computations, we equate the strong convexity

parameter to that of the regularizer term in (26). Furthermore,

we choose the starting point x0 at random for all algorithms.

We compare the performance of the methods on real data,

which are selected from the Library for Support Vector

Machines (LIBSVM) [28]. Specifically, we consider the

datasets “a1a” and “colon-cancer”. For the “a1a” dataset,
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we have A ∈ R1605×123. On the other hand, for the “colon-

cancer” dataset, we have A ∈ R62×2000. For these datasets,

the respective true values for the Lipschitz constants are

L“a1a” = 10061 and L“colon-cancer” = 1927.4. Moreover, we

consider the following assignment for the regularizer term

τ1 = τ2 ∈ {10−5, 10−6}. Evidently, such choice of the

regularizer terms ensures a very large condition number

κ =
Lf̂

μf̂
for the problems that are considered in this section.

We find the optimal solutions via CVX [29].

From Fig. 1 we can observe that all the instances of the

proposed method exhibit a much better performance than

the existing benchmarks. First, observe that the final iterate

produced by any of the variants of the proposed method is the

closest to x∗. Second, notice that unlike the iterates produced

by AMGS or FISTA, the sequence of iterates constructed

by the proposed method converges to the optimal solution

x∗ in a much smaller number of iterations. Moreover, we

can see that the performance of FISTA is visibly worse than

the other accelerated methods. This occurs partly because

the FISTA algorithm cannot exploit the strong convexity

of the objective function. Third, notice that the practical

performance of both the proposed method and AMGS is not

altered by the inexact knowledge of L0. However, unlike

AMGS which requires two projection-like operations per

iteration, our proposed method retains the robustness to L0 at

a lower computational cost. On the other hand, the results for

FISTA suggest that the initialization of the Lipschitz constant

significantly affects its performance. Last, observe that all the

different variants of the proposed method exhibit very similar

convergence properties and their differences in performance

are minor. As can be seen from Figs. 1(a) and 1(b), the

variant obained under the initialization γ0 = 0 exhibits

a faster convergence. Such a result is highly relevant in

practical applications, wherein the exact values of μf̂ and Lf̂
are approximated by using some numerical procedure. Thus,

we can see that the variant of the proposed method which

results from choosing γ0 = 0 exhibits better convergence

properties than the selected benchmarks, and at the same

time is also more robust to the imperfect knowledge of the

strong convexity parameter and the Lipschitz constant.

V. CONCLUSIONS AND DISCUSSION
A new accelerated black-box gradient-based estimating

sequence method for solving problems with composite ob-

jective has been presented. The proposed method has been

devised by utilizing a newly introduced class of estimating

functions and it is equipped with an efficient line-search

strategy. The newly introduced estimating functions have

been used to construct upper bounds on the non-smooth

function, as well as to measure the convergence rate of the

minimization process. Different from the existing conver-

gence results of FGM-type methods, our proposed analysis

supports the adjustment of the estimate of the Lipschitz

constant. Moreover, our proposed method converges when

γ0 ∈ [0, 3L + μf̂ ]. In practice, our findings establish the

possibility of constructing accelerated estimating sequences

methods, which also enjoy the robustness to the imperfect

knowledge of the Lipschitz constant and strong convexity
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Fig. 1: Comparison between the efficiency and robustness

with respect to the initialization of the Lipschitz constant

of the algorithms tested in minimizing the quadratic loss

function with elastic net regularizer on real data.

parameter. We note that the robustness to the strong convex-

ity parameter is of significant importance in practice since

its true value is computationally expensive to obtain. Our

theoretical findings are supported by numerical experiments

performed on real-world datasets.

The framework and results that were presented in this

work can be extended in various directions. First, it would be

of interest for networked control applications to investigate

the possibilities of constructing a distributed variant of our

proposed method, which would also improve the scalability

of the proposed framework. Second, it would be of interest

to construct extensions of our proposed framework to the

stochastic optimization framework. Last, it would also be

of interest to investigate the possibility of embedding other

types of momentum terms (e.g., heavy-ball momentum) into

the proposed estimating sequences to further improve the

convergence properties of our proposed method.

APPENDIX I

PROOF OF LEMMA 3
We will prove the first part by induction. First, considering

k = 0, we can write ∇2φ0(x) = γ0I . Next, we suppose that

for some step k we have ∇2φk(x) = γkI . Then, at the next

step k + 1, it can be written that

∇2φk+1(x)
(16)
= (1− αk)γkI + αkμf̂I ≡ γk+1I. (27)

At this point, we are ready to show how the recursive equa-

tions for updating {vk}∞k=0 and {φ∗
k}∞k=0 can be obtained.
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φ∗
k+1 +

γk+1

2
||yk − vk+1||2 = (1− αk)

(
φ∗
k +

γk
2
||yk − vk||2

)
+ αk

(
F (TLk

(yk)) +
1

2Lk
||rLk

(yk)||2
)
. (34)

γk+1

2
||yk − vk+1||2= (1−αk)

2γ2
k

2γk+1
||vk−yk||2+ α2

kLk
2

2γk+1
||yk −TLk

(yk) ||2− 2Lkαk(1− αk)γk
2γk+1

(vk − yk)
T∇ (yk − TLk

(yk)).

(38)

Utilizing (17) in (16), as well as considering its first-order

optimality conditions, yields

γk+1(x− vk+1) = γk(1− αk)(x− vk) + αk

(
μf̂ (x− yk)

+ rLk
(yk)) . (28)

Substituting (18) in (28), and discarding the terms that

depend on x, it can be written that

−γk+1vk+1=−(1−αk)γkvk+αk

(
−μf̂yk+rLk

(yk)
)
. (29)

Then, utilizing (10) in (29), yields (19).

Now, we are ready to proceed with establishing (20).

Exploiting (17) in (16), now evaluated at the point x = yk,

we obtain (34), shown at the top of the page.

Then, we utilize (19) to find an alternative characterization

for the second term in the left hand side (LHS) of (34). Let

us examine the following

vk+1 − yk =
1

γk+1
((1− αk)γkvk+αkμf̂yk

− αkLk (yk−TLk
(yk))− γk+1yk). (35)

Then, substituting (18) in (35), it can be written that

vk+1 − yk =
1

γk+1
((1− αk)γk(vk − yk) (36)

− αkLk (yk − TLk
(yk)) .

Considering the || · ||2 of the LHS and RHS in (36), we reach

||yk−vk+1||2= ||(1−αk)γk(vk−yk)−αkLk(yk−TLk
(yk))||2

γ2
k+1

.

(37)

Multiplying the LHS and RHS of (37) by
γk+1

2 , and expand-

ing the RHS, we obtain (38) shown at the top of the page.

Utilizing (38) in (34), yields (20).
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A plethora of problems arising in signal processing, machine learning and statistics can be cast as large- 

scale optimization problems with a composite objective structure. Such problems are typically solved by 

utilizing iterative first-order algorithms. In this work, we devise a new accelerated gradient-based esti- 

mating sequence technique for solving large-scale optimization problems with composite objective struc- 

ture. Specifically, we introduce a new class of estimating functions, which are obtained by utilizing both 

a tight lower bound on the objective function, as well as the gradient mapping technique. Then, using 

the proposed estimating functions, we construct a class of Composite Objective Multi-step Estimating- 

sequence Techniques (COMET), which are endowed with an efficient line-search procedure. We prove 

that our proposed COMET enjoys the accelerated convergence rate, and our newly established conver- 

gence results allow for step-size adaptation. Our theoretical findings are supported by extensive compu- 

tational experiments on various problem types and real-world datasets. Moreover, our numerical results 

show evidence of the robustness of the proposed method to the imperfect knowledge of the smoothness 

and strong convexity parameters. 
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1. Introduction 

In this work, we devise accelerated black-box methods for solv- 

ing large-scale convex optimization problems with a composite ob- 

jective structure by using only first-order information. The typical 

structure of such problems is 

minimize 
x ∈R 

n 
F ( x ) = f ( x ) + τg ( x ) , τ > 0 , (1) 

where the function f : R 

n → R is an L f -smooth and μ f -strongly 

convex function with 0 ≤ μ f ≤ L f . The regularizer g : R 

n → R is a 

simple convex lower semi-continuous function with strong convex- 

ity parameter μg . Typically, in signal processing applications, the 

function g(x ) is “simple”, meaning that a closed-form solution for 

minimizing the summation of g and some auxiliary functions can 

be easily found [1] . In more practical terms, the assumption on the 

simplicity of g implies that its proximal map, defined as 

prox τg � arg min 
z∈ R 

n 

(
g(z) + 

1 
2 τ || z − x || 2 ), x ∈ R 

n , (2) 

∗ Corresponding author. 

E-mail addresses: endrit.dosti@aalto.fi (E. Dosti), sergiy.vorobyov@aalto.fi (S.A. 

Vorobyov), themistoklis.charalambous@aalto.fi (T. Charalambous) . 

is computed with complexity O(n ) [2] . Herein || · || denotes the l 2 
norm. 

Problems that share the same structure as (1) arise quite of- 

ten in different scientific disciplines, such as signal and image pro- 

cessing, data analysis, and machine learning. Typical applications 

in which the formulation given in (1) is relevant include compres- 

sive sensing, phase retrieval problems, medical imaging, dictionary 

learning, and many more (see [3,5–7,4] and references therein). 

When considering applications, the variable x represents the model 

parameters, whereas the role of f (x ) is to ensure a good fit be- 

tween the observed data and the estimated parameters. In sig- 

nal processing applications, g(x ) acts as a regularizer and typically 

takes the form of some parameter shrinkage norm, i.e., l 2 norm 

[8,9] , sparsity-enforcing norm, i.e., l 1 norm [10–12] , or its coun- 

terpart for the rank function, i.e., the nuclear norm [13,14] . An- 

other popular structure for g(x ) is the Chebyshev norm, i.e., the 

l ∞ 

norm [15] . The function g(x ) can also be used to embed convex 

constraints, in which case it would act as an indicator function of 

some closed convex set [1] . 

In the context of large-scale optimization [16] , problems that 

share the same structure as (1) are solved iteratively using dif- 

ferent first-order optimization algorithms [17,18] . The bounds on 

the performance of black-box first-order methods have been es- 

https://doi.org/10.1016/j.sigpro.2022.108889 
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tablished by Nemirovsky and Yudin [19] . Loosely speaking, a first- 

order method is optimal in the black-box framework if it achieves 

the accelerated convergence rate with respect to the iteration 

counter k , while at the same time complying with the lower com- 

plexity bounds. The question of how to construct practical methods 

that are optimal has attracted the attention of the research com- 

munity over decades. One of the first methods that managed to 

achieve the accelerated convergence rate in the black-box frame- 

work was the heavy ball method [20] . Therein, the acceleration is 

achieved by adding a momentum term to the gradient step, which 

nudges the new iterate in the direction of the previous step. The 

first method that is optimal in the sense of Nemirovsky and Yudin 

[19] is the Fast Gradient Method (FGM) [21] . It is built based on the 

mathematical machinery of estimating sequences, and has been 

since widely studied [22–27] . 

Finding different reasons behind acceleration has attracted sig- 

nificant attention in the recent research on first-order optimiza- 

tion. In [28] , the authors have constructed accelerated first-order 

methods by exploiting the linear coupling between mirror and gra- 

dient descent. The framework presented therein leads to a myriad 

of applications wherein classical accelerated gradient methods do 

not apply, however all these applications are limited to the case 

of differentiable objective functions. The authors of [29] have de- 

rived an accelerated first-order method, which was inspired by the 

ellipsoid method. The proposed method is efficient; however, it 

suffers from the drawback that it requires an exact line search. 

An interesting framework is established in Flammarion and Bach 

[30] , Su et al. [31] , wherein the authors model the continuous- 

time limit of FGM as a second-order differential equation (ODE). 

Then, FGM equations can be obtained based on such a framework. 

Specifically, in Flammarion and Bach [30] , the authors show that 

several accelerated schemes can be formulated as constant param- 

eter ODE algorithms, wherein the stability of the systems would 

be equivalent to covergence at rate O(1 /n 2 ) . The limitation of the 

work is that the analysis presented therein is restricted only to the 

class of smooth and non-strongly convex problems. Moreover, in 

Su et al. [31] the authors show that the ODE type of analysis al- 

lows for a better understanding of Nesterov’s scheme. However, the 

family of methods obtained therein, exhibits a similar convergence 

rate to FGM. Similar convergence rate as those obtained for FGM 

can also be derived by using theory from robust control [32] . A 

novel approach for analyzing the worst-case performance of first- 

order black-box methods has appeared in Drori and Teboulle [33] . 

The analysis conducted therein relies on the observation that the 

worst-case behavior improvement of a black-box method is itself 

an optimization problem, which is referred to as the performance 

estimation problem. By utilizing this approach, the authors of Kim 

and Fessler [34] , 35 ] have introduced optimized first-order meth- 

ods that are efficient and achieve a convergence bound that is two 

times smaller than the one attained by FGM. However, the devel- 

opment of these algorithms is restricted to solving problems with 

smooth objective functions. 

Among the various approaches to the acceleration of first-order 

methods that were discussed above, the methods that were built 

based on the machinery of estimating sequences have attracted a 

lot of attention (see d’Aspremont et al. [18] , Bubeck [36] and ref- 

erences therein). Several reasons that have led to their success are 

summarized in the sequel. First, on a theoretical level, FGM-type 

methods are proven to be optimal in the sense of Nemirovsky and 

Yudin [19] . Second, their practical performance is competitive even 

when they are used in conjunction with simple line search strate- 

gies, such as backtracking [37,38] . Third, they can be scaled to con- 

struct accelerated second-order methods [39,40] and accelerated 

higher-order methods [41,42] . Last, they have been shown to ex- 

cel in performance even when they have been extended to other 

settings, such as distributed optimization [43,44] , nonconvex op- 

timization [45,46] , stochastic optimization [47,48] , non-Euclidean 

optimization [49,50] , etc. In [51] , it is argued that the key behind 

constructing optimal methods lies in the accumulation of some 

global information on the objective function. The mathematical ob- 

jects which enable for capturing the relevant topological informa- 

tion on the function that is to be minimized are the estimating 

sequences. Typically, they consist of a pair of sequences, that si- 

multaneously allow for parsing global information around the it- 

erates, as well as for measuring the convergence rate of the min- 

imization process. Despite their remarkable properties, estimating 

sequences exhibit the issue that there is no unique or systematic 

approach for constructing them. As we will see in the sequel, mak- 

ing the adequate choice of the estimating functions that comprise 

the estimating sequences can significantly impact the practical per- 

formance of the resulting algorithm. 

The estimating sequences framework for the study and analysis 

of various methods has been presented in Baes [52] . An existing 

estimating sequence method that can directly solve (1) is the Ac- 

celerated Multistep Gradient Scheme (AMGS) [1] . The method is 

proven to enjoy the accelerated rate of convergence O( 1 
k 2 

) . De- 

spite its notable theoretical and practical performance as measured 

by the number of iterations carried through until convergence, the 

method suffers the drawback that it requires two projection-like 

operations per iteration. This results in an increase of the com- 

putational burden, which (in the case of large-scale problems) is 

also reflected in an increase of the runtime of the method. This 

problem has been solved by the development of the Fast Itera- 

tive Shrinkage-Thresholding Algorithm (FISTA) [53] . The method 

also enjoys the accelerated convergence rate of O( 1 
k 2 

) , while at the 

same time requiring only one projection-like operation per itera- 

tion. Similarly to Nesterov [21] , FISTA does not explicitly utilize the 

machinery of estimating sequences. However, as has been demon- 

strated in Florea and Vorobyov [54] , by properly selecting the es- 

timating functions it is possible to establish links between FISTA 

and estimating sequence methods. 

As discussed above, many of the existing seminal methods such 

as AMGS, FISTA and FGM [51, Constant Step Scheme I (2.2.19)] , 

were obtained by explicitly (or implicitly) using the estimating 

sequences framework, and they all enjoy the theoretical acceler- 

ated rate of convergence. Despite being accelerated in theory, these 

methods still exhibit the following differences: i ) The algorithmic 

structure of the methods changes depending on the different es- 

timating sequences that are used in devising these algorithms. ii) 

The practical performance of the methods varies significantly when 

they are tested on real-world problems and datasets. Moreover, 

based on preliminary experiments that we have conducted for the 

cases of differentiable convex functions, we have observed that 

FGM converges faster than both AMGS and FISTA. Thus, the ques- 

tion of how to construct newer classes of estimating sequences 

that can be used to build more efficient methods for solving prob- 

lems with composite objective structure arises. In this work, we 

answer this question affirmatively, and show that, by construct- 

ing the appropriate estimating functions, it is possible to devise 

very efficient accelerated first-order methods. More specifically, the 

main contributions of the article are as follows. 

• In this work, we extend the existing estimating sequences 

framework presented in Nesterov [51] for minimizing differen- 

tiable objective functions, to the broader class of solving prob- 

lems with composite structure given in (1) . 
• We introduce a new structure for the estimating functions, 

which we call the composite estimating functions . The proposed 

estimating functions are constructed by utilizing the gradient 

mapping technique [19] together with a tighter global lower 

bound on the objective function than the one obtained from 

the Taylor series expansion of a convex function. 

2 
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• We show that our proposed estimating functions can be used 

to efficiently parse information around all the iterates, as well 

as measure the convergence rate of the minimization process. 

Unlike the estimating functions devised in Nesterov [51] , which 

are only defined for the problem of minimizing smooth func- 

tions, our proposed composite estimating functions make use 

of the tighter lower bound on the objective function, as well 

as the subgradients of the objective function. This allows for 

designing methods that are used for solving a broader class of 

problems. 
• We show how the proposed estimating sequences can be used 

to produce a new class of Composite Objective Multi-step 

Estimating-sequence Techniques (COMET), which are also en- 

dowed with an efficient line-search strategy. Unlike AMGS, the 

resulting algorithms require only one projection-like operation 

per iteration. 
• We prove that COMET enjoys the accelerated convergence rate 

even when the Lipschitz constant is not known and needs to be 

estimated. 
• We establish that the initialization of COMET can be made ro- 

bust to the imperfect knowledge of the strong convexity pa- 

rameter. Such a fact is very important for many practical ap- 

plications, as computing the true value of the strong convexity 

parameter is computationally expensive. 
• Through extensive simulations for various typical signal pro- 

cessing problems with composite structure, we show that the 

proposed method yields a better performance than the exist- 

ing benchmarks. Furthermore, we also show the robustness of 

the selected instances of COMET with respect to the imperfect 

knowledge of the strong convexity parameter and the Lipschitz 

constant. To demonstrate the robustness, as well as the reliabil- 

ity of our proposed method, we test its performance on real- 

world datasets. 

The article is organized as follows. In Section 2 , we introduce 

the key assumptions of the paper, as well as some of the main 

concepts that are used in developing our method. In Section 3 , we 

introduce the proposed estimating sequences for composite objec- 

tives and devise COMET based on them. In Section 4 , we formally 

establish the convergence of COMET and derive the convergence 

rate for the minimization process. Then, in Section 5 , we illus- 

trate the performance of our proposed method in solving several 

optimization problems and show that it outperforms the existing 

benchmarks. Last, in Section 6 , we present our conclusions and dis- 

cuss possible future research directions. 

2. Preliminaries 

Assume that the objective function is bounded below, i.e., 

(1) has a solution. Another key assumption, which holds true for 

typical signal processing applications, is that the function and gra- 

dient computations have approximately the same complexity. For 

the problem setting of interest, the necessary oracle functions are 

the function evaluators, f (x ) , g(x ) , gradient evaluator ∇ f (x ) , and 

proximal evaluator prox τg (x ) . 

To simplify our analysis, let us relocate the strong convexity of 

g(x ) within the objective function in (1) . Let x 0 ∈ R 

n and consider 

that 

F (x ) = 

(
f (x ) + 

τμg 

2 
|| x − x 0 || 2 

)
+ τ

(
g(x ) − μg 

2 
|| x − x 0 || 2 

)
= 

ˆ f (x ) + τ ˆ g (x ) . (3) 

The resulting function ˆ f (x ) has a Lipschitz constant L ˆ f = L f + 

τμg and strong convexity parameter μ ˆ f 
= μ f + τμg . On the other 

hand, the function ˆ g (x ) has a strong convexity parameter μ ˆ g = 0 . 

Recall that it is possible to construct upper and lower bounds 

for the smooth and strongly convex function ˆ f (x ) by using the fol- 

lowing relations: 

ˆ f (x ) ≤ ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

L ˆ f 

2 
|| y − x || 2 , (4) 

ˆ f (x ) ≥ ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

μ ˆ f 

2 
|| y − x || 2 , (5) 

for all points y ∈ R 

n . Similarly, we can construct the following 

lower bound for the non-smooth term 

ˆ g (x ) ≥ ˆ g (y ) + s (y ) T (x − y ) , (6) 

where s (y ) is a subgradient of the function ˆ g (·) at the point y . 
Moreover, for all y ∈ R 

n and L ≥ L ˆ f , we define 

m L (y ; x ) � 

ˆ f (y ) + ∇ ̂

 f (y ) T (x − y ) + 

L 

2 
|| x − y || 2 + τ ˆ g (x ) . (7) 

Using the upper bound on the function established in (4) , it can be 

seen that 

m L (y ; x ) ≥ F (x ) , ∀ x, y ∈ R 

n . (8) 

At this point, the composite gradient mapping can be introduced 

as 

T L (y ) � arg min 
x ∈R 

n 
m L (y ; x ) . (9) 

Lastly, the composite reduced gradient can be defined as 

r L (y ) � L ( y − T L (y ) ) . (10) 

Let us now make a digression and note that when τ = 0 , we have 

the following: i) ˆ f (x ) = f (x ) , which follows from (3) ; ii) T L (y ) = 

y − ∇ ̂

 f (y ) 
L , which follows from (9) and (7) . Substituting these re- 

sults into the definition given in (10) , yields r L (y ) = ∇F (y ) = 

∇ f (y ) , i.e., the composite reduced gradient becomes the gradient 

of the objective function. 

Returning back to the more general case, i.e., τ 
 = 0 , from the 

first-order optimality conditions for (9) , we can write 

∇m L (y ; T L (y )) T (x − T L (y )) ≥ 0 , 

( ∇ f (y ) + L (T L (y ) − y ) + τ s L (y ) ) 
T 
(x − T L (y )) ≥ 0 , (11) 

where s L (y ) ∈ ∂F (T L (y )) is a subgradient belonging to the subdif- 
ferential of F (T L (y )) , whose value depends on the point y . Equat- 

ing the first bracket of (11) to 0, as well as recalling definition (10) , 

we obtain the following relation, which is useful for computing the 

value of the composite reduced gradient 

r L (y ) = L (y − T L (y )) = ∇ f (y ) + τ s L (y ) . (12) 

Last, we present a tighter lower bound on the objective func- 

tion. 

Theorem 1. Let F (x ) be a composition of an L ˆ f -smooth and μ ˆ f 
- 

strongly convex function ˆ f (x ) , and a simple convex function ˆ g (x ) , as 

given in (3) . For L ≥ L ˆ f , and x, y ∈ R 

n we have 

F (x ) ≥ ˆ f (T L (y )) + τ ˆ g (T L (y )) + r L (y ) 
T ( x − y ) 

+ 

μ ˆ f 

2 
|| x − y || 2 + 

1 

2 L 
|| r L (y ) || 2 , (13) 

where T L (y ) and r L (y ) are defined in (9) and (10) , respectively. 

Proof. See Appendix A . �
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3. COMET 

In this section, we devise our proposed method. We start by 

introducing the composite estimating sequences, and then show 

why these sequences are useful. We also present a pair of com- 

posite estimating functions and show how to compute them recur- 

sively. Then, utilizing the proposed construction of the composite 

estimating functions, we derive COMET. 

We begin by defining the composite estimating sequences. 

Definition 1. The sequences { φk } ∞ 

k =0 and { λk } ∞ 

k =0 , λk ≥ 0 , are called 

composite estimating sequences of the function F (·) defined in (3) , 
if λk → 0 as k → ∞ , and ∀ x ∈ R 

n , ∀ k ≥ 0 we have 

φk (x ) ≤ λk φ0 (x ) + (1 − λk ) F (x ) . (14) 

These composite estimating sequences allow for measuring the 

convergence rate to optimality, which is characterized in the fol- 

lowing lemma. 

Lemma 1. If for some sequence of points { x k } ∞ 

k =0 we have F (x k ) ≤
φ∗
k 
� min 

x ∈ R 

n 
φk (x ) , then F (x k ) − F (x ∗) ≤ λk [ φ0 (x 

∗) − F (x ∗) ] , where x ∗ = 

arg min 
x ∈R 

n 
F (x ) . 

Proof. See Appendix B . �

We are now ready to show how the composite estimating se- 

quences can be defined recursively. 

Lemma 2. Assume that there exists a sequence { αk } ∞ 

k =0 , where αk ∈ 

(0 , 1) ∀ k , such that 
∑ ∞ 

k =0 αk = ∞ , and an arbitrary sequence { y k } ∞ 

k =0 . 
Furthermore, let λ0 = 1 and assume that the estimates L k of the Lip- 

schitz constant L ˆ f are selected in a way that inequality (4) is satis- 

fied for all the iterates x k and y k . Then, the sequences { φk } ∞ 

k =0 and { λk } ∞ 

k =0 , which are defined recursively as 

λk +1 = (1 − αk ) λk , (15) 

φk +1 ( x ) = ( 1 −αk ) φk ( x ) +αk 

(
F 
(
T L k ( y k ) 

)
+ 

1 

2 L k 
‖ r L k ( y k ) ‖ 

2 
)

+ αk 

(
r L k ( y k ) 

T 
( x − y k ) + 

μ f 

2 
‖ x − y k ‖ 

2 
)
, (16) 

are composite estimating sequences. 

Proof. See Appendix C . �

At this point, we provide a comparison between the results ob- 

tained in Lemmas 1 and 2 to their counterpart devised for the sim- 

pler case of minimizing smooth convex functions presented in Nes- 

terov [51] . First, we can see from Lemma 1 that the convergence 

rate of the minimization process depends entirely on the rate at 

which λk → 0 . Moreover, the result hints that for problem (1) we 

should expect a similar convergence rate as in the simpler case of 

minimizing a differentiable convex function. Then, in Lemma 2 , we 

have shown how to form the estimating functions. It can also be 

seen from (16) that we are utilizing a tighter lower bound than the 

one used for deriving FGM for the smooth strongly convex case. 1 

Furthermore, it can be noted that the cost function is evaluated at 

specific points in its domain, which are produced by the compos- 

ite gradient mapping. Last, it can be observed that the subgradient 

of the non-smooth objective function is needed to construct the 

estimating functions { φk } ∞ 

k =0 . 
Until now, no particular structure for the functions in the se- 

quence { φk } ∞ 

k =0 has been proposed yet. Inspired by the analysis for 

1 Recall that when F (x ) is smooth and convex function, the composite reduced 

gradient becomes just the gradient of the function. 

FGM in the setup of smooth convex functions [51] , in the sequel 

we let 

φk (x ) � φ∗
k + 

γk 

2 
|| x − v k || 2 , ∀ k = 1 , 2 , . . . , (17) 

where γk ∈ R 

+ and v k ∈ R 

n , ∀ k = 0 , 1 , . . . . Nevertheless, we stress 

that this selection is not unique. As a matter of fact, different 

choices of the canonical structure for the function φk (x ) can lead 

to entirely different algorithms, see for example [49,56,55] . Next, 

in Lemma 3 we show how the terms { γk } ∞ 

k =0 , { v k } ∞ 

k =0 and { φ∗
k 
} ∞ 

k =0 
can be computed recursively. 

Lemma 3. Let φ0 (x ) = φ∗
0 

+ 

γ0 
2 || x − v 0 || 2 , where γ0 ∈ R 

+ and v 0 ∈ 

R 

n . Then, the process defined in Lemma 2 preserves the canonical 

form of the function { φk (x ) } ∞ 

k =0 presented in (17) , where the se- 
quences { γk } ∞ 

k =0 , { v k } ∞ 

k =0 and { φ∗
k 
} ∞ 

k =0 can be computed as follows 

γk +1 = (1 − αk ) γk + αk μ ˆ f 
, (18) 

v k +1 = 

1 

γk +1 

(
(1 − αk ) γk v k + αk 

(
μ ˆ f 

y k − L k 
(
y k − T L k ( y k ) 

)))
, (19) 

φ∗
k +1 = (1 − αk ) φ

∗
k + αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
− L 2 

k 
α2 
k 

2 γk +1 
|| y k − T L k (y k ) || 2 + 

μ ˆ f 
αk γk (1 − αk ) 

2 γk +1 
|| y k − v k || 2 

+ 

L k αk γk (1 − αk ) 

γk +1 
(y k − v k ) T (y k − T L k (x k )) . (20) 

Proof. See Appendix D . �

Comparing the result obtained in Lemma 3 with its counter- 

part constructed for minimizing smooth objective functions [51, 

Lemma 2.2.3] , it can be seen that the recursion for computing the 

elements in the sequences { v k } ∞ 

k =0 and { φ∗
k 
} ∞ 

k =0 has changed. It now 

reflects both the different lower bound on the objective function, 

as well as the reduced composite gradient, which were utilized for 

constructing the composite estimating functions. 

Let us now proceed to constructing the algorithm via induction. 

First, let φ∗
0 = F (x 0 ) . Next, assume that for some iteration k , we 

have: φ∗
k 

≥ F (x k ) . To conclude the induction argument, we need to 

show that φ∗
k +1 ≥ F (x k +1 ) . Using the aforementioned assumption 

for iteration k into (20) , it can be written that 

φ∗
k +1 ≥ (1 − αk ) F (x k ) + αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
−L k 

2 α2 
k 

2 γk +1 
|| y k − T L k (y k ) || 2 + 

μ ˆ f 
αk γk (1 − αk ) 

2 γk +1 
|| y k − v k || 2 

+ 

L k αk γk (1 − αk ) 

γk +1 
(v k − y k ) 

T (y k − T L k (y k )) . (21) 

Then, substituting the bound obtained in Theorem 1 , as well as 

(10) into (21) , we obtain 

φ∗
k +1 ≥ (1 − αk ) 

(
F (T L k (y k )) + r L k (y k ) 

T ( x k − y k ) + 

μ

2 
|| x k − y k || 2 

+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
+ αk 

(
F 
(
T L k (y k ) 

)
+ 

1 

2 L k 
|| r L k (y k ) || 2 

)
− α2 

k 

2 γk +1 
|| r L k (y k ) || 2 + 

μαk γk (1 − αk 

2 γk +1 
|| y k − v k || 2 

+ 

αk γk (1 − αk ) 

γk +1 
r L k (y k ) 

T (v k − y k ) . (22) 

Making some algebraic manipulations and factoring in (23) , we 

reach 

4 
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φ∗
k +1 ≥ F (T L k (y k )) + 

(
1 

2 L k 
− α2 

k 

2 γk +1 

)
|| r L k (y k ) || 2 

+(1 − αk ) r L k (y k ) 
T 

(
x k − y k + 

αk γk 

γk +1 
(v k − y k ) 

)
. (23) 

At this point, a relation for the unknown terms in the sequences 

{ αk } ∞ 

k =0 and { y } ∞ 

k =0 needs to be found. Observe that in (24) we can 
obtain the update rule for the terms in the sequence { αk } ∞ 

k =0 as 

αk = 

√ 

γk +1 
L k 

. (24) 

Utilizing the recursion for γk +1 given by (18) , and solving the re- 
sulting quadratic equation yields 

αk = 

μ ˆ f 
− γk + 

√ (
μ ˆ f 

− γk 

)2 + 4 L k γk 

2 L k 
. (25) 

Making the aforementioned selection for αk , (24) can now be writ- 

ten as 

φ∗
k +1 ≥ F (T L k (y k )) + (1 − αk ) r L k (y k ) 

T 

(
x k − y k + 

αk γk 
γk +1 

(v k − y k ) 
)
. 

(26) 

Thus, the update rule for the term y k can be obtained by setting 

x k − y k + 

αk γk 

γk +1 
(v k − y k ) = 0 . (27) 

This results in 

y k = 

γk +1 x k + αk γk v k 
γk +1 + αk γk 

. (28) 

To establish that φk +1 ≥ F (x k +1 ) , it suffices to let x k +1 = T L k (y k ) . 

Last, another major difference between our proposed method 

and its counterpart for minimizing differentiable convex functions 

[51] , is the fact that our analysis allows for the line search adap- 

tation. 2 The goal of our proposed line-search strategy is to select 

the smallest constant L k such that (4) is satisfied ∀ k = 0 , 1 , . . . . To 

progress faster towards x ∗ in the initial iterations, we would want 

to initialize L 0 ∈ ]0 , L ˆ f [ , and then gradually increase the value of 

the estimate of the Lipschitz constant across the iterations. How- 

ever, since the true value of L ˆ f is not known, this approach can- 

not be used. Therefore, it would be more preferable to select the 

line search strategy such that it ensures the robustness of the 

method with respect to the initialization of the estimate of the 

Lipschitz constant and ensure a dynamic update of the step size. 

Such a scheme would be of importance for many applications in 

signal processing (see Florea and Vorobyov [54] and the references 

therein). For this purpose, the following two parameters can be 

utilized: i) a constant ηu > 1 , which increases the value of the es- 

timate; ii) a constant ηd ∈ ]0 , 1[ , which decreases the value of the 

estimate of the Lipschitz constant. Finally, the proposed method is 

summarized in Algorithm 1 . 

Comparing between our proposed method and FGM (Constant 

Step Scheme I in Nesterov [51] ), we can observe from lines 6 and 7 

in Algorithm 1 , the similarities in updating the sequences { αk } ∞ 

k =0 
and { γk } ∞ 

k =0 . A difference can, however, be noticed in the update 
of the terms in the sequence { y k } ∞ 

k =0 , whose value becomes inde- 
pendent of μ ˆ f 

. Additionally, a key difference between the methods 

is in the update of the iterates x k . Due to the composite structure 

of the objective function of interest, the next iterate x k +1 is com- 
puted by taking a proximal gradient step. Note that as long as the 

non-smooth term g(x ) has a simple structure, the proximal term 

2 Note that several backtracking strategies have already been proposed in the lit- 

erature (see for example Nesterov [1] , Beck and Teboulle [53] , Tseng [57] ). 

Algorithm 1 COMET. 

Input: x 0 ∈ R 

n , L 0 > 0 , μ ˆ f 
, γ0 ∈ [0 , 3 L 0 + μ ˆ f 

] , ηu > 1 and ηd ∈ 

]0 , 1[ . 

1: while k ≤ K max do 

2: ˆ L i ← ηd L k 
3: while True do 

4: ˆ αi ← 

(μ ˆ f 
−γk )+ 

√ 

(μ ˆ f 
−γk ) 

2 +4 ̂ L i γk 
2 ̂ L i 

5: ˆ γi +1 ← (1 − ˆ αi ) γk + ˆ αi μ ˆ f 

6: ˆ y i ← 

ˆ γi +1 x k + ̂ αi γk v k 
ˆ γi +1 + ̂ αi γk 

7: ˆ x i +1 ← prox 1 
ˆ L i 
ˆ g 

(
ˆ y i − 1 

ˆ L i 
∇ f ( ̂  y i ) 

)
8: ˆ v i +1 ← 

1 
ˆ γi +1 

(
(1 − ˆ αi ) γk v k + ̂  αi 

(
μ ˆ f ̂

 y i − ˆ L i 
(
ˆ y i − ˆ x i +1 

)))
9: if F ( ̂  x i +1 ) ≤ m ˆ L i 

( ̂  y i , ̂  x i +1 ) then 
10: Break from loop 

11: else 

12: ˆ L i +1 ← ηu ̂  L i 
13: end if 

14: i ← i + 1 

15: end while 

16: L k +1 ← ̂

 L i , x k +1 ← ˆ x i , αk ← ˆ αi −1 , y k ← ˆ y i −1 , i ← 0 , k ← k + 1 

17: end while 

Output: x k 

can be computed efficiently. Another major difference between the 

methods lies in the update of the terms in the sequence { v k } ∞ 

k =0 , 
which now reflect the usage of the proposed subgradient. Last, the 

parameter γ0 can now be selected over a wider range of param- 

eters than what is guaranteed by the existing convergence results 

for FGM established in Nesterov [51 , Lemma 2.2.4]. The rationale 

behind this result will become clear in the sequel. 

Before we proceed to analyzing the convergence rate of the 

minimization process, let us evaluate the behavior of the estimate 

of the Lipschitz constant. Depending on the initialization of L 0 , 

there are two scenarios. 

i) If L 0 ∈ ]0 , L ˆ f [ , then from line 11 in Algorithm 1 , it can be ob- 

served that the estimate of the Lipschitz constant at iteration k 

increases only if L k −1 ≤ L ˆ f . Therefore, we can write 

L 0 ≤ ˆ L i ≤ L k ≤ ηu L ˆ f . (29) 

ii) If L 0 ≥ L ˆ f , then the condition in line 11 of Algorithm 1 is sat- 

isfied, and estimate of the Lipschitz constant cannot increase 

further. This yields 

L k ≤ ηd L 0 . (30) 

Combining the bounds (30) and (31) , we can see that despite 

the initialization of L 0 , it is always true that 

L k ≤ L max � max { ηd L 0 , ηu L ˆ f } . (31) 

To obtain an easier understanding of the proposed method, we 

also present the flowchart in Fig. 1 . As can be seen from the 

flowchart, at any iteration k the inputs are feed into the outer 

loop, which starts by decreasing the estimate of the Lipschitz con- 

stant (see line 2 in Algorithm 1 ). The inner loop then updates 

the parameters and takes one proximal gradient step to produce 

the iterate at iteration k + 1 (see lines 4–8 in Algorithm 1 ). As 

long as a function-based stopping criterion is not satisfied, the in- 

ner loop also corrects the value of the estimate of the Lipschitz 

contant, which corresponds to line 12 in Algorithm 1 . After the 

5 
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Fig. 1. Flowchart that depicts the main building blocks of our proposed method. 

function-based stopping criterion is satisfied, the inner loop is ter- 

minated and the method proceeds to the next iterate (see line 

16 in Algorithm 1 ). The numerical procedure terminates after the 

iteration-based stopping criterion is satisfied, and outputs x K max . 

Contrasting our proposed COMET to AMGS and FISTA we can high- 

light several differences. First, with respect to AMGS, we note that 

the methods require different input parameters. Moreover, observe 

that our proposed COMET only queries one proximal and one gra- 

dient oracle to update the iterates. On the other hand, AMGS re- 

quires double the queries. As we will see in Section 5.3 , this trans- 

lates into an increase in the runtime of AMGS. Comparing our pro- 

posed COMET to FISTA, we note that they both query a single prox- 

imal and gradient oracle to update the iterates. The first difference 

in the methods lies in the line-search procedure that is employed 

by COMET, which is more efficient as it allows for dynamically up- 

dating the estimate of the Lipschitz constant. On the other hand, 

the line-search procedure proposed for FISTA only allows for in- 

creasing the estimate of the Lipschitz constant. Another major dif- 

ference between the methods lies in the fact that the methods are 

initialized using different input parameters. Similar to the differ- 

ences with AMGS, this arises because the methods were devised 

using different principles of acceleration of first-order methods. 

4. Convergence analysis 

Let us begin by noting that the result obtained in Lemma 1 sug- 

gests that the convergence rate of the minimization process will be 

the same as the rate at which λk → 0 . This is made more precise 

in the following theorem. 

Theorem 2. If we let λ0 = 1 and λk = 

∏ k −1 
i =0 ( 1 − αi ) , Algorithm 

1 generates a sequence of points { x k } ∞ 

k =0 such that 

F (x k ) − F (x ∗) ≤ λk 

[ 
F (x 0 ) − F (x ∗) + 

γ0 
2 

|| x 0 − x ∗|| 2 
] 
. (32) 

Proof. See Appendix E . �

Now, recall that from Definition 1 , we must have λk → 0 . There- 

fore, the result of Theorem 2 is sufficient to establish the fact that 

the sequence of iterates produced by our proposed algorithm con- 

verges to the optimal solution. The next step is to evaluate the rate 

of convergence of this process. Let us begin by characterizing the 

rate at which λk → 0 . 

Lemma 4. For all k ≥ 0 , Algorithm 1 guarantees that 

1. If γ0 ∈ [0 , μ ˆ f 
[ , then 

λk ≤
2 μ ˆ f 

L k 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
≤ 2 

(k + 1) 2 
. (33) 

2. If γ0 ∈ [ μ ˆ f 
, 3 L 0 + μ ˆ f 

] , then 

λk ≤
4 μ ˆ f 

(γ0 − μ ˆ f 
) 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
≤ 4 L k 

(γ0 − μ ˆ f 
)(k + 1) 2 

. 

(34) 

Proof. See Appendix F . �

Comparing the results obtained in Lemma 4 with the earlier re- 

sults obtained in Nesterov [51 , Lemma 2.2.4], we can see two ma- 

jor differences. First, our proposed analysis establishes the conver- 

gence of the method even when the true value of the Lipschitz 

constant is not known. Second, we can see that it is possible to 

establish the convergence of the method in minimizing objective 

functions with composite structure for a wider initialization range 

of the parameter γ0 . The importance of this result arises from 

the fact that the method exhibits a faster theoretical and practi- 

cal convergence when γ0 = 0 , which is not supported by the ex- 

isting analysis for FGM. At the same time, the initialization γ0 = 0 

also provides robustness with respect to the imperfect knowledge 

of μ ˆ f 
. 

From Theorem 2 , we can see that the convergence rate of the 

minimization process depends on the distance F (x 0 ) − F (x ∗) . The 
following lemma yields an upper bound on it. 

Lemma 5. Let F (x ) be a convex function with composite structure 

as shown in (1) . Moreover, let T L (y ) and r L (y ) be computed as given 

in (9) and (12) , respectively. Then, for any starting point x 0 in the 

domain of F (x ) , we have 

F (x 0 ) − F (x ∗) ≤ L 0 
2 

|| x 0 − x ∗|| 2 . (35) 

Proof. See Appendix G . �

Combining the results of Lemmas 4 and 5 with Theorem 2 , we 

can immediately obtain the convergence rate for COMET as follows. 

Theorem 3. Algorithm 1 generates a sequence of points such that 

1. If γ0 ∈ [0 , μ ˆ f 
[ , then 

F (x k ) − F (x ∗) ≤
μ ˆ f 

(L 0 + γ0 ) || x 0 − x ∗|| 2 

L k 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 
(36) 

2. If γ0 ∈ [ μ ˆ f 
, 3 L 0 + μ ˆ f 

] , then 

F (x k ) − F (x ∗) ≤
2 μ ˆ f 

(L 0 + γ0 ) || x 0 − x ∗|| 2 

(γ0 − μ ˆ f 
) 

(
e 

k +1 
2 

√ 

μ
L k − e 

− k +1 
2 

√ 

μ
L k 

)2 
(37) 
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From the result of Theorem 3 we can see that our proposed 

method is guaranteed to converge over a wider interval than its 

counterpart designed for minimizing smooth and strongly con- 

vex objectives. Notice that initializing γ0 = 0 would guarantee the 

fastest convergence of the method. Such a result is important when 

considering many practical applications, wherein the true values of 

μ ˆ f 
and L ˆ f are often not known and should be estimated. Another 

factor that impacts the rate of convergence of the minimization 

process is also the initialization of L 0 . From (37) , (38) we can see 

that the smaller the value of L 0 , the faster the convergence of the 

method. 

5. Numerical study 

In this section, we compare the numerical performance of the 

proposed method against the two seminal black-box methods, 

namely, AMGS and FISTA, in solving several optimization problems, 

which arise often in many signal and image processing, statistics 

and data science applications. The selected loss functions are the 

quadratic and logistic loss functions, both with elastic net regu- 

larization. Moreover, we also test the performance of our proposed 

COMET in solving the regularized image deblurring problem. As we 

will see in the sequel, controlling the parameters of the elastic net 

regularizer allows for simulating extremely ill-conditioned exam- 

ples. For the constructed examples, we show that COMET outper- 

forms the selected benchmarks in terms of minimizing the number 

of iterations needed to achieve a certain tolerance level. To provide 

reliable results, we utilize both synthetic and real data, that are se- 

lected from the Library for Support Vector Machines [58] . To find 

the optimal solutions, we use CVX [59] . 

In the first example, we illustrate the performance of three 

variants of COMET: 1) we consider the variant that in theory is 

expected to result in the fastest convergence, which is obtained 

when we initialize for γ0 = 0 , and it is referred to as “COMET, vari- 

ant 1”; 2) we also consider the variant that is expected to pro- 

duce the slowest convergence, which happens when we initialize 

γ0 = 3 L 0 + μ ˆ f 
, and it is labeled as “COMET, variant 2”; 3) we also 

implement the variant of COMET that is obtained when γ0 = μ ˆ f 
, 

which is referred to as “COMET, variant 3”. When comparing the 

performance of the methods under the condition where the Lips- 

chitz constant is not known, for both AMGS and FISTA we utilize 

the line-search strategies presented in the respective works [1,53] . 

We note that throughout all the simulations the starting point x 0 
is randomly selected and all algorithms are initialized in it. The 

numerical experiments are conducted using an Intel(R) Core(TM) 

i7-8665U 1.90 GHz CPU and the methods are implemented using 

Matlab. 

5.1. Minimizing the quadratic loss function 

Consider one of the most popular problems in signal processing 

and statistics 

minimize 
x ∈R 

n 

1 

2 

m ∑ 

i =1 

(
a T i x − y i 

)2 + 

τ1 
2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 , (38) 

where || · || 1 denotes the l 1 norm. The objective is to show that the 

theoretical gains of COMET, which are discussed in Section 4 , are 

also reflected in the practical performance of the methods. More- 

over, we analyze how the performance of the methods scales with 

the condition number of the problem. We also illustrate the prac- 

tical benefits of utilizing the proposed line-search strategy. 

Let us first consider the simplest case, where the Lipschitz 

constant is assumed to be known. It allows for an objective as- 

sessment of the effectiveness of the methods in finding the opti- 

mal solution. For this example, we utilize synthetic data. We con- 

sider the diagonal matrix A ∈ R 

m ×m and sample the elements a ii 

from the discrete set { 10 0 , 10 −1 , 10 −2 , . . . , 10 −ξ } uniformly at ran- 

dom. This choice of selecting A ensures that L = 1 and μ f = 10 −ξ , 

which results in the condition number 10 ξ . Then, we select the 

elements of the vector y ∈ R 

m by uniformly drawing them from 

the box [0 , 1] n . Lastly, we note that in our computational experi- 

ments we set m ∈ { 50 0 , 10 0 0 , 150 0 , 20 0 0 } , ξ ∈ { 3 , 4 , 7 , 8 } and τ1 = 

τ2 ∈ { 10 −3 , 10 −4 , 10 −7 , 10 −8 } . 
From Fig. 2 , we can observe that the proposed method signifi- 

cantly outperforms all the existing benchmarks. First, notice that 

the larger the condition number of the problems becomes, the 

more iterations, and consequently computations, are required by 

the methods to obtain a good solution. Comparing between the 

methods, we can observe that all instances of COMET yield a better 

quality of the obtained solution, as measured by the distance to x ∗. 
Moreover, we can clearly see that the iterates produced by COMET 

converge to x ∗ in a much smaller number of iterations. Another im- 
portant observation that can be made from the figure is that the 

proposed method exhibits better monotonic properties than both 

AMGS and FISTA. Comparing the performance of different variants 

of COMET, we can observe that their behavior is similar and the 

differences in performance are not too large. We can see that the 

variant that yields the best performance is the one obtained when 

γ0 = 0 , which is coherent with the theoretical results established 

in Section 4 . 

Next, we proceed to analyzing a more realistic scenario. We as- 

sume that the Lipschitz constant is not known, and needs to be es- 

timated by using a line-search procedure. To demonstrate the ro- 

bustness of the line-search strategy to be utilized in conjunction 

with COMET, we consider the following cases. i) The Lipschitz con- 

stant is underestimated by a factor of 10, i.e., L 0 = 0 . 1 L ˆ f . ii) The 

Lipschitz constant is overestimated by a factor of 10, i.e., L 0 = 10 L ˆ f . 

Moreover, we note that we selected ηu = 2 and ηd = 0 . 9 , which 

were suggested in Becker et al. [60] because they ensure a good 

performance of the methods in many applications. Another param- 

eter that is computationally expensive to be estimated in prac- 

tice is the strong convexity parameter μ ˆ f 
. To avoid an increase 

in computations, in all the following simulations we equate the 

value of the strong convexity parameter to that of the regulariza- 

tion term in the objective function in (41) . Lastly, we note that for 

all the examples that will be shown in the sequel, we utilize the 

datasets “a1a” and “colon-cancer”. The former dataset has data ma- 

trix A ∈ R 

1605 ×123 , whereas the latter has A ∈ R 

62 ×20 0 0 . 
For the datasets that we are utilizing, the respective Lipschitz 

constants are L ′′ a1a ′ prime = 10061 and L ′′ colon-cancer ′ prime = 1927 . 4 . 

Moreover, we let the regularizer term τ1 = τ2 ∈ { 10 −5 , 10 −6 } . Ev- 
idently, this selection of the regularizer terms guarantees a very 

large condition number κ = 

L ˆ f 
μ ˆ f 

for the problems that are being 

solved. The numerical results are presented in Fig. 3 , from which 

we can observe that all the instances of COMET significantly out- 

perform the existing benchmarks. First, the final iterate produced 

by the first variant of COMET is the closest to x ∗. This is most 
visible from the numerical experiments conducted on the “a1a”

dataset, which are depicted in Fig. 3 (a) and (b). Second, the iter- 

ates produced by the proposed COMET converge to x ∗ by requir- 

ing a significantly smaller number of iterations, when compared 

to AMGS and FISTA. Third, the performance of FISTA largely de- 

pends on the initialization of the Lipschitz constant. On the other 

hand, we can observe that for both datasets, the performance of 

both AMGS and COMET remains unaffected by the value of L 0 . 

We stress that COMET retains the robustness to L 0 at the lower 

computational cost of only one projection-like operation per iter- 

ation, whereas AMGS requires double of that. Last, comparing the 

performance between the selected variants of COMET, we can see 

that in practice their performance differences are minor. Neverthe- 
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Fig. 2. Comparison between the efficiency of the algorithms tested in minimizing the quadratic loss function with elastic net regularizer on randomly generated data. 

less, our results shown in Fig. 3 (a) and (b) suggest that the ver- 

sion of COMET which is obtained when γ0 = 0 yields a better per- 

formance. This becomes important particularly when considering 

practical applications, wherein the true values of μ ˆ f 
and L ˆ f are 

typically not known and their true values can only be estimated 

within some error bounds. From this perspective, we can conclude 

that the instance of COMET obtained by setting γ0 = 0 enjoys both 

the faster convergence of the iterates and the robustness with re- 

spect to the imperfect knowledge of μ ˆ f 
and L ˆ f . 

5.2. Minimizing the logistic loss function 

To demonstrate the versatility of the proposed black-box 

method, let us now compare its performance to the selected 

benchmarks in minimizing a regularized logistic loss function with 

elastic net regularizer 

minimize 
x ∈R 

n 

1 

m 

m ∑ 

i =1 
log 

(
1 + e −b i xa i 

)
+ 

τ1 
2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 . (39) 

For this problem type, we diversify the utilized datasets and se- 

lect “triazine”, as well as a subset of “rcv1.binary”. For the cho- 

sen datasets, we have A ′′ triazine ′ prime ∈ R 

186 ×61 and A ′′ rcv1.binary ′ prime ∈ 

R 

10 0 0 ×20 0 0 . Moreover, from the results of Fig. 3 , we have observed 

that the performance of FISTA has been dependent on the initial 

estimate of the Lipschitz constant and has been overall worsened 

when L ˆ f is unknown. Therefore, to provide the fairest compari- 

son with respect to FISTA, for this set of examples we estimate 

the value of L directly from the data. More specifically, we have 

L ′′ triazine ′ prime = 25 . 15 and L ′′ rcv1.binary ′ prime = 1 . 13 . On the other hand, 

similar to the earlier computational experiments, we equate the 

value of the strong convexity parameter to that of the regular- 

ization term in the objective function in (40) . Last, we note that 

for this set of numerical experiments we consider the cases when 

τ1 
 = τ2 . The results are reported in Fig. 4 , wherein the specific val- 
ues for τ1 and τ2 are also presented. 

From Fig. 4 , we can observe that for both datasets, COMET out- 

performs and exhibits better monotonic properties than AMGS or 

FISTA. Moreover, all variants of COMET require a much lower num- 

ber of iterations to produce iterates which are closest to x ∗. Last, 
for the selected problem type, the variant of COMET which is con- 

structed when γ0 = 0 yields the best practical performance, al- 

though the true value of μ ˆ f 
is not known. 

5.3. Application to the regularized image deblurring problem 

Let us now consider solving the problem of regularized image 

deblurring, which we formulate as follows 

minimize 
x ∈R 

n 
‖ RWx − y ‖ 

2 + 

τ1 
2 

‖ x ‖ 

2 + τ2 ‖ x ‖ 1 , (40) 

where R represents the blur operator and W is the inverse three- 

stage Haar wavelet transform. In this example, x ∈ R 

256 ×256 is the 
cameraman test image [53] . To blurr the image, we scale its pix- 

els in the range [0,1], add zero-mean Gaussian noise with stan- 

dard deviation 10 −3 and apply the blur operator R . Moreover, we 
set the regularizer parameters τ1 = 1 × 10 −3 and τ2 = 10 −5 . For 
this problem, we initialize L 0 = L F , which is obtained as the max- 

imum eigenvalue of (RW ) T (RW ) , and set μF = τ1 . Different from 

the previous sections, herein we report the CPU runtime (in sec- 

onds) that was needed to decrease the value of the objective func- 

tion. For a more extensive comparison, herein we have also in- 

cluded the Accelerated Composite Gradient Method (ACGM) [37] , 

which is built on top of the estimating sequences variant that was 

used for designing AMGS. Moreover, we have also included the 

variant of FISTA presented in Chambolle and Pock [61] , which is 

designed to exploit the strong convexity information that might be 

available about the objective function. 

Our findings are summarized in Table 1 . The first column was 

obtained by computing the values of the objective function that 

8 
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Fig. 3. Comparison between the efficiency and robustness with respect to the initialization of the Lipschitz constant of the algorithms tested in minimizing the quadratic 

loss function with elastic net regularizer on real data. 

Fig. 4. Comparison between the efficiency of the algorithms tested in minimizing the logistic loss function with elastic net regularizer on real data. 
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Table 1 

Comparison between the CPU runtimes (in seconds) of the algorithms tested in solving the image deblurring prob- 

lem. 

F(x) COMET, variant 1 COMET, variant 2 COMET, variant 3 AMGS ACGM FISTA CP FISTA 

45.74 1.33 1.21 1.87 2.52 1.76 1.92 2.16 

25.61 2.77 2.35 3.14 3.98 3.45 3.57 3.67 

13.22 4.19 3.78 4.52 6.21 4.93 5.23 5.84 

5.83 5.49 4.98 6.02 9.42 6.76 7.38 7.69 

3.25 6.97 5.89 7.32 13.21 8.35 9.21 9.84 

1.11 8.29 7.82 8.75 17.65 10.79 12.41 12.73 

0.63 9.72 9.46 10.06 22.08 13.24 15.86 16.25 

0.51 11.14 11.31 12.69 26.39 15.65 17.13 17.97 

0.44 13.53 13.93 14.21 34.11 17.23 19.32 20.15 

0.37 15.86 16.56 16.72 41.28 19.86 23.57 24.43 

0.35 17.30 18.27 18.96 49.36 25.57 28.39 32.07 

were obtained by running the first variant of COMET in intervals of 

20 iterations. The other entries in the table were obtained by com- 

puting the time spent by the other methods to achieve the same 

decrease in the values of the objective function. Analyzing the ob- 

tained results, we can observe that the different variants of the es- 

timating sequences methods are very efficient. Different from the 

other estimating sequence methods, we can see that the perfor- 

mance of AMGS is significantly affected by the need to compute an 

additional proximal step per iteration. Comparing to FISTA, every 

variant of COMET and ACGM perform more computations per iter- 

ation. Nevertheless, we can see that the improvement in runtime 

is significant. Comparing among the estimating sequence methods, 

we can observe that the fastest variant of COMET converges ap- 

proximately 30% faster than AMGS. Last, we note that the differ- 

ences in runtime among all variants of COMET are marginal. Nev- 

ertheless, we note that the variant of COMET which is obtained by 

initializing γ0 = 0 is more efficient, while also enjoying the robust- 

ness to the imperfect knowledge of the strong convexity parame- 

ter. 

6. Conclusions and discussion 

The problem of constructing accelerated black-box first-order 

methods for solving optimization problems with composite struc- 

ture by utilizing the estimating sequences framework has been 

considered, and a new class of estimating functions has been in- 

troduced. It has been shown that by exploiting these estimating 

sequences together with the gradient mapping technique, it is pos- 

sible to construct very efficient gradient-based methods, which we 

named COMET. Unlike the existing results on the convergence of 

FGM-type methods, the novel convergence analysis established in 

this work allows for the adaptation of the step-size. Another ma- 

jor contribution which stemmed from the proposed convergence 

analysis is the fact that COMET is guaranteed to converge when 

γ0 ∈ [0 , 3 L + μ ˆ f 
] . The practical implication of these two observa- 

tions is the fact that it is possible to construct efficient acceler- 

ated methods which are also robust to the imperfect knowledge of 

the smoothness and strong convexity parameters. Our theoretical 

findings were corroborated by extensive numerical experiments, 

wherein both synthetic and real-world data were utilized. 

The results that were established in this work can be further 

developed in different directions. Particularly, it is interesting to in- 

vestigate the possibilities of embedding the heavy-ball momentum 

into COMET. Another attractive research direction is the investiga- 

tion of the possibility of coupling between the proposed frame- 

work and the inexact oracle framework, as well as the framework 

for constructing distributed proximal gradient methods. Lastly, we 

note that it is also interesting to investigate the possible exten- 

sions to designing accelerated algorithms for solving non-convex 

optimization problems. 
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Appendix A. Proof of Theorem 1 

We start by showing that m L (y ; x ) is an L -strongly convex func- 
tion in x . Notice that it is defined to be the sum of convex func- 

tions. Therefore, it is itself a convex function. Now, consider that 

m L (y ; y ) −m L (y ; T L (y )) ≥ L 

2 
|| y − T L (y ) || 2 . (41) 

By the definition given in (9) , T L (y ) is the minimizer of m L (y ; x ) 
over all x ∈ R 

n . Therefore, we can conclude that m L (y ; x ) is a 
strongly convex function with strong convexity parameter L . 

Now, we can proceed to deriving the lower bound. From (5) , 

(6) , it can be written that 

F (x ) ≥ ˆ f (y ) + τ ˆ g (y ) + 

(
∇ ̂

 f (y ) + τ s L (y ) 
)T 

( x − y ) + 

μ ˆ f 

2 
|| x − y || 2 . 

(42) 

Then, from the definition of m L (y, y ) given in (7) , as well as (12) , 

the right-hand side (RHS) of (43) can be rewritten as 

ˆ f ( y ) + τ ˆ g ( y ) + 

(
∇ ̂

 f ( y ) + τ s L ( y ) 
)T 

( x − y ) + 

μ ˆ f 

2 
‖ x − y ‖ 

2 

= m L ( y ; y ) + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 
‖ x − y ‖ 

2 . (43) 

Moreover, substituting (42) in (44) , the lower bound of the RHS of 

(44) becomes 

m L ( y ; y ) + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 
‖ x − y ‖ 

2 ≥ m L ( y ; T L ( y ) ) 

+ 

L 

2 
‖ y − T L ( y ) ‖ 

2 + r L ( y ) 
T 
( x − y ) + 

μ ˆ f 

2 
‖ x − y ‖ 

2 . 

Utilizing the definition of the reduced composite gradient given in 

(10) , yields 

10 
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m L ( y ; T L ( y ) ) + 

L 

2 
‖ y −T L ( y ) ‖ 

2 + r L ( y ) 
T 
( x −y ) + 

μ ˆ f 

2 
‖ x −y ‖ 

2 

=m L ( y ; T L ( y ) ) + 

1 

2 L 
‖ r L ( y ) ‖ 

2 + r L ( y ) 
T 
( x −y ) + 

μ ˆ f 

2 
‖ x −y ‖ 

2 . (44) 

Finally, taking a proximal gradient descent step on f (x ) , which by 

assumption has Lipschitz continuous gradient, we can obtain (13) . 

This completes the proof. 

Appendix B. Proof of Lemma 1 

By the assumption of Lemma 1 , we have 

F ( x k ) ≤ φ∗
k = min 

x ∈R 

n 
φk ( x ) 

( 14 ) ≤ min 
x ∈R 

n 
[ λk φ0 ( x ) + ( 1 − λk ) F ( x ) ] 

≤ λk φ0 ( x 
∗) + ( 1 − λk ) F ( x 

∗) . 

Rearranging the terms yields the desired result. 

Appendix C. Proof of Lemma 2 

We prove this lemma by induction. Let us begin by analyz- 

ing iteration k = 0 . By assumption, we have λ0 = 1 . Utilizing (14) , 

we obtain φ0 (x ) ≤ λ0 φ0 (x ) + ( 1 − λ0 ) F (x ) ≡ φ0 (x ) . Then, assuming 

that (14) holds true at some iteration k , it can be written that 

φk (x ) − ( 1 − λk ) F (x ) ≤ λk φ0 (x ) . (45) 

Substituting the bound obtained in Theorem 1 , i.e., (13) in (16) , 

we obtain 

φk +1 (x ) ≤ (1 − αk ) φk (x ) + αk F (x ) . (46) 

Then, adding and subtracting the same term to the RHS of (47) , we 

reach 

φk +1 ( x ) ≤ ( 1 −αk ) φk ( x ) + αk F ( x ) + ( 1 −αk ) ( 1 −λk ) F ( x ) −( 1 −αk ) 

( 1 −λk ) F ( x ) = ( 1 −αk ) [ φk ( x ) −( 1 −λk ) F ( x ) ] 

+ ( αk + ( 1 −λk ) ( 1 −αk ) ) F ( x ) . (47) 

Using the bound obtained in (46) in (48) , we have 

φk +1 (x ) ≤ (1 − αk ) λk φ0 (x ) + (1 − λk + αk λk ) F (x ) . (48) 

Lastly, after utilizing (15) , the proof is concluded. 

Appendix D. Proof of Lemma 3 

Let us begin with establishing the first part of the proof through 

a mathematical induction argument. At iteration k = 0 , we have 

∇ 

2 φ0 (x ) = γ0 I. Next, assuming that at some iteration k it is true 
that ∇ 

2 φk (x ) = γk I, at iteration k + 1 it can be written that 

∇ 

2 φk +1 (x ) 
(16) = (1 − αk ) γk I + αk μ ˆ f 

I ≡ γk +1 I. (49) 

We then proceed to establishing the proposed recurrent rela- 

tions for updating the terms in the sequences { v k } ∞ 

k =0 and { φ∗
k 
} ∞ 

k =0 . 
Substituting (17) into (16) , and analyzing its first-order optimality 

conditions we obtain 

γk +1 (x − v k +1 ) = γk (1 − αk )(x − v k ) + αk 

(
μ ˆ f 

(x − y k ) r L k (y k ) 
)
. 

(50) 

We can then reduce the terms that depend on x by using (18) in 

(51) , and reach 

−γk +1 v k +1 = −(1 − αk ) γk v k + αk 

(
−μ ˆ f 

y k + r L k (y k ) 
)
. (51) 

Then, substituting (10) in (52) , we obtain (19) . 

To establish (20) , let us begin by substituting (17) in (16) , now 

evaluated at the point x = y k . This way we obtain 

φ∗
k +1 + 

γk +1 
2 

‖ y k − v k +1 ‖ 

2 = ( 1 − αk ) 

(
φ∗
k + 

γk 

2 
‖ y k − v k ‖ 

2 
)

+ αk 

(
F 
(
T L k ( y k ) 

)
+ 

1 

2 L k 
‖ r L k ( y k ) ‖ 

2 
)
. (52) 

We proceed by utilizing (19) to compute the second term in the 

left hand side (LHS) of (53) . Consider the following 

v k +1 − y k = 

1 

γk +1 
((1 − αk ) γk v k + αk μ ˆ f 

y k 

−αk L k 
(
y k − T L k ( y k ) 

)
− γk +1 y k ) . (53) 

Then, utilizing (18) in (54) , we obtain 

v k +1 − y k = 

1 

γk +1 
((1 − αk ) γk (v k − y k ) − αk L k 

(
y k − T L k ( y k ) 

)
. (54) 

Taking || · || 2 of both sides in (55) , yields 

|| y k − v k +1 || 2 = 

|| (1 − αk ) γk (v k − y k ) − αk L k 
(
y k − T L k ( y k ) 

)|| 2 
γ 2 
k +1 

. 

(55) 

Finally, multiplying both sides of (56) by 
γk +1 
2 and expanding the 

RHS, we reach 

γk+1 
2 

‖ y k −v k+1 ‖ 

2 = 

( 1 −αk ) 
2 γ 2 

k 

2 γk+1 
‖ v k −y k ‖ 

2 + 

α2 
k 
L k 

2 

2 γk +1 
‖ y k −T L k ( y k ) ‖ 

2 

−2 L k αk ( 1 − αk ) γk 

2 γk +1 
( v k − y k ) 

T ∇ 

(
y k − T L k ( y k ) 

)
. 

(56) 

Substituting (57) in (53) , and making some straightforward alge- 

braic manipulations, we obtain (20) . 

Appendix E. Proof of Theorem 2 

Set φ∗
0 

= f (x 0 ) . Then, considering (17) evaluated at iteration 

k = 0 and x = x 0 , we obtain φ0 (x 0 ) = f (x 0 ) + 

γ0 
2 || x 0 − v 0 || 2 . In 

Algorithm 1 , we initialize v 0 = x 0 , which is sufficient to guaran- 

tee that f (x 0 ) ≤ φ∗
0 
at step k = 0 . Moreover, recall that we de- 

signed the update rules of the proposed method to guarantee that 

f (x k ) ≤ φ∗
k 
, ∀ k = 1 , 2 , . . . . Therefore, the necessary conditions for 

the results proved in Lemma 1 to be applied are satisfied. 

Appendix F. Proof of Lemma 4 

Let γ0 ∈ [0 , 3 L 0 + μ ˆ f 
] and consider applying (18) to the follow- 

ing 

γk +1 − μ ˆ f 
= (1 − αk ) γk + αk μ ˆ f 

− μ ˆ f 
. (57) 

Then, utilizing the assumption that λ0 = 1 in (58) , it can be written 

that 

γk +1 − μ ˆ f 
= (1 − αk ) λ0 

[
γk − μ ˆ f 

]
. (58) 

Using the recursivity of (18) in (59) , yields 

γk +1 − μ ˆ f 
= λk +1 

[
γ0 − μ ˆ f 

]
. (59) 

Let us now exploit the connection between relations (15) and (25) , 

which can be linked through the term αk as follows 

αk = 1 − λk +1 
λk 

= 

√ 

γk +1 
L k 

= 

√ 

μ ˆ f 

L k 
+ 

γk +1 − μ ˆ f 

L k 
. (60) 

Substituting (60) in the RHS of (61) and making some manipula- 

tions, we get 

1 

λk +1 
− 1 

λk 

= 

1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
. (61) 

11 
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Then, through a difference of squares argument, we reach ( 

1 √ 

λk +1 
− 1 √ 

λk 

) ( 

1 √ 

λk +1 
+ 

1 √ 

λk 

) 

= 

1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
. (62) 

Let us now analyze the behavior of the terms in the sequence 

{ λk } ∞ 

k =0 . First, recall that from Lemma 2 we have αk ∈ [0 , 1] . Then, 

considering (15) , we can conclude that the terms λk are non- 

increasing in the iteration counter k . Therefore, we can substitute 

the term 

1 √ 

λk 
in the LHS of (63) with the larger number 1 √ 

λk +1 
. 

This results in 

2 √ 

λk +1 

( 

1 √ 

λk +1 
− 1 √ 

λk 

) 

≥ 1 √ 

λk +1 

√ 

μ ˆ f 

λk +1 L k 
+ 

γ0 − μ ˆ f 

L k 
(63) 

Note that the practical performance of the proposed method 

depends on the initialization of the parameter γ0 . To allow for the 

widest possible range of selection for this parameter, we need to 

consider separately the regions R 1 = [0 , μ ˆ f 
[ and R 2 = [ μ ˆ f 

, 3 L k + 

μ ˆ f 
] . The results for the case when γ0 ∈ R 2 can be established by 

following the analysis conducted for FGM in Nesterov [51 , Lemma 

2.2.4]. Therefore, in the sequel we will thoroughly establish the re- 

sults only for the case when γ0 ∈ R 1 , which is the novel part of 

the proof. Let us begin by defining the following quantity 

ξk, R 1 
� 

√ 

L max (
μ ˆ f 

− γ0 
)
λk 

, (64) 

where L max was defined in (32) . Next, (64) can be rewritten as 

2 √ 

λk +1 
− 2 √ 

λk 

≥
√ 

μ ˆ f 
− γ0 

L k 

√ 

μ ˆ f 
L k 

L k λk +1 
(
μ ˆ f 

− γ0 
) − 1 . (65) 

Then, relaxing the bound in (66) and multiplying it with 
√ 

L max 
μ ˆ f 

−γ0 
, 

we obtain 

ξk +1 , R 1 
− ξk, R 1 

≥ 1 

2 

√ 

μ ˆ f 
ξ 2 
k +1 , R 1 

L max 
− 1 . (66) 

We then proceed to establish via induction the following lower 

bound 

ξk, R 1 
≥

√ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

[
e (k +1) δ − e (k +1) δ

]
, (67) 

where δ � 

1 
2 

√ 

μ ˆ f 

L max 
. Utilizing (65) at step k = 0 , we have 

ξ0 , R 1 
= 

√ 

L max 

(μ ˆ f 
− γ0 ) λ0 

= 

√ 

L max 

μ ˆ f 
− γ0 

, (68) 

where the second equality is obtained because λ0 = 1 . Then, sub- 

stituting (32) into (69) , we obtain 

ξ0 , R 1 
≥

√ 

2 

2 

√ 

L k 
μ ˆ f 

− γ0 

[
e 1 / 2 − e −1 / 2 

]
≥

√ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

[
e δ − e −δ

]
. 

(69) 

Note that the second row in (70) follows because the RHS is in- 

creasing in δ, which by construction is always δ < 0 . 5 . 

As it is common with induction-type of proofs, the next 

step is to assume that (68) is satisfied for some iteration k . 

To establish that the relation would hold true at the next it- 

eration as well, we proceed via contradiction. Define ω(t) � √ 

2 
4 δ

√ 

L k 
μ ˆ f 

−γ0 

[
e (t+1) δ − e −(t+1) δ], and note that from Nesterov [51 , 

Lemma 2.2.4] it is a convex function. Therefore, it can be written 

that 

ω(t) ≤ ξk, R 1 

(67) ≤ ξk +1 , R 1 
− 1 

2 

√ 

μ ˆ f 
ξ 2 
k +1 , R 1 

L max 
− 1 . (70) 

Assuming that ξk +1 , R 1 
< ω(t + 1) and substituting it into (71) , we 

have 

ω(t) < ω(t + 1) − 1 

2 

√ 

μ ˆ f 
ξ 2 
k +1 , R 1 

L max 
− 1 . (71) 

Then, utilizing the definition of δ, as well as (68) , we obtain 

ω ( t ) ≤ ω ( t +1 ) − 1 

2 

√ √ √ √ 4 δ2 

[ √ 

2 

4 δ

√ 

L k 
μ ˆ f 

− γ0 

(
e ( t+2 ) δ − e −( t+2 ) δ

)] 2 

−1 

≤ ω ( t + 1 ) −
√ 

2 

4 

√ 

L k 
μ ˆ f 

− γ0 

[
e ( t+2 ) δ + e −( t+2 ) δ] = ω ( t + 1 ) 

+ ω 

’ ( t + 1 ) ( t − ( t + 1 ) ) ≤ ω ( t ) , (72) 

where the last inequality follows from the supporting hyperplane 

theorem of convex functions. Notice that this result contradicts the 

earlier assumption that ξk +1 , R 1 
< ω(t + 1) . Thus, the inductive ar- 

gument asserts that we have established the lower bound (68) to 

be true for all values of k = 0 , 1 , . . . . 

We are finally ready to establish (34) . From (65) , it can be writ- 

ten that 

λk = 

L max 

ξ 2 
k +1 , R 1 

(μ ˆ f 
− γ0 ) 

. (73) 

Utilizing (68) in the RHS of (74) , we reach 

λk ≤
(4 δ) 2 L max 

2 L k 
[
e (k +1) δ − e (k +1) δ

]2 , (74) 

The first inequality in (34) is obtained by substituting the defini- 

tion of δ in (75) . 

To establish the remaining inequality in (34) , we first analyze 

the following (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= e 
( k +1 ) 

√ 

μ ˆ f 
L k − e 

−( k +1 ) 
√ 

μ ˆ f 
L k − 2 . (75) 

Then, utilizing the definition of the hyperbolic cosine function in 

(76) , we obtain (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= 2 cosh 

( √ 

μ ˆ f 

L k 
( k + 1 ) − 2 

) 

. (76) 

Using the Taylor expansion of the hyperbolic cosine function, yields 

(
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

= −2 + 2 + 2 
μ ˆ f 

( k + 1 ) 
2 

2 L k 

+2 
μ2 

ˆ f 
( k + 1 ) 

4 

4! L k 
2 

+ . . . . (77) 

The next step is to truncate the RHS of (78) . This results in (
e 

k +1 
2 

√ 

μ ˆ f 
L k − e 

− k +1 
2 

√ 

μ ˆ f 
L k 

)2 

≥
μ ˆ f 

L k 
( k + 1 ) 

2 
. (78) 

All that remains for establishing the second inequality of (34) , is to 

substitute (79) into the denominator of the first inequality of (34) . 

12 
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Appendix G. Proof of Lemma 5 

We begin by substituting the upper bound (4) evaluated at the 

point y = x ∗ into (3) , and obtain that 

F (x 0 ) = 

ˆ f (x 0 ) + τ ˆ g (x 0 ) ≤ ˆ f (x ∗) + ∇ 

ˆ f (x ∗) T (x 0 − x ∗) 

+ 

L 0 
2 

|| x 0 − x ∗|| 2 + τ ˆ g (x 0 ) . (79) 

Then, from the equality established in (12) , the RHS of (80) can be 

written as 

F ( x 0 ) ≤ ˆ f ( x ∗) + ∇ ̂

 f ( x ∗) T ( x 0 −x ∗) + 

L 0 
2 

‖ x 0 −x ∗‖ 

2 + τ ˆ g ( x 0 ) = ̂

 f ( x ∗) 

+ 

(
τ s L 0 ( x 

∗) −L 0 
(
x ∗−T L 0 ( x 

∗) 
))T 

( x 0 −x ∗) + 

L 0 
2 

‖ x 0 −x ∗‖ 

2 

+τ ˆ g ( x 0 ) . (80) 

From the definition of the composite gradient mapping given in 

(9) , we can see that when y = x ∗, then T L 0 (x 
∗) = x ∗. Therefore, the 

RHS of (81) becomes 

F (x 0 ) ≤ ˆ f (x ∗) − τ s L 0 (x 
∗) T (x ∗ − x 0 ) + 

L 0 
2 

|| x 0 − x ∗|| 2 + τ ˆ g (x 0 ) . 

(81) 

Lastly, utilizing (6) in the RHS of (82) completes the proof. 
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GENERALIZING THE ESTIMATING SEQUENCES WITH MEMORY1

TERMS FOR MINIMIZING CONVEX COMPOSITE FUNCTIONS2

ENDRIT DOSTI∗, SERGIY A. VOROBYOV† , AND THEMISTOKLIS CHARALAMBOUS††3

Abstract. In this work, we present a new class of generalized composite estimating sequences,4
devised by exploiting the information contained in the iterates that are formed during the mini-5
mization process. Based on the newly introduecd generalize estimating sequences, we present a new6
accelerated first-order methods for minimizing convex functions with composite objective structure.7
Our proposed method is equipped with backtracking line-search, and exhibits an accelerated con-8
vergence rate independent of whether the true value of the Lipschitz constant is known. Moreover,9
our proposed method is robust to the inexact knowledge of the strong convexity parameter. The10
efficiency of the proposed method together with its robustness properties are confirmed by extensive11
numerical evaluations on both synthetic and real-world data.12

Key words. Accelerated first-order methods, large-scale optimization, composite objective,13
estimating sequence, gradient mapping, line-search14
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1. Introduction.16

1.1. Motivation. Recent research in first-order methods has been largely fo-17

cused around exploring different approaches to acceleration of gradient-based meth-18

ods. For the problem of minimizing smooth convex functions, an accelerated method19

built by making use of the linear coupling between gradient and mirror descent was20

introduced in [1]. Another accelerated method inspired by the ellipsoid method was21

presented in [2]. It converges faster than the Fast Gradient Method (FGM) [3, 4],22

however it exhibits higher per-iteration complexity because of the need for an ex-23

act line search. In yet another framework, the continuous-time limit of FGM has24

been modeled as a second-order differential equation [5, 6, 7]. In a newly developed25

framework [8], the authors have cast the improvement of the worst-case behavior26

of an algorithm as an optimization problem. Based on this framework, an optimal27

method for minimizing smooth convex functions has been presented in [9]. Despite28

the promising theoretical analysis, the applicability of these methods in the current29

form is restricted only to minimizing smooth convex functions and their generalization30

capabilities remain unclear.31

Considering the different strategies that have been developed for accelerating32

gradient-based methods, estimating sequence methods continue to play a central role33

in the field (see [10] and references therein). First, for the case of differentiable con-34

vex functions such methods are optimal in the sense of [11]. Second, they are efficient35

in practice and can work well with backtracking line-search [12, 13]. Third, they36

can be used to devise fast second-order and higher-order methods [14, 15]. Fourth,37

their efficiency has also been established in the context of applications to distributed38

optimization, nonconvex optimization, stochastic optimization, and many more (see39

[16, 17, 18, 19, 20] and the references therein). As discussed in [4], different estimat-40

ing sequences can be used to enable the accumulation of global information of the41

objective function. One of the main challenges with the framework is the design of42

estimating functions that are used to construct the estimating sequences.43
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The estimating sequences framework has been formalized in [21]. For the broader44

class of minimizing convex functions with composite structure, which is important to45

this paper, a popular method is the Accelerated Multistep Gradient Scheme (AMGS)46

[22], which exhibits an accelerated convergence rate. The method has the disadvan-47

tage of requiring two projection-like operations per iteration, which translates in an48

increased runtime of the method and inhibits its deployment to practical large-scale49

optimization setups [23]). Another popular method is the Fast Iterative Shrinkage-50

Thresholding Algorithm (FISTA) [24]. Unlike AMGS, it requires one projection-like51

operation per iteration and has been proven to exhibit an accelerated convergence52

rate. Nevertheless, as we will also see in the numerical section, the method con-53

verges slower than AMGS. At first glance, FISTA does not appear as an estimating54

sequence method. Links between FISTA and estimating sequence methods have been55

established in [25]. In [26, 27] the authors have introduced COMET, which is a new56

estimating sequence method, which is built on top of the estimating sequences frame-57

work used for devising FGM. Similar to FISTA, the method proposed therein requires58

one projection-like operation per iteration, and is more efficient than AMGS.59

1.2. Preliminaries to build on. In the sequel, we will focus on devising an ac-60

celerated black-box method for solving convex optimization problems with composite61

objective functions. The typical structure for such problems is62

(1.1) F (x) = f(x) + τg(x), τ > 0,63

where f : Rn → R is a differentiable convex function and g : Rn → R is a simple64

convex lower semi-continuous function. The simplicity of g implies that the complexity65

of computing the proximal map66

(1.2) proxτg � arg min
z∈Rn

(
g(z) +

1

2τ
||z − x||2

)
, x ∈ Rn,67

is O(n) [28]. Herein || · || denotes the l2 norm.68

Assuming that g(x) has strong convexity parameter μg ≥ 0, we use the following69

strong convexity transfer70

F (x)=
(
f(x) +

τμg

2
||x− x0||2

)
+τ

(
g(x)− μg

2
||x− x0||2

)
= f̂(x) + τ ĝ(x),(1.3)71

to facilitate the tractability of the derivations presented in the sequel. Based on (1.3),72

we have Lf̂ = Lf + τμg, μf̂ = μf + τμg and μĝ = 0.73

For all y ∈ Q, where Q is a closed convex set and L ≥ Lf̂ , let us define74

mL(y;x)� f̂(y)+∇f̂(y)T (x−y)+
L

2
||x− y||2+τ ĝ(x).(1.4)75

The following bounds for f̂(x) and ĝ(x) will be useful in the analysis76

f̂(x) ≤ f̂(y) +∇f̂(y)T (x− y) +
Lf̂

2
||y − x||2,(1.5)77

ĝ(x) ≥ ĝ(y) + s(y)T (x− y),(1.6)78

Considering (1.4) and (1.5), we have79

mL(y;x) ≥ F (x), ∀x, y ∈ Q.(1.7)80
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Next, we define the composite gradient mapping as81

TL(y) � argmin
x∈Q

mL(y;x).(1.8)82

We conclude by introducing the reduced composite gradient83

rL(y) � L (y − TL(y)) .(1.9)84

Consider now the optimality conditions for (1.8):85

∇mL(y;TL(y))
T (x− TL(y)) ≥ 0,86

(∇f(y) + L(TL(y)− y) + τsL(y))
T
(x− TL(y)) ≥ 0,(1.10)87

where sL(y) is a subgradient and F (TL(y)) is the subdifferential. In (1.10), let88

∇f(y) + L(TL(y)− y) + τsL(y) = 0.(1.11)89

Considering (1.9) and (1.11) yields90

rL(y) = L(y − TL(y)) = ∇f(y) + τsL(y).(1.12)91

Last, we note that in the paper we will make use of the following bounds [26, 27]92

F (x)≥ f̂(TL(y))+τ ĝ(TL(y))+rL(y)
T (x− y)+

μf̂

2
||x− y||2+ 1

2L
||rL(y)||2,(1.13)93

F (x0) ≤ F (x∗) +
L0

2
||x0 − x∗||2.(1.14)94

In this paper, we will focus on designing first-order methods. For such methods,95

at any iteration t, the iterates are in the span of the gradients, i.e., xk ∈ x0 +96

span{∇f(x0), . . .∇f(xk−1)} for k = 0, 1, 2, . . . , t. Then, set Q = span(x1, x2, . . .).97

1.3. The main idea. Contrasting the analysis conducted for AMGS in [22] with98

FGM in [4], we can see that different estimating functions were used. The method in99

[26, 27] is also devised using the estimating sequences framework. As discussed earlier,100

the lack of uniqueness of the estimating sequences is one of the main challenges we101

face in developing methods under such framework. In theory, when used to solve102

convex problems, both methods exhibit an accelerated convergence rate. Moreover,103

in [29, 30] the authors have shown how to devise generalized estimating sequences,104

which can be used to construct faster algorithms. Thus, it is of practical interest to105

develop the framework for non-differentiable functions.106

1.4. Contributions. The main contributions of the article are as follows.107

• We introduce a new structure for the estimating functions, which we call the108

generalized composite estimating functions. The proposed estimating func-109

tions are devised by making use of the following: i) A new term created by110

adding the previously constructed estimating functions ii) The gradient map-111

ping framework [11]. iii) The tighter lower bound on the objective function112

presented in (1.13).113

• Using our proposed estimating sequences, we devise a new accelerated method114

for minimizing (1.1). Moreover, we present an efficient line-search strategy115

which is used to estimate the step size. Our proposed method requires only116

one projection-like operation per iteration, which is lower than the respective117

requirement for AMGS.118
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4 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

• We prove that our proposed method exhibits an accelerated convergence rate,119

despite the imperfect knowledge of the Lipschitz constant.120

• We prove that the way our proposed method is initialized is robust to the121

inexact knowledge of μf̂ , which further reduces the additional computational122

burden of having to estimate such parameter.123

• We demonstrate the efficiency of our proposed method as compared to the124

existing benchmarks. Using real-world datasets, in our computational experi-125

ments we also highlight the robustness of our proposed method in cases when126

μf̂ and Lf̂ are not known.127

1.5. Contents. The article is organized as follows. In Section 2, we present128

the generalized composite estimating sequences and show how they can be used to129

build our proposed method. In Section 3, we prove the convergence results for our130

proposed method. In Section 4, we depict the numerical performance of our proposed131

method and compare with several existing benchmarks. We consider several types of132

optimization problems and demonstrate the efficiency of our proposed metod. Last,133

in Section 5, we summarize the main findings of the paper.134

2. Proposed Method. Consider the following definition for the generalized135

composite estimating sequences.136

Definition 2.1. The sequences {Φk}k and {λk}k, λk ≥ 0, are called generalized137

composite estimating sequences of the function F (·) defined in (1.3), if there exists a138

sequence of bounded functions {ψk}k, λk → 0 as k → ∞, and ∀x ∈ Q, ∀k ≥ 0 we139

have140

(2.1) Φk(x) ≤ λkΦ0(x) + (1− λk) (F (x)− ψk(x)) .141

Next, let us use the generalized composite estimating sequences to characterize the142

convergence rate of the minimization process143

Lemma 2.2. If for some sequence {xk}k we have F (xk) ≤ Φ∗
k �min

x∈Q
Φk(x), then144

F (xk)− F (x∗) ≤ λk [Φ0(x
∗)− F (x∗)]− (1− λk)ψk(x

∗), where x∗ = argmin
x∈Q

F (x).145

Proof. By the assumption of Lemma 2.2, we have146

F (xk) ≤ Φ∗
k = min

x∈Q
Φk(x)

(2.1)

≤ min
x∈Q

λkΦ0(x) + (1− λk)

(
F (x)− ψk(x)

)
147

≤ λkΦ0(x
∗) + (1− λk)

(
F (x∗)− ψk(x

∗)

)
.148

Regrouping the terms concludes the proof.149

So far, we have presented the generalized composite estimating sequences and150

shown why they are useful. In the sequel, we present the estimating functions that151

will be used to devise our proposed method.152

Lemma 2.3. Assume that there exist sequences {αk}k, where αk ∈ (0, 1) ∀k, such153

that
∑∞

k=0 αk = ∞; {ψk}k with an upper bound Ψk, such that {ψk}k ≥ 0; and an154

arbitrary sequence {yk}k. Furthermore, let ψ0(x) = 0, λ0 = 1 and assume that the155

estimates Lk of the Lipschitz constant Lf̂ are selected in a way that inequality (1.5) is156

satisfied for all the iterates xk and yk. Then, the sequences {Φk}k and {λk}k, which157
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are defined recursively as158

λk+1 = (1− αk)λk,(2.2)159

Φk+1(x) = (1− αk) (Φk(x) + ψk(x))− ψk+1(x)−Ψk160

+αk

(
F (TLk

(yk)) + ψk(x) +
1

2Lk
||rLk

(yk)||2
)

161

+ αk

(
rLk

(yk)
T (x− yk) +

μf̂

2
||x− yk||2

)
,(2.3)162

are composite estimating sequences.163

Proof. We prove this by induction. At step k = 0, considering (2.1) together with164

the facts that λ0 = 1 and ψ0(x) = 0, we can write: Φ0(x) ≤ λ0Φ0(x)+(1− λ0)F (x) ≡165

Φ0(x). At iteration k, assume (2.1) holds true, which results in166

Φk(x)− (1− λk)F (x) ≤ λkΦ0(x)− (1− λk)ψk(x).(2.4)167

Utilizing (1.13) in (2.3), yields168

Φk+1(x) ≤ (1− αk)
(
Φk(x) + ψk(x)

)
+ αk

(
F (x) + ψk(x)

)
− ψk+1(x)−Ψk.(2.5)169

Considering that Ψk is an upper bound on ψk(x), and adding to the right-hand side170

(RHS) of (2.5), results in171

Φk+1(x)≤(1−αk)Φk(x)+αkF (x)+(1− αk)(1− λk)F (x)172

− (1− αk)(1− λk)F (x)− ψk+1(x).(2.6)173

Relaxing the RHS of (2.6), yields174

Φk+1(x) ≤(1−αk)

(
Φk(x)−(1−λk)F (x)

)
+(αk+(1−λk)(1−αk))F (x)−ψk+1(x).(2.7)175

Substituting (2.4) in (2.7), results in176

Φk+1(x)≤(1−αk)λk

(
Φ0(x)−(1−λk)ψk(x)

)
+(1−λk+αkλk)F (x)−ψk+1(x).(2.8)177

Last, relaxing the RHS of (2.8) and using (2.2) yields178

Φk+1(x) ≤ λk+1Φ0(x) + (1− λk+1)

(
F (x)− ψk+1(x)

)
.(2.9)179

Let us now compare between the different estimating sequence constructions that exist180

in the literature. First, observe that the estimating sequences used to construct FGM181

in [4, Lemma 2.2.4] are the instance of our proposed generalized composite estimating182

sequences obtained when τ = 0 and {ψk}k = 0. Moreover, both types of estimating183

sequences can be used to measure the convergence rate of the minimization process.184

In this sense, the framework presented herein, is a generalization of the estimating185

sequences framework. Comparing our generalized composite estimating sequences to186
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6 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

[26, 27], we can see that the introduction of the terms {ψk}k can have an additional187

impact on the convergence rate of the minimization process.188

We observe now that there are different ways to choose the terms {Φk}k and189

{ψk(x)}k. Let γk ∈ R+, vk ∈ Rn, ∀k = 0, 1, . . . and define the terms {Φk}k as190

Φk(x) � φ∗
k +

γk
2
||x− vk||2 − ψk(x), ∀k = 1, 2, . . . ,(2.10)191

If we have no prior knowledge about the particular structure of F (x), the terms of192

the sequence {ψk(x)}k can be chosen to account for the accumulation of the terms in193

the sequence {Φk(x)}k as follows194

ψk(x) �
k−1∑
i=1

βi,k
γi
2
||x−vi||2, ∀k,(2.11)195

where βi,k ∈ [0, 1], ∀i = 1, . . . , k − 1.196

Considering the definition introduced above for Φk(x) and ψk(x), it is of interest197

to assess the conditions for ψk(x) that ensure the convexity of Φk(x). Since both198

functions are twice differentiable, assessing the second order condition for (2.10), we199

have
∑k−1

i=1 βi,kγi ≤ γk. Moreover, we also restrict
∑k−1

i=1 βi,kγi ≤ μ. Combining these200

conditions, we reach201

k−1∑
i=1

βi,kγi ≤ min (γk, μ) .(2.12)202

We can find the minimal value of the estimating function introduced in (2.10) as203

Φ∗
k = min

x
Φk(x) = φ∗

k +
γk
2
||x∗

Φk
− vk||2 −

k−1∑
i=1

βi,kγi
2

||x∗
Φk

−vi||2,(2.13)204

where x∗
Φk

= argminx Φk(x). The values of the parameters still need to be com-205

puted in a recurrent manner. The following Lemma captures these relations for the206

components of {Φk}k introduced in (2.10).207

Lemma 2.4. Assume that the coefficients βi,k are selected such that (2.12) is sat-208

isfied and let φ0(x) = φ∗
0+

γ0

2 ||x−v0||2, where γ0 ∈ R+ and v0 ∈ Rn. Then, the process209

defined in Lemma 2.3 preserves the canonical form of the function Φk(x) presented in210

(2.10), where the sequences {γk}k, {vk}k and {φ∗
k}k can be computed as211

γk+1 = (1− αk)γk + αk

(
μf̂ +

k−1∑
i=1

βi,kγi

)
,(2.14)212

vk+1 =
1

γk+1

(
(1−αk)γkvk+αk

(
μf̂yk+

k−1∑
i=1

βi,kγi − L(yk − TLk
(yk))

))
,(2.15)213
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214

φ∗
k+1 = (1− αk)φ

∗
k +αk

(
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi||yk − vi||2
)

215

− L2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(
μf̂ +

∑k−1
i=1 βi,kγi

)
2γk+1

||yk−vk||2216

+
(1−αk)γk

γk+1
||x∗

Φk
− vk||2 +

k∑
i=1

βi,k+1γi
2

||x∗
Φk+1

− vi||2217

+
α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk) +
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi − yk|| ||rLk
(yk)||218

+
αkγk(1− αk)

γk+1

(
(vk − yk)

T rLk
(yk) +

k−1∑
i=1

βi,kγi||yk − vi|| ||yk − vk||
)
.

(2.16)

219

Proof. Recall that for k = 0, we have ψ0(x) = 0. Thus, ∇2Φ0(x) = γ0I. Assume220

that for step k we have: ∇2Φk(x) = γkI −
∑k−1

i=1 βi,kγiI. For step k+ 1, consider the221

following222

∇2Φk+1(x)
(2.3)
= (1− αk)γkI −

k∑
i=1

βi,kγiI + αk

(
μf̂ +

k−1∑
i=1

βi,kγi

)
I.(2.17)223

Massaging (2.17) we obtain:224

γk+1I = (1− αk)γkI + αk

(
μf̂ +

k−1∑
i=1

βi,kγi

)
I.(2.18)225

Substituting (2.14) in (2.18) is sufficient to establish that the quadratic cannonical226

structure for {Φk}k is preserved.227

Let us next focus on finding the recurrent relations for the terms {vk}k. First,228

replacing (2.10) in (2.3) and making some algebraic manipulations, results in229

φ∗
k+1+

γk+1
2

||x−vk+1||2=(1−αk)
(
φ∗
k+

γk
2
||x−vk||2

)
−Ψk +αk

(
F (TLk

(yk))+ ψk(x)230

+
1

2Lk
||rLk

(yk)||2 + rLk
(yk)

T (x− yk) +
μf̂

2
||x− yk||2

)
.(2.19)231

Observe that both sides of (2.19) are convex in x. From the first-order optimality232

conditions we have233

γk+1(x−vk+1)=γk(1−αk)(x−vk)+αk

(
μf̂ (x−yk)+rLk

(yk)+

k−1∑
i=1

βi,kγi(x−vi)

)
.

(2.20)

234

Substituting (2.14) in (2.20), and reducing the dependency on x results in235

−γk+1vk+1=αk

(
rLk

(yk)− μf̂yk −
k−1∑
i=1

βi,kγivi

)
− (1− αk)γkvk.(2.21)236
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Substituting (1.9) into (2.21) yields the desired (2.15).237

Let us now focus on finding the terms {φ∗
k}k. A straightforward approach is to238

assume that there exists a sequence of estimating functions {Θk(yk)}k for the sequence239

{yk}k that has the following structure240

Θk(yk) = θ∗k +
γk
2
||yk − vk||2 −

k−1∑
i=1

βi,kγi
2

||yk − vi||2(2.22)241

Next, consider (2.3) with x = yk242

Θk+1(yk)=(1−αk) (Θk(yk) + ψk(yk))− ψk+1(yk)−Ψk243

+αk

(
F (TLk

(yk))+ ψk(yk) +
1

2Lk
||rLk

(yk)||2
)
.(2.23)244

Substituting (2.11) and (2.22) into (2.23), and relaxing the RHS, results in245

θ∗k+1 +
γk+1

2
||yk − vk+1||2≤(1−αk)

(
θ∗k +

γk
2
||yk − vk||2

)
+ αk

(
F (TLk

(yk))246

+
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi
2

||yk − vi||2
)
.(2.24)247

Using (2.15), we can write248

vk+1−yk=
1

γk+1

(
(1−αk)γkvk+αk

(
μf̂yk−rLk

(yk)+

k−1∑
i=1

βi,kγivi

)
− γk+1yk

)
.(2.25)249

Substituting (2.14) into (2.25), and making some algebraic manipulations, results in250

vk+1 − yk =
1

γk+1

(
(1− αk)γk

(
vk − yk

)
+ αk

( k−1∑
i=1

βi,kγi(vi − yk)− rLk
(yk)

))
.

(2.26)

251

Taking || · ||2 of (2.26), multiplying with γk+1

2 , and extending the RHS, we reach252

γk+1

2
||vk+1−yk||2= (1−αk)

2γ2
k

2γk+1
||vk−yk||2+ α2

k

2γk+1

(
||rLk

(yk)||2253

+||
k−1∑
i=1

βi,kγi(vi−yk)||2
)

− α2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk)254

−αk(1−αk)γk
γk+1

(
(vk−yk)

TrLk
(yk)−

k−1∑
i=1

βi,kγi(vi−yk)
T (vk−yk)

)
.(2.27)255
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Substituting (2.27) into (2.24), yields:256

θ∗k+1≤(1−αk)θ
∗
k +

(1− αk)γk
2

(
1− (1− αk)γk

γk+1

)
||yk − vk||2 +αk

(
F (TLk

(yk))257

+
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi
2

||vi − yk||2
)

− α2
k

2γk+1

(
||

k−1∑
i=1

βi,kγi
2

(yk − vi)||2258

+ ||rLk
(yk)||2

)
+

α2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk)259

+
αk(1− αk)γk

γk+1

(
(vk − yk)

T rLk
(yk)−

k−1∑
i=1

βi,kγi(vi − yk)
T (vk − yk)

)
.(2.28)260

In (2.28), using the Cauchy-Schwartz inequality and relaxing the upper bound, yields261

θ∗k+1≤(1−αk)θ
∗
k +

αkγk(1− αk)(μf̂ +
∑k−1

i=1 βi,kγi)

2γk+1
||yk − vk||2262

+αk

(
F (TLk

(yk)) +
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi
2

||vi − yk||2
)

263

− α2
k

2γk+1
||rLk

(yk)||2 + (1− αk)γk
2

||x∗
Φk

− vk||2
(2.29)

264

+
(1− αk)α

2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk) +
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi − yk||||rLk
(yk)||265

+
α2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk) +

k∑
i=1

βi,k+1γi
2

||x∗
Φk+1

− vi||2266

+
αk(1− αk)γk

γk+1

(
(vk − yk)

T rLk
(yk) +

k−1∑
i=1

βi,kγi||vi − yk||||vk − yk||
)
.267

Last, recall that we want the estimating function to be as close to the objective268

function as possible. Thus, we let θ∗k+1 equal to the upper bound obtained in (2.29).269

Letting φ∗
k = θ∗k, ∀k concludes the proof.270

Comparing the result obtained in Lemma 2.4 with that of [4, Lemma 2.2.3], it can271

be seen that the recursive relations obtained for computing the elements of {vk}k272

and {φ∗
k}k now reflect on the usage of a new lower bound on the function that is273

being minimized, and the reduced composite gradient. Moreover, observe that the274

recurrent relations for computing {γk}k, {vk}k and {φ∗
k}k all reflect the presence of275

the added memory terms that was used to construct them. Comparing the above276

obtained results [26, 27], we can observe the additional terms coming from the newly277

introduced memory terms into the generalized composite estimating sequences.278

To devise our proposed method, we will use an inductive argument. Assume that279

for a step k we have280

Φ∗
k

(2.13)
= φ∗

k +
γk
2
||x∗

Φk
− vk||2 −

k−1∑
i=1

βi,kγi
2

||x∗
Φk

−vi||2 ≥ F (xk).(2.30)281
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For the inductive argument to be complete, we need to establish that Φ∗
k+1 ≥ F (xk+1).282

Considering the assumption for iteration k, and using (1.9) in (2.16), yields283

φ∗
k+1≥(1−αk)F (xk)+αk

(
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi||yk − vi||2
)

284

− L2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(
μf̂ +

∑k−1
i=1 βi,kγi

)
2γk+1

||yk−vk||2285

+
(1−αk)γk

γk+1
||x∗

Φk
− vk||2 +

k∑
i=1

βi,k+1γi
2

||x∗
Φk+1

− vk||2286

+
α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T rLk

(yk)+
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi−yk||||rLk
(yk)||287

+
αkγk(1− αk)

γk+1

(
(vk − yk)

T rLk
(yk) +

k−1∑
i=1

βi,kγi||yk − vi||||yk − vk||
)
.(2.31)288

Using (1.13) in (2.31), we reach289

φ∗
k+1≥(1−αk)

(
F (TLk

(yk))+rLk
(yk)

T (xk−yk)+
μ

2
||xk−yk||2+ 1

2Lk
||rLk

(yk)||2
)

290

+αk

(
F (TLk

(yk))+
1

2Lk
||rLk

(yk)||2 +
k−1∑
i=1

βi,kγi||yk − vi||2
)

291

− L2
kα

2
k

2γk+1
||yk−TLk

(yk)||2+
αkγk(1−αk)

(
μf̂ +

∑k−1
i=1 βi,kγi

)
2γk+1

||yk−vk||2292

+
(1−αk)γk

γk+1
||x∗

Φk
− vk||2 +

k∑
i=1

βi,k+1γi
2

||x∗
Φk+1

− vk||2293

+
α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T rLk

(yk)+
α3
k

γk+1

k−1∑
i=1

βi,kγi||vi−yk||||rLk
(yk)||294

+
αkγk(1− αk)

γk+1

(
(vk − yk)

T rLk
(yk) +

k−1∑
i=1

βi,kγi||yk − vi||||yk − vk||
)
.(2.32)295

Massaging (2.32) yields296

φ∗
k+1 ≥F (TLk

(yk))+(1− αk)rLk
(yk)

T (xk−yk)+
k∑

i=1

βi,k+1γi
2

||x∗
Φk+1

−vi||2297

+

(
1

2Lk
− α2

k

2γk+1

)
||rLk

(yk)||2 + α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk)298

+
αkγk(1− αk)

γk+1
(vk − yk)

T rLk
(yk).(2.33)299

Adding γk+1

2 ||x∗
Φk+1

− vk+1||2 to the left-hand side (LHS) of (2.33), as well as moving300
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the term
∑k

i=1
βi,k+1γi

2 ||x∗
Φk+1

−vi||2 to the LHS, we can write301

Φ∗
k+1 ≥F (TLk

(yk))+(1− αk)rLk
(yk)

T (xk−yk) +

(
1

2Lk
− α2

k

2γk+1

)
||rLk

(yk)||2302

+
α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi − yk)
T rLk

(yk) +
αkγk(1− αk)

γk+1
(vk − yk)

T rLk
(yk).(2.34)303

From (2.34), we have304

αk =

√
γk+1

Lk
.(2.35)305

Substituting (2.14) into (2.35), the solution for αk is found as306

αk =
μf̂ +

∑k−1
i=1 βi,kγi − γk +

√(
μf̂ +

∑k−1
i=1 βi,kγi − γk

)2

+ 4Lkγk

2Lk
.(2.36)307

This allows to simplify (2.34) as308

Φ∗
k+1≥F (TLk

(yk))+(1−αk)rLk
(yk)

T (xk−yk)+
α2
k(1− αk)

γk+1

k−1∑
i=1

βi,kγi(vi−yk)
T rL(yk)

+
αkγk(1− αk)

γk+1
(vk − yk)

T rL(yk).

309

Next, let us set310

xk − yk +
αkγk
γk+1

(vk − yk) +
α2
k

γk+1

k−1∑
i=1

βi,kγi(vi − yk) = 0,(2.37)311

which yields312

yk =
γk+1xk + αkγkvk + α2

k

∑k−1
i=1 βi,kγivi

γk+1 + αkγk + α2
k

∑k−1
i=1 βi,kγi

.(2.38)313

Letting xk+1 = TLk
(yk) ensures that Φk+1 ≥ F (xk+1).314

Before introducing our proposed method, let us also present a backtracking line-315

search strategy that will enable the convergence of the minimization process.1 Since316

the true values of Lf̂ and μf̂ are not known, and considering the typical applications317

[25], we prioritize: i) robustness to the imperfect initialization of the estimate of L318

at iteration k = 0; ii) the need to adjust the value of the estimates of Lf̂ . This is319

achieved by selecting the parameters ηu > 1 and ηd ∈]0, 1[, which are used to increase320

and decrease the estimate of Lf̂ across different iterations. Considering this choice of321

parameters ηu, ηd, despite the initialization of L0, we can always write322

Lk ≤ Lmax � max{ηdL0, ηuLf̂}.(2.39)323

We conclude by presenting our proposed method in Algorithm 2.1.324

1Note that several backtracking strategies have already been proposed in the literature (see for
example [22, 24]).
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12 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

Algorithm 2.1 Proposed Method

1: Input x0 ∈ Rn, L0 > 0, μf̂ , γ0 ∈ [0, μf̂ [∪[2μf̂ , 3L0 + μf̂ ],

ηu > 1 and ηd ∈]0, 1[.
2: Set k = 0, i = 0 and v0 = x0.
3: while k ≤ Kmax

2 do
4: L̂i ← ηdLk

5: while True do

6: α̂i ← μf̂+
∑k−1

i=1 βi,kγ̂i−γk+
√
(μf̂+

∑k−1
i=1 βi,kγ̂i−γk)

2
+4L̂iγk

2L̂i

7: γ̂i+1 ← (1− α̂i)γk + α̂i

(
μf̂ +

∑k−1
i=1 βi,kγ̂i

)

8: ŷi ← γ̂i+1xk+α̂iγkvk+α̂2
i

∑k−1
i=1 βi,kγ̂ivi

γ̂i+1+α̂iγk+α̂2
i

∑k−1
i=1 βi,kγ̂i

9: x̂i+1 ← prox 1
L̂i

ĝ

(
ŷi − 1

L̂i
∇f(ŷi)

)
10: v̂i+1 ← 1

γ̂i+1

(
(1− α̂i)γkvk+α̂i

(
μf̂ ŷi +

∑k−1
i=1 βi,kγ̂i − L̂i (ŷi−x̂i+1)

))
11: if F (x̂i+1) ≤ mL̂i

(ŷi, x̂i+1) then
12: Break from loop
13: else
14: L̂i+1 ← ηuL̂i

15: end if
16: i ← i+ 1
17: end while
18: Lk+1 ← L̂i, xk+1 ← x̂i, αk ← α̂i−1, yk ← ŷi−1, γk+1 ← γ̂i, vk+1 ← v̂i, i ← 0,

k ← k + 1
19: end while
20: Output xk =0

Comparing our proposed method to FGM, we can observe (from lines 6 and 7325

in Algorithm 2.1) the differences in computing the iterates αk and γk. In our case,326

their values are also dependent on the memory terms that were used in devising the327

estimating sequences. The update of yk is also different, and independent of μf̂ . A328

major difference is the update for xk, which is now done through a proximal gradient329

step. The last difference between the methods can be observed from the update of330

the iterates vk, which now depend on the selected subgradient. Further, comparing331

between our proposed method to the one presented in [26, 27] for minimizing convex332

functions with composite structure, we can see that the major differences arise from333

making use of the additional memory terms. Observe that our proposed method334

reduces to FGM when τ = 0 and ψk(x) = 0, ∀k = 0, 1, . . .. Moreover, observe that335

our proposed method reduces to the method presented in [26, 27] when ψk(x) =336

0, ∀k = 0, 1, . . .. In this sense, our proposed method is a generalization of all the337

aforementioned estimating sequence methods.338

3. Convergence Analysis. Considering the results established in Lemma 2.2,339

the convergence rate of the minimization process is controlled by the rate at which340

the terms {λk}k decrease and the rate at which the terms {ψk}k increase.341

2Note that Kmax denotes the maximum number of iterations.
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GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS13

Theorem 3.1. If we let λ0 = 1 and λk =
∏k−1

i=0 (1− αi), Algorithm 2.1 generates342

a sequence of points {xk}k such that343

F (xk)− F (x∗) ≤ λk

(
F (x0)− F (x∗) +

γ0
2
||x0 − x∗||2

)
− (1− λk)ψk(x).(3.1)344

345

Proof. Let us begin by setting Φ∗
0 = F (x0). Further, evaluating (2.10) for k = 0346

and x = x0 we have: Φ0(x0) = F (x0)+
γ0

2 ||x0−v0||2. Moreover, using the initialization347

v0 = x0 as suggested in Algorithm 2.1 we obtain F (x0) ≤ Φ∗
0. Last, note that the348

proposed method is designed to ensure F (xk) ≤ Φ∗
k, ∀k = 1, 2, . . .. Applying the349

findings from Lemma 2.2 suffices to conclude the proof.350

Let us now establish the rate at which the terms {λk}k decrease.351

Lemma 3.2. For all k ≥ 0, Algorithm 2.1 guarantees that352

1. If γ0 ∈ [0, μf̂ [, then353

λk ≤ 2μf̂

Lk

⎛
⎝e

k+1
2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk −e
− k+1

2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk

⎞
⎠

2 ≤ 2

(k + 1)2
.

(3.2)

354

2. If γ0 ∈ [2μf̂ , 3L0 + μf̂ ], then355

λk≤
4μf̂

(γ0 − μf̂ )

⎛
⎝e

k+1
2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk −e
− k+1

2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk

⎞
⎠

2356

≤ 4Lk

(γ0 − μf̂ )(k + 1)2
.(3.3)357

Proof. Let γ0 ∈ [0, μf̂ [∪[2μf̂ , 3L0 + μf̂ ] and apply (2.14) to358

γk+1−
(
μf̂+

k−1∑
i=1

βi,kγi

)
=(1−αk)γk+αk

(
μf̂+

k−1∑
i=1

βi,kγi

)
−

(
μf̂+

k−1∑
i=1

βi,kγi

)
.(3.4)359

Moreover, since λ0 = 1, we can re-write (3.4) as360

γk+1 −
(
μf̂ +

k−1∑
i=1

βi,kγi

)
,= (1− αk)λ0

[
γk −

(
μf̂ +

k−1∑
i=1

βi,kγi

)]
.(3.5)361

Substituting (2.14) into (3.5), results in362

γk+1 −
(
μf̂ +

k−1∑
i=1

βi,kγi

)
= λk+1

[
γ0 −

(
μf̂ +

k−1∑
i=1

βi,kγi

)]
.(3.6)363

Next, we note that (2.2) and (2.35) are connected through αk as follows364

αk=1− λk+1

λk
=

√
γk+1

Lk
=

√√√√(
μf̂+

∑k−1
i=1 βi,kγi

)
Lk

+
γk+1−

(
μf̂+

∑k−1
i=1 βi,kγi

)
Lk

.(3.7)365
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14 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

Moreover, replacing (3.6) in the RHS of (3.7), and making some manipulations yields366

λk − λk+1

λkλk+1
=

1√
λk+1

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
λk+1Lk

+
γ0 −

(
μf̂ +

∑k−1
i=1 βi,kγi

)
Lk

.(3.8)367

Observe that LHS of (3.8) can be written as 1
λk+1

− 1
λk

. Replacing the relation for368

the difference of squares in the LHS of (3.8) results in369

(
1√
λk+1

− 1√
λk

)(
1√
λk+1

+
1√
λk

)
=

1√
λk+1

370

√√√√(
μf̂+

∑k−1
i=1 βi,kγi

)
λk+1Lk

+
γ0−

(
μf̂+

∑k−1
i=1 βi,kγi

)
Lk

.(3.9)371

Observe that in Lemma 2.3 we define αk ∈ [0, 1]. Moreover, based on (2.2) we372

can establish that λk are non-increasing in k. This allows for replacing 1√
λk

in the373

LHS of (3.9) with 1√
λk+1

, which would have a bigger value. So, we obtain374

2√
λk+1

(
1√
λk+1

− 1√
λk

)
≥ 1√

λk+1

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
λk+1Lk

+
γ0−

(
μf̂+

∑k−1
i=1 βi,kγi

)
Lk

.

(3.10)

375

We can now observe that the convergence rate of the minimization process is376

dependent on the value of γ0. We will prove convergence separately for γ0 ∈ R1 =377

[0, μf̂ [ and γ0 ∈ R2 = [2μf̂ , 3Lk + μf̂ ]. We start with γ0 ∈ R1 and introduce the378

following379

ξk,R1 �
√√√√ Lmax((

μf̂ +
∑k−1

i=1 βi,kγi

)
− γ0

)
λk

.(3.11)380

Next, we can revise (3.10) as381

2√
λk+1

− 2√
λk

≥

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
− γ0

Lk
(3.12)382

√√√√ μf̂Lk

Lkλk+1

((
μf̂ +

∑k−1
i=1 βi,kγi

)
− γ0

) + 1.383

Revising the LHS in (3.12) and multiplying by
√

Lmax

(μf̂+
∑k−1

i=1 βi,kγi)−γ0
, yields384

ξk+1,R1 − ξk,R1 ≥ 1

2

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
ξ2k+1,R1

Lmax
+ 1.(3.13)385
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Next, we prove by induction that386

ξk,R1
≥

√
2

4δ

√
Lk

μf̂ − γ0

[
e(k+1)δ − e(k+1)δ

]
,(3.14)387

where δ � 1
2

√
(μf̂+

∑k−1
i=1 βi,kγi)
Lmax

. First, considering (3.11) at iteration k = 0 and388

recalling that λ0 = 1, yeids389

ξ0,R1 =

√
Lmax

(μf̂ + γ−1 − γ0)λ0
=

√
Lmax

μf̂ − γ0
,(3.15)390

Embedding (2.39) in (3.15), results in391

ξ0,R1 ≥
√
2

2

√
Lk

μf̂ − γ0

[
e
√
2/2 − e−

√
2/2

]
≥

√
2

4δ

√
Lk

μf̂ − γ0

[
eδ − e−δ

]
.(3.16)392

The last inequality in (3.16) holds true because the RHS increases together with δ,393

which is designed such that δ <
√
2
2 .394

Now suppose that (3.14) holds true at step k, and prove the relation for step k+1395

by contradiction. Let ω(t) �
√
2

4δ

√
Lk

μf̂−γ0

[
e(t+1)δ − e−(t+1)δ

]
. Based on [4, Lemma396

2.2.4] ω(t) is convex in t. So, we have397

ω(t) ≤ ξk,R1 ≤ ξk+1,R1 −
1

2

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
ξ2k+1,R1

Lmax
− 1,(3.17)398

where the second inequality stems from (3.13). Moreover, suppose that ξk+1,R1 <399

ω(t+ 1) and substitute the relation in (3.17). This yelds400

ω(t) < ω(t+ 1)− 1

2

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
ξ2k+1,R1

Lmax
− 1.(3.18)401

Applying the definition for δ, together with (3.14), results in402

ω(t)≤ω(t+1)− 1

2

√√√√4δ2

[√
2

4δ

√
Lk

μf̂ − γ0

(
e(t+2)δ − e−(t+2)δ

)]2

−1(3.19)403

≤ ω(t+ 1)−
√
2

4

√
Lk

μf̂ − γ0

[
e(t+2)δ + e−(t+2)δ

]
404

= ω(t+ 1) + ω′(t+ 1) (t− (t+ 1)) ≤ ω(t).405

The last inequality is obtained based on the supporting hyperplane theorem of convex406

functions. At this point, we highlight the contradiction with the earlier assumption,407

i.e., ξk+1,R1
< ω(t + 1). So, it must be true that (3.14) holds for all iterations408

k = 0, 1, . . ..409
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We can now prove (3.2). Considering (3.11), we have410

λk =
Lmax

ξ2k+1,R1

((
μf̂ +

∑k−1
i=1 βi,kγi

)
− γ0

) .(3.20)411

Substituting (3.14) into (3.20), yields412

λk ≤ (4δ)2Lmax

2Lk

[
e(k+1)δ − e(k+1)δ

]2 .(3.21)413

The first inequality in (3.2) is obtained by replacing the definition of δ in (3.21). The414

second inequality in (3.2) can be proved as follows. First, let us define the following415

abbreviation416

Ak �

⎛
⎝e

k+1
2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk −e
− k+1

2

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk

⎞
⎠

2

(3.22)417

Now, consider418

Ak =e
(k+1)

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk −e
−(k+1)

√
(μf̂

+
∑k−1

i=1
βi,kγi)

Lk −2.(3.23)419

Applying the definition of the hyperbolic cosine function in (3.23), yields420

Ak =2cosh

⎛
⎜⎜⎝

√√√√(
μf̂ +

∑k−1
i=1 βi,kγi

)
Lk

(k + 1)−2

⎞
⎟⎟⎠ .(3.24)421

Taking the Taylor expansion of cosh(·), yields422

Ak=−2+2+2

(
μf̂+

∑k−1
i=1 βi,kγi

)
(k+1)

2

2Lk
+2

(
μf̂ +

∑k−1
i=1 βi,kγi

)2

(k + 1)
4

4!Lk
2 + . . . .

(3.25)

423

Discarding the additional terms in (3.25) we obtain424

Ak ≥
(
μf̂ +

∑k−1
i=1 βi,kγi

)
Lk

(k + 1)
2
.(3.26)425

Replacing (3.26) in the denominator of the first inequality of (3.2) concludes the first426

part of the proof. The results for the case when γ0 ∈ R2 can be established by427

following the analysis conducted for FGM in [4, Lemma 2.2.4]. The main update428

would need to be the addition of the term
∑k−1

i=1 βi,kγi in the update for the sequence429

{γk}k.430

Compared to [4, Lemma 2.2.4], Lemma 3.2 exhibits the following benefits: i): Con-431

vergence of our proposed method is established also for the cases when the exact value432

of Lf̂ is not known. ii) Our proposed method converges for a broader range of γ0.433

Such a result is relevant because it enables the robustness of the initialization of our434

proposed method in the absence of the true value of μf̂ .435

Combining Lemma 3.2 and (1.14) with Theorem 3.1, yields the following acceler-436

ated convergence rate for the proposed method.437
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Theorem 3.3. Algorithm 2.1 generates a sequence of points such that438

1. If γ0 ∈ [0, μf̂ [, then439

F (xk)− F (x∗) ≤ μf̂ (L0 + γ0)||x0 − x∗||2

Lk

⎛
⎝e

k+1
2

√
μ
f̂
+

∑k−1
i=1

βi,kγi

Lk − e
− k+1

2

√
μ
f̂
+

∑k−1
i=1

βi,kγi

Lk

⎞
⎠

2

(3.27)

440

2. If γ0 ∈ [2μf̂ , 3L0 + μf̂ ], then441

F (xk)−F (x∗)≤ 2μf̂ (L0+γ0)||x0−x∗||2

(γ0−μf̂ )

⎛
⎝ek+1

2

√
μ
f̂
+

∑k−1
i=1

βi,kγi

Lk − e
− k+1

2

√
μ
f̂
+

∑k−1
i=1

βi,kγi

Lk

⎞
⎠

2

(3.28)

442

4. Numerical study. We now present the numerical performance of our pro-443

posed method and compare to the existing black-box benchmarks, specifically, AMGS444

and FISTA. We consider both quadratic and logistic loss functions. To simulate very445

ill-conditioned instances of our selected problems, we also use elastic net regularizer446

and select different values of the hyperparameters. Throughout all the tested in-447

stances, we demonstrate the efficiency of our proposed method when compared to the448

selected benchmarks. In our simulations, we make use of both synthetic and real-449

world datasets, the altter being chosen from the Library for Support Vector Machines450

[31]. Moreover, throughout our simulations, We find x∗ by using CVX [32].451

In our simulations, we choose the terms βi,k = min
(
1, μ

γk−1

)
, for i = k − 1.452

Depending on the selection of the terms γ0, we will consider the following instances453

of our proposed method: 1) We set γ0 = 0, and refer to it as “Proposed 1”; 2)454

We set γ0 = μf̂ , refer to it as “Proposed 2”; 3) We set γ0 = 3L0 + μf̂ , and refer455

to it as “Proposed 3”. To estimate the value of the Lipschitz constant for AMGS456

and FISTA we make use of the line-search strategies introduced in the corresponding457

papers [22, 24]. Last, in all the computational examples shown below, we select the458

point x0 at random and use it as a starting point for all the algorithms that are459

compared.460

4.1. Minimizing the quadratic loss function. Let us begin with the follow-461

ing cost function462

(4.1) minimize
x∈Rn

1

2

m∑
i=1

(aTi x− yi)
2 +

τ1
2
||x||2 + τ2||x||1,463

where || · ||1 is the l1 norm. The aim of the Section is to validate the theoretical results464

obtained above and demonstrate that such gains are also sustained when considering465

the practical deployments of the proposed method. For this purpose, we thoroughly466

evaluate the performance of the different benchmarks with respect to different values467

of the condition number of the problem. In our computational analysis, we also468

consider cases wherein the value of the Lipschitz constant is not known and needs to469

be estimated.470

This manuscript is for review purposes only.



18 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

Let us start our evaluations by considering the cases where the Lipschitz constant471

and strong convexity parameters are known. This corresponds to the simplest case to472

analyze, and facilitates an unbiased evaluation of the efficiency of the methods that473

are being compared. For this setup, we will utilize simulated data which are generated474

by uniformly sampling m elements from the set {100, 10−1, 10−2, . . . , 10−ξ}. These475

elements are then used to populate the diagonal of a sparse matrix A ∈ Rm×m.476

The other entries of A are set to 0. Considering the design of the matrix A, we477

have L = 1 and μf = 10−ξ. Thus, the condition number of the problem becomes478

κ = 10ξ. The entries of y ∈ Rm are uniformly sampled from the interval [0, 1]n.479

Last, the other simulation parameters are set to m ∈ {500, 1000}, ξ ∈ {3, 7} and480

τ1 = τ2 ∈ {10−3, 10−7}.481

Our findings for the aforementioned simulation setup are summarized in Fig. 1.482

When compared to the selected benchmarks, we can observe that our proposed method483

is more efficient both in terms of the obtained distance to the optimal solution x∗,484

as well as in the number of iterations needed to converge to such solution. Another485

advantage of our proposed method is that it exhibits better monotonic properties.486

Moreover, observe that all the methods that are being evaluated are sensitive to the487

condition number of the problem. The higher the value of the condition number488

is, the more iterations the methods require to converge in the vicinity of x∗. Last,489

comparing between the selected instances of our proposed method, we can observe490

that they exhibit a commensurate degree of similarity, which is also clear based on491

our theoretical analysis. Nevertheless, we can see that the best performing instance492

is the one obtained when choosing γ0 = 0.493

Let us next consider the case where the true value of the Lipschitz contant is not494

known. For this purpose, we shall consider initial estimates of the Lipschitz constant495

that are 10 times higher and lower than the true value, i.e., L0 ∈ {0.1Lf̂ , 10Lf̂}.496

Following the recommendations presented in [33], for our line-search procedure we497

choose ηu = 2 and ηd = 0.9. We also assume the true value of the strong convexity498

parameter μf̂ is not known. Instead, we use the lower bound on the true value which499

can be controlled by the selection of the regularizer term in (4.1). In the following500

examples, we will use data from the “a1a” dataset, for which A ∈ R1605×123. For the501

considered dataset, the true values of the Lipschitz constant is L“a1a” = 10061. The502

values of the regularizers are selected to be τ1 = τ2 ∈ {10−4, 10−5}, which ensures503

that the condition number of the problem κ =
Lf̂

μf̂
has a high value.504

Our findings are summarized in Fig. 2. Therein, we can observed that our pro-505

posed method is more efficient than the selected benchmark. Similar to the results506

presented in Figure 1, the iterates produced from our proposed method exhibit better507

monotonic properties and have the smallest distance to the optimal solution. More-508

over, accross all simulations, we can observe that our proposed method converges to509

x∗ in a smaller number of iterations. Considering the result for different values of510

regularizers and Lipschitz constant estimates, we can observe the robustness of our511

proposed method and AMGS to the imperfect selection of L0. A difference between512

these two methods, however, is that AMGS exhibits a higher per iteration complex-513

ity. Such results cannot be observed for FISTA, whose performance is very sensitive514

to the initialization of the Lipschitz contant estimate. This comes because the line-515

search strategy introduced for FISTA, does not allow for decreasing the estimate of516

the Lipschitz contant across iterates. Comparing between the different versions of517

our proposed method, we can observe that in most cases they are equally efficient.518

Nevertheless, the variant obtained when initializing γ0 = 0 is preferred because it519
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(d) Convergence of the terms
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Fig. 1: Performance evaluation of our proposed method and the selected benchmarks
on synthetic data. We consider quadratic objective function and elastic net regular-
izer.

enables the robustness of the initialization of our proposed method with respect to520

the imperfect knowledge of μf̂ .521
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(a) Evaluating the distance to x∗ for
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(b) Evaluating the distance to x∗ for
“a1a” dataset, L0 = 0.1L“a1a” and
τ1 = τ2 = 10−5.
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Fig. 2: Performance evaluation of our proposed method and the selected benchmarks
on the “a1a” dataset. We consider quadratic objective function and elastic net regu-
larizer, and assume that the true value of Lf̂ is not known.
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4.2. Minimizing the logistic loss function. We also test the performance of522

our algorithm and selected benchmarks in minimizing the following function.523

(4.2) minimize
x∈Rn

1

m

m∑
i=1

log
(
1 + e−bixai

)
+

τ1
2
||x||2 + τ2||x||1.524

We also consider different datasets from the previous Section, namely “rcv1.binary”,525

for which A“rcv1.binary” ∈ R1000×2000, and a subset of “triazine”, for which A“triazine” ∈526

R186×61. Moreover, in the earlier Section we observed that the convergence of FISTA527

is significantly affected by the selection of L0, which happens because the line-search528

strategy proposed for FISTA does not allow for decreasing the estimate of the Lipschitz529

constant. Since in this paper the goal is to devise more efficient black-box algorithms,530

for the upcoming simulations we will assume that the true value of Lf̂ is known. For531

the selected datasets, we have L“rcv1.binary” = 1.13 and L“triazine” = 25.15. Regarding532

the strong convexity parameter, we follow a similar approach as in the earlier examples533

and select its value to be the same as the l2 regularizer term in (4.2), which are selected534

to be τ1 = τ2 ∈ {10−4, 10−5, 10−6, 10−7}. Last, since there is little performance535

difference between the different variants of our Proposed method, in the sequel we536

simulate only the first variant, namely Proposed 1. Our findings are depicted in Fig.537

3, and from it we can clearly see that our proposed method significantly outperforms538

the selected benchmarks also in minimizing the regularized logistic loss function.539

5. Conclusions and Discussion. A new class of generalized composite estimat-540

ing sequences has been introduced for minimizing convex functions with composite541

structure with a non-smooth term. Using these newly introduced class of estimat-542

ing sequences, a new accelerated black-box first method has been presented. The543

proposed method is endowed with an efficient backtracking line-search strategy, and544

exhibits an accelerated convergence rate even when the true value of the Lipschitz545

constant of the objective function is not known. The convergence results presented in546

the paper suggest that our proposed method exhibits such an accelerated convergence547

when γ0 ∈ [0, 3L+μf̂ ], i.e., the initialization of our proposed method is robust to the548

imperfect knowledge of the strong convexity parameter. From a computational view-549

point, our proposed method has been shown to outperform the existing benchmarks550

when tested in solving practical problems modeled by both simulated and real-world551

datasets.552

The results presented in this paper can be extended in multiple directions. First,553

it would be of interest to explore alternative structures for ψk(x), which can be used554

for devising estimating sequences applicable to different optimization methods, e.g.,555

higher-order methods, stochastic methods, non-convex methods etc. Another rivet-556

ing research direction is related to investigating extensions of the framework devised557

herein in the context of the inexact oracle framework. Last, it would also be of inter-558

est to consider the impact of restarting in the practical performance of our proposed559

methods.560
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