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Abstract
Large-scale optimization problems arise in different fields of engineering

and science. Due to the large number of parameters and different structures
that these problems can have, black-box first-order methods are widely used
in solving them. Among the existing first-order methods, the ones that are
most widely used are different variants of Fast Gradient Methods (FGM).
Such methods are devised in the context of the estimating sequences frame-
work and exhibit desirable properties such as fast convergence rate and low
per iteration complexity. In this Thesis, we devise new estimating sequences
and show that they can be used to construct accelerated first-order methods.
We start by considering the simplest case, i.e., minimizing smooth and
convex objective functions. For this class of problems we present a class of
generalized estimating sequences, constructed by exploiting the history of
the estimating functions that are obtained during the minimization process.
Using these generalized estimating sequences, we devise a new accelerated
gradient method and prove that it can converge to an e neighborhood of the
optimal solution in at most /5 (111% + (9(1)) iterations. We then consider a
more general class of optimization problems, namely composite objectives.
For this class of problems, we introduce the class of composite estimating
sequences, which are obtained by making use of the gradient mapping
framework and a tight lower bound on the function that should be mini-
mized. Using these composite estimating sequences, we devise a composite
objective accelerated multi-step estimating sequence technique, and prove
its accelerated convergence rate. Last, embedding the memory term coming
from the previous iterates into the composite estimating sequences, we ob-
tain the generalized composite estimating sequences. Using these estimating
sequences, we construct another accelerated gradient method and prove its
accelerated convergence rate. The methods devised for solving composite
objective functions that we introduce in this thesis are also equipped with
efficient backtracking line-search strategies, which enable more accurate
estimates of the step-size. Our results are validated by a large number of
computational experiments on different types of loss functions, wherein both
simulated and publicly available real-world datasets are considered. Our
numerical experiments also highlight the robustness of our newly intro-
duced methods to the usage of inexact values for of the Lipschitz constant
and the strong convexity parameter.
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1. Introduction

1.1 Big Data and Optimization

In today’s digital age, we are surrounded by a massive amount of data.
This phenomena comes at large as a result of the spreading of the use
of online social media, internet, and global communication [1]. The need
to make use of all this available data for the purpose of building more
efficient and robust models has fueled the field of data-driven statistical
learning [2]. Enabling efficient ways to harness the information available
in the "big data" has reshaped many aspects of the modern world, such
as businesses which are now using data-driven approaches to adapt their
strategies [3], researchers who are revolutionizing methodologies [4], and
governments who are making more informed decisions [5].

Recent research on big data keeps revealing its boundless potential.
Researchers have shown that exploiting the information available in the
data can result in substantial economic growth and improve the daily life
for everyone in myriads of ways [6]. For instance, in the medical fields
we can use the information available in the data to aid the fight against
the spread of different diseases in a more effective manner [7]. Another
area that has witnessed significant impact is online marketing [8]. We
can also delve deep and obtain a better understanding of the mechanisms
that influence the financial markets [9], create complex networks that
are easier to understand [10], analyze social-computational systems [11],
and ensure the robustness and security of important systems such as the
internet and power grids [12].

As discussed above, harnessing the power of big data is reshaping en-
tire industries, steering government policies, and paving path to more
sustainable societies [13]. Considering the ongoing data-driven industrial
revolution, understanding and being able to efficiently utilize this data
are the essential elements for succeeding in this changing environment
[14]. Optimization problems emerge naturally across various fields of engi-
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Introduction

neering and science. We often find ourselves looking for the best possible
solution to a problem that we face, or situation that we encounter. In this
case, our own intuition is casting an optimization problem and seeking to
find a solution for it. In a very similar way, in engineering and science we
find ourselves converting this intuition into a mathematical formulation,
i.e., we cast different optimization problems [15]. These problems arise
often in various disciplines such as signal processing, control, wireless
communications and many more [2, 16, 17].

Obtaining mathematical models for different problems is important, how-
ever, we are typically interested in finding the optimal solution, which
is far from straightforward. One of the major challenges faced along the
path of finding the optimal solution for an optimization problem, is the
fact that many of these problems are unsolvable. This leads us to seek
for approximate solutions [18]. As is normal with all approximations, a
natural question that arises is: "How reliable are the obtained solutions?"
Answering such a question is tightly coupled with understanding the com-
putational aspects and limitations associated with solving an optimization
problem [19].

Coupling the computational aspects with the problem of creating a mathe-
matical model for the problem of interest typically takes significant amount
of time and effort. It is often the case, that researchers need to trade off
between an "exact" formulation which might not be solvable, with an ap-
proximate" model, which can be solved efficiently. In practice, the latter
models are typically preferred [20].

Such solutions have been observed in different fields in science and
engineering, with the Linear Model serving as the canonical example. Their
popularity is attributed to their simple nature, which also enables solvable
models. Another inherent benefit of linear methods is that it is usually
possible to interpret the obtained solution [21]. However, as we know
from the outburst of data-driven algorithms, the linear approximations
tend to be limited, and are not very successful at capturing the non-linear
structures which are present in the data [22].

1.2 Background

All the optimization problems that are encountered in science and en-
gineering, can be either non-convex or convex [20, 32, 24]. Despite the
recent advances in optimization theory, finding and certifying their global
solutions remain challenging [25]. On the other hand, the class of con-
vex optimization problems has gathered significant attention in the re-
search community [20, 25, 26]. Different from the case of non-convex
problems, for the class of convex problems it is possible to find and certify
the global solutions (or an arbitrarily tight approximation of them) [20].
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Introduction

Such problems arise often in the context of applications in several fields
such as signal processing, information theory and wireless communica-
tions [27, 28, 29, 30, 31, 32]. A myriad of the aforementioned problems
can be solved exactly. Nevertheless, in the context of modern engineering
applications which are enabled by big data, we are more interested in
finding approximate solutions, which can be computed efficiently [33].

Depending on the size of the underlying datasets, it is natural to seek
to optimize the trade-off between a high per-iteration complexity and
convergence speed. Methods that exhibit a higher per iteration complexity,
such as Newton and/or quasi-Newton type methods (e.g., L-BFGS) also
exhibit fast convergence. However, as the size of the datasets grows large,
it becomes necessary to seek to devise methods that exhibit a low per-
iteration complexity, and as fast as possible convergence. One of the
most popular tools used to solve the large-scale optimization problems, are
gradient-based methods designed to be agnostic to the problem formulation,
i.e., considering the black-box framework. At each iteration, these methods
query a black-box oracle to obtain relevant insight about the function that
is being minimized [19]. To build efficient gradient-based methods, the
following aspects need to be considered: i) They need to converge to a
neighborhood of the optimal solution; iz) The number of first-order oracle
calls, together with additional computations, need to be minimized [25, 26].
The performance bounds for different black-box gradient-based methods
for different types of convex problems have been thoroughly investigated
and established in [19, 29, 30, 34].

In this thesis, we consider the problem of devising accelerated methods
for solving smooth and non-smooth convex optimization problems. Con-
sidering only the problem of devising efficient gradient-based methods for
solving convex optimization problems with smooth objective, one of the
most celebrated results is the development of the Fast Gradient Method
(FGM) [35]. Based on the framework devised in [19], FGM is referred to
as an optimal method, i.e., the method minimizes the calls of a first-order
oracle while exhibiting a convergence rate O(1/k?), where k is the iteration
counter. On a framework level, one of the most significant advances was the
development of the estimating sequences framework, initially introduced
in [36] and later refined in [15, 37]. Using this framework, further variants
of FGM constructing for solving optimization problems which have smooth
and strongly convex cost functions [36], [15, Constant Step Scheme I].
These variants of FGM require at most v/ (In 2 + O(1)) iterations to con-
verge to a point z with f(z) — f* < ¢, where k = % and L, u denote the
Lipschitz constant and strong convexity parameter.

Despite the consideration that the complexity bounds reached by FGM-
type methods are only proportional to the fundamental performance bounds
introduced in [19], FGM and its different variants have always been re-
garded in the literature to be optimal methods. Interestingly, these meth-
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Introduction

ods started gathering more attention only after the publication of the
seminal work on smoothing techniques [38], wherein the author approxi-
mated a non-smooth convex cost function by another smooth convex cost
function. FGM was then used to minimize the approximated function.
The authors in [39] further extended the work by devising new interior
gradient algorithms which also exhibit an accelerated convergence rate.
In another line of work, detailed in [40, 41, 42], several researchers have
studied the problem of robustness of FGM-type methods with respect to the
usage of inaccurate gradients of the objective function in the minimization
process.

More recently, in addition to the estimating sequences framework, re-
searchers have also focused on studying other approaches that can be
used to accelerate gradient-based methods. In the line of work presented
in [43, 44, 45], existing links between the integration of ordinary differ-
ential equations (ODE) and optimization were considered in the context
of devising a different perspective on acceleration of first-order methods.
More specifically, in [44] the authors derive a second-order ODE which
is the limit of FGM. In [43], the authors show that different accelerated
gradient methods can be reformulated as constant parameter second-order
ODESs. Moreover, they show the equivalence between the stability of such
systems and the accelerated convergence rate. Last, in [45] the authors
demonstrate that different variants of FGM can be viewed as a structured
approach to transition from the continuous-time curves created by the
Bregman Lagrangian to accelerated algorithms. In another line of work,
the authors of [46] show that it is possible to devise different variants of
FGM by making use of the linear coupling between mirror and gradient de-
scent. Yet another line of work has been introduced in [47, 48]. Specifically,
the authors of [47] develop an accelerated gradient method by extend-
ing the results exiting for the ellipsoid method. The resulting method
called Geometric Descent is more efficient than FGM, however suffers
the drawback that it requires an exact line search to ensure accelerated
convergence. The links between the Geometric Descent Method (GDM)
introduced in [47] and the strongly-convex variants of FGM were later
established in [48]. Another line of work presented in [49] used principles
of robust control theory to derive convergence rate results for accelerated
gradient methods. The authors in [50] use the analysis presented in [49] to
construct a more efficient method, which they name as Triple Momentum
Method (TMM). TMM is more efficient than FGM, in the sense that it
exhibits a faster convergence rate, however it suffers the drawback that it
is defined only for strongly convex objective functions. Even for this class of
problems, when the value of the condition number is large, TMM exhibits
slower convergence than FGM (for more details see [51, Figure 1]).

Another interesting line of work has been introduced in [52]. Therein,
the authors cast a semidefinite program (SDP) which is used to model the
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improvement of the worst accuracy that a black-box numerical method can
exhibit. Later, in [53] the authors analyze the tightness of the worst-case
accuracies that the SDP yields. These results paved path to the devel-
opment of new classes of optimal methods for minimizing smooth and
non-strongly convex cost functions [54, 55]. Using the framework intro-
duced in [52], the authors of [51] develop an optimal method for solving
smooth and strongly convex optimization problems. The method proposed
therein reaches the complexity bounds established in [19], however it suf-
fers from several drawbacks. First, it is difficult to extend the framework
to broader and more practical optimization setups, such as non-smooth op-
timization, stochastic optimization, etc. Second, the results demonstrated
for the method are achieved by assuming that parameters relevant to the
objective function (e.g., i, L) are known. The sensitivity and robustness
of the method to the inexact values of these parameters in the context of
practical deployments requires further analysis and evaluation.

Different from all the other frameworks which have been used to develop
accelerated gradient-based algorithms, estimating sequences have been
consistently used to develop numerical methods that exhibit a competitive
performance in a myriad of applications and optimization setups. In the
context of applications, a myriad of novel results have been presented
in [56, 57, 58, 59]. Specifically, in [56] the authors devise an accelerated
gradient method used for minimizing a smooth loss function regularized by
the trace norm of the matrix variable. In [57], the authors develop efficient
distributed methods and show that their results match the existing results
for FGM, with the additional cost coming from the communication con-
strains. Moreover, the authors in [58] consider the coupling of FGM-type of
acceleration, multi-consensus and gradient tracking to devise algorithms
that achieve optimal computation complexity and near-optimal communi-
cation complexity. Last, in [59] the authors develop an efficient variant of
FGM by using the principle of differential quantization.

Estimating sequence-based approaches have also been successfully ex-
tended to other optimization setups. A myriad of interesting results have
been established in the context of stochastic optimization [60, 61, 62]. In
[60], the authors develop a stochastic accelerated gradient method for
solving regularized risk minimization problems. An accelerated stochastic
approximation algorithm based on FGM is presented in [61]. A new class
of stochastic estimating sequences is presented in [62]. These stochastic
estimating sequences are then used to devise efficient and robust stochas-
tic methods. The development of non-Euclidean methods has also been
widely studied in the recent years [63, 64]. The new estimating functions
introduced in [64] are used to devise a novel bound on the nonlinear metric
distortion to devise a Riemannian version of FGM. The method proposed
therein exhibits accelerated convergence rate for finding the optimal so-
lution of geodesically convex problems, which are smooth and strongly
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convex. In [64], the authors present new estimating functions, which are
used to devise the first global accelerated gradient method for Riemannian
manifolds. Another relevant setup to which the estimating sequences
framework has been successfully extended is the design of higher-order
methods [37, 65, 66]. In [37], the author presents a unified framework
which can be used for studying estimating sequences methods, and shows
how to use the framework to devise a myriad of accelerated algorithms.
An accelerated version of the Newton method is presented in [65]. More-
over, accelerated high-order proximal methods developed using the inexact
oracle framework are presented in [66]. Another setup wherein the accel-
eration effect obtained by utilizing the estimating sequences framework
becomes relevant is related to non-convex problems [67, 68]. The general-
ization of FGM to non-convex setups is introduced in [67]. Moreover, for
nonconvex function with Lipschitz continuous first and second derivatives,
the authors present a Hessian-free accelerated gradient method [68].

Estimating sequences can also be considered to devise efficient methods
to solve constrained optimization problems. The fundamentals behind such
extensions are introduced in [15, Chapters 2.2.4 - 2.2.5]. The key behind
such extension lies in exploring the coupling of the estimating sequences
framework together with the gradient mapping framework [19]. A similar
approach can also be used for solving problems with convex composite ob-
jective functions. Extensions of these frameworks to solving such problems
are introduced in [69, 70, 71]. In [69], the author also introduces a new
class of estimating sequences and uses them to devise an accelerated gradi-
ent method called AMGS. Together with AMGS, the author also introduces
a backtracking strategy which is used to estimate the value of the Lipschitz
constant. In the same work, the author also presents an efficient technique
for approximating the strong convexity parameter of the cost function. The
main drawback of AMGS comes due to its high per iteration complexity
because for each iteration it needs two projection-like operations. This
issue has been mitigated with the development of FISTA. The method
exhibits an accelerated rate of convergence and a lower per iteration com-
plexity. Despite the attractive properties, FISTA does not convergence as
fast as AMGS when considered in practical deployments [72, 73]. Another
class of composite estimating sequences are introduced in [71]. Different
from the estimating sequences presented in [69], the composite estimating
sequences are used to devise accelerated gradient-based schemes which
require one projection-like operation per iteration. Moreover, the method
constructed therein, converges faster than both AMGS and FISTA when
tested on practical problems and real-world datasets.

A plethora of gradient-based methods have already been studied in
the literature in the context of different applications and optimization
setups. Despite the framework that is used for designing the methods,
in order for them to be considered as optimal when considering smooth

20



Introduction

convex optimization the following are important: i) the method achieves
an accelerated convergence rate; ii) the estimated number of iterations
is proportional to the complexity bounds given in [19]. In the context of
composite objectives with non-smooth term, it is desirable for the resulting
methods to exhibit an accelerated convergence rate. A unified framework
that can be used for devising gradient-based algorithms is presented in [74].
In [53], the authors compute the exact worst-case bounds for the variant
of FGM presented in [35]. As we discussed earlier, the variant of FGM
built using the estimating sequences framework is presented in [36, 15].
In [15], the author argues that one of the most relevant considerations for
designing optimal methods relates to parsing global topological information
about the cost function. The collection of such information is enabled by the
estimating sequences. They consist of the sequences {\;} and {¢(x)}x,
which enable the computation of the rate of convergence for the iterates
and accumulation of information around them.

Considering the popularity of estimating sequence methods, one can
easily conclude that such an intuition is correct. A major challenge with the
framework arises because the estimating functions are not unique. Finding
a structure for estimating functions that always result in the most efficient
(both when considering the theoretical bounds and practical performance)
methods that can be devised for the corresponding problem classes remains
an open question. As we have already discussed, different variants FGM ,
e.g., the ones presented in [15, Constant Step Scheme IJ, [35], [69], etc., are
built using different estimating functions. Nevertheless, they are all very
efficient and enjoy the accelerated convergence rate properties. Despite
the different structures for the estimating functions, all variants of FGM
share the commonality that the parameters in iteration & + 1, are updated
by considering the values of the parameters in iteration k.

1.3 Objectives

Considering the plethora of frameworks for devising accelerated first-
order methods, together with the possibilities to construct more efficient
estimating functions, it is natural to ask: “Is it possible to construct more
efficient methods by changing the structure of the estimating functions?".
This is a central question in the thesis which is positively answered in
terms of minimizing smooth and convex cost functions, as well as composite
objective functions with a non-smooth term. The main contributions of the
thesis are summarized in the next Section.
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1.4 Contributions

® In Publication I, we introduce the generalized estimating sequences
which contain additional momentum terms and show how they can be
utilized to devise a generalized version of FGM. We also show how to
derive FGM based on our proposed framework.

¢ In Publication II, we formalize the generalized estimating sequences
framework and provide links between the momentum terms used to
construct the proposed generalized estimating sequences with the heavy-
ball momentum. Moreover, therein we establish the convergence results
of our proposed method and prove that it converges faster than FGM.
We also demonstrate numerically on real data and popular problems the
robustness of the methods devised within our proposed framework to the
inexact information on L and p.

In Publication III, we present the composite estimating sequences and
show how it can be coupled with the gradient mapping framework to con-
struct an accelerated gradient method for minimizing convex composite
cost functions.

In Publication IV, we prove new results and implications of using our
proposed composite estimating sequences. Furthermore, we formalize
and establish the convergence of our proposed composite objective mul-
tistep estimating sequence technique (COMET). We show that COMET
requires only one projection-like operation per iteration and is more ef-
ficient than existing numerical methods for minimizing functions with
composite structure.

In Publication V, we show how to further extend the generalized es-
timating sequences framework for minimizing convex and composite
cost functions. We embed the heavy-ball type of momentum introduced
in Publications I and II into the composite estimating sequences pre-
sented in Publications III and IV. We use the new estimating functions
to construct another numerical method and demonstrate its efficiency in
solving practical problems with real-world datasets.

1.5 Thesis structure
The remainder of the thesis is organized as follows. Chapter 2 introduces

the generalized estimating sequences framework for smooth functions. In
the same Chapter, we also present the associated method and establish its
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convergence. Chapters 3 and 4 focus on further extending the framework
to composite objectives. Chapter 3 uses a tight bound for the cost function
and the gradient mapping framework, to construct composite estimating
sequences and the corresponding method for minimizing convex and com-
posite cost functions. Chapter 4 further extends the work and introduces
the generalized composite estimating sequences. Using these estimating
sequences, we build yet another algorithm and establish its accelerated
rate. Chapter 5 presents our final remarks of the work and highlights
several remaining open problems.
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2. Generalizing the estimating
sequences

A myriad of accelerated gradient-based algorithms have been devised based
on the estimating sequences framework [35, 35, 15, 37]. In this Chapter,
we begin by looking at the simplest case of smooth and strongly convex
objective functions and highlight the main findings of Publications I and
II. We have already discussed in Chapter 1.2 that the existing variants
of FGM that are built using different estimating sequences share the
commonalty that updates at iteration k + 1 are obtained by considering
only the updates at iteration k. Considering the existing results on the
heavy-ball method [75], we thus formulate the first research questions of
this thesis: i) Can we construct estimating sequences which also consider
information coming from the past iterates? ii) How does this impact the
resulting optimization method?

In the sequel, we present our answers to the aforementioned questions.'
The main contributions are summarized as follows:

* We introduce new estimating functions, whose values are dependent on
the history of iterates.?

* We revisit the lemmas and theorems derived in the context of the clas-
sical estimating sequences framework and introduce new approaches
to establish our findings. We also highlight the intuition behind the
selection of the estimating sequences and design of the corresponding
methods.

* For black-box optimization, we introduce a novel type of heavy-ball
momentum, and show how to couple it with the estimating sequences
framework. Different from the framework presented in [75], wherein

INote that the detailed derivations used to establish the Lemmas and Theo-
rems presented in the rest of the Thesis are provided as part of the individual
contributions.

2The proposed framework allows for embedding any form of information that can
accelerate the convergence of iterates.
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the heavy-ball momentum stabilizes the iterates, our newly introduced
momentum stabilizes the estimating functions themselves.

* We introduce a new gradient-based algorithm which allows for embed-
ding our newly introduced momentum term into the classical FGM. We
also show how FGM can be derived by discarding the additional memory
terms.

¢ We improve upon the existing convergence results for FGM. We establish
the optimality of our proposed method, and prove that the bound on the

iterations becomes /5= <ln("’£g) +1n(5)>, where Ry = ||zg — 2*|| and

€< %Rg. This results in an improvement over the bound reached from
FGM by more than %

* The newly introduced convergence results allow for setting vy = 0. In
our publications, we show numerically that this result alone enables a
faster convergence over FGM. We note that such result is an extension of
the existing analysis for FGM, wherein the convergence was established
only for v € [u,3L + p]. Moreover, it enables the robustness of the
initialization of our method to the inexact estimate of .

* In our simulations, we highlight the efficiency of utilizing our method to
solve problems that arise often in signal processing. Both simulated and
publicly available datasets are used.

2.1 Proposed method

Let us beging by considering the following problem
inimi 2.1
minimize f(x), (2.1)
where f : R — R has strong convexity parameter u and Lipschitz contin-
uous gradient L, defined by a deterministic black-box oracle.

First, let Z = z9 + span{V f(x¢),... Vf(zr_1)} for k = 0,1,2,...,¢, where
t is the current iteration. Next, we highlight the following definition.

Definition 1. The sequences {®}, and { i}k, A\ > 0, are called general-
ized estimating sequences of the function f(-), if there exists a sequence of
bounded functions {Yp}r, A\, — 0, and x € Z,Vk we have

Pp(x) < MPo(x) + (1= Ap) (f(2) — vu(w)) . (2.2)

Using ¢ (z) in (2.2) allows for including more information on the cost
function that can enable the faster convergence. Let us now show how to
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use the generalized estimating sequences to measure the rate of conver-
gence for the iterates formed during the minimization process.

Lemma 1. If for some sequence of points {z};, we have f(z)) < @} £
mindy (), then f(z1) — [(a") < M [Boa*) — F(2)] — (1 Ne) v(a”), where

bl .
x* = arg Trg%f(x)

Let us next proceed to presenting our proposed definitions for the terms
that comprise the generalized estimating sequences.

Lemma 2. Assume that there exist sequences {ay}i, where oy € (0,1) and
Y orep ar = 00, and {yi}r, where yi € R", and a sequence of functions {ty} 1,
with an upper bound Yy, such that Yy (x) > 0, Vk. Let o(x) = 0and Ao = 1.
Then, the sequences {®y}, and {\;}x, which are defined recursively as

Aer1 = (1= ap) Ak, (2.3)
Ppp(w) = (1—ag) @r(7) +9r(2) —rp(r) = Vit arp (o)
For(fu)+ V@) (@ - ) + Bl —wlP) . @4

are generalized estimating sequences.

Recall that the structure for {®;(z)}; has not been presented yet. As dis-
cussed in [15], accelerated methods needs to exploit some of the topological
features of the cost function. Such observation can be validated based on
existing results on second-order methods. Considering Newton’s method,
as shown in [20, Fig. 9.19], making use of the information available in
the Hessian enables the construction of ellipsoids around each iterate.
Such ellipsoids facilitate corrections of the selected descent direction. For
gradient-based methods, which do not have access to Hessian-related in-
formation, we can devise balls around each zj, without “discriminating”
the different search directions. Mathematically, this is modeled by using
isotropic functions, which scan with radius ~;. The resulting Hessian then
becomes V2¢(z) = v;I. The estimating function is

on(@) = ¢i + S lle — vl vk, (2.5)

and has minimum value ¢;, radius v, € R" and is centered around v;, € R".
Similar structure as (2.5) is also used for constructing FGM [15]. Different
from (2.5), we let

u(a) = 0 + o = vil® - (). W, (2.6)

The added term () is

k—1
Ue(@) 2 Y Buglle —vil|2. Vi, 2.7)
=0
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A simple example for j; j, is

min(l, 1 ) ifi—k—1,
Yk—1

Bik = (2.8)

0, otherwise.

Considering the black-box setting, wherein prior knowledge of the structure
of the objective function is not available, we allow our newly introduced
scanning functions to “self-regulate” and encompass information that was
already available from the earlier iterates. Selecting f; ;, according to (2.8)
ensures that (2.7) remains finite since only the estimating function in
iteration k — 1 is used.

Let us now present the recursive relations for ¢;, v, and vy.

Lemma 3. Assume that the coefficients j5; , are selected according to (2.8),
and let ®y(z) = ¢f + L[|z — vo|[>. Then, the process defined in Lemma 2
preserves the quadratic canonical structure of the scanning function in-
troduced in (2.5). Moreover, the sequences {vi}r, {vi}r and {¢}}r can be
computed as

k-1
Vo1 = (1 — o)y + o (u +> Bi,k’Yi) ; (2.9
1=0
k-1
1 1 Bi ki
Vpy1 = . ((1 — o) Wk Uk + O (yk - pvf(yk) + ; lﬂ Ui)) ,
(2.10)
k-1
. o (I —ag)(p+ 2y Bk
Ghor = on ) + (1 — o)y + DL O Do By,
Vi+1
(2.11)

3 k-1 2 2
aj, akva(yk)”
+ - /B"k; il Vi — Yk vf k -
o ;:0 sk villvi — el [V f (i)l et

V41

k-1
+M <(vk — )" VEwR)+ > Biwvillys — villllyk — Uk|)

=0
Y =2 Biry
k iy 3
+(1—ak)3llw$k—vkl|2+akz 2y — il |2
1=0

2 k—1

O[
kZsz’Yz (% yk Vf Yk +Zﬁzk H‘T@k Ul”
=0

Vk+1

We will choose {x}}, {yx}r and {v;}1 to ensure that f(z;) < ®;, Vk. For
iteration k, suppose that ¢; > f(xz). At iteration k + 1, by relaxing (2.11)
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and making some algebraic manipulations, we reach

2

G 2 )+ (L= VT (o) (=) = 5|97 () P (2.12)
Ve+1
Oék(l Ozk)’yk ()/2 "
TR TR TR e — )T _ 71@2 (s —ap N
+ et (vk—yr)” Vf(yr)+(1 ak) P izoﬁt,k%(vz yk) VI (yk)-

The necessary conditions of Lemma 1 are fulfilled if ¢} ; > f(zx41). Thus,
we further relax the lower bound by making use of

Fw) ~ S IV I > Fanen). 2.13)

To ensure that (2.13) is satisfied, it suffices to take a gradient step for y;
[15, Theorem 2.1.5]. This allows for computing oy, as

o = ,/%. (2.14)

Considering (2.9), we can write

2
_ k—
<M + 0 Biwvi — ’ch) \/ (M + 30 B — w) + 4Ly,
2L + 2L

. (2.15)

af =

Substituting the expression for o presented in (2.15), we can revise (2.12)
as

Gy 2 [ (@r1) + (1= )V f ()" ((2r — yr) (2.16)

Rk o} 2
+ (o = yk) + — ) Biwvi(vi — k) |-
Vi+1 ( ) Vk+1 ; ( )>
The terms of {y; }1 can be acquired from

. C)é2 k—1

Tk Yt (0 = Yk) == > Birvi(vi — yk) =0,
Vk+1 Te+1 i)

This yields

2 k—1
Ve+1Tk + QR VRVE + 0f Do BikVivi
k= :

i (2.17)
Vi1 + i + ad Zf:ol Bi ki

The complete procedure is presented in Algorithm 1.

Let us next compare Algorithm 1 with [15, (2.2.19)]. First, observe that
the relations for computing o and ~; are different due to the different
estimating functions. A similar observation can be made by looking at the
recurrent relation for computing v, Vk. An important difference is the
range of values for which 7 can be selected. The existing convergence
results for FGM are limited to the range o € [y, 3L + p]. Our algorithm
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Algorithm 1 Proposed Method
1: Input zo € R", set yo € [0, u[U[2p, 3L + p] and vy = xo.
2: while stopping criterion is not meet do

(m+3i) /3',k%77k)+\/(u+ztl ﬁ',k’Yz‘*’Yk)QJr‘lLVk
3: ap = 5T, =

k—1
Y1 = (1 — ag)ve + ag (M + 20 ﬁi,k%’)
Vi1 @pFopyrvp+al S B v
Y1 Far el SR B v
1
6:  Tpy1 < yr — 1 V.S(Ur)

k— i ki
T Vgt 4 7k1+1 ((1 — o) VKUK + g (yk—ivf(yk) +Y ﬁ/f”z))

-~

5: Y

8: end while
9: Output x;1,

converges for a larger range of 73. The extension of the convergence
results to cover also the case where 77 = 0 enables the robustness of the
initialization of our method when using an inexact y. Computing the
exact value for ; would require additional computations. Moreover, the
additional terms coming from using {1;}; appear as multipliers of 3.
They are also present in the update of v, ;. Last, observe that FGM can
be derived by letting §; , =0, Vi, k.

2.2 Bounds on convergence rate

Let us now present the key convergence results for our proposed method.
First, we show that the convergence of the iterates obtained during the
minimization process is dependent on both {\;}; and {¢}.

Theorem 1. If we let \o = 1 and M\, = f;ol (1 — o), Algorithm 1 generates
a sequence of points {xy} such that

flzg) = 7 < M | f(20) — f2%) + %Hﬂfo — 2|2 = (1 = M)be(z). (2.18)

From Lemma 2, we have that {\;}; — 0 when k£ — co. The estimate of
the rate of convergence for {\;} is given in the following Lemma.

Lemma 4. For all k > 0, Algorithm 1 guarantees that

2
A < K 5

E—1 E—1
kil [ HE2iog Bikvi k1 PEEig Bikvi
L e 2 L —e 2 L

20
= k—1 ’
(# + i 5i,k%‘) (k+1)?

Last, we demonstrate that Algorithm 1 is optimal.

(2.19)
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Theorem 2. In Algorithm 1, let ;1 > 0. Then, the scheme generates a
sequence of points such that

pllwo — 2|2

k—1
k1, [HHIi—1 PikYi
e 2 13

fo— <

5 — (1= Ap)ve(z™). (2.20)

k—1
k1 [P Bk
—e 2 L

where f;, = f(xy) and f* = f(x*). This means that the method is optimal
when the accuracy € < L|zg — *||%

For the class of problems considered in this Chapter, FGM reaches the
following bound [15, (2.2.17)]

L uR3
kram > \/; (1n <2€> +1n(23/3)> . (2.21)

On the other hand, if we select §3; ;, according to (2.8), the proposed method
reaches the following bound on the iterations

L uR%
l{?Proposed Z \/u T min (’kal, ,u) <].I'l <2€> + ln(5)> . (222)

Observe that the bound presented in (2.22) is impacted by the rate of
increase for the terms in {v;};. As we demonstrate in our Publications I
and II, the terms {v; }x grow exponentially in k, and converge to 2u. Thus,
the bound to the required number of iterations converges to

L uR3
kProposed — 27“ (11’1 <2€) + 11'1(5)) . (2.23)

Comparing the convergence results presented in (2.20) to the existing
lower bound for FGM given in (2.21), we highlight the improvement by at
least a factor of 1//2.
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3. Extending the existing estimating
sequence framework to composite
objectives

In this Chapter, we focus on a broader class of convex problems, which
are expressed as the sum of a smooth convex function together with a
non-smooth convex function. In the sequel, we present the main find-
ings of Publications III and IV. For this class of problems, several esti-
mating sequences methods have been introduced in [69, 72, 73]. Links
between methods that were not originally devised by using the estimating
sequences framework, such as FISTA, with estimating sequences methods
have been presented in [73]. Despite these methods being devised using
different frameworks, they all share in common the accelerated rate of
convergence. Nevertheless, when comparing their performance in solving
practical problems with real-world data, we have observed that they ex-
hibit different convergence properties. Moreover, comparing the original
FGM with FISTA and AMGS for minimizing smooth convex functions, we
have observed that FGM is more efficient. Thus, it becomes relevant to
extend the estimating sequences framework used for devising FGM to the
setup of composite objectives.

In the sequel, we introduce our proposed composite estimating sequences
and show how to construct a composite objective estimating sequence
technique that exhibits an accelerated rate of convergence. The main
contributions are summarized as follows:

* We present new estimating sequences that are useful for devising nu-
merical methods for minimizing the broader class of composite functions.

* We introduce new composite estimating functions, devised by coupling
the gradient mapping framework introduced in [19] together with a tight
bound on the composite cost function.

¢ Different from the “classical” functions used in [15], our proposed com-
posite estimating functions exploit a tight bound on the composite cost
function, together with its subgradients. This allows for devising accel-
erated gradient-based methods applicable to more general optimization
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Extending the existing estimating sequence framework to composite objectives
problems.

¢ Based on the composite estimating sequences, we devise the Composite
Objective Multi-step Estimating-sequence Techniques (COMET). Our
proposed method, is equipped with an efficient step-size adaption strategy.
Different from AMGS, COMET requires only one projection-like operation
per iteration.

¢ We prove that COMET exhibits an accelerate rate despite the inexact
information of the Lipschitz constant.

* Through computational experiments, we highlight the robustness of
COMET to the inexact information of ..

* Moreover, we conduct extensive computational experiments for differ-
ent practical data processing problems modeled through composite and
convex cost functions. We demonstrate the superior performance of our
proposed method relative to the existing benchmarks. To highlight the
efficiency and robustness of our proposed method in a reliable manner,
we consider real-world datasets.

3.1 Preliminaries

The problems of interest have the following structure
mini%lize F(z) = f(x) + 79(z), T>0, 3.1
TER™
Transferring the strong convexity parameter of g(z) inside F(x) yields
T 0 . .
Fa)=(f() + 52 e —a0]?) +7 (g()~ E2llo—ao?) = F(x) + ri(a).
(3.2)

Considering the above-mentioned strong convexity transfer, we can write
L} =Ly+Tug anAd [y = p £ Thyg. Moreover, we observe that y; = 0.
Recall that for f(z) we can write

g’ S0 \T L? 2
fl@) < fy) + V) (@ —y) + 5 lly — Il (3.3)

J@) 2 F) + Vi) @ =)+ Ly — ol 3.0

In a similar manner, by definition of the subgradient of a function, we can
write

9(@) > gy) +sw) " (z —y), (3.5)
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where s(y) denotes a subgradient of §(y). Furthermore, consider

. . L R
mi(y;2) = F )+ V() (e—y)+ 5 lle—yl+79(x), (3.6)
where L > L;. Substituting (3.3) in (3.6), yields
mr(y;z) > F(z),Va,y € R™. (8.7
Next, let us introduce the composite gradient mapping
Tp(y) £ arg min my(y; ). (3.8)
TERM
Morever, we define the composite reduced gradient
ri(y) = Ly — Tr(y)). (3.9)

Considering the special case 7 = 0, (3.2) results in f(z) = f(x). Observe
that this would be the case wherein my (y; ) would be differentiable in
its variables. Applying the optimality condition for (3.8), we can write

Vmp(y;z) = 0. Replacing (3.6) in (3.8), and evaluating the first order

condition, yields T7.(y) = y — w. Replacing such result in (3.9), we

obtain r1(y) = VF(y) = Vf(y). Considering the broader case where 7 # 0,
based on the optimality criteria for (3.8), we can write

Omr(y: Te(y) (z — Te(y)) = 0,

(G +HTL) ) +7510)) @-Tew)0.  (310)

where 0 is the subdifferential of m (y; T (y)) and s1.(y) € 9§(T1(y)). Lettin
g the first factor of (3.10) be equal to 0, together with utilizing (3.9), results
in

ri(y) =Ly — To(y)) = V) + 7s0(y). (3.11)

The next theorem introduces a tighter lower bound than the one given in
(3.4) for F(x).

Theorem 3. Let F(x) be a composition of an L Jg-smooth and p }-strongly

convex function f(z), and a simple convex function g(x), as given in (3.2).
For L > L}, and x,y € R™ we have

F(@) > FTu) + ro(Tu) + r) @ = 9)+ Sl = ol + 52 )l
(3.12)

3.2 Proposed method

Similar to the previous Chapter, let us define the following.
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Definition 2. The sequences {¢i}i and { i}, A\ > 0, are called composite
estimating sequences of the function F(-) defined in (3.2), if A\, — 0 as
k — oo, and Vx € R"™, Vk > 0, we have

or(x) < Apdo(x) + (1 — A\p)F(x). (3.13)

Observe that the proposed composite estimating sequences can estimate
the rate of convergence of {x};. This is captured in the sequel.

Lemma 5. If for some sequence of points {x\}; we have F(z)) < ¢; £

127121}1%(90), then F(xp)—F(z*) <A [po(z*)— F(z*)], where z* =arg rg%}bF(x)

The terms comprising the composite estimating sequences are computed
recursively as shown below.

Lemma 6. Assume that there exists a sequence {ay}x, where oy, € (0,1) VE,
such that Y ;- oy = oo, and an arbitrary sequence {y;}7> . Furthermore,
let \g = 1 and assume that the estimates Ly, Vk, of the Lipschitz constant L 7
are selected in a way that inequality (3.3) is satisfied for all the iterates xy,
and yy. Then, the sequences {¢y}i, and {\;}r, which are defined recursively
as

)\k+1 = (1 — Ckk)/\k, (3.14)
1
1) = (1 — ag)dn () + apF (T1, (yx)) + akaTLk (we)l?  (3.15)

1
+ ar (120" (@ = ) + ELlla = el ?)
are composite estimating sequences.

Let us now compare our findings presented in Definition 2, Lemma 5 and
Lemma 6 with the results obtained in [15, Definition 2.2.1, Lemma 2.2.1,
Lemma 2.2.2]. If the objective function were differentiable, the proposed
Definition 2 and Lemma 5 would reduce to the baseline results introduced
for FGM, which are obtained under the assumption of smooth objective
function. From this viewpoint, our proposed framework extends results
introduced in [15] to a broader setup. Second, based on the results proved
for Lemma 5, the rate of convergence of {x}, would be characterized by
the rate that A\, — 0. Third, (3.15) highlights the effect of using the tighter
bound introduced in Theorem 3. Last, the objective function given in
(3.15) is now computed based on the composite gradient mapping. Unlike
the case of FGM, the proposed composite estimating functions exploit the
subgradients of the non-smooth cost function to build {¢y}.

The terms of the sequence {¢y }; can be computed as follows

¢k(x):¢z+%|\x7vk||2, VE=1,2,.... (3.16)

We highlight that there could be choices for ¢ (z), which can lead to
different algorithms (see [63, 64]). We can now proceed to presenting the
recursive relations for the terms {7}, {vi}x, and {¢} } 1.
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Lemma 7. Let ¢o(z) = ¢f + L[|z — wl|%, where vo € RY and vy € R™
Then, the process defined in Lemma 6 preserves the canonical form of the
function presented in (3.16), where the sequences {~;}r, {vi}r and {¢}}r
can be computed as follows

Vo1 = (1 — o)y + oy, (3.17)
’Uk+1:7((1 — ) YRUE + Qg (ijk — Li(yr — T1, (Zlk)))) , (3.18)
Ve
* * 1 2 L%ai 2
Gpy1 = (1 — ar)dy, +ou \F (T, (Yx)) + 55— 7L, (ye) %) — e =T (yr)||
2L, 2Ven
pyorYe(1—ay) Liapve(l — o
gk w(yk*vk)T(yk*TLk(wk))
2%k 11 Vi1

(3.19)

Different from the results given in [15], our proposed framework also
allows for the line search adaptation.! To enable faster convergence to the
optimal solution, it would be desirable to choose the smallest value L, for
which (3.3), wherein L} = L, is satisfied Vk = 0,1, .... Then, it would be
desirable to control the increase of its value throughout the minimization
process. Such approach would enforce the algorithm to perform “larger
steps towards z*” during the first few iterations. In the later iterations,
i.e., when z;, is closer to z*, having large L; would prevent the method
from overshooting past z*. Unfortunately, such approach relies on the
assumption that L} is perfectly known. This makes it unsuitable for

*99

practical setups. Instead, we choose a line search strategy which enables
the following: i) Robustness of the algorithm with respect to the selection
of Ly; it) Dynamic changes of the values of Ly, Vk = 0,1,.... Our proposed
line search strategy utilizes 7, > 1, which increases the value of L;, and
ng €]0,1[, which decreases the value of L;. As we have shown in our
articles, the impact of the additional backtracks is minimal. This has also
been observed in [72, 73]. The proposed algorithm for solving problems
with composite objectives is given in Algorithm 2. In line 3 of Algorithm
2, we use Kpax to denote the maximum allowed number of iterations. Its
value can be chosen to optimize the trade-off between the needed accuracy,
and computations/processing time. Comparing the method devised in this
Chapter to FGM (CSS I in [15]), we can observe that {ay}x and {7}, share
similar recursive structures. The update of y; is different. In the case of
our proposed method, y; is computed independently of the value of u 7 The
update rule for the iterates z;, is also different. Because of the structure of
the cost function, the next iterate is obtained through a proximal gradient
step. The assumption on the simplicity of the non-smooth term g(z) ensures
that the proximal term can be computed with complexity O(n) [76]. The

1A myriad of backtracking line search strategies have already been presented in
the literature (see [69, 70]).
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Algorithm 2 Proposed Method
1: Input 29 € R", Lo > 0, p13, 70 € [0,3Lo + u}],
1, > 1 and ng €0, 1].
2: Set £ =0,7=0and vy = zg.
3: while k£ < K5 do
4: [A/Z — naLlg

5: while True do _
& & (H}_'Yk)+\/(l2¢£‘_7k)2+4lli7k
. N Yig1Tr+0iVKVE
8: yi < ’AYiJr]‘HSZi’Yk
9 a1 prox (5 — £V/(0)
L’i 7

10: Vi1 < %11 <(1 — Q) VK Uk + G (M}@i - L (@i—fiﬂ)))
11: if F(ii+1) < mp. (@” fﬂ,l) then
12: Break from loop
13: else
14: Liy1 < nuL;
15: end if
16: t—1+1

17: end while

18 Lyy1 ¢ Liy a1 @4, o 4 G,
Y — Ui, 1 0,k +—k+1

19: end while

20: Output z;

update v, is also computed differently. In the case of our proposed method,
we can observe the effect of using the composite reduced gradient. Last,
observe that our proposed convergence analysis enables the converge of
the proposed method for a wider selection of . This is different from the
existing results presented in [15, Lemma 2.2.4], wherein convergence is
established only for ¢ € [u}; 3L i+ u}]. Choosing vy = 0, also enables the
robustness of the initialization of our proposed algorithm with respect to
the imperfect knowledge of I

3.3 Bounds on the convergence rate

First, we demonstrate that the convergence rate of the minimization pro-
cess is characterized by the rate that Ay, — 0.

Theorem 4. If we let \g = 1 and \;, = Hf;ol (1 — ), Algorithm 2 generates
a sequence of points {x;}7° , such that

Flzg) — F(z*) < A, [F(xo) _ Pz + ?H:L-o - x*ﬂ : (3.20)
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Since A\ — 0, Theorem 4 suffices to conclude that the iterates generated
by our proposed method converge to x*. We are now ready to estimate the
rate at which )\, — 0.

Lemma 8. For all k > 0, Algorithm 2 guarantees that
1. If’yo S [O,p,}[, then

2

2045
f
A < < . (3.21)
( me1 [PE ke /‘?)2 (k+1)2
Lile 2 Vi ¢ 2 VT
2. If v € [u},BLg + p}], then
4 4Ly
A< / b (3.22)

<
2 = 2°
ki1 [Pk R (Yo — py)(k+1)
(’y()u?)(e 2 \/Lik'fe 2 Lk:) /

Contrasting the results in Lemma 8 with their counterpart, i.e., [15,
Lemma 2.2.4], we have the following main differences. First, we prove
the convergence of the iterates also in the absence of the exact knowledge
of the Lipschitz constant. Moreover, we prove the convergence of the
minimization process for a wider range of ~y. Such a finding is important
for several reasons: i) The proposed method enjoyes a faster theoretical and
practical convergence when ~y = 0; it) Setting 79 = 0 provides robustness
to the inexact knowledge of 4 7

The following lemma yields an upper bound on the distance F'(xo) — F(z*).

Lemma 9. Let F(x) be a convex function with composite structure as shown
in (2.1). Moreover, let Ty (y) and rr(y) be computed as given in (3.8) and
(3.11), respectively. Then, for any starting point zg in the domain of F(z),
we have

L
F(x) — F(a*) < ?OHJCO — 2| (3.23)

Combining Lemmas 8 and 9 with Theorem 4, yields the following conver-
gence rate for our proposed method.

Theorem 5. Algorithm 2 generates a sequence of points such that

1 If~y € [0,#}[, then

13 (Lo +70)llzo — 2|

5.
UES LS S 5 s 4
L | e 2 Tk _ e 2 VTk

Flay) — F(z*) < (3.24)
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2. Ify € [/J}»,?)Lo + M}], then

2413(Lo+0)|Jzo—a*||?
Py ey < Tl

- k+1 [ _ep i\ 2
(70-#;)(62 e PV

Based on Theorem 5, we can observe that our proposed method converges
over a wider interval than its counterpart devised for the class of smooth
and strongly convex functions. Initializing vy = 0 guarantees the fastest
convergence of the method. Such a result is relevant in the context of
practical deployments of the proposed method, since I and L 7 are not
known and their values need to be derived based on the available data.
The convergence rate of the iterates is also dependent on the value of L.
Based on (3.24) and (3.25), we can see that choosing small values for L
enables faster convergence of the proposed method.

(3.25)
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4. Generalizing the estimating
sequences framework for problems
with composite objectives

In this Chapter, we further extend the results presented in Chapters 2
and 3. So far, we have proposed estimating sequences constructions that
extend in different directions. In Chapter 2, we proposed a new class of
generalized estimating sequences that support the embedding of a heavy-
ball type of momentum into the classical estimating sequences. Based on
the framework introduced in Chapter 2, we established that it is possible to
devise a method that enjoys a provably faster convergence rate than FGM.
In Chapter 3, we proposed a new class of estimating sequences that can be
used for solving optimization problems with composite objectives. Therein,
we showed that our proposed black-box method also enjoys the same
acceleration as the existing benchmarks among black-box methods, i.e.,
AMGS and FISTA, however it is more efficient than them. The remaining
question of interest relates to exploring the coupling of the frameworks
introduced in Chapters 2 and 3.

In the sequel, we present the final class of estimating sequences that
we devise in this thesis, which we name generalized composite estimating
sequences, and show that they enable the construction of a class of very
efficient accelerated algorithms. The main contributions are summarized
as follows:

* We introduce a new structure for the estimating functions, which we call
the generalized composite estimating functions. The proposed estimating
functions are constructed by making use of the generalized estimating
sequences, which contain a heavy-ball type of momentum embedded in
them, together with the gradient mapping technique [19]. Similar to
Chapter 3, we use a tighter global lower bound on the objective function
than the one obtained from the Taylor series expansion of a convex
function.

* We use the proposed generalized composite estimating sequences to de-

vise a new class of accelerated gradient methods, which are also equipped
with an efficient backracking line-search technique. Similarly to the
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method introduced in Chapter 3, and different from AMGS, our proposed
method also requires one projection-like operation per iteration.

* Independent from the knowledge of the true value of the Lipschitz
constant, we prove that our proposed method enjoys the accelerated
convergence rate.

* We prove that the initialization of our proposed method can be made
robust to the imperfect knowledge of the strong convexity parameter.
This reduces the computational burden of computing a tight estimate of
the strong convexity parameter.

¢ We also demonstrate numerically the superiority of our proposed method
when compared to the existing benchmarks. Such superiority is also
visible when the performance of the methods is tested on real-world
datasets and when inexact values of the strong convexity parameter and
the Lipschitz constant are selected.

4.1 Proposed method

Let us now present the last structure of estimating sequences that we have
devised in this thesis.

Definition 3. The sequences {®}, and {\;}x, A\ > 0, are called general-
ized composite estimating sequences of the function F(-) defined in (3.2), if
there exists a sequence of bounded functions {}r, A\ — 0as k — oo, and
Vz € I, Vk > 0 we have

Similar to other estimating sequences, we can use the generalized com-
posite estimating sequences to characterize the convergence rate of the
minimization process.

Lemma 10. If for some sequence {z}) we have F(z)) < @} £ rréigbk(x),
then F(xy) — F(z*) < A\ [®o(z*) — F(z*)] — (1 — M) (z*), where z* =
arg migF(a:).

xe

To construct our proposed method, we will need the following recurrent
definitions of the estimating functions.

Lemma 11. Assume that there exist sequences {ay}y, where o € (0,1)
Vk, such that ) " o = oo, {¢r}r with an upper bound ¥y, such that
{tx}r > 0 and an arbitrary sequence {yi}i. Furthermore, let yy(x) = 0,
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Mo = 1 and assume that the estimates Ly, Yk = 0,1,..., of the Lipschitz
constant L; are selected in a way that inequality (3.3) is satisfied for all
the iterates xy and yi, Vk = 0,1,.... Then, the sequences { Py}, and { )\ }k,
which are defined recursively as

Meg1 = (I — ap) g, (4.2)

Qpp1(z) = (1 — ag) (Pr(z) + Yr()) — Yry1(z) — Ui + (L;}Hw - yk||2>

1
o (F (i) + 724 002 = 0) + ) + 5, P
(4.3)
are generalized composite estimating sequences.

Observe that the estimating sequences used for devising FGM in [15,
Lemma 2.2.4] are obtained as the special case of our generalized composite
estimating sequences when 7 = 0 and ¢ (z) = 0,Vk = 0, 1,.... Similarly,
the generalized estimating sequences devised in Chapter 2 give the special
case of our proposed generalized composite estimating sequences obtained
when 7 = 0. Last, the composite estimating sequences presented in Chap-
ter 3 correspond to the special case obtained when {¢;}; = { 0}«. In this
sense, the generalized composite estimating sequences presented in this
Chapter encompass different variants of estimating sequences presented
in the literature.

Considering 7, € R™, v, € R", Vk =0, 1,.. ., let us choose {®; } as (2.5),
{Yr(z)}r as (2.7), and f; ;, as (2.8). Based on these selections, the minimal
value of the estimating function introduced in (2.5) is

k—1
* . g% % * 2
P = min®y(x) = ¢y, + > |23, — vkll ;

Bi ki
2

e, —vl2 (44)

where r3 = argmin, ®4(z). The recursive relations for the parameters of
{¢1}1 are presented in the following Lemma.

Lemma 12. Let ¢o(z) = ¢} + L[|z — |2, where y9 € R and vy € R™
Then, the process defined in Lemma 11 preserves the canonical form of the
function {®(z)}, presented in (2.5), where the sequences {~i}r, {vi}r and
{¢;}k can be computed as follows

k-1
Ye+1 = (L — o)k + ak (u; +> ﬁi,k%’) : (4.5)

i=1

k-1
1

Vg1 = W((l_ak)'ykvk‘i‘ak (M}yk-F > Biwvi = Lyk — Tr, (%)))) , (4.6)
+

i=1

k—1
" « 1
b1 =1 — ax) oy +Oék<F (T, (yk'))—’_TI/kHTLk (yk)||2 + Z Bikvillyk — Uz‘|2>

=1
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apve(l—og) (M} + 3 Bi,k%‘)
29k+1

_ Ljaj
29kt

(1—ag)y, " i1
—OR)VE o« 2 i k+17Yi )« a2
e T~ el 3 P e, v

s — vkl ?

(6]
E Hyk Tr,(yi) ||+

]. - ak
Z Biwvi(vi — yi) L, ()

Yk+1

3 k-1
k Bi kil lvi —
KYillVi — Ye|| TL Yk
o ;:1 gl [ Irz, (ye)

k-1
« l1—a
+ ol ~ ox) <(Uk =) L (k) + > Biwvillye — vl llyk — Ulc|)-
Tkt i=1
4.7

Comparing between our results presented in Lemma 12 to that of [15,
Lemma 2.2.3], we can highlight that the recursive relations obtained for
computing the terms {v;}, and {¢} }, now reflect the usage of a new lower
bound on the function that is being minimized. The impact of using the
proposed reduced composite gradient is also visible. Moreover, observe that
the computation of the terms {~; }«, {vi }x, and {¢} }+ highlight the presence
of the heavy-ball type of momentum term that was used to construct them.
Comparing the above obtained results to the ones devised in Chapter 2,
we can observe the presence of the subgradients of the objective function
together with the multistep nature of our newly obtained method. Last,
different from the results highlighted in Chapter 3, we can observe the
additional terms coming from the newly introduced heavy-ball type of
momentum.

Similar to the previous Chapters, we will devise our proposed method by
using an induction-based argument. Suppose that at step k¥ we have

oy 4D Bk
¢k+*|\%k—vkll2 Z |25, —vil* > F(ay). (4.8)
=1
We need to prove that ®; | > F(zyy1). Using (4.8) and (3.9) in (4.7), we
obtain

k-1
P = (1— O‘k)F(xk)JFO‘k(F(TLk(yk)) HT‘Lk(yk 12+ Biwvillu U2|>

i=1

L2a2 k(1 —a) (M} +3) ﬁi,k%‘)

@ 2
=T, yk)| |+ k—Vk
~ g Ellge =TI o Iy

(1—o) 9 Bi k1%
—rg, —vkl|"+
VE+1 o ;

+ — | ?

|3
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ak(l Z Bz k’Yz i TLk (yk)

VEk+1 P
ag k—1
k
+—=> Bixvillvi—yellllre, (yx
o LAl el ()

k=1

apyE(l — ay

+ 77(%1 ) <(vk —yi) () + E Bi kil lye — villllyr — vk||>~
=1

(4.9)

Substituting (3.12) into (4.9), we have

P > (1—ag) (F(TL,c (yk))JrTLk(yk)T(wk*yk)Jrg\|$k*yk||2 22 |TLk(Z/k)|>

k—1
+%<F (T, (yx)) + H?‘Lk(yk)\l2 + > Biwvillyk — sz|>

i=1

apk(l—ar) <M} +3i0 ﬁi,k’%)
29,41

_ Liog
2Vk+

«
K Hyk Tr,(yi) ||+ |y — k||

— g ?

|| ‘bk+1

N (1—ou) vk 2%, — g2+ Xk: Bi k17
Vk+1 o = 2

1_
2kl — %) Zﬁm% vi—yk) L, (U)

V41 |

3 k—1
+—=> Birvillvi—yrllllre, (yk
wc+1;’ illvi =kl Ly, ()|

k1
o l-—«a
+ ol ~ o) ((Uk — i) L () + > Biwvillye — villllyk — Uk||> :
Vk+1 =1
(4.10)

Making some manipulations in (4.10), we reach

k
* 6i,k+17' *
Givr > F(Tr, (y) + (1 — ar)rr,(ur) " (wr—ye) + — 5 2, ,, —vill?

=1
k—1
1 o o ap(l—ag) T
o) L L rer > s ) s o)
« 11—«
p o) (T (). (4.11)

VE+1

Next, we add 25| |25, ,, —Vkt1] 12 to the LHS of (4.11) and move Y%, /3i,k2+m
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[|z%  —wv;il|? to the LHS of (4.11). This results in
Dpq1

1 ag
2L 2941

By > F(To )+ (1 — on)roa(u) (@ —ue) +( ) o, ()P

az(l— Ozk ALYk ].704]€
+—" il Zﬁzk% yk)TTLk(yk)-FL)(Uk—yk)T?‘Lk(yk)-
Te+1 Vk+1

(4.12)

We can simplify (4.12) by letting

V41
g = 4 /—Lk . (4.13)

Plugging (4.5) into (4.13), yields the following recurrent relation for «

2
py+ S Bivi — e + \/(li] + 0 Biwvi — Vk) + 4Lk

= . (4.14
ag 5L, (4.14)
Thus, we can re-write (4.12) as
Oy > F(Tr, (y)+ (L—a)rr, ()" (2r—yr)
L) S () + SR
Ve+1 P} PR Vk+1
Letting
Uk 0}
Tk — Yk + (0k = yk) + —= > Biwvi(vi —yi) =0, (4.15)
+1 Ve+1 i
results in the following recurrent relation for y;.
_ Ve 1%k + OV + OF Skl K (4.16)

Vi1 + o + 2 S0 By

Finally, to establish ®;  , > F'(x41), we can now simply let z;,1 = T, (yx)-
Our proposed method is summarized in Algorithm 3.

Comparing between our proposed method and FGM, we highlight based
on lines 6 and 7 in Algorithm 3, that the updates for o, and ~v; are now
computed differently from the ones for FGM. For our proposed method,
their values exhibit dependency on the heavy-ball type of momentum term
that is utilized in building the estimating sequences. The update for y;
is also computed differently. Furthermore, the value is not dependent
on fi;. Another significant difference is the update for x;, which is now
obtained through a proximal gradient step. The last difference can be
observed from the update of v, whose value now reflects our selected
subgradient. Further, comparing between our proposed method in this
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Algorithm 3 Proposed Method
1: Input zyp € R", Ly > 0, K> Y0 S [O,ﬂ}[U[Q,u}, 3Lg + /J}»],
ny > 1 and ng €]0, 1].
2: Set k£ =0,7=0and vy = zg.
3: while k£ < K2 do
4: ixi — nalLy
5:  while True do
#}JFZZC:_E 5i,k;‘/i*7k+\/(uf+2f:_1l ﬁz,k%*%>2+4iﬂk;
2L;

. R R ke N
& Figr < (1= &)k + s (M} + i ﬁzyk%)

6: Gy

< - 22 x~k—1 N
Fip1 %k H0aveve+&5 3077 BikYivi

8 Yi Fip1+aive+a2 SR B kA

9: Tip1 < prox.i, (@1 - ivf(@i))

L ((1 — &) YUk + G (N}@i + 3000 Birdi — Li (@i_i‘i-kl)))
11: if F(fi+1) < mﬁl(@“ .f;‘i+1) then

12: Break from loop

13: else

14: IA;H_l — 77u1ii

15: end if

16: 14— 1+1

17: end while

18 Lis1 ¢ Liy Tpg1 = iy iy 4 Gict, Yk Pimty Tet1 < Fi» Vb1 < i,
10,k k+1

19: end while

20: Output z;

Chapter and the one presented in Chapter 2, we highlight the differences
coming due to the usage of the proposed subgradient of the objective
function and due to the multistep structure of our proposed generalized
composite estimating sequences. Last, comparing between the method
proposed in this Chapter and the one presented in Chapter 3, we can see
that the biggest differences arise from the usage of the heavy-ball type of
momentum term. Observe that the recursive relations obtained for our
method presented in Algorithm 3 reduce to the ones obtained for FGM
when 7 = 0 and ¢ (x) = 0,Vk = 0,1, .... Further, observe that our method
presented in Algorithm 3 reduces to the method introduced in Chapter 2
when 7 = 0. Last, observe that our method presented in Algorithm 3
reduces to the one presented in Chapter 3 when ¢;(z) =0,k =0,1,.... In
this sense, the method presented in Algorithm 3 is a generalization of all
the aforementioned algorithms.
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4.2 Convergence Analysis

Based on Lemma 10, we can deduce that the convergence rate of the
minimization process is dependent on the sequences {\}x and {¢ }+. This
is clarified in the following Theorem.

Theorem 6. If we let \o = 1 and M\, = Hf;ol (1 — o), Algorithm 3 generates
a sequence of points {xy} such that

Flar) = Fa*) < M (F(eo) = Fla®) + Fllao = () = (1= Mwn(a).

4.17)
The rate of convergence for {);} is characterized in the sequel.
Lemma 13. For all k > 0, Algorithm 3 guarantees that
1. If’)/() € [O,M}[, then
2415 2
f
Ak < 5 < 5
k41 (“}"4—2?2_11 37’”’) k41 (“J‘+Z?=—11 B“k’”) (k1)
Lilez Vo o2V
(4.18)
2. If’)/() € [2,&},3[/0 +M}], then
4ps
Ak < ! 2
Bl (u}+2§:_11 ﬂq’,,k‘yi)
(o—nyz)fe? b
ALy (4.19)

= - pp)(k + 1)

Comparing to [15, Lemma 2.2.4], the results obtained in this Chapter
in Lemma 13 highlight the following benefits: i): The method presented
in Algorithm 3 converges also when the exact value of L 7 is not known.
i) The method presented in Algorithm 3 converges for a wider range of
~0. Such finding is important as it suggests that the initialization of our
method presented in Algorithm 3 is robust to the inexact knowledge of 7

To establish the accelerated convergence rate of our method presented
in Algorithm 3 it suffices to combine Lemma 13 and Theorem 3 with
Theorem 6 to come to the following finalizing theorems.

Theorem 7. Algorithm 3 generates a sequence of points such that
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1. If v0 € [0, pj|, then

13(Lo + o) l|wo — x*||?

F(xy) — F(z") < 5. (4.20)
@\/E ,m\/g
Lk e 2 Ly e 2 Ly
2. If v € [2/1}», 3Lg + ,ujz], then
203 (Lo+70)||wo —*| |2
F(zg)—F(z*) < pLot0)llwo ]| (4.21)

kil [ _ka i\ 2
o (V)
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5. Conclusion

In this Thesis we have presented several accelerated first-order estimat-
ing sequence methods that can be used for minimizing different classes
of convex functions. In Chapter 2, we have established the generalized
estimating sequences framework, and have shown that it enables the co-
existence of two different fundamental principles of accelerating first-order
methods, i.e., the heavy-ball momentum and Nesterov’s acceleration in
a single algorithm. We have proven that coupling the two acceleration
principles results in schemes that minimize regularized versions of the
objective function. For our proposed method, we have proven a faster
convergence than FGM, and have demonstrated through our publications
the achievability of our theoretical findings also in terms of computational
experiments. In Chapter 3 we have presented the class of composite
estimating sequences and have shown that they can be used to devise
efficient accelerated methods for minimizing convex function with com-
posite structure. Then, in Chapter 4, we have introduced the generalized
composite estimating sequences, which encompass all the previously intro-
duced classes of estimating sequences. These estimating sequences have
also been used to define an accelerated gradient-based method, which is
more efficient than the existing benchmarks. Based on the convergence
results presented in this Thesis, we have established that for non-strongly
convex problems our proposed methods retains the O(1/k?) convergence
rate. However, for arbitrarily small values of the strong convexity parame-
ter, our proposed methods exhibit an accelerated linear convergence rate.
Moreover, different from classical FGM-type of methods, the initialization
of our proposed methods can be made robust to the imperfect knowledge of
the strong convexity parameter. Moreover, for the methods presented in
Chapters 3 and 4, we have also introduced an efficient backtracking line
search strategy.

We now conclude this Thesis by introducing several open problems that
arise based on our newly introduced framework.

* Several open questions relate to the selection of the structure for the
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terms {¢;(x)}; and the choice of the coefficients f; ;. Obtaining more
efficient constructions for these terms can be used to devise more effi-
cient first-order methods. It would also be of interest to evaluate their
impact in designing methods that are optimal in decreasing the norm of
the gradient for the case of smooth objective functions. Devising such
methods is particularly riveting in the context of nonconvex optimization
[67, 77, 78], which aim to find stationary points of the objective function.

Finding alternative constructions for ¢ (x) would also be of interest,
both in the context of black-box optimization and beyond. A related
concept is introduced in [79], wherein the authors develop the notions
of relative smoothness and relative strong convexity. Considering twice
differentiable functions, the relative smoothness and strong convexity
parameters are influenced by the weighted difference of the Hessians of
the objective function with a differentiable and convex reference function
[79, Proposition 1.1]. In this Thesis, we used a similar approach in
establishing our estimating functions, with the main difference being
that our proposed construction for ¢, (z) is dynamically changing over
iterations. From the perspective of the framework introduced in [79], our
selection of the coefficients J3; ;, suggests that the relative strong convexity
parameter between f(x) and ¢ (z) is not unique. As a mater of fact, it
is contained in an interval which diminishes as the value of k increases,
and as k — oo, it is restrained in [0, 1]. Thus, it is desirable to assess the
co-existence aspects of these frameworks.

In practice, the performance of FGM-type methods can be improved by
restarting them. Several restarting conditions have been presented in
the literature [80, 81]. It is of interest to assess if similar conditions can
be devised for our proposed algorithm and measure the improvements
in their performance. In this Thesis, we purposely avoided making
use of heuristic approaches such as restarting for further improving the
efficiency of our proposed methods. Nevertheless, we believe that it would
be beneficial to devise restarting conditions applicable to our proposed
methods.

We also think that it would be relevant to extend our proposed frame-
works to broader optimization setups, such as nonconvex, stochastic
and distributed optimization. We have already discussed in the thesis
that several extensions of the estimating sequences framework used for
devising FGM have already been presented in the literature. Consid-
ering the gains observed for the foundational setups, we believe that it
would be of interest to extend our proposed estimating sequences to such
optimization setups.
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Abstract—We present a new type of heavy-ball momentum
term, which is used to construct a class of generalized estimating
sequences. These allow for accelerating the minimization process
by exploiting the information accumulated in the previous
iterates. Combining a newly introduced momentum term with
the estimating sequences framework, we devise, as an example,
a new black-box accelerated first-order method for solving
smooth unconstrained optimization problems. We prove that the
proposed method exhibits an improvement over the rate of the

celebrated fast gradient method by at least a factor of %, and

establish that lower bound on the number of iterations carried
through until convergence is O (,/%). Finally, the practical
performance benefits of the proposed method are demonstrated
by numerical experiments.

Index Terms—estimating sequences, black-box methods, com-
plexity analysis, optimization

I. INTRODUCTION

Large-scale optimization is the basic enabling tool in many
areas of information sciences, wherein a large amount of
data needs to be processed efficiently. To comply with the
complexity requirements, large-scale data processing methods
are typically limited by first-order algorithms, which consist
of sequential procedures that repeatedly query a black-box
oracle for information about the objective function [1], [2].
The oracle can be deterministic, i.e., providing the exact value
of the objective function and its gradient, or stochastic. In
information theory, the fundamental bounds on the oracle
complexity in the presence of deterministic and stochastic
oracles have been investigated [2]-[5]. The performance of
different first-order methods has also been analyzed in the case
of minimizing non-convex objectives [6]. In the context of
minimizing smooth and strongly convex objectives, Gradient
Descent (GD) converges at the suboptimal rate of O(x), where
k is the condition number [7]. The rate of GD has been
accelerated by the Fast Gradient Method (FGM) [8], which
is optimal in view of classic complexity theory for convex
optimization [2] and reaches the complexity of O (y/k).
FGM and its variants introduced in [7], [9]-[11] have been
successfully applied for solving a myriad of machine learning
and data analysis problems [12]-[14].

Understanding the intuition and machinery behind the
acceleration principle utilized in FGM is challenging, and
many of the recent works have focused on providing new
perspectives on it, as well as different reasons behind accel-
eration [15]-[19]. In [15], the authors have introduced a new
accelerated gradient method which is inspired by the ellipsoid
method. Using theory from robust control, the convergence
rates for FGM have been obtained in [16], [17]. In [18],
the continuous time-limit of FGM is modelled as a second-
order ordinary differential equation. Another framework for
the study and analysis of accelerated gradient methods, which
relies on the observation that the worst-case performance of a
first-order black-box optimization method is itself a semidef-
inite program, has appeared in [19]. Within this framework,
for the case of strongly-convex problems, optimal methods
with faster rates than FGM have been introduced in [20].
However, the complexity of the method proposed therein
can significantly exceed that of FGM for the case of ill-
conditioned problems (see [20, Table 2]).

The key behind constructing optimal methods is the accu-
mulation of global information of the function that is being
minimized [7]. In our framework of interest [21], this is
achieved by utilizing the estimating sequences, consisting of
the pair {¢x(z)}r and {Ag}r, which allow for constructing
upper bounds around the iterates, and simultaneously measure
the convergence rate of the iterates. In the existing estimating
sequence methods, the advancement of the iterates at step
k + 1 is done by utilizing only the information available
at step k. From the existing results on other principles of
acceleration, such as the heavy-ball method [22], it has been
shown that accounting for the information contained in the
previous iterates improves the performance.

In this work, we show that the original construction of the
estimating functions can be generalized by incorporating extra
terms that depend on the previous iterates. Within the black-
box setting, we introduce a new type of heavy-ball momentum,
which is captured by the terms of a new sequence {t,}y.
Using the newly introduced heavy-ball type of momentum
term within the estimating sequences framework, we construct
a new method and show that FGM can be obtained as the
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special case when the memory terms are not considered. We
prove that our proposed method is optimal, and show that
it outperforms FGM by at least a factor of —=. Moreover,
we show that the initialization of our proposed method is
robust to the imperfect knowledge of j, which is of a high
importance in practice, since accurate estimation of p is
typically computationally expensive.

II. PROPOSED METHOD

In this work, we focus on the problem of minimizing the
smooth and strongly convex objective function, that is,

minimize f(x), (1)
TER™

where f : R™ — R is a p-strongly convex function with
L-Lipschitz continuous gradient defined by a deterministic
black-box oracle.

Let us begin by assuming that there exists a procedure that
produces points € R™ and let Z = conv(zg, 1, T2, ..., z*)
be a closed convex set which is comprised of the convex
hull of the finite number of iterates that are formed during
the minimization process. Next, we define the generalized
estimating sequences as follows.

Definition 1. The sequences {®y}x, and {\g}r, A\ > 0, are
called generalized estimating sequences of the function f(-),
if Wy : T — QCRT, \y =0, and Yz € I, Vk we have

Pp(z) < Me®o(x) + (1= A) (f(2) — ¥r(2)). ()

Thus, the inclusion of ¥ (z) in the definition of the estimat-
ing sequences allows for embedding additional information
that can aid in improving the convergence properties of the
methods. As discussed earlier, one of the major benefits
of the estimating sequences, is the fact that they allow for
estimating the convergence rate of the minimization process.
The following Lemma yields a precise characterization.

Lemma 1. If for some sequence of points {x}r we
have f(z) < ®F 2 mi%‘bk(a:), then  f(xx)

x

F(e*) < M @o(a*) = Fa)] = (T = M) (), where 2° =
arg min f(z).

All the proofs of the lemmas and theorems in this short
paper can be found in our full paper [24].

Prior to presenting the structure of the estimating sequences
that are utilized for constructing our proposed method, let us
define the following upper bound on the terms in the sequence

{¥r(@) }x

sup Y (), if k>0,
me{1,2,...k},x€T 3)

0, otherwise.

Uy =

In words, Wy, is the supremum of the infinite sequence of finite
values of ¥, (x). An explicit construction for 1, (x) will be
presented later in the paper. At this point, we can introduce
our proposed construction for the generalized estimating se-
quences.

Lemma 2. Assume that there exist sequences {ay }r, where
ay € (0,1) and Y72, a = 0o, and {yy}r, where yr € R™,
and a sequence of functions {y }r, such that Vi (z) > 0, Vk.
Let o(x) = 0 and Ao = 1. Then, the sequences {®y}r and
{Ak}k, which are defined recursively as

A1 = (I — ar) i, 4)
Ppp(z) = (1—ap) @k () + 91 (7)) = i) — Vit o ()
au (flun) + VIO @ = ) + Sllz = wil?)

(&)
are generalized estimating sequences. Here, ()T denotes the
transposition operator and ||-|| stands for the Euclidean norm

of a vector.

We note that the structure for the terms in the sequence
{®x(z)}r has not been introduced yet. From Lemma I,
we can see that their importance lies in the fact that they
allow for constructing upper bounds on f(zy). As discussed
in [7], accelerated methods must make use of some global
topological properties of the objective function. This intuition
is also asserted by the performance of second-order methods.
For instance, in the case of Newton’s method, by utilizing
the information in the Hessian it is possible to construct
ellipsoids around each iterate [23, Fig. 9.19]. These ellipsoids
then aid in correcting the search direction. In the case of
first-order methods, wherein the Hessian information is not
available, we can consider constructing balls in the locality
around each iterate xy, without “discriminating” any search
direction. This can be achieved by utilizing a sequence of
isotropic scanning functions with scanning radius ~;, whose
Hessian is V2@, (z) = 1. The canonical structure of such
scanning functions can be written as

Ok(@) = ¢ + 5 Il = el W, ©)

where QSZ is the minimal value, v, € R* is the radius and
v € R™ is the center of the scanning function. We note
that this is also the canonical form of scanning function,
which has been utilized in constructing FGM [7]. We have
already discussed that the goal of the paper is to devise a new
class of algorithms, which can benefit from both Nesterov’s
acceleration and the heavy-ball momentum. To achieve this
goal, we introduce the following structure for the scanning
function

(@) = ¢ + olle - vl = due), VR, D)
where the heavy-ball type of momentum term ¢ () is
k—1 i
Ui () é;&,kgﬂrwu?, v, ®

and

Bik = {mi“ (L325),  ifi=k-1, o

0, otherwise.
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Indeed, since in the black-box setting there is no prior infor-
mation about the function that can be exploited to improve
the convergence of the method, we construct the terms in our
proposed scanning functions such that they can “self-regulate”
by accounting for the information that has been obtained in the
previous iterations. Lastly, we note that the terms £3; ;, ensure
that only the estimating function constructed at step k£ — 1
is accounted, which asserts that the values in the summation
given in (8) remain finite.

Let us now formally express that the estimating sequences
presented in Lemma 2 preserve the quadratic structure of our
scanning functions ®(z), and show how the terms ¢}, and
vg can be calculated. This is depicted in the sequel.

Lemma 3. Assume that the coefficients ;) are selected
according to (9), and let ®o(x) = ¢§+ 2 ||x—wo||®. Then, the
process defined in Lemma 2 preserves the quadratic canonical
structure of the scanning function introduced in (7). Moreover,
the sequences {Vi}r, {vi}r and {¢}}r can be computed as
given by (10), (11) and (12) shown at the top of the next page.

In the sequel, we will select the sequences {xy }r, {yk}i
and {v;}r such that f(zy) < @}, Vk. Let us assume that
for some step k, we have ¢} > f(xy). Then, at step k + 1,
relaxing (12), as well as making some manipulations, we can
write!

(13)
k) "V (yr)

(1= 0k) V. () "(x — )
(g2 P00
Vk+1

2 k—
+ (1 — Ozk e/ Zﬂ1 k'Yi i yk)va(yk)
=0

1> flyr)+

To satisfy the necessary conditions for Lemma 1, we need to
ensure that ¢}, > f(xx11). For this reason, let us relax the
lower bound even further by utilizing the relation

fyw) — va yllP > f(@ren), (14
which can be guaranteed by a gradient descent step on yy [7,

Theorem 2.1.5]. Thus, we obtain «, as

ap = F% (15)
Utilizing the recursion (10), we have
(”’ + Zfz_ll Bikvi — ’Yk,) 6
= 2L (16
k—1 2
(ﬂ + 22 Bikyi — 'Yk) + 4Ly
+ .

2L

'For more detailed derivations see [24].

Algorithm 1: Proposed Method

1: Choose zg € R™, set vop = 0 and vy = xg.
while stopping criterion is not met do

2: Compute o, € [0, 1] as

o — — 2
(w2 B+ (S B vi—e) 4L

k= 2L

k—
3: Set i1 = (1 — ag)ve + o (# S B:,k%) .
4: Choose yj, = Yerrzrronykvrted SETG B kvive )

Vo1 torvetal S B ki
. . — 9 1
5:Set g1 =y — £ VI (yk)

5: Set vpq1 = ﬁ ((1 — Qk)VKVK

b (= L9 ) + T P ),

end while

Choosing aj, as given in (16), we can rewrite (13) as

Gry1 > f(wher) + (1= ar) V()" (26 — yr) a7

ary 2 k—1
k' Tk
(Uk - yk Zﬁ1 k’% i ")) .

Ve+1

Finally, we can obtain the update for {yy}x by letting

2k1

ZIBZ k’YL () ) 0

Tkp— yk+ (Uk —yk)+
Vi+1

This results in
g = 1T + apyevr + o S0 Bikvivi (18)
i Thrt + v + ol S8 By
Our findings are summarized in Algorithm 1.

Comparing Algorithm 1 with [7, (2.2.19)], we can see that
the computation of the terms ay, and -y, reflects the different
types of estimating sequences that were used in constructing
the methods. This is also reflected in the computation of the
points yi, Vk. Another important difference is the initialization
of the parameter 7. In the case of FGM, the scheme is
guaranteed to converge for vy € [u,3L + p]. On the other
hand, as we will show in Section III, our proposed method is
guaranteed to converge even when ~y = 0. This ensures the
robustness of the initialization of our proposed method with
respect to the imperfect knowledge of the strong convexity
parameter ., whose exact value is difficult to be estimated
efficiently in practice. Moreover, in our proposed method,
the extra terms contributed from the generalized estimating
sequences come up as coefficients of az. Such additional
terms are also observed in the computation of vjy. Lastly,
we note that FGM is obtained by setting the terms 3; ;, = 0,
Vi, k. Such a result is coherent with the fact that the estimating
sequences utilized in constructing FGM are the special case
of the generalized estimating sequences that we used in con-
structing our proposed method, which arises when ¥, (z) = 0,
VEk.

III. BOUNDS ON CONVERGENCE RATE

In this section we introduce the main convergence results
of our proposed method. Let us begin by showing that the
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k=1
Y41 = (1 — o) yi + a <M + Zﬁm%‘) ;

i=0

k-1
1 1
Vg1 = —— ((1 — Q) VRUR + po, (yk - ;Vf(yk) + §
=0

Vk+1

/31:,19%'

apyk(1 — ag)(p + Zf;l Bi ki)

10)

an

)

Bryr = arf(yr) + (1 — ag)oy, + 5
Vie+1

AN D)
2%k+1

Vk+1

= Buwvi 2 (1—ax) o} &
+ak5 —||yx — v +7E Bikvi(v
2 Hy lH et — i ’YL(

i=0

k—1
Vi *
i — )TV (k) + Zﬁi,k;\l%k —uil[*.

3 k-1
o

llye = vll® + —= > Biwilloi =yl V£ ()l
s

k—1

2 ap(l—ap)y, LT
I L0 (T )+ Bl —vllls — el ) +(1 = 000 2 e, —ul

i=0

(12)
i=0

convergence rate of the minimization process will depend on
both the sequences {\;}x and {4k }.

Theorem 1. If we let Ao = 1 and N, = [[2) (1 — ),
Algorithm 1 generates a sequence of points {xy }i, such that

F@w) = £ < [F(wo) = fla™) + Bllao 2] (19)
= (1= Ae)or ().

From Lemma 2, we can see that the terms in the sequence
{Ak }x will converge to 0 as k — co. The bound on the rate at
which the terms in the sequence {\;}) decrease is presented
in the following Lemma.

Lemma 4. For all k > 0, Algorithm 1 guarantees that

2
A < K 5
( kt1 ;L+Ef;11 Bi ki k+1 H+Ef;11 Bik7i
L eT\/f_e*T\/f)
(20)
2
< il @1

a (# + 25:11 51,1«%‘) (k + 1)2.

The optimality of Algorithm 1 is established next.

Theorem 2. In Algorithm 1, let ;> 0. Then, the scheme
generates a sequence of points such that:

(22)

k-1,
pAYi—1 Bikvi
L

— (1= Ap)r (™).

where fr = f(xy) and f* = f(x*). This means that the
method is optimal when the accuracy € < ||xg — x*||%

For the problem of minimizing smooth and strongly convex
objective functions, FGM reaches the following bound on the
number of iterations [7, (2.2.17)]

L R?
krpaam > \/: <ln (%) +ln(23/3)> . (23)

On the other hand, when the coefficients [3; ; are selected as
given in (9), the lower bound on the number of iterations for
our proposed method becomes

L uR2
p+min (yx—1, 1) (m <?> " ln(5)> '
24

From (24), we can see that the lower bound of the number
of iterations is influenced by the increase of the values of the
terms in the sequence {vx}x. As we thoroughly establish in
our full paper [24], and illustrate numerically in Section IV,
the growth of the terms in the sequence {7} is exponential
in the iteration counter k, and it converges to 2u. Therefore,
(24) converges to

L uR?
kP’roposed — ﬂ <11’1 <TEO> + ]n(5)> .

Comparing the convergence rate given in (22), and the lower
bound on the number of iterations that need to be carried
through until convergence for our proposed method, to the re-
sults presented for FGM in (23), we can see the improvement
by at least a factor of 1/ V2.

kProposed >

(25)

IV. SIMULATION RESULTS

In this section, we consider the classical task in data
analysis of minimizing a regularized quadratic loss function
1 & T 2, T 2
%Z(ai T—y) + §HCCH )

i=1

minimize

TER™ (26)

where a; € R" is a vector containing the data points, x € R"
is a vector consisting of the parameters that need to be
estimated, y; € R corresponds to the labels and 7 > 0 is a
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regularization parameter. We benchmark against two instances
of FGM Constant Step Scheme I (CSS1), which is obtained
when v9 = L and is referred to as FGM CSS1, as well as
Yo = w, which also corresponds to FGM CSS3 [7, Chapter
2.2]. For our proposed method, we consider the case 3y = 1
and 3;; = 0,Vi = 1,...k, which is referred to as Proposed,,.
We note that when 7y = 0, this algorithm corresponds
to FGM. However, the original analysis of FGM does not
guarantee convergence of the method with this selection of
7Yo- Such a fact is important as it ensures the robustness of
the initialization of our proposed method with respect to the
imperfect knowledge of p. We also consider the instance
obtained when the terms f3; , are selected according to (9),
which is referred to as Proposed, ;. Lastly, the starting point
xo is randomly selected and all algorithms are initiated in it.

To control the condition number of the data matrix A,
we generate a symmetric positive definite diagonal matrix
A € R™™_ whose elements a;; are drawn from the discrete
set {10°,107,1072,...107¢} uniformly at random. This
ensures k = 10%. Moreover, this results in L = 1 and
pu = 107¢. We obtain the elements of the labels vector
y € R™ by sampling them uniformly at random from the box
[0, 1]™. Lastly, to simulate a large and ill-conditioned problem,
we set m = 1000, ¢ € {3,4} and 7 € {1073,107*}. Our
results are reported in Fig. 1.

From Fig. 1, we can distinguish the efficiency of our
proposed method. First, observe that all instances of the
proposed method require a lower number of iterations to
decrease the norm of the gradient. Second, we can see that the
memoryless version of the proposed method, behaves similar
to the considered instances of FGM, however, it exhibits
a faster convergence. These results confirm the theoretical
findings presented in Section III. Let us now focus on the
variant of the proposed method that utilizes the information
accumulated at step k—1. From Figs. 1(a) and 1(b), we can see
that the proposed method with memory term ~y;_; converges
approximately 30% faster than FGM CSS3, which is the
fastest instance of FGM. This result is again coherent with
the theoretical asymptotic bound obtained in (25), that also
suggests an approximate improvement of 30% over FGM. An
important observation can be made from Figs. 1(c) and 1(d),
which depict the exponential convergence of the term y;_1 as
the iteration counter k grows large. As we already discussed
in Section III, this ensures that the convergence to the bound
presented in (25) is fast. Lastly, we note that the number
of iterations that need to be carried through until conver-
gence, increases significantly with the condition number of the
problem. For instance, in the case when x = 103, Fig. 1(a)
depicts that the performance difference between algorithms
tested is of the order of hundreds of iterations. Then, as
the condition number of the objective function increases to
k = 10%, Fig. 1(b) illustrates even larger differences between
algorithms, as measured by the number of iterations that need
to be carried through until convergence.

10° 10°
[——FGM CSS1
[—FGM CSS3
| Proposed,

|——Proposed

——FGM CSS1
—FGM Css3
——Proposed;

|—Proposed, ;

10°

1

10°

11V f0ll

11V £

1010 1010

1018 1078
0 200 400 600 80O 0

k

(a) Decreasing the norm of the
gradient, k = 103.

500 1000 1500 2000 2500
k

(b) Decreasing the norm of the
gradient, k = 104,

10° 10°
‘ FGMCSS1 FGMCSS1
——FGM CSS3 ‘ ——FGM CSS3
——Proposed, 5 ——Proposed,
2 Proposed, | 10 Proposed, |
& S0t/
104! |
‘ 10|
10° 10°
0 200 400 600 800 1000 0 1000 2000 3000
k k
(c) Convergence of {yx}72 ., (d) Convergence of {vr}72, £ =
K =103 10%.

Fig. 1. Comparison between various features of interest of the algorithms. The
goal is to minimize the quadratic loss function, for which A € R1000%1000
and its entries are randomly generated.

V. CONCLUSION AND FUTURE WORK

A new form of heavy-ball momentum term has been
introduced and it has been shown that it can be used to
construct a newly introduced class of generalized estimating
sequences. This has paved path to constructing a new class of
optimal gradient methods. At their core, our proposed method
benefits from the co-existence of two fundamentally different
acceleration principles, i.e., the heavy-ball momentum and
Nesterov’s acceleration. We have shown that FGM can be
obtained as the special case of our proposed method when the
momentum term is not utilized. Moreover, we have managed
to prove that the convergence rate, as well as the lower bound
on the number of iterations, of the proposed method are
better than FGM by at least a factor of 1//2. The practical
superiority of all instances of the proposed method over FGM
has been established throughout the simulations.

As future work, it would be of interest to characterize
the amount of information that is captured at each iteration
by the terms in the sequence {vy(xz)}r. We believe that
this would pave path to finding the optimal selection of the
coefficients [3; 5, which can enable further improvements of
the efficiency of the proposed method. It would also be of
interest to explore the possibility of finding new constructions
for {45 (x)}r, which can exploit both black and white box
information about the function that is being minimized, and
use it to further accelerate the minimization process. Last,
it is also of interest to consider extensions of the results
presented herein to account for stochastic oracles, as well as
investigate extensions to other optimization setups such as the
design of new methods for solving nonsmooth and potentially
nonconvex problems.
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Abstract

We present a new accelerated gradient-based method for solving smooth uncon-
strained optimization problems. The new method exploits additional informa-
tion about the objective function and is built by embedding a heavy-ball type
of momentum into the Fast Gradient Method (FGM). For doing so, we devise a
generalization of the estimating sequences, which allows for encoding any form
of information about the objective function that can aid in further accelerating
the minimization process. In the black box framework, we propose a construc-
tion for the generalized estimating sequences, which is obtained by exploiting
the history of the previously constructed estimating functions. Moreover, we
prove that the proposed method requires at most \/g (ln% + (9(1)) iterations
to find a point z with f(z) — f* < ¢, where € is the desired tolerance and « is
the condition number of the problem. Our theoretical results are further cor-
roborated by numerical experiments on various types of optimization problems,
often dealt with in various areas of the information processing sciences. Both
synthetic and real-world datasets are utilized to demonstrate the efficiency of
our proposed method in terms of decreasing the distance to the optimal solution,
the norm of the gradient and the function value.
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1. Introduction

Making the best possible inferences on large datasets, while optimizing for
the computational budget is among the major goals of machine learning and
other modern information processing sciences [1-3]. Among the existing tech-
niques for large-scale data processing, first-order methods designed within the
black-box framework have gained a lot of popularity as they have been shown
to fulfil the computational complexity requirements, while also ensuring con-
vergence to a neighborhood of the optimal solution [4]. These methods are
comprised of recursive procedures that query a black-box oracle to obtain rele-
vant information about the objective function [5]. The oracle being queried can
have a deterministic nature (in the sense that it provides the exact value of the
function of interest), or a stochastic nature.

In this work, we draw attention to the new generalized estimating sequences
and convergence analysis for accelerated first-order methods in their purity.
Therefore, we focus on constructing a first-order method for solving the problem
of minimizing smooth and strongly convex objectives.! Within this class of
methods, one of the most important breakthroughs is the family of Fast (or
Accelerated) Gradient Methods (FGM) presented in [6] for solving problems
with non-strongly convex objective functions, and in [7, Constant Step Scheme I]
for solving problems with strongly convex objective functions. For minimizing
smooth and strongly convex objective functions, under the assumption of known
strong convexity parameter p and Lipschitz constant L, the method requires at
most v/ (In2 + O(1)) iterations to find a point  with f(z) — f* < ¢, where
K = % In view of classic complexity theory for convex optimization [5], the
method is optimal in the sense that it minimizes the number of calls of a first-
order oracle required to reach a desired tolerance e. We note that the bound

obtained for FGM is proportional to the complexity bounds established in [5].

1The results obtained in this paper can be extended as well to solve composite objective

problems with a non-smooth term, which is an issue that will be addressed in a later work.
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In this work, we will show how to further improve the proportionality constant
for FGM-type methods designed within the estimating sequences framework.
Interest in FGM surged with the paper on smoothing techniques [8]. Therein,
a smooth approximation of a non-smooth objective function is constructed, and
then the variant of FGM designed for solving non-strongly convex problems is
used to efficiently find the optimal solution. Following up on the work, several
extensions were proposed. More recently, motivated by the need to construct
even faster algorithms to solve large-scale problems with smooth objective func-
tions, new perspectives on FGM and different reasons behind acceleration have
been discussed, leading to new algorithms that achieve the optimal rate [9-12].
In [9], the continuous-time limits of FGM are modeled as a second-order ordi-
nary differential equations. Another perspective of the FGM appears in [10],
where it is shown that both the strongly and non-strongly convex variants of
FGM can be obtained by exploiting the linear coupling between gradient and
mirror descent. In [11], the authors have developed an alternative accelerated
gradient method, which is inspired by the ellipsoid method. In [12] the authors
have introduced the Triple Momentum Method (TMM). The method is defined
only for p > 0, and for smooth and strongly convex functions it enjoys a faster
convergence rate than FGM. However, as demonstrated in [12, Table 2], the
constant terms present in the bound on the number of iterations needed until
convergence for TMM depend on the condition number of the problem. In case
of ill-conditioned problems, it exceeds the bound of FGM, thus, requiring more
iterations to converge [13, Figure 1]. Another optimal first-order method for
minimizing smooth and strongly convex functions has been developed in [13].
The method proposed therein achieves the bound presented in [5] with equality,
however its generalizability properties to problems that are relevant in practical
applications are limited. For instance, it is not clear how to extend the method
and the framework proposed therein to broader setups, which also arise more
often in practice, such as solving problems with constrains, composite objec-
tive structure, etc. Moreover, its robustness (and sensitivity) to the imperfect

knowledge of L and u needs to be more thoroughly evaluated. Last, note that it
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is not clear how to extend the framework to design efficient stochastic methods,
distributed methods or higher order methods.

On the other hand, the estimating sequences framework, and methods built
using it, have been thoroughly researched for several decades. For instance, by
following the steps described in [7, Chapters 2.2.4 - 2.2.5] estimating sequence
methods (which also include the method that we will propose in the sequel) can
be extended to solve constrained problems. Similarly, using the gradient map-
ping framework presented recently in [26], the proposed generalized estimating
sequences framework that we will present in Section 3 can be extended to the
setup of composite objectives with non-smooth terms. Furthermore, following
the analysis presented in [23] it is also possible to use a backtracking line-search
strategy for estimating the value of the Lipschitz constant. An efficient strat-
egy for estimating the value of the strong convexity parameter is also presented
therein. Moreover, in Section 5, we will also demonstrate the robustness of our
proposed method with respect to the imperfect knowledge of the strong con-
vexity parameter. Last, we note that the acceleration of first-order methods
which is obtained by utilizing the estimating sequences framework [7], has also
been extended to other optimization settings, such as stochastic optimization
[15, 16], non-Euclidean optimization [17, 18], higher-order methods [19, 20] and
non-convex optimization [21, 22].

An optimization method is considered optimal if it enjoys the following prop-
erties: ¢) it exhibits the accelerated convergence rate; i) it reaches a complexity
that is proportional to the lower complexity bounds. For the case of first-order
methods, the complexity bounds have been introduced in [5]. Several frame-
works for constructing such methods have already been presented in the liter-
ature [6, 8, 7]. In [7], it is argued that the key behind constructing optimal
methods is the accumulation of global information of the function that is being
minimized. For this purpose, the estimating sequences are introduced. They
consist of the pair {¢r(z)}r, {\c}r and allow for parsing information around
carefully selected points at each iteration, while also measuring the rate of con-

vergence of the iterates. In the case of first-order methods, this intuition is



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

provably correct; however, the construction of the estimating sequences is not
unique, and finding a better construction, in the sense that it leads to more effi-
cient methods in practice, is an open question. A simple, self-contained and uni-
fied framework for the study of methods devised within the estimating sequence
framework has been introduced in [19]. Therein, the author shows how several
accelerated schemes can be obtained, and provide some guidelines on the design
of estimating sequence methods. Evidently, picking the right functions to con-
struct the estimating sequences, can lead to practically much faster algorithms.
For example, the variant of FGM constructed in [7, Constant Step Scheme I]
and its extension to convex composite objectives, i.e., the Accelerated Multistep
Gradient Scheme (AMGS) [23] have been constructed using different variants of
estimating sequences and are both optimal methods. The link between the two
estimating sequences, as well as its implications, have been investigated in [24]
and [25], and a new class of composite objective multi-step estimating sequence
techniques has been designed in [26].

Despite being based on different variants of estimating sequences, both the
strongly convex variant of FGM? and AMGS share the fact that the update of
iterates at step k41 is done by utilizing the information available at step k. From
the theory of the heavy-ball method [27], it is known that parsing information
from iterates at step k — 1 can accelerate the minimization process. Naturally,
the following question arises: “Is it possible to explicitly embed information from
earlier iterates into the family of FGM?”. We answer this question affirmatively,
and propose a way to generalize the design of estimating sequences by including
a newly introduced heavy-ball type of momentum term in them.? We show that
embedding our proposed type of heavy-ball momentum term into Nesterov’s

acceleration framework leads to a more powerful class of algorithms. Our main

2For brevity, from this point onwards, by FGM we will refer to [7, Constant Step Scheme TJ.
30ur framework, however, can be thought as a general way of encoding any form of in-

formation about the objective function that can aid in further accelerating the minimization

process.
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contributions here are the following.

We show that the original construction of the estimating functions can be
generalized by incorporating extra terms that depend on previous iterates.
To establish the properties of our newly introduced generalized estimating
sequences, we revise the key lemmas and results for the classical estimating
sequences. Moreover, we utilize novel tools to introduce new results, as
well as a more thorough analysis of estimating sequence methods.

We present a new type of heavy-ball momentum, which is captured by
the newly introduced sequence of quadratic functions. Unlike the classical
method introduced in [27], wherein the heavy-ball momentum is utilized
to stabilize the oscillations of the iterates, our proposed type of heavy-ball

momentum is utilized for stabilizing the estimating sequences.
We develop a new method and show that (in the black-box framework) it

allows for embedding a heavy-ball type of momentum into FGM. More-
over, we show that FGM can be obtained as a special case when the
heavy-ball type of momentum is not considered.

We show that the original convergence results obtained for FGM can be
improved. We prove that our proposed method is also an optimal method,
and show analytically that its lower bound on the number of iterations
becomes @(111(”51’(2’) +1n(5)>7 where Ry = ||z — 2*||, || - || denotes

the [y norm of a vector, and the tolerance ¢ < %R%. In other words, our

proposed method outperforms FGM by at least a factor of %

Our proposed convergence analysis allows for initializing the parameter
Yo € [0, u[U[21, 3L+ p]. As shown in Section 5, this yields an improvement
over FGM. Moreover, note that this result is an extension of the existing
analysis for FGM, the convergence of which was proved only when v €
[, 3L + p]. At the same time, such an extension of the analysis allows for
initializing «y = 0, which makes the initialization of the proposed method
more robust to the imperfect knowledge of p.

We show through extensive simulations the efficiency of our method in

solving problems using both synthetic and real-world datasets.
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2. Preliminaries

Some of the most popular methods used for solving convex problems are
relaxation methods [7], wherein the Gradient Method (GM) is the most widely
used algorithm. GM produces a sequence of points {zx}r, & = 1,2,... that
converges to z* at a linear rate [28]. As discussed in [7], the greedy approach of
solving a convex optimization problem is not optimal. Relaxation itself is too
microscopic to enable optimal convergence. Instead, it is suggested that optimal
methods must make use of global topological properties of the objective function.
This intuition is also confirmed by the performance of second-order methods.

As can be seen from [28, Fig. 9.19], Newton’s method is constructing ellip-
soids around each iterate, which aid in correcting the search direction. Therein,
the ellipsoids are obtained by exploiting the information contained in the Hes-
sian of the objective function. In the case of first-order methods, such infor-
mation about the Hessian is not available. Therefore, instead of construct-
ing ellipsoids, one can consider constructing balls in the locality of the iterate,
which allow for accounting for any feasible direction. This suggests utilizing an
isotropic scanning function, which at step £ = 0 would be: &3 : R" — R. All

that is known about this function is that
V20 (x) = yol, (1)

where g is the radius of the ball and I is the identity matrix of size n X n.

Then, integrating (1) twice over z, the following construction is obtained:
« 0
o(w) = ®F + - [le — wol %, (2)

where @ is the integration constant that characterizes the value of the function
Do (x) when z = xy. As we will see in the sequel, recursively constructing such
simple scanning functions as (2), for which we coin the term scanning func-
tions, is an integral component in the construction of the estimating sequences.
Accordingly, the radius 7y is referred to as the scanning radius.

Next, we can exploit the information coming from the fact that the objective
function is L-smooth and p-strongly convex. Let Z C R™ and z,y € Z. Then,

from [7, Theorem 2.1.5] we have
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0< f(2) ~ Fy) ~ VIG) (w —9) < o lly —all Q

Considering the definition of strongly convex function [7, Definition 2.1.3] yields
I
f@) = fy) + VW (@ =)+ Glly - =] (4)

The above bounds suggest the need of utilizing gradient and function evaluation
oracles. In the sequel, we assume that the computational cost of computing the

gradient is comparable to the cost of computing the function values.
3. The Proposed Method
We focus on finding the optimal solution for problems of the form

minimize f(x), (5)

where f: R™ — R is a p-strongly convex function with L-Lipschitz continuous
gradient defined by a black-box oracle.*

Let us begin by defining the generalized estimating sequences as follows.
Definition 1. The sequences {®p(x)}r and {\i}k, A > 0, are called gener-

alized estimating sequences of the function f(), if there exists a sequence of
bounded functions {¢pp}tr : Z CR" - QC R, Ay =0 ask — oo, andVz € T,
Vk =0,1,... we have

Pp(z) < MePo(x) + (1 = Ar) (f (@) = ¢(2)) - (6)

Unlike the classical definition of the estimating sequences utilized for con-
structing FGM [7, Definition 2.2.1], the introduction of 1 (z) allows for encod-
ing any form of information about the objective function that will be useful in
improving the speed at which x; — z*. One can also think of it as a control se-
quence that, at each iteration, modifies the function that is to be optimized. This
modification can be done in several ways, e.g., in white-box implementations
¥ (z) can be some prior information about the structure of f(z), that would
make the resulting function f(x) — ¥y (x) easier to optimize. In the black-box
framework, which is central to our paper, such prior information is not avail-

able. Nevertheless, as we will show later, other choices are also possible. For

4However, the principles developed in this work are generalizable to other frameworks,

while here we aim to present these principles in their purity.
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now, we note that by setting ¢, (z) = 0, Vk, we recover the estimating sequence
structure used for FGM. In this sense, Definition 1 is a generalization of the
classical estimating sequences.

Now, we show that the generalized estimating sequences also allow for mea-

suring the convergence rate to optimality.

Lemma 1. If for some sequence of points {xy}r we have f(zy) < @ £
min ®p(x), then f(wr) = f(27) < A [Po(2™) = f(27)] = (1 = Ae) Y (27).-
Proof. Please see Appendix A in the Supplementary Material. O

We can now show how to construct the generalized estimating sequences.

Lemma 2. Assume that there exist sequences {ay}y, where ay € (0,1), Vk,

Soreook = 00, {yrtr and {¢r(x)}r such that Yp(z) > 0, Vk. Let Uy be an

upper bound of {¢Y(x)}r. Moreover, let o(xz) = 0 and \g = 1. Then, the
sequences { @ (x)}r and {\g}i, which are defined recursively as

Akg1 = (1 — o)A, (7)

Ppr1 (@) = (1 — an) (Pi(x) + Vi (2)) — Ypgr (@) — Ui + art(z)  (8)

+ o (Fl) + VI @) (@ = ) + Slle = el )

are generalized estimating sequences.
Proof. Please see Appendix B in the Supplementary Material. O

Different from the earlier results summarized in [7], Lemma 1 has the follow-
ing benefits. First, since A\y > 0, Vk, it clarifies why the construction of the
regularizing term should be such that 15 (z) > 0, Vk. Second, it shows that
the convergence rate to optimality now depends on both the sequence {Ag}x
and the sequence {9y (z)}g. Furthermore, the result of Lemma 2 suggests the
sufficient rules for updating the generalized estimating sequences.

Note that the canonical structures for the terms in the sequences {®(x)}x
and {¢y(z)}r have not been introduced yet, and Lemmas 1 and 2 hold for any
construction of the generalized estimating sequences. Such results stress on
the generality of our newly proposed estimating sequences. Let us present the

constructions that will be used throughout the paper.
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First, we define ®5(z) £ ¢y (z) — ¥r(z), where ¢y (z) £ ¢ + Lf|z — vy ?
with v, € Z. Such structure for ¢ (z) is utilized as a general construction for a
quadratic function. We have already discussed that the function ¢y (x) can be
selected in many ways. Since our goal here is to construct a generalized version
of FGM which operates in a black-box setup, the simplest and quite generic
approach to designing () is to let the terms in the sequence {®y(x)}y “self-
regulate”. Indeed, as the algorithm iterates towards optimality, several scanning
functions are constructed. This also allows for defining 1 (z) as a momentum
term (or a “heavy ball”) that is not directly applied to the iterates, but to the
scanning function whenever its value at iteration £ — 1 does not exceed a finite
(but allowed to be very large) threshold value. As we will see later, this enables

a better control of the parameters of ®4(x). Thus, let us first define ¥ (x) as

k—1
Unla) 2 Y B lla—uil” vk, (9)
i=1

where 8, € [0,1],¥i = 1,...,k — 1 are weights assigned to each of the previ-
ously constructed scanning functions. Note that we allow the coefficients f; j
to change dynamically across the iterations. It is worth stressing that when
designing numerical methods for solving (5), the goal is to produce a sequence
of points which converges to a neighborhood of the optimal solution z*. In
practice, this is achieved by running the numerical procedure for a sufficiently
large, but finite number of iterations k = 1,2, ... kmax, wherein zy,  is a solu-
tion of our problem of interest with the required accuracy.® Thus, we construct
a convergent method to operate in some bounded convex set Z C R™. For ex-

ample, Z can be Z = conv(xg, z1, T2, ...,Tk x*), i.e., the convex hull of all

the iterates that are formed during the minimization process. Thus, ¥y (z) does
not take infinite value in any possible Z as given above. Indeed, 1 () is finite
since x € I C R™, which is always the case in practice.

We note that the model defined in (9) is similar to the heavy-ball momentum

in the sense that it also encompasses the information contained in the history of

5This will be made more precise later in Theorem 2.
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the minimization process [29, Section 3.2]. Moreover, as we will see in the end of
this section, wherein we will present the updates of our proposed algorithm, the
additional terms that arise from introducing the sequence {ty}, get added to
the updates of the terms in the sequences {vi }r, {ax b, {yr i, {vk }x. Different
from the momentum term in the heavy-ball method, which accounts for the
history of the iterates, the term )y (x) accounts for the history of the scanning
functions that were created during the minimization process. Thus, to highlight
the fact that our method is also designed in the spirit of “accounting for the
history of the process to improve convergence”, we refer to it as a heavy-ball
type of momentum. From this perspective, the canonical structure of the new

scanning function for all values of k becomes

k—1
<I>k<x>wm%nx—vknz—;ﬁi,%||x—w||2. (10)

Note that we will rigorously establish later that the canonical structure for
() presented in (10) is preserved by the recursive definition introduced in
(8). For now, let us observe that at iteration & = 0, (10) is the same as the
construction used for FGM. For k£ > 0, the memory term begins to affect all
the coefficients. From this perspective, a natural question to ask is: “How large

|z — v;||* become?” To answer this question, we note

can the term Zi.:ll Bik
that the simplest way to guarantee that the necessary condition for Lemma 1
holds, is to restrict @ (z) to be convex Vk. Therefore, utilizing the second order

condition of convexity, we must have V2®,(x) > 0. This implies that
k-1

ZBU@%‘ < Ve (11)

i=1
Furthermore, in (6), we also restrict the difference of functions f(x) — ¢ (x)
to be convex Vk. Since both functions are (by assumption) differentiable,
from the second-order condition of convexity, it is sufficient to ensure that

V2 (f(x) — ¥r(x)) > 0. This results in
k-1

Zﬁi,k% < (12)

i=1

Combining (12) with (11), we reach

11
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k-1
> Bikvi < min (v, 1) - (13)
i=1
Let us now analyze the minimal values that the terms in {®(z)}x can have.

First, define 23, £ argmin, ®(z). Then, utilizing (10), we can write
* : i
@ = min &y (z) = ¢k+*H%k — vl - Zﬁzk o lles, —will® (14)

Note that the coefficients ¢7,v; and vy are unknown and need to be found.

Thus, the following lemma is in order.
Lemma 3. Let the coefficients ;1 be selected in a way that (13) is satisfied.

Let ®g(x) = ¢ + 2 ||z —wo||>. Then, the process defined in Lemma 2 preserves
the quadratic canonical structure of the scanning function introduced in (10).

Moreover, the sequences {¢5}i, {vk}r and {vi}r can be computed as given by
(15), (16) and (17).

e (1 — o) (e + S8 Biwvi)

Grpr =0 f (ye)+(1 — ar)dp+ 5 [lyw — wxl* (15)
Vk+1
S ARV F ()l
5 Biwyilloi = yell 1V £ (yw) T
Ve+1 i Ve+1
a(1—ag)y i,
Wl —ar)vk
" (('Uk—yk)T vf(yk)+2ﬁi,k7i|yk—vi||yk_vk||>
Vet i—1
g/ — Biry
+(1—ak)§\\%k—vk\|2 +ony 5 yr —vil|?
i=1
(1 ag) o? o
k)
=k Zﬂz k’yz ) yk)va yk)_i_ZBz k+1 |x¢>k+1 vz|i2
Vk+1 =1
k—1
Vi1 = (1 = ar)ye + ak (N +> 8 k%) ; (16)
=1
1 Bz ki
U1 = —— | (1 — aw)veve + po | ye — *Vf Yr) Z vi | - (17)
Vi+1 - M
Proof. Please see Appendix C in the Supplementary Material. O
Next, assume that at iteration k, we have
* (14) 71
¢k+*\|%k—vkll2 Zﬁzk |25, —vil [ > f (k). (18)

12



26 Then, from Lemma 3, at iteration k£ + 1 we obtain

_ k=15
G 2 )+ (1) f ) + PPN Dy Braci)
Vk+1

lyr — |2

‘o kz@k%u ye—vill— 5 o 3o IV jpy L) Wai)a’“Zﬁmz —u) "V f (1)

o 12[%% v = ykl L [V S (yk) |+Zﬁm+1 l2%,,, —vill* (19)

=1

k—1
l—«
T (m ) V) + 3 Bl — vl lluk — vkn) .

297

From (19), utilizing the lower bound (4) on f(zx) we arrive to (20) shown below
Gioir = @ () + (1) (F@)+9 ) (@e=ye) + 5llye—ail?)

k—1
o (1= o) (B30 Bikyi)
Il + Mfl -l (20)

o Zﬁz wYillvi =yl 11V f (k) |+Zﬁzk+1

2%, —vil

Vk+1

k _
1—oap)a? ﬁi,k%
(7]6251 k’)/z i yk)va(yk) +O‘kZT| _U’L||2
=1

=1

k—1
op(l — o
+ % ((v;c - yk)va(kaZﬁinykfviH Ny — vk).

208 From (20), we discard all positive terms, relax the lower bound and reach

61> (1— o) VF () an— ) (yk>||2+“’“(1;ifl’“”’“<vk—yk>TVf<yk>

o2 k—1
o3 By - ‘”% > Suai (e VS )+ 0
i=1

(21)
20 For Lemma 1 to be valid, we must guarantee that ®;,, > f(x41). Observe

300

that by adding 15 ||x¢k+17vk+1||2 to the left-hand side (LHS) of (21), we have

%+1 Bik+17Vi (1)
Prp1 + |25 TPoyq — | Z - 5 |z Tpyyy —uil? Qg
=1

301 ThiS yields (1 )
* QL —
or ., zf(yk>+<1—aka(yk)T(xk—ym"Tf”k(vk—ykﬁww
2

k— 2
a2 T A 2
i,k7Yi(V; — v — Vv . 22
- ;:1:»3 KYi(vi — Y)YV f(yr) et IVfy)ll®. (22)

+ (1 —Oé]g)
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We remark that the term f(xp11) can be obtained from (22) in several ways.

Here, we choose to relax the lower bound even further by using the following

Fw) ~ 5z IV F @I > flore), (23)

which can be guaranteed by a simple gradient descent step on yg, that is xx11 =
Yr — heV f(yk). As can be seen from (3), it suffices to let hy = +. Thus, we

compute ay, to have 5= as the coefficient for ||V f(yy)||? in (22). This yields

Yk+1
ap = 4/ ——. 24

Then, utilizing the recursive relation for ;41 given in (16), its value can be

computed in closed form by solving the quadratic equation as

2
_ k—
(M + Zf:f BikYi — %) \/(ﬂ + 30 By — %) + 4Ly
2L + 2L '

(25)

ap =

Making the above-mentioned selection for oy, we can now rewrite (22) as
* QAEVEk
Dy 2 flapa) + (- aw)VF(ye)" ((or —ye) + o (vk — Yk) (26)

9 k-1

% > Biwyilvi — yk)).-
i=1

Ve+1 =

+

From (26), we can observe an important result from the computational point
of view. It is the fact that the sequence of points {yx }x “comes for free”, in the
sense that every point yx can be computed without the need to query a first-
order oracle at point z. To obtain the update rule for the terms {yx}x, we

equate the multiplier of the term (1 — a)V f(yx) to 0 in (26), and obtain
_ Ye+1Tk + Ok VRVR + o} S B wvivs

k—
Yer1 + vk + a2 S0 B

Yk (27)

The expression for the points {yx }, obtained in (27) again highlights the benefits
of utilizing the generalized estimating sequence construction. Notice that the
result of FGM is preserved, and the other terms come up as coeflicients of the
term 2. Setting B; ) =0, Vi=1,1,...,k—1, ie., ¢p(x) = 0, we recover FGM.

Assuming that the coefficients 5, j, are selected to comply with (13), we
come to Algorithm 1. Comparing our proposed method with [7, (2.2.19)], we

first note that the selection of the next iterate is done in the same way in both

14
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algorithms. The reason for this update stems from the fact that both methods
use (23) to compute xp+1. Moreover, a similar type of update rule is also
applied for the terms ay and 7. Evidently, in this case both methods reflect the
different types of estimating sequences that were used in constructing them. The
computation of the points {yx }x shares the same structure in both algorithms.
In Algorithm 1, the extra terms contributed from the generalized estimating
sequence come up as coefficients of ai. The extra terms also appear in the
update rule for vgy1. Last, we emphasize that if we set the term ¢ (z) =0, Vk,
then Algorithm 1 reduces to the regular FGM. This is consistent with the fact
that the estimating sequences utilized in constructing FGM are a special case of

the generalized estimating sequences that we used in constructing Algorithm 1.

Algorithm 1. Proposed Method

Input: 29 € R", v € [0, p[U[2u, 3L + p] and vy = zp.

1: while stopping criterion is not meet do
(/H»Zf;ll Bi ki *’Yk)#*\/(ﬂ‘FZZv:ll Bi,k’Yi*"/k)QJrélL'yk
2L .

2: Compute oy, € [0,1] as oy, =

p k—1

3: Set Vi1 = (1 — o)y + o (u +>. 5i,k7i) .

V1@ Farvivktod SSF Y By kvivi
Vhprtoryetol SF T Bikvi

5: Set Tp41 = Yk <in(yk)
(

4: Choose y,, =

1
Ye+1

6: Set v = 1-— ozk)wcvk

T +houk (yk*ivf(yk) +3i 6;7”1))
8: end while

Output: z

4. Convergence analysis

As can be anticipated from Lemma 1, the convergence rate of Algorithm 1
depends on {A\x}r and {¢(x)}r. The following theorem makes this statement

precise and allows us to present the convergence rate of Algorithm 1.
Theorem 1. Let A\g =1 and A\, = Hf;ll (1 — «;). Then, Algorithm 1 generates

a sequence of points {xy }r such that
Flen) = £ < M [£@o) = F@) + Plleo = a*|P] = (1= (™). (28)

Proof. Please see Appendix D in the Supplementary Material. O
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Comparing the result presented in Theorem 1 to [7, Theorem 2.2.1], we
observe that as long as ¥ > 0, we should expect Algorithm 1 to yield a faster
convergence to optimality than the one exhibited by FGM. For this reason, we
will refer to our proposed Algorithm 1 as SuperFGM (SFGM).

To analyse the rate of convergence, we start by computing the rate at which

the sequence {A} decreases. The following lemma is in order.

Lemma 4. Let the coefficients B; be selected in a way that (13) is satis-

ki1 [ PSR! 85w R N v TR
fied and h(k) = [e 2 VT T —¢ = VT LI For all k > 0,
Algorithm 1 guarantees that
1. Ifyo € [0, puf, then: A\, < ufé‘k)-
2. If 0 € 210,31 + p], then: A\, < (W‘i(u“_gg;ﬁkf)g(k)
Proof. Please see Appendix E in the Supplementary Material. O

Comparing the results obtained in Lemma 4 with their conterpart presented
in [7, Lemma Lemma 2.2.4], we can observe that our analysis enables con-
vergence over a wider range of the initialization of the parameter 7y. The only
region for which the initialization of the methods does not overlap is vy € [p, 2p].
The reason is because within this range of initializing the parameter ~q, it is
not possible to ensure that the term & defined in the proof of Lemma 4 is a
real number, and the induction steps presented therein cannot be established.
Nevertheless, the results proved for the terms Ay hint that we should expect a

faster rate of convergence for our proposed SFGM.
Theorem 2. In Algorithm 1, let p > 0. Then, the algorithm generates a

sequence of points such that
1. If v € [0, u[, then
flog) = f(z™) <
2. If y0 € [2u, 3L + ], then

o 2L(n+ SV i)z — ¥
_ < -
R S SR TATY

pllwo — |2

o W) (29)

(1= A)v(z7). (30)
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Thus, the method is optimal when the tolerance € is small enough
0<e< gRS. (31)

The lower bound on the number of iterations is

/ L uRZ

Proof. Please see Appendix F in the Supplementary Material. O

Next, we compare our proposed SFGM to FGM [7, (2.2.17)], which requires

tron > /£ (in (45 < iz (33)

Comparing the bound in (33) to the bound obtained from our proposed method
in (32), we can observe that the instance of SFGM obtained when initializing
Yo = 0 always outperforms FGM despite any valid selection of the coefficients
Bik- Under the selection #; = 0,Vi = 1,...,k — 1, which reduces SFGM to
FGM, we observe that we still have an improvement of a constant number of
iterations. This stems from the fact that our result obtained in Lemma 4 yields
a tighter bound on the sequence {\g},. Moreover, it also supports the smallest
possible starting value for initializing the sequence {7}, i.e., 70 = 0, which is
not supported by the existing analysis for FGM.

Allowing for nonzero values of §; , a better scaling factor than for FGM is
also obtained. Moreover, note that the bound obtained in ((32)) is dynamic,
and if Zf;ll Bikvi — i, then we obtain the tightest provable bound on the
performance of SFGM. Here, we remark that (32) is still an upper bound on the
true performance of SFGM. The reason for that is that the proof of Theorem 2
does not fully account for the extra terms coming from the sequence {¥y(z)}x.
The rationale behind this approach stems from the difficulty of estimating the
size of the terms in the sequence {¢(z)}.

So far, no explicit construction about the coefficients 3; ; has been given.
Evidently, they act as weights that allow us to parse function information.

From the result of Lemma 4, we observe that it is beneficial to allow the term
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Zi:ll Bi.k7vi to be as large as possible. The bound for this term has been ob-
tained in (13). There are several ways to select the coefficients ; x, Vi, k, and at
the same time satisfy the bound. For instance, j3; ; can be selected to account
for certain samples of the previously constructed scanning functions, or a win-
dow of the previous scanning functions, or they can span the entire range of the
scanning functions with some weight. For this paper, we pose the optimal selec-
tion of these coefficients as an open problem. Instead, considering also practical
requirements, such as the minimization the number of computations performed
by the method per iteration, storage of additional parameters etc., we select
the simplest choice for the coefficients 3; 1, that enables the convergence of the

resulting method with the fastest rate that we can prove for SFGM, that is,

min(l, I ) ifi=Fk—1,
Yk—1

Bik = (34)

0, otherwise.
Such choice of the coefficients 3; ;’s ensures that (13) is satisfied. Thus, with
such f; x’s, Algorithm 1 remains within the setup of Lemma 3, and the theoret-
ical results developed earlier apply to the produced iterates. Considering §; 1’s

selected according to (34), the lower bound on the number of iterations becomes

haran > \/ — minL(%_w) <ln (“f) + 1n(5)> . (35)

It can be observed from (35) that the introduction of the term 1 (x) in the

generalized estimating sequences yields more flexibility for improving the lower
complexity bound of the proposed back-box SFGM. It was found in [8] that the
lower complexity bound can be controlled by the norm selection in the objective
function (for the case of unconstrained optimization). We also find, thus, that
the lower complexity bound can be controlled by v (x).® Considering (13), (16)

and choosing a sufficiently large kpy,.x, we obtain

kspan > \/5 (m <“2}Z(2)> —Hn(5)> . (36)

6Since we are free to select vy (), in general, it can be choosen such that it accumulates

available prior information about the data as well.
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Let us now analyze the relative behavior of terms «y and 7. From the update
rule of the sequence {ay}i, (24), we can observe that ay o< yg41. Therefore, if
the value of 7,41 increases, the value of oy, also increases. From the relationship
for computing 7x+1 obtained in (16), we can see that also y;4+1 increases with
ag. Therefore, we can conclude that these two terms recursively increase the
value of one-another. In Lemma 1, we established that 79 = 0. Then, from
the update rule of the sequence {7}, we can see that ;3 > 79. This results
in a value of g > 0, which then causes the values of the sequence {vi}x to
increase. Therefore, as k increases, y;—1 also increases, and the bound in (35)
converges to (36). Moreover, the LHS in (35) converges to (36) very quickly
due to the exponential growth of the terms in the sequence {x}x. Analytically,
this can be seen by writing oy = \/m = 1— Ag41/Ak, and observing from
Lemma 4 that the terms of the sequence {A\;}x decrease exponentially. If we
choose kmax to be sufficiently large, then the terms in the sequence {A;}x can
become sufficiently small and close to 0, in the sense that the tolerance € is
achieved. Numerically, this is also shown in Subsection 5.1.

5. Numerical study
In this section, we test the efficiency of several instances of the proposed

method both in terms of decreasing the distance to optimality, as well as in
decreasing the norm of the gradient. Both synthetic and real data are utilized
to analyze different aspects of the proposed algorithm. The synthetic data,
which are randomly generated, are used to have a better insight on how the
performance of the methods scales with the condition number of the problem.
On the other hand, the real-world datasets are drawn from the Library for
Support Vector Machines (LIBSVM) [30]. Datasets are selected according to
the specific problem instances. We utilize CVX [31] to find the optimal solutions.

We benchmark against two instances of FGM Constant Step Scheme I (CSS1),
specifically, we choose 79 = L, which we refer to as FGM CSS1, and vy = u,
which yields the best performance for FGM. The latter also corresponds to
Constant Step Scheme III (CSS3) [7, Chapter 2.2]. For the proposed SFGM, we

consider the simplest instances of the algorithm, respectively selecting By, = 1
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and B;, = 0,Vi =1,..., k. This instance of the algorithm is referred to as mem-
oryless SFGM. We note that when vy = 0, this algorithm corresponds to FGM.
However, the original analysis of FGM does not guarantee convergence of the
method with vy = 0, whereas SFGM guarantees the convergence, and achieves
it in a smaller number of iterations. The other instance of the algorithm that is
considered, is the one introduced in (34). This instance is referred to as SFGM
with memory term v;_1. Relative to the CSS1 of FGM, this instance of SFGM
requires the storage of an extra vector and scalar. Regarding the computations,
it performs four more scalar additions and one more vector addition. Never-
theless, despite this slight increase in computational burden, we have already
proved that SFGM with memory term 7,_; is an optimal method. Lastly, the

starting point x( is randomly selected and all algorithms are initiated in it.
5.1. Decreasing the distance to optimality

We start by solving problems of the form

m

o 1 T 2 T2
R g (el gl @

The main goal of this section is to show that the theoretical convergence guar-
antees obtained in Section 4 yield a realistic description of the practical per-
formance of the methods. Moreover, we analyze how the performance of the
methods scales with the condition number of the problem. We also show the
fast convergence of the terms in the sequence {7y }.

Let us begin by considering the simplest case, 7 = 0. The entries of the
vector a; are sampled from a uniform distribution, whereas the values of the
vector y € R™ are uniformly drawn from the box [0, 1]™. In our simulations, we
set m € {100, 1000} and the resulting condition number is x € {3-10%,9-10°%}.

Our findings are reported in Fig. 1 that shows the performance gains of
the proposed SFGM. The quality of the obtained solution, as measured by
the distance to the optimal solution z*, is similar to that obtained by FGM,
however the number of iterations required by SFGM is smaller. In the case of the
memoryless version of SFGM, we can observe that it exhibits the same behavior

as FGM, however it converges faster. This is coherent with the theoretical
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Figure 1: Comparison between various features of interest of the algorithms tested. The data

is randomly generated and the goal is to minimize the quadratic loss function.
bounds established in Section 4. A similar observation can also be made for the
case of SFGM with memory term ~y,_;. From Figs. 1(a) and 1(b), we can see
that the method yields an improvement of approximately 30% over FGM CSS3.
This result is also coherent with the theoretical asymptotic bound obtained
n (36), that also suggests an improvement of 30% over FGM. Moreover, from
Figs. 1(c) and 1(d), we can observe the exponential convergence of the term ~y;_1
to p. Last, as the condition number of the problem increases, all methods require
a larger number of iterations to converge. For instance, from Fig. 1(a), we can

see that when s = 3 - 10° the performance difference between the algorithms
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tested is of the order of few thousands of iterations. Then, when x = 9-10°, from
Fig. 1(b), we can see that the difference between algorithms increases. We will
promptly demonstrate that for more ill-conditioned problems, the differences
between the algorithms tested become even larger.

Next, we proceed by considering the more general case, 7 # 0. We let
A€ R™™ and b € R™ and start with the case when m < n. Both synthetic
and real data are utilized. To diversify the type of synthetic data used, here
we do not impose any particular structure on A. We simply draw the elements
for both A and b from a standard normal distribution and set m = 800 and
n = 1000. Regarding real data, we utilize the “colon-cancer” dataset, for which
m = 62 and n = 2000. The data that is used also dictates the values of L
and p. In practice, estimating p is challenging and computationally expensive.
For this reason, the common approach that is followed is to assume that the
strong convexity parameter of the data is 0. In all the numerical experiments
that will be presented in the sequel, we also follow this approach, and equate u
to the regularization parameter 7. On the other hand, similar to the previous
computational experiments (and to be coherent with the theoretical analysis)
we estimate the Lipschitz constant directly from the data. Nevertheless, we
note that several efficient backtracking strategies for estimating L already exist
in the literature [23]. For the datasets that we are utilizing, the respective Lip-
schitz constants are L« andom» = 3567.1 and Lecolon-cancer” = 1927.4. Moreover,
for both data types, we let the regularizer term 7 € {107°,107%}. Evidently,
this selection of the regularizer term ensures that the condition number of the
problems that are being solved is quite high. The numerical results are pre-
sented in Fig. 2. From this figure, we can observe that SFGM with memory
term ~y,_1 again outperforms FGM CSS3 by approximately 35% — 40%.

Finally, we analyze the remaining case, in which the matrix A is a tall matrix.
For this, we only consider real data. The datasets that we select are “triazine”
and “ala”. For the former dataset, we have m = 186 and n = 60. For the
latter, we have m = 1605 and n = 123. The corresponding Lipschitz constants

are Letriagines” = 032.2804 and L«,1,» = 10061. The regularizer term is set
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102 ‘ 10% ‘ ‘
——FGM CSS1 ——FGM CSS1
——FGM CSS3 ——FGM CSS3
——Memoryless SFGM ——Memoryless SFGM
1 00 — SFGM, memory term Vet 100 — SFGM, memory term Vet
% “x
| )
X X
X 107? X102
10 104
0 1 2 3 0 2 4 6 8 10
k x10° k x10°
(a) Random data, 7 = 1075, (b) Random data, 7 = 1076.
107 ‘ : 102 : :
——FGM CSs1 ——FGM CSS1
——FGM CSS3 ——FGM CSS3
— Memoryless SFGM ——Memoryless SFGM
1 00 — SFGM, memory term Vet —— SFGM, memory term Vet
= = 0
) i 10
\ )
X 107 X
-2
10
10
0 2 4 6 8 10 0 0.5 1 1.5 2
k x10° k x10°
(c) The dataset is “colon-cancer”, 7 = 1072, (d) The dataset is “colon-cancer”, 7 = 107°.

Figure 2: Comparison between the efficiency of the algorithms tested in minimizing the reg-

ularized quadratic loss function in the case where m < n, i.e., A is a fat matrix.

7 € {1077,1078}. The results are reported in Fig. 3. Despite the fact that the
problems being solved are extremely ill-conditioned, we can see that the fastest
version of SFGM retains its theoretical gains of approximately 30% — 35% across
all datasets, when compared to the fastest version of FGM, which is CSS3.

5.2. Decreasing the norm of the gradient

Particularly, in many practical problems, it is of high interest to find points

with small norm of the gradient||V f(z)|| < n, where n denotes the desired tol-
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(a) The dataset is “triazines” and 7 = 107 ". (b) The dataset is “triazines” and 7 = 10~ 5.
10% 102
——FGM CSSs1 ——FGM CSs1
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_ 10 _ 10
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1 1
4 X
x X
102 10?
1 0-4 . . . . 1 0-4 . .
0 1 2 3 4 5 0 5 10 15
k %108 k %108
(c) The dataset is “ala” and 7 = 107". (d) The dataset is “ala” and 7 = 1075,

Figure 3: Comparison between the efficiency of the algorithms tested in minimizing the reg-

ularized quadratic loss function in the case where m > n, i.e., A is a tall matrix.
erance’. In [32] and [7], it is shown that FGM is not optimal in this sense.

Instead, minimizing a regularized version of the objective function, which re-
LR

sults in a reduction of the iteration complexity to O %ln (?) is suggested
therein. From this perspective, utilizing the construction of 1 (x) proposed in
(9) in Definition 1, we can see that SFGM is minimizing a regularized version
of the objective function. Moreover, when the generalized estimating sequences
framework is used, it also provides the regularizer term, which consists of lin-
ear combinations of the previously constructed scanning functions weighted such

that (13) is satisfied. In the sequel, we show that the simplest versions of SFGM

7The true value of the tolerance 7 is selected in practice depending on the application. This

is different from e, the true maximal value of which depends on Ry that is typically unknown.
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are more efficient than FGM in decreasing the norm of the gradient.

Prior to presenting the results for a new problem class, let us return to the
setup of Fig. 1, and depict the decrease of the norm of the gradient. As can be
seen from Figs. 4(a) and 4(b), the norm of the gradient of our proposed SFGM

decreases much facter (annravimatelyv 30%) than that of FGM ('SSR

10 ‘ ; 10° ; ;
—FGM CSS1 —FGM CSS1
—FGM CSS3 —FGM CSS3
——Memoryless SFGM ——Memoryless SFGM
——SFGM, memory term 4 —— SFGM, memory term v,
0 k1 k-1
10 _ 10’
2 g
[~ [
> b
= 10-5 =
10-10 | | | ‘
0 2000 4000 6000 8000 10000 0 05 1 1.5 2

k k x10*

(a) Decreasing the norm of the gradient, x = 10%. (b) Decreasing the norm of the gradient, x = 10%.
Figure 4: Comparison between the efficiency of various algorithms in decreasing the norm of

the gradient on randomly generated data.

To diversify the nature of the problems solved, in the sequel we consider the

regularized logistic loss problem

1 m T T
e - 1 (1 —ba; z) o 2.
e 2o (et gl (59)

For this problem type, we reuse the datasets “colon-cancer” and “ala”, which
were introduced in Subsection 5.1. We set 7 € {1075,1077} for the “colon-
cancer” dataset, and 7 € {107%,1078} for the “ala” dataset. The results are
reported in Fig. 5. We can observe from Fig. 5 that SFGM outperforms FGM
for both datasets. Specifically, SFGM with memory term v;_1 is approximately
35% — 40% faster at decreasing the norm of the gradient than FGM CSS3.

6. Conclusions and Discussion

6.1. Conclusions
The way for embedding a new form of heavy-ball momentum into Nesterov’s

acceleration framework has been rigorously established, and shown to be of
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(c) The dataset is “ala” and 7 = 1075, (d) The dataset is “ala” and 7 = 1075,

Figure 5: Comparison between the efficiency of the algorithms tested in minimizing the reg-

ularized logistic loss function.
practical significance. The faster convergence (than FGM) of the proposed ac-
celerated algorithm that we name SFGM is established analytically and demon-
strated through simulations and real data analysis. One more novelty important
for this venue is that we provide intuition on the design of accelerated methods
based on the example of the proposed SFGM, which was necessary for our objec-
tive of deriving new methods based on the embedding of different acceleration

principles in one scheme.

6.2. Discussion

We conclude this work by discussing several open problems that arise from

the proposed framework.
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It would be of interest to find the optimal selection of 3; ;. This would also

produce the optimal regularizers for the objective function, which would
result in faster algorithms. These optimal regularizers can further be used
to enable methods that are optimal in decreasing the norm of the gradient,

a topic which has gathered significant attention recently [22, 33].

Another topic of interest is related to devising alternative candidate struc-
tures for the term ¢y (z), which can ideally encompass both black and
white box information about the objective function. This is also relevant
in the context of [34], as in this work we follow a similar approach in es-
tablishing (13), with the main difference being that 1, (x) is dynamically
changing over iterations. From the perspective of [34], (13) suggests that
the relative strong convexity parameter between f(z) and ¥y (x) is not
unique. Instead, it is contained in an interval which shrinks over itera-

tions. Thus, it is of interest to study how these frameworks can coexist.

A strategy that is known to improve the performance of FGM is restarting
[7]. In this work, we purposely avoided relying on heuristics like restarting
for further improving the performance of SFGM. Nevertheless, it is of

practical interest to establish restarting conditions applicable to SFGM.

Last, it would be of interest to investigate extensions of the proposed
framework to solve nonsmooth optimization problems. To solve such prob-
lems, variations of FGM already exist [23], suggesting that similar variants

can be introduced in the context of our proposed SFGM.
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Appendices

Appendix A Lemma 1 and Corresponding Proof

Lemma 1. If for some sequence of points {zy}r we have f(zy) < @} £
min ®(z), then

€L

flar) = f(@7) < M [@o(27) — f(27)] = (1 = An) Pu(7).

Proof. Based on the assumption that is made in the formulation of the lemma,

we can write

(6),main paper

flar) < 2 =mindy () < min [Ax®o(2) + (1 = Ae) (f(2) = ¥n(2))]
(38)
< [A®o(z%) + (L= Ag) (f (") — Yu(27))].

Rearranging the terms yields the desired result. O

Appendix B Lemma 2 and Corresponding Proof

Lemma 2. Assume that there exist sequences {ay}r, where ay € (0,1), Vk,

Soreook = 00, {yrtk and {¢r(x)}r such that Yp(z) > 0, Vk. Let Uy be an

upper bound of {Yr(x)}r. Moreover, let Yo(x) = 0 and N\g = 1. Then, the
sequences { @ (x)}r and {\g}x, which are defined recursively as

Ao = (1 — ag)Ag, (7)

Ppr1(2) = (1 — o) (Pr(@) + ¥i(2)) = Yrs1(2) — Up + owthp(z)  (8)

L
+ar (F0) + VI (@ =) + Sl = wll?)
are generalized estimating sequences.

Proof. We prove the lemma by induction. At iteration k£ = 0, since ¢g(z) = 0,
Uy = 0and Ao = 1, utilizing (6) in the main paper, we have ®g(x) < A\g®Po(z) +
(1 —Xo) f(x) & ®p(x). Next, we assume that at some iteration k, (6) in the

main paper holds true, which yields

Dp(2) = (1= M) f(2) < MePo() — (1= M) ¥r(2). (39)
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Utilizing (4) in the main paper and (8), at iteration k + 1 we can write
Dpy1(z) < (1 — o) (Pr(x) + V() = hrpa () = Wi + ar (f (@) + Yr(2)) -
(40)

From Definition 1 in the main paper, we notice that the function v (x) maps
to Q@ C RT. This fact, together with the assumption that the upper bound
U, cannot be infinite, are sufficient for establishing the results of the lemma.
Exploiting the aforementioned observations, as well as adding and subtracting

the same term to the RHS of (40), yields

Qpi1(w) < (1 — ) Pp(2) — Ypga(w) + anf(z) + (1 — a)(1 = M) f(2)
— (=) (L = M) f()

= (I=ar) [Pr(x) = (1= )f (#)] = Yrs (2) + (ar+ (1= A ) (1—aw)) f(2).
(41)

Utilizing (39) in (41), results in

O i1 (z)+hrpr(2) S (1—ag) (AePo(z) — (1=A) Yr(x)) +(1=Ap+ap i) f(2).
(42)

Then, from the recursive relation (7), and also by relaxing the RHS of (42), we

reach

Prr1() + Yrt1(2) < A1 Po(2) + (1 — A1) f (). (43)

Finally, utilizing the fact that A, € [0, 1], we obtain

Pri1(z) < M1 Po () + (1 = A1) (F(@) — Yrg1(2)) - (44)

Appendix C Lemma 3 and Corresponding Proof

Lemma 3. Let the coefficients f5; i be selected in a way that (?77) is satisfied.

Let ®o(x) = ¢ + L[|z —vo||*>. Then, the process defined in Lemma 2 preserves



w  the quadratic canonical structure of the scanning function introduced in (?7).
i3 Moreover, the sequences {¢5} i, {vetr and {vp}i can be computed as given by

44 (15), (16) and (17)

¢z+1 - akf(yk) + (1 - O‘k)qblt + ak,yk(l — ak)Q(M + Zz 1 ﬂz k'%) || Ui — UkH2
Ve+1
(15)
3 - )
L Zﬂz kil lvi — ukl| [V ()| — W

k—1
ol—a
+R(le)% ((Uk_yk)T vf(yk)+z/3i,m||yk_vi|||yk_vk||>

=1

k=1
V|| s Bi ki
+(1*ak)§\|$q>k*vk||2 sz 12 Ny =il

i=1
(1 ax) aik . )T 2
> Biwvilvi—ye) "V f yk)+25z k+1 25— il
Ve+1 =1
k1
Vo1 = (1 — a)ye + ak (,u +y Bi,wz) ) (16)
=1

45
. 1 51 ki
Vg1 = —— | (1= ap)ypvn + pog | yk — *Vf (yr) + Z vi | |- (17)
Vk+1 - M
w Proof. Let us begin by establishing that (8) preserves the quadratic structure
« of the terms in the sequence {®}. Note that at step k = 0, we have ¢y = 0.
s Therefore, V2®(z) = V2¢o(x) = voI. Next, let us assume that for some step
k1 (13),main paper

w k, we have V2®y(x) = v, — >, Bixvi > 0. Then, by considering

so the Hessian of (8), we can write

k-1
V2@ i1 (2) = (1 — ap)pd — Z Bikvil + ag (M +Y 8 Ic'Yz) . (45)

i=1 =1

si Utilizing (16) in (45) we obtain

k
V2®hp1(z) = o1l — Y Biwvil. (46)

i=1
2 Last, we note that selecting the coefficients f; j to satisfy (13) in the main paper

55 ensures that V2@, (z) > 0.
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We proceed now to establishing the recursive relation for the terms in the
sequence {v}i. Let us start by substituting our proposed construction for the
scanning function presented in (10) in the main paper into (8), and making the

necessary manipulations to obtain
* V41 2 «, Vk 2
P + oMl = vk [P = (L) (@ + [l —vel[F) =W (47)
L
au (f )+ V £ ) (w=y) + Sll—pil? + ().

First, observe that both the LHS and the RHS of (47) are convex functions in
z, and minimizing them over all possible values of x yields two unconstrained
optimization problems. Therefore, the solution needs to satisfy the optimality
condition for unconstrained problems, which is that the gradient of the objective
function with respect to the optimization parameter has to be equal to 0. Taking

gradients with respect to x, yields
k-1

Vi1 (=g 1) =7k (L= ) (T —vp) +ag (M(x—yk)‘FVf(Z/k)-i—Z Biwyi(z—v;)).

(48)
For now, assume that the points y; are known and x’s are unknown. By uti-
lizing (16), we can reduce the unknown z’s in (48). Then, after making some
manipulations, we obtain
1 1 = Bi ki
Vg1 = . (1 = o) ywor + pou(yx — ;Vf(yk) + ; T%‘))- (49)
Notice that the values of the terms in the sequence {vy}; depend on the
corresponding terms in the sequence {yy }x, which are assumed to be known up
to this point. We will show later how these values can be computed recursively.
For now, let us focus on finding the smallest value of the scanning function ¢j_ ;.
On a conceptual level, the simplest way to compute ¢7 ,; is to think that there
is another scanning function O (yx) for the sequence {yx }x, which has the same
center and radius and as the sequence of functions {®(z)}x. So, for all values

of the iterates k, we have

k—1
Or(u) = O + Sl = wnll® = D Bin ol — il (50)

i=1



7 Then, utilizing (8) applied at x = yy, yields

Ok+1(yr) =(L—ar) Ok (yr) +¥k(Yx)) —Yr+1(yr) — Vi +ak (f(ye) + ¥k (Yr)) -
(51)

~

s Substituting (9) in the main paper and (50) into (51), as well as making the

77 necessary relaxations, we obtain

* Vk+1 « Yk
1 + o e = vt < (1= o) (0 + e — vl (52)
el
+ ay, (f(yk)+z 12 “ly —Uz‘|2> :
i=1
78 From the recursive relation (49), we have
1 < Biry
i kY
Vkp1 =Yk = —— | (L —aw)ywor+pag (ye— =V f(yr) + = 'Yk+1yk>~
%m( ) ( 1 2 p %

i=1

(53)

79 Then, substituting the recursive relation for the term 7441, i.e., (16) into (53),

s yields

k—1
Vg1 — Yk = (1 = )y (v — yi) — RV f (i) + o, E Pk (vi — yr) )-
Vk+1 - M

Taking || - ||? of both sides in (54), we obtain

©
2

[ (& (1— o) (v *yk))+ak2f;11ﬁi,k%(vi —ye)— oV f (yi)||?
7]%.},_1 .

||Uk+1—y1c||2:
(55)

Ve+1

2 Then, multiplying both sides of (55) shown in the next page by 5 and ex-



& panding the RHS, we reach

Vr+1 1—a)’n
oy — gl = B Sy gy P
V41
(56)
200 (1 — o)k T aj 2
- 20 = O 4, — TS () + 59 )
Ye+1 Ve+1
ag)agy
+ %Zﬁz k’Y'L i yk)T(vk _yk)
2 k—1
B’L i\Ye — U5 \Y
b Z ki )V f (y)-
s4 Substituting (56) into (52) and doing the respective factorings, we obtain
N y 1-« 1-«

01 < onf () + (1 — o)y + LoD [ (Lm0, e

Vk+1 Vk+1

k—1 k—1
Bi ki 2 of Bi ki 2
e 3 P el = 5ol 3 P
OZ% 2 2 T
_ v i v
Sl + Zﬁl e — 9 TV F ()
o (1 — ag) e
+ ————= | (ox — )"V f (ur) Zﬁz kYi(yr — vi) " (yr —or) | -
Ve+1
(57)

s Making some further manipulations and relaxing the upper bound on 60, in

s (D7) yields

. « el —ag)(p + Bi ki
Gis <)+ (1o L= O iy
Ve+1
k*lﬁ ~
i,k 2 k 2
+ou, : yk — uil|" = 5V f(yk
> il S I )|

(1-ag)of T 0 NS g T
+ Yhi1 ; 62 k’Yz [ ) Vf(yk)Jr%H s 57,,1@71('01 yk) Vf(yk)
+ (M%jk)% ((vk VIV f(yk) Zﬁz iy —vi)" (yx — Uk)) :

(58)



87

88

89

90

91

92

93

94

95

96

97

98

99

Then, utilizing the Cauchy-Schwartz inequality in (58), as well as relaxing the

upper bound, we obtain

apye(l — o) (p + Zi:f Bi ki)

Orp1 < f(ye)+(1 — ar)0;+ 5 yr — vel”
Yk+1
By o
i,k i 2 k 2
+ay ! Yk — vil|°— V f(yx
> 5 o = P = g 9 |

(1—0%)04% kol T k " ) )
+ T Z Bikvi(vi — ye) Vf(yk) +Z 6"””15‘”%“*%”
=1 Pt

3 k—1

= Tk

+ ’YTL Zﬁi,k%”vi—yk\\ ||vf(yk)||+(1_ak)?”$:%k o2
i1

k—1

ar(l — ar)ve T

+ (TJA) ((Uk — k) VIlyr) + Zﬁi,mnyk — | lye — Uk|> ‘
=1

(59)

Last, since we would like the scanning function to be as close as possible to the
objective function itself, we let 041 equal to the tightest upper bound we can

obtain analytically. Moreover, as discussed earlier, we let ¢7 = 05, Vk. This

yields (15). O

Appendix D Theorem 1 and Corresponding Proof

Theorem 1. Let \g =1 and A\, = Hi.:ll (1 — «;). Then, Algorithm 7?7 gener-

ates a sequence of points {xy}r such that
flar) = 7 < X | (o) = f(27) + %on =] = (1= An)tpw(z®).  (28)

Proof. Let ¢§ = f(x¢). Then, by construction of the scanning function at k = 0,
we have f(zg) < ®o(z) = f(zo) + L[|z — zo||*. Moreover, we recall that the
update rules of SFGM are devised to maintain the relation f(zx) < ®;. This is

sufficient for the results proved in Lemma 1 to be applied. O



w Appendix E Lemma 4 and Corresponding Proof

1w Lemma 4. Let the coefficients f5; i be selected in a way that (13) in the main

2
/ u+21 1 Bi ki 1 M+E;-:11 Bi, ki
w02 paper is satisfied and h(k) = L . For

ws  all k >0, Algorithm 1 in the main paper guarantees that
104 1. If Yo € [O,M[ then: A\ < Ih(k)
A(pt+ b Biww)

105 2. If vo € 214, 3L + p, then: A\ < (70 ST B ()

s Proof. Recall that in Algorithm 1 in the main paper we initialize v € [0, u[U[2p, 3L+

w7 p]. From (16), we can write

k—1 k—1 k—1
Thi1 — (u + Z Bi m) (1= k) v+ (/HZ@ k%) - <u +y ﬂ@m-)
=1

=1

k-1
Vi — <M+Zﬁi,k%>] : (60)

i=1

= (1—Ckk))\()

s Then, utilizing the recursivity of (16) in (60), we obtain
k—1 k-1

V41— (M+Z ﬁi,wz) =Nt [70<M+Z 51',1@%)} ~ (61)
i=1 i=1

o Recalling that A\xy1 = (1 — ag)\r and considering (24) in the main paper, we

1o have

Cl{k:1—

k-1
Akt _ [kt _ p+ B v +’Yic+1— (M+Zi:1 5%%)
Ak L 7 i3

k—1
©1) |+ Bivs N o~ <“+Zi=1 6¢,m)
= f_‘_ E+1 I .

m  Moreover,

A — )\k+1 - n+ Zlel ﬁi,k’)/i n 70 (U + Zi:l Bz,k'}%)
A h o1 L L ’
k—1
Me= X _ 1 e S B, 0 (u +2in /)’z-,m-) o)
Ak A1 Vi1 AL L ’



and utilizing a

A=Ak 1 1
Ak+1 Ak’

Ak Ak+1

Then, by writing the LHS of (62) as

difference of squares argument, we obtain
(63)

112

1

1 1 1
+ -
) (\/Ak+1 \/X;) Noym
N+Zf;1lﬁi,k% To— (N+Zi‘:11 51,k%)

113

( 1

vV k41 Ve

Akt1L
with the larger number

In (63), we can lower bound the LHS by replacing ﬁ

114

115 \/m
2 1 _ 1 S 1 n
VA1 \WV A1 VA T VA L

To establish convergence for the entire range of values for the term ~g, let us

consider separately the regions Rq = [0, u[ and Ro = [2u, 3L + p]. Let us now

L This results in
k—1 _ _‘_Zkfl B .
pA> iy By, 10T\ M i=1 PikYi

Ak1L
(64)

116

begin by considering the region vy € R4. First, we can rewrite (64) as

117
118
2 2 (M-FZ?:_E ﬁi,k%‘) —% L (/H‘Zi-:f ﬁi,k%‘) X
/A _\/)\k_ L L)\ k=1, o
E+1 . k41 /L+Zi:1 Bz,k% Y0
(65)
us  Then, we define the following®.
L
(66)

&= P :
KH +2im /Bz‘,k%) - Wo} Ak
W and utlhzmg the newly
i=1 Pi,kYi—70

Multiplying both sides of (65) by
introduced (66), yields

(67)

120

121

(u + Zlelfi,k%) & .

N | =

Ekp1 — & >

1We note that restricting 7o € R1 ensures that there is no division by 0 in the denominator

of (66)
10



122

123

124

125

126

127

128

129

130

131

132

133

At this point, we make use of induction to prove the following bound on &

(k+1)6 —(k+1)6}
- 45

L. At step k = 0 we have

(u+r- 1—70)>\0 \/u % 2\ p

(68)

L >1 L[eﬁ e_g} \[ [e —6_6},

(69)

where the second equality is obtained from the assumptions made in Lemma 2,

ie, Ao = 1and vy = 0, Vk < 0. From (1) in the main paper, we must have

Yo > 0. Recalling that v € Ry in (69) and multiplying it with a number that

is smaller than 1, yields the first inequality. The last inequality in (69) follows

because the RHS increases with §, which by construction is § < g

Next, we assume that (68) holds at iteration k and prove the same result

for iteration k + 1 via contradiction. Letting w(t) = 4—16\/% [etH1)d — = (t+1)3]

which is a convex function [1, Lemma 2.2.4], we have

(67) 1 (N+Zf:_11 @',k%) &on

w(t) <& < £k+1—§ 7

Now, suppose i < w(t+1). Substituting it into (70), yields

(70) 1 (M + Zi‘:f 5i,k%) ‘51?:+1
w(t) < o.;(tJrl)—5 7 _

Then, applying (68) and the definition of §, yields

2

wt) <w(t+1)— % 452 hg ( (t+2)5 _ ¢ (t+2)5)] -1

=w(t+1)— 121\/5 {e(t+2)5 + ef(Hz)g}

=wlt+1)+wlt+1) {t—({t+1) <w(d),

11



134

135

136

137

138

139

140

141

142

143

144

145

where the last inequality follows from the supporting hyperplane theorem of
convex functions. Evidently, this leads to a contradiction with our earlier as-
sumption, which implies that x11 < w(k+1),Vk. Therefore, (68) must hold
true.

From (66) we can write

L
Ak = P > (72)
(M + > i1 Bikvi — 70) &k
Then, recalling that vy € R, and utilizing (68), we obtain
L 49)?
14(49) (73)

< ;
(k+ ZH Biv—0) €~ 2 (5 + TIZ! B ) [etkt13 — e=(h0a]?

Last, applying the definition of ¢ in (73), we obtain the bound presented in the
first point of the lemma.

Let us next consider the region vy € R22. First, we can rewrite (64) as

k-1
2 : \/70_#—Z§=11 Bi ki L (M +2lia ”Bi’k%)
L LAy

- > +1.
VAt VA +1 (70*#*2?:11 51‘,19-%‘)
(74)
Then, we define the following®
L
& = (75)

K% — kB 251—11 5i,k%)] Ak .

Multiplying both sides of (74) by |, /ﬁ and utilizing the newly
0—HK—D =1 BikYi

introduced (75), yields

k_
(M + @‘Mi) i
+1

17 (76)

N =

Er1 — & >

2We note that this part follows mutatis mutandis the analysis given in [1, Lemma 2.2.4]

and is presented here for completeness.
3We again note that restricting 79 € Rz ensures that there is no division by 0 in the

denominator of (75).

12



146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

At this point, we make use of induction to prove the following bound on &

(77)

L L 1 1 1
&)@\/( — 2[5 25 [ehmet] 2 L [f-e?],

where the second equality is obtained from the assumptions made in Lemma 2,
ie., A\g =1and v, =0, Yk < 0. From (1) in the main paper, we must have vy >
0. Recalling that v9 € Ry in (78) yields the first inequality. The last inequality
in (78) follows because the RHS increases with ¢, which by construction is § < %

Next, we assume that (77) holds at iteration k£ and prove the same result for
iteration k + 1 via contradiction. Letting w(t) = & [e(+1? — e~ (t+DI] ' which

is a convex function [1, Lemma 2.2.4], we have

(76) 1 (IHFZ;:ll @,k%’) Era
wt) <& < &ha—5 +1 (79)
2 L
Now, suppose i < w(t+1). Substituting it into (79), yields
(79) 1 (M + 5i,k%‘) (%)
w(t) < w(t+1)— +1 (80)

2 L
Then, applying (77) and the definition of §, yields

w(t) <w(t+1) — % 462 [‘/i L (e(t+2)0 — e=(t+2)3) | 41

46 \| p

— (e 1) = 5y [ el 4 ]

=wt+1)+wlt+1) (t—(t+1)) <w(t),

where the last inequality follows from the supporting hyperplane theorem of
convex functions. Evidently, this leads to a contradiction with our earlier as-
sumption, which implies that {x+1 < w(k+1),Vk. Therefore, (77) must hold

true.

13
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162

163

164

165

166

167

168

169

170

172

173

174

175

From (75) we can write

L

A = : (81)
k—1 2
(70 o G 5i,k%‘> &k
Then, recalling that vy € R and utilizing (77), we obtain
L B L(46)?
_ = _ 2’
(Vo —p- ﬁi,k%‘) & (70 —p— ﬁi,k%’) [e(B+1)8 — e=(k+1)d]
(82)

Last, applying the definition of ¢ in (82) we obtain the second bound presented

in the lemma. O

Appendix F Theorem 2 and Corresponding Proof

Theorem 2. In Algorithm 1 in the main paper, let u > 0. Then, the algorithm
generates a sequence of points such that
1. If vo € [0, p[, then
flae) = f(@") <
2. If y0 € [2u, 3L + p), then
2L(u+ S Bivi)llzo — 271
(o — 11— 1=t Buwyi) (k)

Thus, the method is optimal when the tolerance € is small enough

pllwo — =*||?

flee)=f(2") <

(1= Xp)v(z™). (30)

0<e< %Rﬁ. (31)

The lower bound on the number of iterations is

/ L uR2

Proof. Combining the result of Theorem 1 and the inequality f(zo) — f* <

L||zo — 2*|2, we obtain

(L +0)

P~ f) < D e g ()

Let us first consider the case wherein v € [0, u[. In this case, substituting

the bound on the term A; obtained in point 1 of Lemma 4 in (83), yields (29).

14
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177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

From (29), we can observe that it is increasing in the values of vp. Thus, in
the following analysis we will choose the smallest value for this parameter, i.e.,

~vo = 0. Then, relaxing the upper bound in (83), yields

2pl|zo — a*[|?

T =) = k1, (84)
. Pt2i=1 PikYi
e(k+1)\/: 1
Therefore, in view of (31), our problem will be solved for kspgnm >
L Q;LRS
\/mln(:lJr € ) MOreOVer, we have
2uR2\ (1) 2 9,R2 9
m (14 240\ Dy (#RS | 2uBRoN _ (SREGY )
€ 26 € 26

Finally, the lower bound on the number of iterations for Algorithm 1 is

/ L uR2
ksram > m <ln <2€> + ln(5)> (86)

As we will show later, the terms in the sequence {7}, converge to p at a much
faster rate than the convergence of the iterates to z*. In view of (13) in the
main paper, and by making the appropriate selection for the coefficients f; j, we
can ensure that the term Z;:ll Bi kv also converges to p at a much faster rate
than the convergence of the iterates to x*. Thus, the right hand side (RHS) of
(86) becomes \/% (ln (“R?’) + ln(5)). In the sequel, we also present a scheme

2e

that attains the aforementioned lower bound.
From the lower complexity bounds for the class of smooth and strongly
convex functions [1, (2.2.16)], we have that

VEn-1, (“R3> . (87)

k Jebst >
bound = 4 2¢

Clearly, the bound obtained in (86) is proportional to (87). Thus, we conclude
that for vy € [0, u[ our proposed SFGM is optimal.

Next, let us consider the case when 7y € [2u,3L + p]. In this case, substi-
tuting the bound on the term \; obtained in point 2 of Lemma 4 in (83), yields
(30). Observe that the upper bound (30) is decreasing in 7o and increasing in
the terms Z::ll Bikvi- Thus, choosing v = 3L + p, letting Z;:ll Bikvi =0

15



197

198

199

200

201

202

203

and relaxing the upper bound in (83) and doing some algebraic manipulations,

yields

10afeo — *

3 (e(kH)

which has the same structure as the bound obtained in [1, Theorem 2.2.2].

flaee) = f(27) < (88)

Therefore, based on the results presented therein, we can again conclude that

our proposed SFGM is optimal when vy € [2u, 3L + p. O
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A new accelerated gradient-based estimating sequence technique for
solving large-scale optimization problems with composite structure

Endrit Dosti, Sergiy A. Vorobyov and Themistoklis Charalambous

Abstract— Various problems arising in control and data
analysis can be formulated as large-scale convex optimization
problems with a composite objective structure. Within the
black-box optimization framework, such problems are typically
solved by using accelerated first-order methods. The celebrated
examples of such methods are the Fast Gradient Method and
the Accelerated Multistep Gradient Method, designed by using
the estimating sequences framework. In this work, we present
a new class of estimating sequences, which are constructed by
making use of a tighter lower bound on the objective function
together with the gradient mapping technique. Based on the
newly introduced estimating sequences, we construct a new
method, which is also equipped with an efficient line-search
strategy that provides robustness to the imperfect knowledge
of the Lipschitz constant. Our proposed method enjoys the
accelerated convergence rate, and our theoretical results are
corroborated by numerical experiments conducted on real-
world datasets. The experimental results also demonstrate the
robustness of the initialization of the proposed method to the
imperfect knowledge of the strong convexity parameter of the
objective function.

I. INTRODUCTION

Consider large-scale convex optimization problems with a
composite objective of the type

minimize {F(z) = f(z) + g(x)}, (1

where the function f : R™ — R has Lipschitz continuous
gradients with Lipschitz constant Ly and is strongly convex
with parameter pp, where 0 < puy < Ly. The regularizer
g:R"™ — R is a “simple” convex lower semi-continuous
function with strong convexity parameter p, > 0. The
simplicity of g implies that its proximal map,

prox,, £ argmin (g(=)+ 51— al’), @

where z € R™ and 7 > 0, is computed with complexity
O(n) [1]. Here ||-|| refers to the l3 norm. Problems that have
a composite objective, as shown in (1), arise in various areas
of control, such as model predictive control, adaptive control,
distributed systems, etc., [2], [3], and are solved iteratively
using different first-order optimization algorithms [4].

A large portion of the recent research in first-order opti-
mization has been targeted at investigating different reasons
behind acceleration, as well establishing alternative frame-
works [5]-[10]. Among the existing frameworks for the
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acceleration of first-order methods, the estimating sequences
framework has grasped a significant interest (see [4] and
references therein). Several reasons that have led to the
popularity of methods built within this framework are the
following. First, gradient-based methods built based on the
estimating sequences framework are optimal in the sense
of [11]. Second, as shown in [12], they can be combined
with backtracking line search strategies, while maintaining
their efficient convergence properties. Third, the estimating
sequences framework can be used to build efficient acceler-
ated second-order methods [13], and higher-order methods
[14]. Last, they have demonstrated competitive performance
even when extended to other settings, such as distributed
optimization [15], nonconvex optimization [16], stochastic
optimization [17], non-Euclidean optimization [18], etc. De-
spite their wide applicability and many desirable properties
from the perspective of designing accelerated methods, esti-
mating sequences are not unique and suffer from the lack of
a systematic methodology for devising them. Thus, selecting
the right construction for estimating functions can lead to
more efficient algorithms compared to the existing state-of-
the-art methods for solving problems of the type of (1).
The framework for the study and analysis of estimat-
ing sequence-based methods has been established in [20].
Among the existing estimating sequence methods devised
for solving problems of the form of (1), a popular algorithm
is the Accelerated Multistep Gradient Scheme (AMGS) [22,
Method (4.9)]. It exhibits the theoretical accelerated rate of
convergence O(k—lz) and is also very efficient in practice.
However, it suffers from the increase in the computational
burden due to the fact that it requires two projection-like
operations per iteration. As the dimensionality of the prob-
lems increases, this can significantly affect the run-time of
the minimization process. This issue has been addressed with
the development of the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [21], which exhibits the accelerated con-
vergence rate with one projection-like operation per iteration.
Comparing AMGS to the Fast Gradient Method (FGM),
which has been devised for minimizing smooth convex func-
tions [19, Constant Step Scheme IJ, it can be observed that
despite both exhibiting the accelerated convergence rate, the
equations for updating the iterates are significantly different.
These dissimilarities arise because the methods were devised
using different variants of the estimating sequences and
cause the practical performance of the methods to vary
when they are compared on real-world problems. Based
on our numerical experiments, we have observed that for
smooth and strongly convex problems, FGM outperforms

7516
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both AMGS and FISTA. Thus, it is of interest to extend the
variant of estimating sequences introduced in [19] and devise
methods that can be used to find the optimal solution of (1).
In this work, we show that by utilizing the aforementioned
variant of estimating sequences it is possible to devise
very efficient accelerated gradient-based algorithms. More
specifically, we present a new structure for the estimating
functions, which we call the composite estimating functions
hereafter and show that they satisfy the properties of the
estimating sequences. Different from the classical estimating
functions devised in [19], our proposed composite estimating
functions make use of the subgradients, as well as a tighter
lower bound of the objective function. Utilizing the newly
introduced estimating functions together with the gradient
mapping framework, we devise our proposed method, which
enjoys the accelerated convergence rate even when the true
value of the Lipschitz constant is not known. The efficiency
of our proposed algorithm in solving problems with com-
posite structure is illustrated based on real-world datasets.
Our numerical results also demonstrate the robustness of
the initialization of the proposed algorithm with respect to
the imperfect knowledge of the strong convexity parameter.
Note that the need to estimate the true value of the strong
convexity parameter comes with an additional increase in the
computational complexity in practical implementations [23].
We remark that in this work we only present the proofs of
the statements which are crucial in the development of the
algorithm. The remaining proofs can be found in our full
paper [24].
II. FOUNDATIONS FOR COMPOSITE OBJECTIVE
OPTIMIZATION

First, we transfer the strong convexity of g(z) within the

objective function in (1). Let zop € R"™ and consider

TH K
F(x)=(f(2) + 52 lz—aol|*) ++ (g(a) = 2 lla—aol )
= f(@) + 79(2)- 3)
This strong convexity transfer also yields L F= L+ Tpg
and g = piy + Ty, as well as py = 0.

Next, the following bounds for the smooth and strongly
convex function f(z) are introduced.

R . R L;
f@) < f@) +Viw @ -+ -2l @

f@) 2 f) + Vi@ @ -y + Ly -2l ©)

where y € R". Similarly, using the definition of the
subgradient, the term g(z) is bounded below as

9(x) > g(y) + s(v)" (z —y), (6)

where s(y) is a subgradient of the function §(y). Moreover,
let L > Lf, and define the following

i (3:2) 2 ) 4V F ) (=) + 5 el 7). (D

Utilizing (4) in (7), we have
mp(y;z) > F(z),Va,y € R™. (8)

Then, the composite gradient mapping can be introduced as
S ; .
Tr(y) = arg min my(y; ), ©
and the composite reduced gradient can be defined as

ro(y) 2 Ly —Tu(y)).

Observe that when 7 = 0, in (3) we have f(z) = f(z).In
this case, note that the function my (y;z) would also be
differentiable in both x and y. Thus, the optimality condition
for (9), would be Vm,(y; z) = 0. Substituting the definition
of mpr,(y; x) given in (7) into (9), and analyzing the first order
condition, we can write T7(y) = y — %(") Substituting
this into (10), results in r.(y) = VF(y) = Vf(y), ie.,
the composite reduced gradient becomes the gradient of the
objective function. On the other hand, when 7 # 0, utilizing
the first-order optimality conditions for (9), we have

Om(y; Te(y))" (v = Tr(y)) > 0,
~ T
(V) +LTL @)~y +7s.(v)) (@-Te)=0, (D

where O denotes the subdifferential of my(y;TL(y)),
sp(y) € 0g(Tr(y)) is a subgradient belonging to the
subdifferential of §(T(y)). Setting the first bracket of (11)
to 0 and using (10), we can compute the composite reduced
gradient as

re(y) = Ly — Tr(y)) = VI (y) + msc(y).

In words, the choice of the subgradient 7 (y) as in (12)
ensures that 0 € Omy, (y; TL(y)).

Now, we present the following lower on the objective
function F'(x), which is tighter than utilizing (5).

10)

(12)

Theorem 1. Let F(x) be a composition of an L j-smooth

and f—strongly convex function f (z), and a simple convex

Sfunction §(x), as given in (3). For L > L and z,y € R"

we have
F(&) 2 /(Tu) + 6(Te () + )7 (& )
+ Sl =yl + eI (13)

III. PROPOSED METHOD
First, we introduce the composite estimating sequences.

Definition 1. The sequences {¢1}7° o and { e }72 . Ak > 0,
are called composite estimating sequences of the function
F(-) defined in (3), if \y — 0 as k — oo, and Yz € R",
Vk > 0 we have

These sequences can be used to measure the rate of conver-
gence of the iterates, as shown in the following lemma.

14

Lemma 1. If for some sequence of points {x}>, we
have F(zy) < ¢f & Ié1712nn¢k(a:) then F(zy) — F(a*) <
A [o(z*) — F(z*)], where z* = arg Hl%l F(z).

zER™

The following recursive definition for the proposed com-
posite estimating sequences is introduced.
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Lemma 2. Assume that there exists a sequence {ou}72 .
where ay, € (0,1) Vk, such that ;7 oy, = oo, and an
arbitrary sequence {yr}7 . Furthermore, let Ao = I and
assume that the estimates Ly, of the Lipschitz constant L ;
are selected in a way that inequality (4) is satisfied for all
the iterates xj, and yy. Then, the sequences {¢r}72 and
{A\e}32, which are defined recursively as
A1 = (1 — ar) Mg,
bry1(z) = (1 — )P (x) + o (T1, (yk))

I
o (r )" (@ = ) + Bz — el ?)

15)
(16)

1
+akm””k(yk)\|2,

are composite estimating sequences.

We proceed by contrasting our results introduced in Def-
inition |, Lemmas | and 2 with their counterpart devised
for minimizing smooth convex functions presented in [19,
Definition 2.2.1, Lemma 2.2.1, Lemma 2.2.2]. First, note that
Definition | and Lemma | would reduce to the corresponding
results introduced by Nesterov, which are limited to the
case of minimizing differentiable objective functions. In
this sense, the framework proposed here extends the work
presented in [19] to solve a more general class of problems.
Second, as established in Lemma 1|, the rate of convergence
of the iterates depends on the rate at which Ay, — 0.
Third, in (16) we can see the impact of the tighter lower
bound on the objective function presented in Theorem 1.'
Last, the cost function in (16) is now evaluated at the
points given by the composite gradient mapping. Moreover,
unlike FGM, which is defined only when the computation
of the gradient of the objective function is possible, we can
observe that our proposed composite estimating functions
utilize subgradients of the non-smooth objective function to
construct the sequence {¢y}72 .

Let us now introduce the following structure for the
functions in the sequence {¢x}72

or(@) = i+ Solle —wel®, VE=1,2,.... (A7)

Note that the selection for the terms in {¢y(x)}7, is not
unique and that different choices for ¢p(x) can lead to
different accelerated methods (see [18], [25]). Let us then
show how the terms in the sequences {7 }7° 5, {vi}72, and
{¢5 172 can be computed recursively.

Lemma 3. Let ¢o(z) = ¢f + ||z — vol|?, where o €
R and vy € R™. Then, the process defined in Lemma 2
preserves the canonical form of the function {¢r(z)}72,
presented in (17), where the sequences {v;}7>q {vk}i2o
and {$} 172, can be computed as follows

Y1 = (1 — o)y + awpef, (18)

1
Vg1 = P ((1 — O )Yk VK + O (Mf?jk — L (yx —TLk(yk))»
(19)

'"When F(zx) is a convex and differentiable function, the composite
reduced gradient becomes the same as the gradient of the function.

1
Bias = (1— ag)df +ou (F <TLk<yk)>+mHm<yk>||2)

Lio? 5 Hjowyk(l—on) )
_ _T _
m Iy =T, (y) 1"+ et llyx — vl
Loy (1 — oy
+ M(yk—vk)T(yk—TLk(%))- (20)

Ve+1

Proof: See Appendix .

Due to space limitations, some derivations have been
omitted at this point. They can which be found in our full
paper [24]. Moreover, to obtain more intuition behind the
estimating sequences and methods obtained by utilizing this
framework, we refer the reader to [20], [26], [27].

Unlike the analysis presented in [19], the results obtained
in this work also allow for the line search adaptation.” To
achieve a faster progress to the optimal solution, it would
be preferable to select the smallest constant L such that
(4), with value Lf = Ly, is satisfied Yk = 0, 1, .. ., and then
slightly increase its value across the iterations. This approach
would ensure that the algorithm makes “larger steps towards
the optimal solution” in the initial iterations. Then, as zj
approaches z*, the larger values of L; would ensure that the
algorithm does not overshoot past z* and behave erratically.
Unfortunately, such an approach is not feasible because the
true value of L ; is not known. Therefore, we introduce
a line search strategy that has the following benefits: i)
Guarantees the robustness of the method with respect to
the initialization of the estimate of the Lipschitz constant.
ii) Ensures a dynamic update of the step size across the
iterations. The line search strategy that is utilized in this work
makes use of a constant 7, > 1, which increases the value
of the estimate and a constant 7y €]0,1[, which decreases
the value of the estimate of the Lipschitz constant. Finally,
our proposed algorithm is presented in Algorithm |.

Contrasting our proposed method and FGM, i.e., Constant
Step Scheme I in [19], we can see that the terms in {o, } 72,
and {7yx}7>, are updated in a similar manner. The first
dissimilarity can be observed in the updates of {yx}72,,
which for the proposed method are independent of 1. The
second dissimilarity can be noticed from the update of zy.
Because of the composite structure of F(x), the next iterate
is now computed by taking a proximal gradient step. Note
that the assumption on the simplicity of g(z) ensures that
the proximal term can be computed efficiently. The third
dissimilarity is the way {vi}72, is computed. It reflects
the usage of the proposed composite reduced gradient. Last,
we note that the proposed convergence analysis ensures
the converge of our proposed method for a wider range
of values for vy than what is supported by the existing
convergence results for FGM [19, Lemma 2.2.4], which
ensure convergence for 79 € [uf;?)Lf + Nﬂ- As we will

2Several backtracking strategies have been proposed in the literature (see
for instance [21], [22]).

3We note that Kmax denotes the maximum number of iterations. De-
pending on the application, the value of Kax can be selected to trade-
off between the required accuracy, and the needed processing time and
computations.
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Algorithm 1 Proposed Method

1: Input zo € R", Lo > 0, pif, 0 € [0,3Lo + uf],
7, > 1 and 14 €]0, 1].

2: Set k=0, i =0 and vy = x.
3: while k& < Ky, do
4: Lz < 7]de
5:  while True do _
N (1 p =)+ /(e —71) 2 +4 Ly
6: Q; — oL
7: Fig1 < (1 — &)y + diﬂf
. A~ Fit1Tr+E0i YR Vk
8 Yi th+1+6éL’Yk
o: Ei1 = prox s (i — ﬁl,vf@i))
i; i
10: Vjg1 <
T ((1 — &) Tkvk G (Mf?)i - L (@i*iﬁiﬂ)))
11: if F(iH»l) < my. (:l)“ -/EH—I) then
12: Break from loop
13: else .
14: Lit1 < nul;
15: end if
16: i i+1

17:  end while

18 Lis1 4 Liy Tpp1 < &4, ag < Gy,
yk%g,,1,7<*0,]€<*k+l

19: end while

20: Output zj

see later, setting 79 = 0, ensures the robustness of the
initialization of the proposed method with respect to the
imperfect knowledge of the strong convexity parameter.

Let us also analyze the behavior of the estimate of the
Lipschitz constant. Depending on the selection of Lg, two
possibilities exist. First, if Ly €]0, L f[, then from line 11 in
Algorithm 1, we observe that the estimate of the Lipschitz
constant at iteration k increases only if L1 < L - Thus,
it can be written that

Ly < Li < Ly < nuLy. @n

Second, if Lo > L # then the condition in line 11 of Algo-
rithm | is satisfied, and estimate of the Lipschitz constant
cannot increase further. Therefore, we would have

Lk g ﬂdL(). (22)

Combining (21) and (22), we note that despite of the value
of Ly, we have

Lk S Lmax = maX{T]dL(),UuLf}. (23)

Finally, we can characterize the convergence rate of the
proposed method as follows.

Theorem 2. Algorithm | generates a sequence of points such
that

1) If yo € [(Luf[, then
(Lo + xo — x*||?
Flag) — F(a*) < Hf( o +70)llZo [

— 2
k1 [PF _k+1 [BF
Ll e 2 Ti _ g 2 Ty

@4

2) If yo € [p,f,?)Lo + uf}, then
241 (Lo +70) ||z —a*(|?

.y AT 2
Iy _ e 2VIk

Fay)—F(z") <

(o) (¢
(25)

From Theorem 2 we observe that, compared to FGM, the
proposed method converges over a larger selection of values
of the term ~y. Moreover, we can see that initializing v = 0
exhibits the best theoretical performance. This is important
from a practical perspective, since in most cases the true
values of p 7 and L 7 are not known and should be estimated.
The convergence rate is also affected from the selection of
Lg. From (24) and (25) we can see that the smaller L, the
faster the convergence of the method. At this point, we stress
that L cannot be arbitrarily small, as it should still be chosen
in a way that the upper bound (4) is satisfied. Moreover, it
should also have a larger value than our estimate of the strong
convexity parameter i ;.

IV. NUMERICAL STUDY

In this section, we test the performance of several instances
of our proposed method in solving

m

P 1 T 2, 71 2
minimize 5;(% v+ 5 el +mollzll,  (26)
where || - ||1 denotes the I; norm. The performance of our

proposed method is compared to the state-of-the-art black-
box methods, i.e., AMGS and FISTA. For the proposed
method, we consider the variant that yields the best theo-
retical performance, i.e., when we initialize 79 = 0. In the
plots, it is named “Proposed, variant 1”. We also examine
the variant for which (in theory) the convergence rate is
slowest, i.e., we choose 79 = 3Lg + I3 and it is named
Proposed, variant 2”. Lastly, we examine the instance of the
proposed method that is obtained when vy = w7, which is
named “Proposed, variant 3”. For both AMGS and FISTA we
utilize the line-search strategies presented in the respective
papers [21], [22]. We demonstrate the robustness of the line-
search strategy that is used in the proposed method, we
depict the following instances. i) We initialize the estimate
of the Lipschitz constant to be 10-times smaller than the
true value, i.e., Ly = 0.1L ;. ii) We initialize the estimate
of the Lipschitz constant to be 10-times larger than the
true value, ie., Ly = 10L 7 Moreover, we choose the
parameters 7,, = 2 and 74 = 0.9 based on [30] because they
ensure “a good performance of the methods across many
applications”. Regarding the strong convexity parameter, we
have already discussed that, from a computational viewpoint,
14 ¢ is expensive to estimate in practice. Therefore, to decrease
the number of computations, we equate the strong convexity
parameter to that of the regularizer term in (26). Furthermore,
we choose the starting point x( at random for all algorithms.

We compare the performance of the methods on real data,
which are selected from the Library for Support Vector
Machines (LIBSVM) [28]. Specifically, we consider the
datasets “ala” and ‘“colon-cancer”. For the “ala” dataset,
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we have A € R1605x123 Op the other hand, for the “colon-
cancer” dataset, we have A € R62%2000_ For these datasets,
the respective true values for the Lipschitz constants are
Leyipr = 10061 and Lecoion-cancer” = 1927.4. Moreover, we
consider the following assignment for the regularizer term
71 = T2 € {107°,107%}. Evidently, such choice of the
regularizer terms ensures a very large condition number
—L for the problems that are considered in this section.
We ﬁnd the optimal solutions via CVX [29].

From Fig. | we can observe that all the instances of the
proposed method exhibit a much better performance than
the existing benchmarks. First, observe that the final iterate
produced by any of the variants of the proposed method is the
closest to z*. Second, notice that unlike the iterates produced
by AMGS or FISTA, the sequence of iterates constructed
by the proposed method converges to the optimal solution
2* in a much smaller number of iterations. Moreover, we
can see that the performance of FISTA is visibly worse than
the other accelerated methods. This occurs partly because
the FISTA algorithm cannot exploit the strong convexity
of the objective function. Third, notice that the practical
performance of both the proposed method and AMGS is not
altered by the inexact knowledge of L,. However, unlike
AMGS which requires two projection-like operations per
iteration, our proposed method retains the robustness to L at
a lower computational cost. On the other hand, the results for
FISTA suggest that the initialization of the Lipschitz constant
significantly affects its performance. Last, observe that all the
different variants of the proposed method exhibit very similar
convergence properties and their differences in performance
are minor. As can be seen from Figs. I(a) and 1(b), the
variant obained under the initialization 7y = 0 exhibits
a faster convergence. Such a result is highly relevant in
practical applications, wherein the exact values of p 7 and L 7
are approximated by using some numerical procedure. Thus,
we can see that the variant of the proposed method which
results from choosing vy = 0 exhibits better convergence
properties than the selected benchmarks, and at the same
time is also more robust to the imperfect knowledge of the
strong convexity parameter and the Lipschitz constant.

V. CONCLUSIONS AND DISCUSSION
A new accelerated black-box gradient-based estimating

sequence method for solving problems with composite ob-
jective has been presented. The proposed method has been
devised by utilizing a newly introduced class of estimating
functions and it is equipped with an efficient line-search
strategy. The newly introduced estimating functions have
been used to construct upper bounds on the non-smooth
function, as well as to measure the convergence rate of the
minimization process. Different from the existing conver-
gence results of FGM-type methods, our proposed analysis
supports the adjustment of the estimate of the Lipschitz
constant. Moreover, our proposed method converges when
Y € [0,3L + ;). In practice, our findings establish the
possibility of constructing accelerated estimating sequences
methods, which also enjoy the robustness to the imperfect
knowledge of the Lipschitz constant and strong convexity

K=

Proposed, varant 3

—— Proposed, varant 2 10 FISTA
|—— Proposed, variant 1

Proposed, varant 3
. —— Proposed, varant 2
10 |— Proposed, variant 1

(a) Decreasing the distance to z*
on “ala” dataset, Lo = 0.1L«,1~
and 71 = 12 = 1075,

(b) Decreasing the distance to «*
on “ala” dataset, Lo = 10L«,,»
and 71 = 12 = 10—

FISTA
— AMGS

Proposed, variant 3
10° —— Proposed, variant 2.
—— Proposed, varant 1

FISTA
—— AMGS
Proposed, variant 3
—— Proposed, variant 2
—— Proposed, variant 1

0 1 2 3 0 1 2 3
k «10° k x10°

(©) Decreasing the distance to z* (d) Decreasing the distance to x*
on “colon-cancer” dataset, Lg n “colon-cancer” dataset, Lo =
= 0.1Lxcolon-cancer” and 71 = 72 10L<colon-cancer” and 71 = 72 =
=10"5. 1076,
Fig. 1: Comparison between the efficiency and robustness
with respect to the initialization of the Lipschitz constant
of the algorithms tested in minimizing the quadratic loss
function with elastic net regularizer on real data.

parameter. We note that the robustness to the strong convex-
ity parameter is of significant importance in practice since
its true value is computationally expensive to obtain. Our
theoretical findings are supported by numerical experiments
performed on real-world datasets.

The framework and results that were presented in this
work can be extended in various directions. First, it would be
of interest for networked control applications to investigate
the possibilities of constructing a distributed variant of our
proposed method, which would also improve the scalability
of the proposed framework. Second, it would be of interest
to construct extensions of our proposed framework to the
stochastic optimization framework. Last, it would also be
of interest to investigate the possibility of embedding other
types of momentum terms (e.g., heavy-ball momentum) into
the proposed estimating sequences to further improve the
convergence properties of our proposed method.

APPENDIX |

PROOF OF LEMMA 3
We will prove the first part by induction. First, considering

k =0, we can write V2¢q(x) = voI. Next, we suppose that
for some step k we have V2@, (x) = ~iI. Then, at the next
step k + 1, it can be written that

V2 r(z) =

At this point, we are ready to show how the recursive equa-
tions for updating {vj}72, and {¢}}72, can be obtained.

(1= ap)el + apppl =yl (27)
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Vk+1

Opy1 + 5

1

o= vl = (1= ) (65 + = o)+ e (F (Tl + gl ) G

2Ly

2
Ve+1 ag

(1—aw)*vi
2 71”%7

2
k — Uk =
[y +1l] P

2y

2 Lk2
k|l + 5 llyx — T, (U
1

) ||2 o 2Lk04k(1 — ak)’)/lc(

5 v — k)" (ke — To, (Ui))-
Yi+1

(33

Utilizing (17) in (16), as well as considering its first-order
optimality conditions, yields

Vi1 (@ — vgy1) = (1 — ax) (T — vi) + oy (Mf‘(l“ = k)
+ 71, () - (28)

Substituting (18) in (28), and discarding the terms that
depend on z, it can be written that

Ve Vi1 = — (1 — g ) ye0K+ o (—Mfyk +7L, (Z/k)) . (29)

Then, utilizing (10) in (29), yields (19).

Now, we are ready to proceed with establishing (20).
Exploiting (17) in (16), now evaluated at the point z = y,
we obtain (34), shown at the top of the page.

Then, we utilize (19) to find an alternative characterization
for the second term in the left hand side (LHS) of (34). Let
us examine the following

1
k1 — Yk = —((1 — o) ywvk +anp jye
Ve+1

—apLy (Y —Tr, (U8)) — We+19%)-  (35)
Then, substituting (18) in (35), it can be written that
1
Vet — Yo = — (1 — aw)ve (v — yi) (36)

Yk+1
— gLy, (yr — Tr,, () -

Considering the ||-||? of the LHS and RHS in (36), we reach

2= (= )y (vk —yx) — o Li(ye = T, (yk))

I
'Y/%H

| |yk—’Uk+1

37
Multiplying the LHS and RHS of (37) by 2, and expand-
ing the RHS, we obtain (38) shown at the top of the page.
Utilizing (38) in (34), yields (20).
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1. Introduction

is computed with complexity O(n) [2]. Herein || - || denotes the I,
norm.

In this work, we devise accelerated black-box methods for solv-
ing large-scale convex optimization problems with a composite ob-
jective structure by using only first-order information. The typical
structure of such problems is

min}i(rr}zinze F(x) = f(x) + tg(x), T >0, (1)

where the function f:R" — R is an Lg-smooth and p ¢-strongly
convex function with 0 < uf < Ly. The regularizer g: R" — R is a
simple convex lower semi-continuous function with strong convex-
ity parameter jg. Typically, in signal processing applications, the
function g(x) is “simple”, meaning that a closed-form solution for
minimizing the summation of g and some auxiliary functions can
be easily found [1]. In more practical terms, the assumption on the
simplicity of g implies that its proximal map, defined as

pIOX 4 2 argmin (8@ + £z —x11?).x e R, 2)
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Problems that share the same structure as (1) arise quite of-
ten in different scientific disciplines, such as signal and image pro-
cessing, data analysis, and machine learning. Typical applications
in which the formulation given in (1) is relevant include compres-
sive sensing, phase retrieval problems, medical imaging, dictionary
learning, and many more (see [3,5-74] and references therein).
When considering applications, the variable x represents the model
parameters, whereas the role of f(x) is to ensure a good fit be-
tween the observed data and the estimated parameters. In sig-
nal processing applications, g(x) acts as a regularizer and typically
takes the form of some parameter shrinkage norm, i.e., [, norm
[8,9], sparsity-enforcing norm, i.e., [ norm [10-12], or its coun-
terpart for the rank function, i.e., the nuclear norm [13,14]. An-
other popular structure for g(x) is the Chebyshev norm, i.e., the
I norm [15]. The function g(x) can also be used to embed convex
constraints, in which case it would act as an indicator function of
some closed convex set [1].

In the context of large-scale optimization [16], problems that
share the same structure as (1) are solved iteratively using dif-
ferent first-order optimization algorithms [17,18]. The bounds on
the performance of black-box first-order methods have been es-

0165-1684/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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tablished by Nemirovsky and Yudin [19]. Loosely speaking, a first-
order method is optimal in the black-box framework if it achieves
the accelerated convergence rate with respect to the iteration
counter k, while at the same time complying with the lower com-
plexity bounds. The question of how to construct practical methods
that are optimal has attracted the attention of the research com-
munity over decades. One of the first methods that managed to
achieve the accelerated convergence rate in the black-box frame-
work was the heavy ball method [20]. Therein, the acceleration is
achieved by adding a momentum term to the gradient step, which
nudges the new iterate in the direction of the previous step. The
first method that is optimal in the sense of Nemirovsky and Yudin
[19] is the Fast Gradient Method (FGM) [21]. It is built based on the
mathematical machinery of estimating sequences, and has been
since widely studied [22-27].

Finding different reasons behind acceleration has attracted sig-
nificant attention in the recent research on first-order optimiza-
tion. In [28], the authors have constructed accelerated first-order
methods by exploiting the linear coupling between mirror and gra-
dient descent. The framework presented therein leads to a myriad
of applications wherein classical accelerated gradient methods do
not apply, however all these applications are limited to the case
of differentiable objective functions. The authors of [29] have de-
rived an accelerated first-order method, which was inspired by the
ellipsoid method. The proposed method is efficient; however, it
suffers from the drawback that it requires an exact line search.
An interesting framework is established in Flammarion and Bach
[30], Su et al. [31], wherein the authors model the continuous-
time limit of FGM as a second-order differential equation (ODE).
Then, FGM equations can be obtained based on such a framework.
Specifically, in Flammarion and Bach [30], the authors show that
several accelerated schemes can be formulated as constant param-
eter ODE algorithms, wherein the stability of the systems would
be equivalent to covergence at rate @(1/n?). The limitation of the
work is that the analysis presented therein is restricted only to the
class of smooth and non-strongly convex problems. Moreover, in
Su et al. [31] the authors show that the ODE type of analysis al-
lows for a better understanding of Nesterov's scheme. However, the
family of methods obtained therein, exhibits a similar convergence
rate to FGM. Similar convergence rate as those obtained for FGM
can also be derived by using theory from robust control [32]. A
novel approach for analyzing the worst-case performance of first-
order black-box methods has appeared in Drori and Teboulle [33].
The analysis conducted therein relies on the observation that the
worst-case behavior improvement of a black-box method is itself
an optimization problem, which is referred to as the performance
estimation problem. By utilizing this approach, the authors of Kim
and Fessler [34], 35] have introduced optimized first-order meth-
ods that are efficient and achieve a convergence bound that is two
times smaller than the one attained by FGM. However, the devel-
opment of these algorithms is restricted to solving problems with
smooth objective functions.

Among the various approaches to the acceleration of first-order
methods that were discussed above, the methods that were built
based on the machinery of estimating sequences have attracted a
lot of attention (see d’Aspremont et al. [18], Bubeck [36] and ref-
erences therein). Several reasons that have led to their success are
summarized in the sequel. First, on a theoretical level, FGM-type
methods are proven to be optimal in the sense of Nemirovsky and
Yudin [19]. Second, their practical performance is competitive even
when they are used in conjunction with simple line search strate-
gies, such as backtracking [37,38]. Third, they can be scaled to con-
struct accelerated second-order methods [39,40] and accelerated
higher-order methods [41,42]. Last, they have been shown to ex-
cel in performance even when they have been extended to other
settings, such as distributed optimization [43,44], nonconvex op-
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timization [45,46], stochastic optimization [47,48], non-Euclidean
optimization [49,50], etc. In [51], it is argued that the key behind
constructing optimal methods lies in the accumulation of some
global information on the objective function. The mathematical ob-
jects which enable for capturing the relevant topological informa-
tion on the function that is to be minimized are the estimating
sequences. Typically, they consist of a pair of sequences, that si-
multaneously allow for parsing global information around the it-
erates, as well as for measuring the convergence rate of the min-
imization process. Despite their remarkable properties, estimating
sequences exhibit the issue that there is no unique or systematic
approach for constructing them. As we will see in the sequel, mak-
ing the adequate choice of the estimating functions that comprise
the estimating sequences can significantly impact the practical per-
formance of the resulting algorithm.

The estimating sequences framework for the study and analysis
of various methods has been presented in Baes [52]. An existing
estimating sequence method that can directly solve (1) is the Ac-
celerated Multistep Gradient Scheme (AMGS) [1]. The method is
proven to enjoy the accelerated rate of convergence O(kiz). De-
spite its notable theoretical and practical performance as measured
by the number of iterations carried through until convergence, the
method suffers the drawback that it requires two projection-like
operations per iteration. This results in an increase of the com-
putational burden, which (in the case of large-scale problems) is
also reflected in an increase of the runtime of the method. This
problem has been solved by the development of the Fast Itera-
tive Shrinkage-Thresholding Algorithm (FISTA) [53]. The method
also enjoys the accelerated convergence rate of O(kiz), while at the
same time requiring only one projection-like operation per itera-
tion. Similarly to Nesterov [21], FISTA does not explicitly utilize the
machinery of estimating sequences. However, as has been demon-
strated in Florea and Vorobyov [54], by properly selecting the es-
timating functions it is possible to establish links between FISTA
and estimating sequence methods.

As discussed above, many of the existing seminal methods such
as AMGS, FISTA and FGM [51, Constant Step Scheme I (2.2.19)],
were obtained by explicitly (or implicitly) using the estimating
sequences framework, and they all enjoy the theoretical acceler-
ated rate of convergence. Despite being accelerated in theory, these
methods still exhibit the following differences: i) The algorithmic
structure of the methods changes depending on the different es-
timating sequences that are used in devising these algorithms. ii)
The practical performance of the methods varies significantly when
they are tested on real-world problems and datasets. Moreover,
based on preliminary experiments that we have conducted for the
cases of differentiable convex functions, we have observed that
FGM converges faster than both AMGS and FISTA. Thus, the ques-
tion of how to construct newer classes of estimating sequences
that can be used to build more efficient methods for solving prob-
lems with composite objective structure arises. In this work, we
answer this question affirmatively, and show that, by construct-
ing the appropriate estimating functions, it is possible to devise
very efficient accelerated first-order methods. More specifically, the
main contributions of the article are as follows.

e In this work, we extend the existing estimating sequences
framework presented in Nesterov [51] for minimizing differen-
tiable objective functions, to the broader class of solving prob-
lems with composite structure given in (1).

e We introduce a new structure for the estimating functions,
which we call the composite estimating functions. The proposed
estimating functions are constructed by utilizing the gradient
mapping technique [19] together with a tighter global lower
bound on the objective function than the one obtained from
the Taylor series expansion of a convex function.
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* We show that our proposed estimating functions can be used
to efficiently parse information around all the iterates, as well
as measure the convergence rate of the minimization process.
Unlike the estimating functions devised in Nesterov [51], which
are only defined for the problem of minimizing smooth func-
tions, our proposed composite estimating functions make use
of the tighter lower bound on the objective function, as well
as the subgradients of the objective function. This allows for
designing methods that are used for solving a broader class of
problems.

We show how the proposed estimating sequences can be used
to produce a new class of Composite Objective Multi-step
Estimating-sequence Techniques (COMET), which are also en-
dowed with an efficient line-search strategy. Unlike AMGS, the
resulting algorithms require only one projection-like operation
per iteration.

We prove that COMET enjoys the accelerated convergence rate
even when the Lipschitz constant is not known and needs to be
estimated.

We establish that the initialization of COMET can be made ro-
bust to the imperfect knowledge of the strong convexity pa-
rameter. Such a fact is very important for many practical ap-
plications, as computing the true value of the strong convexity
parameter is computationally expensive.

Through extensive simulations for various typical signal pro-
cessing problems with composite structure, we show that the
proposed method yields a better performance than the exist-
ing benchmarks. Furthermore, we also show the robustness of
the selected instances of COMET with respect to the imperfect
knowledge of the strong convexity parameter and the Lipschitz
constant. To demonstrate the robustness, as well as the reliabil-
ity of our proposed method, we test its performance on real-
world datasets.

The article is organized as follows. In Section 2, we introduce
the key assumptions of the paper, as well as some of the main
concepts that are used in developing our method. In Section 3, we
introduce the proposed estimating sequences for composite objec-
tives and devise COMET based on them. In Section 4, we formally
establish the convergence of COMET and derive the convergence
rate for the minimization process. Then, in Section 5, we illus-
trate the performance of our proposed method in solving several
optimization problems and show that it outperforms the existing
benchmarks. Last, in Section 6, we present our conclusions and dis-
cuss possible future research directions.

2. Preliminaries

Assume that the objective function is bounded below, i.e.,
(1) has a solution. Another key assumption, which holds true for
typical signal processing applications, is that the function and gra-
dient computations have approximately the same complexity. For
the problem setting of interest, the necessary oracle functions are
the function evaluators, f(x), g(x), gradient evaluator V f(x), and
proximal evaluator proxg(x).

To simplify our analysis, let us relocate the strong convexity of
g(x) within the objective function in (1). Let Xy € R" and consider
that

P = (£09+ S5 1Ie=x0l) + 7 (800 - LElIx — 0l )

= F(0) + T8(x). 3)

The resulting function f(x) has a Lipschitz constant Lf =L+
T g and strong convexity parameter i F= Myt Tl On the other
hand, the function g(x) has a strong convexity parameter Mg =0.
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Recall that it is possible to construct upper and lower bounds
for the smooth and strongly convex function f(x) by using the fol-
lowing relations:

N A A L;
fo = F0) + VIO =y + S lly =l @)

fo = Foy + Vi -y + iy -x, 5)

for all points y € R". Similarly, we can construct the following
lower bound for the non-smooth term

0 ZEW) +s0) X -y), (6)
where s(y) is a subgradient of the function g(-) at the point y.

Moreover, for all y e R" and L > Lf, we define

M0 £ FO) + VIO -y + S ll-ylP e, ()

Using the upper bound on the function established in (4), it can be
seen that

mp(y;x) > F(x),Vx,y e R". (8)

At this point, the composite gradient mapping can be introduced
as

T.(y) £ argmin my(y; X). 9)
XeRM
Lastly, the composite reduced gradient can be defined as

n® =Ly -T). (10)

Let us now make a digression and note that when t = 0, we have
the following: i) f(x) = f(x), which follows from (3); ii) T,(y) =
V- w, which follows from (9) and (7). Substituting these re-
sults into the definition given in (10), yields r (y) = VF(y) =
Vf(y), i.e., the composite reduced gradient becomes the gradient
of the objective function.

Returning back to the more general case, i.e., T # 0, from the
first-order optimality conditions for (9), we can write

Vm(y; Ty)) (x - T.(y) = 0,
(V) + LML) —y) +15:0)) (x = TL(¥)) = 0, (11)

where s;(y) € dF(T.(y)) is a subgradient belonging to the subdif-
ferential of F(T.(y)), whose value depends on the point y. Equat-
ing the first bracket of (11) to 0, as well as recalling definition (10),
we obtain the following relation, which is useful for computing the
value of the composite reduced gradient

n®=Ly-T.y) =V +15:(0). (12)

Last, we present a tighter lower bound on the objective func-
tion.

Theorem 1. Let F(x) be a composition of an Lf»—smooth and I

strongly convex function f(x), and a simple convex function g(x), as
given in (3). For L > Lf, and x,y € R" we have

Fx) = f(L) + 1800+ x—y)
Ky 2, 1 2
+ Lk =yIP + S lnw)I?, (13)
where T, (y) and r;(y) are defined in (9) and (10), respectively.

Proof. See Appendix A. O
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3. COMET

In this section, we devise our proposed method. We start by
introducing the composite estimating sequences, and then show
why these sequences are useful. We also present a pair of com-
posite estimating functions and show how to compute them recur-
sively. Then, utilizing the proposed construction of the composite
estimating functions, we derive COMET.

We begin by defining the composite estimating sequences.

Definition 1. The sequences {¢;};?; and {A;}32,, A = 0, are called
composite estimating sequences of the function F(-) defined in (3),
if Ay = 0 as k — oo, and Vx € R", Vk > 0 we have

Ae(X) < Apo (X) + (1 = M) F (x). (14)

These composite estimating sequences allow for measuring the
convergence rate to optimality, which is characterized in the fol-
lowing lemma.

Lemma 1. If for some sequence of points {Xk};fig we have F(x;) <
;= mind (x), then F(x) — F(x*) < Algpo(x) — F(x*)], where x* =
XeRM

arg minF (x).
XeRN
Proof. See Appendix B. O

We are now ready to show how the composite estimating se-
quences can be defined recursively.

Lemma 2. Assume that there exists a sequence {oy}y , where oy €
(0, 1) Vk, such that 3732 o = oo, and an arbitrary sequence {y;}32 .
Furthermore, let Ag = 1 and assume that the estimates L, of the Lip-

schitz constant Lf are selected in a way that inequality (4) is satis-

fied for all the iterates x, and y,. Then, the sequences {¢k}k°‘;0 and
{Ak}pe o which are defined recursively as

s = (1 =)y, (15)

Br1 ) = (1= +erfF (T 00) + 3 I, 0 1)

"
v (1, 00 =y + L Ix -2, (16)
are composite estimating sequences.
Proof. See Appendix C. O

At this point, we provide a comparison between the results ob-
tained in Lemmas 1 and 2 to their counterpart devised for the sim-
pler case of minimizing smooth convex functions presented in Nes-
terov [51]. First, we can see from Lemma 1 that the convergence
rate of the minimization process depends entirely on the rate at
which A, — 0. Moreover, the result hints that for problem (1) we
should expect a similar convergence rate as in the simpler case of
minimizing a differentiable convex function. Then, in Lemma 2, we
have shown how to form the estimating functions. It can also be
seen from (16) that we are utilizing a tighter lower bound than the
one used for deriving FGM for the smooth strongly convex case.!
Furthermore, it can be noted that the cost function is evaluated at
specific points in its domain, which are produced by the compos-
ite gradient mapping. Last, it can be observed that the subgradient
of the non-smooth objective function is needed to construct the
estimating functions {¢}° .

Until now, no particular structure for the functions in the se-
quence {¢k}k°‘;0 has been proposed yet. Inspired by the analysis for

1 Recall that when F(x) is smooth and convex function, the composite reduced
gradient becomes just the gradient of the function.
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FGM in the setup of smooth convex functions [51], in the sequel
we let

00 2 g+ ellx— w2, Vk=1.2..... (17)

where y, € R* and v, € R", Vk =0, 1, .... Nevertheless, we stress
that this selection is not unique. As a matter of fact, different
choices of the canonical structure for the function ¢, (x) can lead
to entirely different algorithms, see for example [49,56,55]. Next,
in Lemma 3 we show how the terms {yi}2 . {vi}32, and {#;}32,
can be computed recursively.

Lemma 3. Let ¢g(x) = ¢ + 2 ||x — vo||%, where yo € R* and vg €
R". Then, the process defined in Lemma 2 preserves the canonical
form of the function {¢y(x)};>, presented in (17), where the se-
quences {Yi}e2o (Vilpe, and {@;}72, can be computed as follows

Vet = (1 = ) Vi + el . (18)

1

Vi1 =
Vi1

(1 — v + o (e = Le(ye = T ), (19)

91 = (1 —ang +a(F(T,00) + ziLkurLk )

22 Mo Yi (1 — o)
_ k7K —T 2 + Dy T - 2
e ye = T 0| e [y —vill
L, 1-«
E= 2l W;E : 9 (e — )T G — Ty (x0))- (20)
N

Proof. See Appendix D. O

Comparing the result obtained in Lemma 3 with its counter-
part constructed for minimizing smooth objective functions [51,
Lemma 2.2.3], it can be seen that the recursion for computing the
elements in the sequences {v;}72, and {¢;}7°, has changed. It now
reflects both the different lower bound on the objective function,
as well as the reduced composite gradient, which were utilized for
constructing the composite estimating functions.

Let us now proceed to constructing the algorithm via induction.
First, let ¢f = F(xo). Next, assume that for some iteration k, we
have: ¢; > F(x;). To conclude the induction argument, we need to
show that ¢y, > F(x,,). Using the aforementioned assumption
for iteration k into (20), it can be written that

B = (1= P + e (F(1L00) + 5 Im 001

Lla? ppo v (1 —ay)
— —T 2 + - — 2
e [y — To, )] e Nyi — vl
L, 1-«o
4 AV~ ) “’;Z : 9 (1~ 3! (0~ iy ). (21)
N

Then, substituting the bound obtained in Theorem 1, as well as
(10) into (21), we obtain

G = (1= ak)(F(TLk(_Vk)) + 1, )T (k= i) + %ka = yell?

+2LLk||rLk(yk)||2> +(¥k<F(TLk0’k)) + ZLL,(HrLk (yk)llz)

o o vkl —o
_ %y 2y MYk k _ul?
Ten [, i o [y —vill
o 1-«
R (22)

Vi1

Making some algebraic manipulations and factoring in (23), we
reach
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X 1 o 2
¢k+1 > F(T,, i) + <27Lk - m) [, @l

+(1 —ak)nkwk)T(xk—yw %(vk fyk>). (23)

k+

At this point, a relation for the unknown terms in the sequences
{end o and {y}2, needs to be found. Observe that in (24) we can
obtain the update rule for the terms in the sequence {a;}2, as

N (24)

Utilizing the recursion for y;; given by (18), and solving the re-
sulting quadratic equation yields

2
Wi =Yt/ (7= Ye) +4Lvk
el ) -

%= 2L,

Making the aforementioned selection for o, (24) can now be writ-
ten as

Ohn = FIL00)+ (1= ar, 00" (%~ Y+ S22 0 - 30 ).
(26)
Thus, the update rule for the term y, can be obtained by setting

o
Xk — Y+ ﬂ(”k - Y) =0. (27)
Vi1

This results in

Ve = Vir1Xk + XiVicVk (28)
Viert T %V
To establish that ¢y > F(xi,q), it suffices to let xq = Tp, (V).

Last, another major difference between our proposed method
and its counterpart for minimizing differentiable convex functions
[51], is the fact that our analysis allows for the line search adap-
tation.2 The goal of our proposed line-search strategy is to select
the smallest constant L, such that (4) is satisfied Vk=0,1,.... To
progress faster towards x* in the initial iterations, we would want
to initialize Ly €]0, Lf[- and then gradually increase the value of
the estimate of the Lipschitz constant across the iterations. How-
ever, since the true value of L; is not known, this approach can-
not be used. Therefore, it would be more preferable to select the
line search strategy such that it ensures the robustness of the
method with respect to the initialization of the estimate of the
Lipschitz constant and ensure a dynamic update of the step size.
Such a scheme would be of importance for many applications in
signal processing (see Florea and Vorobyov [54] and the references
therein). For this purpose, the following two parameters can be
utilized: i) a constant 1, > 1, which increases the value of the es-
timate; ii) a constant ny €]0, 1[, which decreases the value of the
estimate of the Lipschitz constant. Finally, the proposed method is
summarized in Algorithm 1.

Comparing between our proposed method and FGM (Constant
Step Scheme I in Nesterov [51]), we can observe from lines 6 and 7
in Algorithm 1, the similarities in updating the sequences {o ]},
and {y}2,- A difference can, however, be noticed in the update
of the terms in the sequence {Yk}ﬁio' whose value becomes inde-
pendent of 7 Additionally, a key difference between the methods
is in the update of the iterates x,. Due to the composite structure
of the objective function of interest, the next iterate x;,; is com-
puted by taking a proximal gradient step. Note that as long as the
non-smooth term g(x) has a simple structure, the proximal term

2 Note that several backtracking strategies have already been proposed in the lit-
erature (see for example Nesterov [1], Beck and Teboulle [53], Tseng [57]).
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Algorithm 1 COMET.

Input: x5 € R", Ly >0, Rp Vo€ [0, 3Ly +;Lj:]. ny>1 and n4e

10.1[.

1: while k < Kynax do

2: i,- <« ngLy

3 while True do

N T )
4: O« —F

21;

5: Vit < (1= Q)Y+ ity
. 5. o Die1Xt@iviei
& Vi T
7: Riy1 < Pr0X4g<ﬁi - %Vf(ﬁi))
L i
8 Dipg < };ilﬂ ((1 - 07i)V1<Uk+07i(Mf)7i - zi(yi—2i+1)>)
9: if F(Riy1) < m[i (9i, Ri1) then
10: Break from loop
11: else
12: Liq < nul;
13: end if
14: i<—i+1

15: end while

16: Ly < ii, Xpep1 < R <@g, Y < i, i< 0, k< k+1
17: end while

Output: X

can be computed efficiently. Another major difference between the
methods lies in the update of the terms in the sequence {v},
which now reflect the usage of the proposed subgradient. Last, the
parameter yy can now be selected over a wider range of param-
eters than what is guaranteed by the existing convergence results
for FGM established in Nesterov [51, Lemma 2.2.4]. The rationale
behind this result will become clear in the sequel.

Before we proceed to analyzing the convergence rate of the
minimization process, let us evaluate the behavior of the estimate
of the Lipschitz constant. Depending on the initialization of Lg,
there are two scenarios.

i) If Loy e]O,Lf[, then from line 11 in Algorithm 1, it can be ob-

served that the estimate of the Lipschitz constant at iteration k

increases only if L,_; <L f Therefore, we can write

Lo<Li<Ly<nl (29)

f‘-‘.
ii) If Ly > L;, then the condition in line 11 of Algorithm 1 is sat-

isfied, and estimate of the Lipschitz constant cannot increase
further. This yields

Ly < nalo. (30)

Combining the bounds (30) and (31), we can see that despite
the initialization of Ly, it is always true that

Ly < Lmax & max{nalo. nul¢}. (31)

To obtain an easier understanding of the proposed method, we
also present the flowchart in Fig. 1. As can be seen from the
flowchart, at any iteration k the inputs are feed into the outer
loop, which starts by decreasing the estimate of the Lipschitz con-
stant (see line 2 in Algorithm 1). The inner loop then updates
the parameters and takes one proximal gradient step to produce
the iterate at iteration k+ 1 (see lines 4-8 in Algorithm 1). As
long as a function-based stopping criterion is not satisfied, the in-
ner loop also corrects the value of the estimate of the Lipschitz
contant, which corresponds to line 12 in Algorithm 1. After the
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Toput: 70 € 7. Lo > 0, i, 0 €
[0.3Lo+p1], . > 1 and 7 €]0.1]

Output: i,

Update iterates }(-

Update parameters

and take one prox-

imal gradient step

Fig. 1. Flowchart that depicts the main building blocks of our proposed method.

function-based stopping criterion is satisfied, the inner loop is ter-
minated and the method proceeds to the next iterate (see line
16 in Algorithm 1). The numerical procedure terminates after the
iteration-based stopping criterion is satisfied, and outputs x,...
Contrasting our proposed COMET to AMGS and FISTA we can high-
light several differences. First, with respect to AMGS, we note that
the methods require different input parameters. Moreover, observe
that our proposed COMET only queries one proximal and one gra-
dient oracle to update the iterates. On the other hand, AMGS re-
quires double the queries. As we will see in Section 5.3, this trans-
lates into an increase in the runtime of AMGS. Comparing our pro-
posed COMET to FISTA, we note that they both query a single prox-
imal and gradient oracle to update the iterates. The first difference
in the methods lies in the line-search procedure that is employed
by COMET, which is more efficient as it allows for dynamically up-
dating the estimate of the Lipschitz constant. On the other hand,
the line-search procedure proposed for FISTA only allows for in-
creasing the estimate of the Lipschitz constant. Another major dif-
ference between the methods lies in the fact that the methods are
initialized using different input parameters. Similar to the differ-
ences with AMGS, this arises because the methods were devised
using different principles of acceleration of first-order methods.

4. Convergence analysis

Let us begin by noting that the result obtained in Lemma 1 sug-
gests that the convergence rate of the minimization process will be
the same as the rate at which A, — 0. This is made more precise
in the following theorem.

Theorem 2. If we let Ap=1 and A, = ]'[f.‘;(} (1 —«;), Algorithm
1 generates a sequence of points {xk},i';o such that

F(x) - F(x") < xk[F<xo) ~Fee)+ R1x —x*l\z] (32)

Proof. See Appendix E. O

Now, recall that from Definition 1, we must have A, — 0. There-
fore, the result of Theorem 2 is sufficient to establish the fact that
the sequence of iterates produced by our proposed algorithm con-
verges to the optimal solution. The next step is to evaluate the rate
of convergence of this process. Let us begin by characterizing the
rate at which A, — 0.

Lemma 4. For all k > 0, Algorithm 1 guarantees that
1. If yo €0, ;,Lf»[, then
215 2

<
~ 2= k2
Lk(ﬁ\/% _e—%u/if[> e+

}‘k = (33)

2. If vo € [my, 3Lo + pugl, then

Ap; 4L,

he = T g Y(k+ 12
I 5 — s
()/o—llf)<ek%1 e LT]) v Hy

(34)

Proof. See Appendix F. O

Comparing the results obtained in Lemma 4 with the earlier re-
sults obtained in Nesterov [51, Lemma 2.2.4], we can see two ma-
jor differences. First, our proposed analysis establishes the conver-
gence of the method even when the true value of the Lipschitz
constant is not known. Second, we can see that it is possible to
establish the convergence of the method in minimizing objective
functions with composite structure for a wider initialization range
of the parameter ). The importance of this result arises from
the fact that the method exhibits a faster theoretical and practi-
cal convergence when y, = 0, which is not supported by the ex-
isting analysis for FGM. At the same time, the initialization yp =0
also provides robustness with respect to the imperfect knowledge
of n f'

From Theorem 2, we can see that the convergence rate of the
minimization process depends on the distance F(xg) — F(x*). The
following lemma yields an upper bound on it.

Lemma 5. Let F(x) be a convex function with composite structure
as shown in (1). Moreover, let T;(y) and r;(y) be computed as given
in (9) and (12), respectively. Then, for any starting point xo in the
domain of F(x), we have

Fixo) ~ F) = 2o |12 (35)

Proof. See Appendix G. O

Combining the results of Lemmas 4 and 5 with Theorem 2, we
can immediately obtain the convergence rate for COMET as follows.

Theorem 3. Algorithm 1 generates a sequence of points such that
1. If yo €0, ,uf[, then
wiLo+ yo)llxo —x*|I?

Fx) —F(x') < — (36)
Lk(e%/;f—e*'{%‘\/g>
2. Ifp e [uf. 3Ly +uf], then
2 (Lo + y0)| %0 — x*||2
Flx) — FO*) < wjLo + yo)llxo — x*| 37)

2
(o - Mf)(e%lﬁ - ef%ﬁ>
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From the result of Theorem 3 we can see that our proposed
method is guaranteed to converge over a wider interval than its
counterpart designed for minimizing smooth and strongly con-
vex objectives. Notice that initializing )y = 0 would guarantee the
fastest convergence of the method. Such a result is important when
considering many practical applications, wherein the true values of
¢ and L; are often not known and should be estimated. Another
factor that impacts the rate of convergence of the minimization
process is also the initialization of Ly. From (37), (38) we can see
that the smaller the value of Ly, the faster the convergence of the
method.

5. Numerical study

In this section, we compare the numerical performance of the
proposed method against the two seminal black-box methods,
namely, AMGS and FISTA, in solving several optimization problems,
which arise often in many signal and image processing, statistics
and data science applications. The selected loss functions are the
quadratic and logistic loss functions, both with elastic net regu-
larization. Moreover, we also test the performance of our proposed
COMET in solving the regularized image deblurring problem. As we
will see in the sequel, controlling the parameters of the elastic net
regularizer allows for simulating extremely ill-conditioned exam-
ples. For the constructed examples, we show that COMET outper-
forms the selected benchmarks in terms of minimizing the number
of iterations needed to achieve a certain tolerance level. To provide
reliable results, we utilize both synthetic and real data, that are se-
lected from the Library for Support Vector Machines [58]. To find
the optimal solutions, we use CVX [59].

In the first example, we illustrate the performance of three
variants of COMET: 1) we consider the variant that in theory is
expected to result in the fastest convergence, which is obtained
when we initialize for y5 = 0, and it is referred to as “COMET, vari-
ant 1”; 2) we also consider the variant that is expected to pro-
duce the slowest convergence, which happens when we initialize
Yo =3Lp + I and it is labeled as “COMET, variant 2”; 3) we also
implement the variant of COMET that is obtained when y, = K
which is referred to as “COMET, variant 3”. When comparing the
performance of the methods under the condition where the Lips-
chitz constant is not known, for both AMGS and FISTA we utilize
the line-search strategies presented in the respective works [1,53].
We note that throughout all the simulations the starting point xq
is randomly selected and all algorithms are initialized in it. The
numerical experiments are conducted using an Intel(R) Core(TM)
i7-8665U 1.90 GHz CPU and the methods are implemented using
Matlab.

5.1. Minimizing the quadratic loss function

Consider one of the most popular problems in signal processing
and statistics

R [Ny 2 T,
minimize 5 3 (afx )"+ I + e, (38)
where || - ||; denotes the [; norm. The objective is to show that the

theoretical gains of COMET, which are discussed in Section 4, are
also reflected in the practical performance of the methods. More-
over, we analyze how the performance of the methods scales with
the condition number of the problem. We also illustrate the prac-
tical benefits of utilizing the proposed line-search strategy.

Let us first consider the simplest case, where the Lipschitz
constant is assumed to be known. It allows for an objective as-
sessment of the effectiveness of the methods in finding the opti-
mal solution. For this example, we utilize synthetic data. We con-
sider the diagonal matrix A € R™™ and sample the elements a;
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from the discrete set {10°,10-1,10-2,...,10-¢} uniformly at ran-
dom. This choice of selecting A ensures that L=1 and u; = 105,
which results in the condition number 105. Then, we select the
elements of the vector y € R™ by uniformly drawing them from
the box [0, 1]". Lastly, we note that in our computational experi-
ments we set m € {500, 1000, 1500, 2000}, & € {3,4,7,8} and 7y =
7, € {10-3,104,10-7, 10-8}.

From Fig. 2, we can observe that the proposed method signifi-
cantly outperforms all the existing benchmarks. First, notice that
the larger the condition number of the problems becomes, the
more iterations, and consequently computations, are required by
the methods to obtain a good solution. Comparing between the
methods, we can observe that all instances of COMET yield a better
quality of the obtained solution, as measured by the distance to x*.
Moreover, we can clearly see that the iterates produced by COMET
converge to x* in a much smaller number of iterations. Another im-
portant observation that can be made from the figure is that the
proposed method exhibits better monotonic properties than both
AMGS and FISTA. Comparing the performance of different variants
of COMET, we can observe that their behavior is similar and the
differences in performance are not too large. We can see that the
variant that yields the best performance is the one obtained when
%o = 0, which is coherent with the theoretical results established
in Section 4.

Next, we proceed to analyzing a more realistic scenario. We as-
sume that the Lipschitz constant is not known, and needs to be es-
timated by using a line-search procedure. To demonstrate the ro-
bustness of the line-search strategy to be utilized in conjunction
with COMET, we consider the following cases. i) The Lipschitz con-
stant is underestimated by a factor of 10, ie. Ly= 0.1Lf~. ii) The
Lipschitz constant is overestimated by a factor of 10, i.e., Ly = 10L.
Moreover, we note that we selected 7, =2 and 7y = 0.9, which
were suggested in Becker et al. [60] because they ensure a good
performance of the methods in many applications. Another param-
eter that is computationally expensive to be estimated in prac-
tice is the strong convexity parameter 7 To avoid an increase
in computations, in all the following simulations we equate the
value of the strong convexity parameter to that of the regulariza-
tion term in the objective function in (41). Lastly, we note that for
all the examples that will be shown in the sequel, we utilize the
datasets “ala” and “colon-cancer”. The former dataset has data ma-
trix A € R1605x123 whereas the latter has A ¢ R62x2000,

For the datasets that we are utilizing, the respective Lipschitz
constants are L, ; prime = 10061 and L,,mlon{mcer,p,,‘me =1927.4.
Moreover, we let the regularizer term 7; = 7, € {103,107}, Ev-
idently, this selection of the regularizer terms guarantees a very
large condition number « = ,LTf for the problems that are being

solved. The numerical results are presented in Fig. 3, from which
we can observe that all the instances of COMET significantly out-
perform the existing benchmarks. First, the final iterate produced
by the first variant of COMET is the closest to x*. This is most
visible from the numerical experiments conducted on the “ala”
dataset, which are depicted in Fig. 3(a) and (b). Second, the iter-
ates produced by the proposed COMET converge to x* by requir-
ing a significantly smaller number of iterations, when compared
to AMGS and FISTA. Third, the performance of FISTA largely de-
pends on the initialization of the Lipschitz constant. On the other
hand, we can observe that for both datasets, the performance of
both AMGS and COMET remains unaffected by the value of Lg.
We stress that COMET retains the robustness to Ly at the lower
computational cost of only one projection-like operation per iter-
ation, whereas AMGS requires double of that. Last, comparing the
performance between the selected variants of COMET, we can see
that in practice their performance differences are minor. Neverthe-
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Fig. 2. Comparison between the efficiency of the algorithms tested in minimizing the quadratic loss function with elastic net regularizer on randomly generated data.

less, our results shown in Fig. 3(a) and (b) suggest that the ver-
sion of COMET which is obtained when y, = 0 yields a better per-
formance. This becomes important particularly when considering
practical applications, wherein the true values of 7 and Lf are
typically not known and their true values can only be estimated
within some error bounds. From this perspective, we can conclude
that the instance of COMET obtained by setting ), = 0 enjoys both
the faster convergence of the iterates and the robustness with re-
spect to the imperfect knowledge of K and Lf-

5.2. Minimizing the logistic loss function

To demonstrate the versatility of the proposed black-box
method, let us now compare its performance to the selected
benchmarks in minimizing a regularized logistic loss function with
elastic net regularizer

18 T
Eglog(l +e7 ) 4 S X1 + ol (39)

minimize
XeRM
For this problem type, we diversify the utilized datasets and se-
lect “triazine”, as well as a subset of “rcvl.binary”. For the cho-
) 18661
sen datasets, we have A/,triazme,p,,,,.e eR and A,/m,]‘bimry

R1000x2000 \oreover, from the results of Fig. 3, we have observed
that the performance of FISTA has been dependent on the initial
estimate of the Lipschitz constant and has been overall worsened
when Lf is unknown. Therefore, to provide the fairest compari-
son with respect to FISTA, for this set of examples we estimate
the value of L directly from the data. More specifically, we have
L, siaginerrrime = 25.15 and L/,rcv]‘bimry,p,,»mg = 1.13. On the other hand,
similar to the earlier computational experiments, we equate the
value of the strong convexity parameter to that of the regular-
ization term in the objective function in (40). Last, we note that
for this set of numerical experiments we consider the cases when

sprime €

Ty # Tp. The results are reported in Fig. 4, wherein the specific val-
ues for 71 and 1, are also presented.

From Fig. 4, we can observe that for both datasets, COMET out-
performs and exhibits better monotonic properties than AMGS or
FISTA. Moreover, all variants of COMET require a much lower num-
ber of iterations to produce iterates which are closest to x*. Last,
for the selected problem type, the variant of COMET which is con-
structed when y, =0 yields the best practical performance, al-
though the true value of 7 is not known.

5.3. Application to the regularized image deblurring problem

Let us now consider solving the problem of regularized image
deblurring, which we formulate as follows

_ T
minimize [|[RWx — y||> + = Ix]12 + %2 ||x]l1, (40)
XeRM 2

where R represents the blur operator and W is the inverse three-
stage Haar wavelet transform. In this example, x € R2°6%256 is the
cameraman test image [53]. To blurr the image, we scale its pix-
els in the range [0,1], add zero-mean Gaussian noise with stan-
dard deviation 103 and apply the blur operator R. Moreover, we
set the regularizer parameters 7, =1 x 10~ and 7, = 10~>. For
this problem, we initialize Ly = Lr, which is obtained as the max-
imum eigenvalue of (RW)T(RW), and set up = 1;. Different from
the previous sections, herein we report the CPU runtime (in sec-
onds) that was needed to decrease the value of the objective func-
tion. For a more extensive comparison, herein we have also in-
cluded the Accelerated Composite Gradient Method (ACGM) [37],
which is built on top of the estimating sequences variant that was
used for designing AMGS. Moreover, we have also included the
variant of FISTA presented in Chambolle and Pock [61], which is
designed to exploit the strong convexity information that might be
available about the objective function.

Our findings are summarized in Table 1. The first column was
obtained by computing the values of the objective function that
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Fig. 4. Comparison between the efficiency of the algorithms tested in minimizing the logistic loss function with elastic net regularizer on real data.
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Fig. 3. Comparison between the efficiency and robustness with respect to the initialization of the Lipschitz constant of the algorithms tested in minimizing the quadratic
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Table 1

Comparison between the CPU runtimes (in seconds) of the algorithms tested in solving the image deblurring prob-

lem.
F(x) COMET, variant 1 COMET, variant 2 COMET, variant 3 AMGS ACGM FISTA CP FISTA
45.74 1.33 1.21 1.87 2.52 1.76 1.92 2.16
25.61 2.77 235 3.14 3.98 345 3.57 3.67
13.22 4.19 3.78 4.52 6.21 4.93 523 5.84
5.83 5.49 4.98 6.02 9.42 6.76 7.38 7.69
3.25 6.97 5.89 7.32 13.21 8.35 9.21 9.84
1.11 8.29 7.82 8.75 17.65 10.79 12.41 12.73
0.63 9.72 9.46 10.06 22.08 13.24 15.86 16.25
0.51 11.14 11.31 12.69 26.39 15.65 17.13 17.97
0.44 13.53 13.93 14.21 34.11 17.23 19.32 20.15
0.37 15.86 16.56 16.72 41.28 19.86 23.57 24.43
0.35 17.30 18.27 18.96 49.36 25.57 28.39 32.07

were obtained by running the first variant of COMET in intervals of
20 iterations. The other entries in the table were obtained by com-
puting the time spent by the other methods to achieve the same
decrease in the values of the objective function. Analyzing the ob-
tained results, we can observe that the different variants of the es-
timating sequences methods are very efficient. Different from the
other estimating sequence methods, we can see that the perfor-
mance of AMGS is significantly affected by the need to compute an
additional proximal step per iteration. Comparing to FISTA, every
variant of COMET and ACGM perform more computations per iter-
ation. Nevertheless, we can see that the improvement in runtime
is significant. Comparing among the estimating sequence methods,
we can observe that the fastest variant of COMET converges ap-
proximately 30% faster than AMGS. Last, we note that the differ-
ences in runtime among all variants of COMET are marginal. Nev-
ertheless, we note that the variant of COMET which is obtained by
initializing yp = 0 is more efficient, while also enjoying the robust-
ness to the imperfect knowledge of the strong convexity parame-
ter.

6. Conclusions and discussion

The problem of constructing accelerated black-box first-order
methods for solving optimization problems with composite struc-
ture by utilizing the estimating sequences framework has been
considered, and a new class of estimating functions has been in-
troduced. It has been shown that by exploiting these estimating
sequences together with the gradient mapping technique, it is pos-
sible to construct very efficient gradient-based methods, which we
named COMET. Unlike the existing results on the convergence of
FGM-type methods, the novel convergence analysis established in
this work allows for the adaptation of the step-size. Another ma-
jor contribution which stemmed from the proposed convergence
analysis is the fact that COMET is guaranteed to converge when
Yo € [0.3L+p.f~]. The practical implication of these two observa-
tions is the fact that it is possible to construct efficient acceler-
ated methods which are also robust to the imperfect knowledge of
the smoothness and strong convexity parameters. Our theoretical
findings were corroborated by extensive numerical experiments,
wherein both synthetic and real-world data were utilized.

The results that were established in this work can be further
developed in different directions. Particularly, it is interesting to in-
vestigate the possibilities of embedding the heavy-ball momentum
into COMET. Another attractive research direction is the investiga-
tion of the possibility of coupling between the proposed frame-
work and the inexact oracle framework, as well as the framework
for constructing distributed proximal gradient methods. Lastly, we
note that it is also interesting to investigate the possible exten-
sions to designing accelerated algorithms for solving non-convex
optimization problems.
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Appendix A. Proof of Theorem 1

We start by showing that m; (y; x) is an L-strongly convex func-
tion in x. Notice that it is defined to be the sum of convex func-
tions. Therefore, it is itself a convex function. Now, consider that

L
my(y;y) —m(y; L)) = illy—TLO’)Hz- (41)
By the definition given in (9), T (y) is the minimizer of m;(y; x)
over all x e R". Therefore, we can conclude that m;(y;x) is a
strongly convex function with strong convexity parameter L.
Now, we can proceed to deriving the lower bound. From (5),
(6), it can be written that
Ki 2
SHix=ylP.
(42)

Then, from the definition of m;(y,y) given in (7), as well as (12),
the right-hand side (RHS) of (43) can be rewritten as

N . T
Fo0 = f0) +780) + (Vi) +t5.0)) (=) +

~ N ~ T J7
Jo)+780) + (VIO +15:0)) (e=9)+ Sk -y

W
= m@:y) + ) =)+ 5 x -yl (43)
Moreover, substituting (42) in (44), the lower bound of the RHS of
(44) becomes
I
S lx=yl? = m: L))

L K

+5 1y =TI+ o) -y + 5 llx -y

Utilizing the definition of the reduced composite gradient given in
(10), yields

my:y) + iy & -y)+
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"
M TN + 2 Iy =T Iy x-y)+ 5 Ixyl?

=T+ o I )P +reey)+ eyl @)

Finally, taking a proximal gradient descent step on f(x), which by
assumption has Lipschitz continuous gradient, we can obtain (13).
This completes the proof.

Appendix B. Proof of Lemma 1
By the assumption of Lemma 1, we have

F(u) = ¢ = mingy () = minlAo(x) + (1~ A)F ()]
< o(x") + (1= MOF(¥),

Rearranging the terms yields the desired result.
Appendix C. Proof of Lemma 2

We prove this lemma by induction. Let us begin by analyz-
ing iteration k = 0. By assumption, we have Ay = 1. Utilizing (14),
we obtain ¢g(x) < Lopo () + (1 — Ag)F(x) = ¢po(x). Then, assuming
that (14) holds true at some iteration k, it can be written that

Ge(x) = (1= MIF () < Aeho (x).

Substituting the bound obtained in Theorem 1, i.e., (13) in
we obtain

D1 (X)) < (1 — o) Pr (%) + aF (x). (46)

Then, adding and subtracting the same term to the RHS of (47), we
reach

Bre1 (%) = (1= )@ () +oeF (%) + (1—0)(1 =2 F () — (1 -

(45)
(16),

(1= )F (x) = (1—ot) [hr () = (1= A )F (x)]

Hap+ (1=Ak) (1—a))F (%) (47)
Using the bound obtained in (46) in (48), we have
D1 (X) < (1 = ) Ao (%) + (1 = Ay + oA )F (%), (48)

Lastly, after utilizing (15), the proof is concluded.
Appendix D. Proof of Lemma 3

Let us begin with establishing the first part of the proof through
a mathematical induction argument. At iteration k =0, we have
V2¢0(x) = yol. Next, assuming that at some iteration k it is true
that V2¢,(x) = y, at iteration k + 1 it can be written that

V2.0 2 = Vel

We then proceed to establishing the proposed recurrent rela-
tions for updating the terms in the sequences {v}}72 and {¢}}e° .
Substituting (17) into (16), and analyzing its first-order optimality
conditions we obtain

Vi1 (X = V1) = Vie(1 =) X = 1) + Olk(ﬂf(x = YT, ()’k))-
(50)

We can then reduce the terms that depend on x by using (18) in
(51), and reach

Vil === o) Vv + (= v + 11, 0)-

Then, substituting (10) in (52), we obtain (19).
To establish (20), let us begin by substituting (17) in (16), now
evaluated at the point x = y,. This way we obtain

Gt +I5 1= vl = (1 = ) (6 + = el

— )Vl + ol (49)

(51)
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1
o (F(T,000) + 5 I 0I2). (52)

We proceed by utilizing (19) to compute the second term in the
left hand side (LHS) of (53). Consider the following

1
Vipr =Y = —— (1 — ) ViV + oted 7Yk
Vi1

—aLy (Vi = T, ) = Var1Ye)- (53)
Then, utilizing (18) in (54), we obtain
1
Vi1 —Yie = K((l — ) VWi — i) — ellie(yie — T, ) (54)
+

Taking || - ||2 of both sides in (55), yields

(1 = ) Ve = yi) — ol (Ve — To, ()’k))”2

Yéa

1y = i |1? =

(55)
Finally, multiplying both sides of (56) by @ and expanding the
RHS, we reach
(1-c)*p2
e e
2yk+1

2Ly (1 — ) i (e ,yk)TV(yk - Ty (,Vk))-
2V

(56)

21 2
k k
e |y -y |2 = +o0 e -T00l?

Substituting (57) in (53), and making some straightforward alge-
braic manipulations, we obtain (20).

Appendix E. Proof of Theorem 2

Set ¢ = f(xo). Then, considering (17) evaluated at iteration
k=0 and x=xp, we obtain ¢g(xo) = f(Xo) + 2 ||xo — vo||%. In
Algorithm 1, we initialize vy = xo, which is sufficient to guaran-
tee that f(xg) < ¢ at step k=0. Moreover, recall that we de-
signed the update rules of the proposed method to guarantee that
fxi) < dp, Yk=1,2,.... Therefore, the necessary conditions for
the results proved in Lemma 1 to be applied are satisfied.

Appendix F. Proof of Lemma 4

Let o € [0,3Ly + pcf] and consider applying (18) to the follow-
ing

Virr =y = (1= ) + et — i f. (57)

Then, utilizing the assumption that Ay = 1 in (58), it can be written
that

Vier —pp=(1- a)ho[vi - Mf]- (58)
Using the recursivity of (18) in (59
Yier1 — Hj = Akt [vo- Mf]- (59)

Let us now exploit the connection between relations (15) and (25),
which can be linked through the term o, as follows

Vi _ )/k+1 Mf
Ly

Substituting (60) in the RHS of (61) and making some manipula-
tions, we get

), yields

)‘k+1

" (60)

Clk—

1 1 1

- Tk 1/A.k+1 )‘k+1Lk

VO_Mf

T 61
)"k+1 ( )
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Then, through a difference of squares argument, we reach

1 1 1 1
J— +7
(\/ )‘k+1 \/)Tk> (\/ )‘k+1 \/)Tk>
1 Ky N Yo— Mg
T e V Ml L -

Let us now analyze the behavior of the terms in the sequence
{Ak}po- First, recall that from Lemma 2 we have o € [0, 1]. Then,
considering (15), we can conclude that the terms A, are non-
increasing in the iteration counter k. Therefore, we can substitute
the term %k in the LHS of (63) with the larger number —-

(62)

«/)‘kﬂ.
This results in
2 1 B 1 1 Ky V ll«f (63)
Ve \Whiar Ve ,/A,<+1 Janle

Note that the practical performance of the proposed method
depends on the initialization of the parameter y;. To allow for the
widest possible range of selection for this parameter, we need to
consider separately the regions R; = [O,Mf»[ and R; = [p,f,3Lk+
uf»]. The results for the case when y, € R, can be established by
following the analysis conducted for FGM in Nesterov [51, Lemma
2.2.4]. Therefore, in the sequel we will thoroughly establish the re-
sults only for the case when y, € Rq, which is the novel part of
the proof. Let us begin by defining the following quantity

Limax

Gkmy 2 |
(,LLf - VO)}‘k

(64)

where Lpax was defined in (32). Next, (64) can be rewritten as

2
- > - (65)
Vrsr vV L (47 = o)
Then, relaxing the bound in (66) and multiplying it with L'"“;D,
Ky
we obtain
wi&2.
Sevrm, o, = 3| R 1, (66)
max

We then proceed to establish via induction the following lower
bound

V2 L *
e +1)8 _ e(k+])5 , 67
EkR1748 Mf*}/o[ ] (67)
where § £ 1 ,/ —. Utilizing (65) at step k = 0, we have
Lmax Lmax
. = = , 68
Somy \/(Mfyo))vo \/Mf}’o (68)

where the second equality is obtained because Aq = 1. Then, sub-
stituting (32) into (69), we obtain

fon, = 2 e V2
' 2\ -7 48

(69)

Note that the second row in (70) follows because the RHS is in-
creasing in 8, which by construction is always § < 0.5.

As it is common with induction-type of proofs, the next
step is to assume that (68) is satisfied for some iteration k.
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To establish that the relation would hold true at the next it-
eration as well, we proceed via contradiction. Define w(t) 2

g V [e“*”‘; —e “”)5], and note that from Nesterov [51,

Lemrna 2.2.4] it is a convex function. Therefore, it can be written
that

" f‘i:kﬂ R

(67)
o) <&r, < Eki1r, — j -1 (70)

Lmax
Assuming that §k+mz1 < w(t+1) and substituting it into (71), we
have

176,

(t)<w(t+1)—— -1 (71)

Lmax

Then, utilizing the definition of §, as well as (68), we obtain

2
o) <w(t+1) - % 452 [‘f 7(e(f+2)5 - e(f+2>5):| -1

Hi=Yo
<wt+1)- £ r s [e+20 + e~ @D = (t + 1)
+o' (t+ 1) (- (t+1)) <w(b), (72)

where the last inequality follows from the supporting hyperplane
theorem of convex functions. Notice that this result contradicts the
earlier assumption that §k+1‘7{] < w(t +1). Thus, the inductive ar-
gument asserts that we have established the lower bound (68) to
be true for all values of k=0,1,....

We are finally ready to establish (34). From (65), it can be writ-
ten that

Lmax
M= (73)
¢ &ir, (F—¥0)
Utilizing (68) in the RHS of (74), we reach
(46)2L1T13X (74)

2L et — e(k+1)8]2 '

The first inequality in (34) is obtained by substituting the defini-
tion of § in (75).

To establish the remaining inequality in (34), we first analyze
the following

ke [MF k [TF i _ i
(85 e tVE | —e®WE _ ek

Then, utilizing the definition of the hyperbolic cosine function in

(76), we obtain
(k +1) - )

N
(ek%“/g —e -5 \/:> = 2cosh<

Using the Taylor expansion of the hyperbolic cosine function, yields

RN L s+ 1)
(e%‘\/%_e “ﬁ) :_2+2+2M

(75)

(76)

2L,
u2(k+1)*
w2l (77)
411,
The next step is to truncate the RHS of (78). This results in
w1 [TF
(e%‘\/g_e k“\/:) (k+1) (78)

All that remains for establlshmg the second inequality of (34), is to
substitute (79) into the denominator of the first inequality of (34).
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Appendix G. Proof of Lemma 5

We begin by substituting the upper bound (4) evaluated at the
point y = x* into (3), and obtain that

F(xo) = f(x0) + T8(x0) < f(x*) + VF(x")T (xo — x*)

L N
1o = X°[* + 78(x0). (79)

Then, from the equality established in (12), the RHS of (80) can be
written as

Fxo) = o)+ V)00 —x) + 2 g ' +780x0) =F )

Hs, () —Lo(x*— Ty, (x*)))T(xofx*)Jr %0 [Ix0 —x*|?

+78(X0). (80)

From the definition of the composite gradient mapping given in
(9), we can see that when y = x*, then Ty (x*) = x*. Therefore, the
RHS of (81) becomes

Fixo) = FO) — 251, 0007 (¢ = o) + ko [ + 78010).
(81)

Lastly, utilizing (6) in the RHS of (82) completes the proof.

References

[1] Y. Nesterov, Gradient methods for minimizing composite objective function,
Math. Program. 140 (1) (Aug. 2013) 125-161.

[2] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (Jan. 2014)
127-239.

[3] V. Cevher, S. Becker, M. Schmidt, Convex optimization for big data: scalable,
randomized, and parallel algorithms for big data analytics, IEEE Signal Process.
Mag. 31 (5) (Aug. 2014) 32-43.

[4] K. Slavakis, G.B. Giannakis, G. Mateos, Modeling and optimization for big data
analytics: (statistical) learning tools for our era of data deluge, IEEE Signal Pro-
cess. Mag. 31 (5) (Aug. 2014) 18-31.

[5] AP. Liavas, G. Kostoulas, G. Lourakis, K. Huang, N.D. Sidiropoulos, Nes-
terov-based alternating optimization for nonnegative tensor factorization: al-
gorithm and parallel implementation, IEEE Trans. Signal Process. 66 (4) (Nov.
2018) 944-953.

[6] M.S. Ibrahim, A. Konar, N.D. Sidiropoulos, Fast algorithms for joint multicast
beamforming and antenna selection in massive MIMO, IEEE Trans. Signal Pro-
cess. 68 (Mar. 2020) 1897-1909.

[7] R. Gu, A. DogandZi¢, Projected Nesterov's proximal-gradient algorithm for
sparse signal recovery, IEEE Trans. Signal Process. 65 (13) (May. 2017)
3510-3525.

[8] K. Elkhalil, A. Kammoun, X. Zhang, M. Alouini, T. Al-Naffouri, Risk convergence
of centered kernel ridge regression with large dimensional data, IEEE Trans.
Signal Process. 68 (Feb. 2020) 1574-1588.

[9] M. Wainwright, Structured regularizers for high-dimensional problems: sta-
tistical and computational issues, Annu. Rev. Stat. Appl. 1 (1) (Jan. 2014)
233-253.

[10] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc.
58 (1) (Jan. 1996) 267-288.

[11] J. Tropp, S.J. Wright, Computational methods for sparse solution of linear in-
verse problems, Proc. IEEE 98 (6) (Apr. 2010) 948-958.

[12] P.L. Combettes, ]J.C. Pesquet, Proximal splitting methods in signal processing,
Fixed-Point Algorithms Inverse Probl.Sci. Eng. 49 (May. 2011) 185-212.

[13] EJ. Candas, Y.C. Eldar, T. Strohmer, V. Voroninski, Phase retrieval via matrix
completion, SIAM Rev. 57 (2) (May. 2015) 225-251.

[14] A. Yurtsever, Y.P. Hsieh, V. Cevher, Scalable convex methods for phase retrieval,
in: Proc. IEEE 6th International Workshop on Computational Advances in Mul-
ti-Sensor Adaptive Processing, Cancun, Mexico, Dec. 2015, pp. 381-384.

[15] C. Studer, T. Goldstein, W. Yin, R.G. Baraniuk, Democratic representations,
arXiv:1401.3420(Apr. 2015).

[16] Y. Nesterov, Subgradient methods for huge-scale optimization problems, Math.
Program. 146 (1) (Aug. 2014) 275-297.

[17] A. Beck, First-order Methods in Optimization, vol. 25, SIAM, Oct. 2017.

[18] A. d’Aspremont, D. Scieur, A. Taylor, Acceleration methods, Found. Trends Op-
tim. 5 (1-2) (Dec. 2021) 1-245.

[19] A. Nemirovsky, D. Yudin, Problem Complexity and Method Efficiency in Opti-
mization, Wiley, 1983.

[20] B.T. Polyak, Some methods of speeding up the convergence of iteration meth-
ods, USSR Comput. Math. Math. Phys. 4 (5) (1964) 1-17.

Signal Processing 206 (2023) 108889

[21] Y. Nesterov, A method for solving the convex programming problem with con-
vergence rate O(1/k?), Doklady USSR 269 (1983) 543-547.

[22] A. Auslender, M. Teboulle, Interior gradient and proximal methods for convex
and conic optimization, SIAM J. Optim. 16 (3) (Jul. 2006) 697-725.

[23] G. Lan, Z. Lu, R.D.C. Monteiro, Primal-dual first-order methods with O(1/¢€)
iteration-complexity for cone programming, Math. Program. 126 (1) (Jan. 2011)
1-29.

[24] B. O’donoghue, E. Candes, Adaptive restart for accelerated gradient schemes,
Found. Comput. Math. 15 (3) (Jun. 2015) 715-732.

[25] A. d’Aspremont, Smooth optimization with approximate gradient, SIAM ]. Op-
tim. 19 (3) (Oct. 2008) 1171-1183.

[26] M. Schmidt, N.L. Roux, ER. Bach, Convergence rates of inexact proximal-
gradient methods for convex optimization, in: Proc. 25th Annual Con-
ference on Neural Information Processing Systems, Granada, Spain, 2011,
pp. 1458-1466.

[27] O. Devolder, F. Glineur, Y. Nesterov, First-order methods of smooth convex op-
timization with inexact oracle, Math. Program. 146 (1) (Aug. 2014) 37-75.

[28] Z. Allen-Zhu, L. Orecchia, Linear coupling: an ultimate unification of gradient
and mirror descent, Nov. 2016, arXiv:1407.1537.

[29] S. Bubeck, Y.T. Lee, M. Singh, A geometric alternative to Nesterov’s accelerated
gradient descent, Jun. 2015. arXiv:1506.08187.

[30] N. Flammarion, F. Bach, From averaging to acceleration, there is only
a step-size, in: Proc. Conference on Learning Theory, Paris, France, 2015,
pp. 658-695.

[31] W. Su, S. Boyd, EJ. Candés, A differential equation for modeling Nesterov's ac-
celerated gradient method: theory and insights, J. Mach. Learn. Res. 17 (153)
(Jan. 2016) 1-43.

[32] L. Lessard, B. Recht, A. Packard, Analysis and design of optimization algorithms
via integral quadratic constraints, SIAM J. Optim. 26 (1) (Jan. 2016) 57-95.

[33] Y. Drori, M. Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach, Math. Program. 145 (1) (Jun. 2014) 451-482.

[34] D. Kim, J.A. Fessler, Optimized first-order methods for smooth convex mini-
mization, Math. Program. 159 (1) (Sep. 2016) 81-107.

[35] D. Kim, J.A. Fessler, Generalizing the optimized gradient method for smooth
convex minimization, SIAM J. Optim. 28 (2) (Jun. 2018) 1920-1950.

[36] S. Bubeck, Convex optimization: algorithms and complexity, Found. Trends
Mach. Learn. (May. 2014) 231-357.

[37] M.L. Florea, S.A. Vorobyov, An accelerated composite gradient method for
large-scale composite objective problems, IEEE Trans. Signal Process. 67 (2)
(Jan. 2019) 444-459.

[38] Y. Nesterov, Universal gradient methods for convex optimization problems,
Math. Program. 152 (1) (Aug. 2015) 381-404.

[39] Y. Nesterov, Accelerating the cubic regularization of Newton’s method on con-
vex problems, Math. Program. 112 (1) (Mar. 2008) 159-181.

[40] X. Chen, B. Jiang, T. Lin, S. Zhang, Accelerating adaptive cubic regularization
of Newton's method via random sampling, J. Mach. Learn. Res. 23 (Mar. 2022)
1-38.

[41] Y. Nesterov, Inexact high-order proximal-point methods with auxiliary search
procedure, SIAM ]. Optim. 31 (4) (Nov. 2021) 2807-2828.

[42] N. Doikov, Y. Nesterov, High-order optimization methods for fully composite
problems, SIAM ]. Optim. 32 (3) (Sep. 2022) 2402-2427.

[43] X. Zeng, J. Lei, J. Chen, Dynamical primal-dual accelerated method with ap-
plications to network optimization, IEEE Trans. Autom. Control (2022), doi:10.
1109/TAC.2022.3152720. (Early Access)

[44] J. Gao, X. Liu, Y. Dai, Y. Huang, P. Yang, A family of distributed momentum
methods over directed graphs with linear convergence, IEEE Trans. Autom.
Control (2022), doi:10.1109/TAC.2022.3160684. (Early Access)

[45] S.S. Mannelli, P. Urbani, Analytical study of momentum-based acceleration
methods in paradigmatic high-dimensional non-convex problems, Adv. Neural
Inf. Process. Syst. 34 (Dec. 2021) 187-199.

[46] X. Xie, P. Zhou, H. Li, Z. Lin, S. Yan, ADAN: adaptive Nesterov momentum algo-
rithm for faster optimizing deep models, Aug. 2022, arXiv:2208.06677.

[47] A. Kulunchakov, ]. Mairal, Estimate sequences for stochastic composite opti-
mization: variance reduction, acceleration, and robustness to noise, J. Mach.
Learn. Res. 21 (155) (Jul. 2020) 1-52.

[48] M. Even, R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H. Hendrikx, L. Mas-
soulié, A. Taylor, A continuized view on Nesterov acceleration for stochastic
gradient descent and randomized gossip, Jun. 2021. arXiv:2106.07644.

[49] K. Ahn, S. Sra, From Nesterov's estimate sequence to Riemannian acceleration,
in: Proc. Conference on Learning Theory, Graz, Austria, 2020, pp. 88-118.

[50] J. Kim, 1. Yang, Nesterov acceleration for Riemannian optimization, Feb. 2022,
arXiv:2202.02036.

[51] Y. Nesterov, Lectures on Convex Optimization, vol. 137, Springer, Dec. 2018.

[52] M. Baes, Estimate sequence methods: extensions and approximations, Institute
for Operations Research, ETH, Ziirich, Switzerland, Aug. 2009.

[53] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for lin-
ear inverse problems, SIAM ]. Imaging Sci. 2 (1) (Mar. 2009) 183-202.

[54] M.L. Florea, S.A. Vorobyov, A generalized accelerated composite gradient
method: uniting Nesterov's fast gradient method and FISTA, IEEE Trans. Sig-
nal Process. 68 (Jul. 2020) 3033-3048.

[55] E. Dosti, S.A. Vorobyov, T. Charalambous, Embedding a heavy-ball type of mo-
mentum into the estimating sequences, Aug. 2020, arXiv:2008.07979.

[56] E. Dosti, S.A. Vorobyov, T. Charalambous, Generalizing Nesterov's acceleration
framework by embedding momentum into estimating sequences: new algo-
rithm and bounds, in: IEEE International Symposium on Information Theory
(ISIT), Helsinki, Finland, Jun 2022, pp. 1506-1511.



E. Dosti, S.A. Vorobyov and T. Charalambous

[57] P. Tseng, On accelerated proximal gradient methods for convex-concave op-
timization, online available at https://www.mit.edu/~dimitrib/PTseng/papers/
apgm.pdf.

[58] C.C. Chang, CJ. Lin, LIBSVM: a library for support vector machines, ACM Trans.
Intell. Syst. Technol. 2 (3) (May. 2011) 1-27.

[59] M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex program-
ming (web page and software), 2009.

Signal Processing 206 (2023) 108889

[60] S.R. Becker, EJ. Candés, M. Grant, Templates for convex cone problems
with applications to sparse signal recovery, Math. Program. 3 (3) (2011)
Sep.165.

[61] A. Chambolle, T. Pock, An introduction to continuous optimization for imaging,
Acta Numer. 25 (2016) 161-319.



Publication V

E. Dosti, S. A. Vorobyov, T. Charalambous. Generalizing the estimating
sequences with memory terms for minimizing convex composite functions.

Journal Submission, March 2024.

©
Reprinted with permission.

143






16

17
18
19

9

W N =

W W W W W W W N NN DN DNDNDDNDNDN
DU W N O © 00O O e W N

GENERALIZING THE ESTIMATING SEQUENCES WITH MEMORY
TERMS FOR MINIMIZING CONVEX COMPOSITE FUNCTIONS

ENDRIT DOSTI*, SERGIY A. VOROBYOV', AND THEMISTOKLIS CHARALAMBOUS't

Abstract. In this work, we present a new class of generalized composite estimating sequences,
devised by exploiting the information contained in the iterates that are formed during the mini-
mization process. Based on the newly introduecd generalize estimating sequences, we present a new
accelerated first-order methods for minimizing convex functions with composite objective structure.
Our proposed method is equipped with backtracking line-search, and exhibits an accelerated con-
vergence rate independent of whether the true value of the Lipschitz constant is known. Moreover,
our proposed method is robust to the inexact knowledge of the strong convexity parameter. The
efficiency of the proposed method together with its robustness properties are confirmed by extensive
numerical evaluations on both synthetic and real-world data.

Key words. Accelerated first-order methods, large-scale optimization, composite objective,
estimating sequence, gradient mapping, line-search

AMS subject classifications. 65B99, 65K10, 65K05, 65Y20

1. Introduction.

1.1. Motivation. Recent research in first-order methods has been largely fo-
cused around exploring different approaches to acceleration of gradient-based meth-
ods. For the problem of minimizing smooth convex functions, an accelerated method
built by making use of the linear coupling between gradient and mirror descent was
introduced in [1]. Another accelerated method inspired by the ellipsoid method was
presented in [2]. It converges faster than the Fast Gradient Method (FGM) [3, 4],
however it exhibits higher per-iteration complexity because of the need for an ex-
act line search. In yet another framework, the continuous-time limit of FGM has
been modeled as a second-order differential equation [5, 6, 7]. In a newly developed
framework [8], the authors have cast the improvement of the worst-case behavior
of an algorithm as an optimization problem. Based on this framework, an optimal
method for minimizing smooth convex functions has been presented in [9]. Despite
the promising theoretical analysis, the applicability of these methods in the current
form is restricted only to minimizing smooth convex functions and their generalization
capabilities remain unclear.

Considering the different strategies that have been developed for accelerating
gradient-based methods, estimating sequence methods continue to play a central role
in the field (see [10] and references therein). First, for the case of differentiable con-
vex functions such methods are optimal in the sense of [11]. Second, they are efficient
in practice and can work well with backtracking line-search [12, 13]. Third, they
can be used to devise fast second-order and higher-order methods [14, 15]. Fourth,
their efficiency has also been established in the context of applications to distributed
optimization, nonconvex optimization, stochastic optimization, and many more (see
[16, 17, 18, 19, 20] and the references therein). As discussed in [4], different estimat-
ing sequences can be used to enable the accumulation of global information of the
objective function. One of the main challenges with the framework is the design of
estimating functions that are used to construct the estimating sequences.

*Department of Information and Communication Engineering (firstname.lastname@aalto.fi).
TDepartment of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
(charalambous.themistoklis@ucy.ac.cy)
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2 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

The estimating sequences framework has been formalized in [21]. For the broader
class of minimizing convex functions with composite structure, which is important to
this paper, a popular method is the Accelerated Multistep Gradient Scheme (AMGS)
[22], which exhibits an accelerated convergence rate. The method has the disadvan-
tage of requiring two projection-like operations per iteration, which translates in an
increased runtime of the method and inhibits its deployment to practical large-scale
optimization setups [23]). Another popular method is the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [24]. Unlike AMGS, it requires one projection-like
operation per iteration and has been proven to exhibit an accelerated convergence
rate. Nevertheless, as we will also see in the numerical section, the method con-
verges slower than AMGS. At first glance, FISTA does not appear as an estimating
sequence method. Links between FISTA and estimating sequence methods have been
established in [25]. In [26, 27] the authors have introduced COMET, which is a new
estimating sequence method, which is built on top of the estimating sequences frame-
work used for devising FGM. Similar to FISTA, the method proposed therein requires
one projection-like operation per iteration, and is more efficient than AMGS.

1.2. Preliminaries to build on. In the sequel, we will focus on devising an ac-
celerated black-box method for solving convex optimization problems with composite
objective functions. The typical structure for such problems is

(1.1) F(z) = f(z) + 79(x), 7>0,

where f : R™ — R is a differentiable convex function and g : R™ — R is a simple
convex lower semi-continuous function. The simplicity of g implies that the complexity
of computing the proximal map

. 1
(1.2) prox,, £ arg min (g(z) + EHz - x|\2> , TzeR",
is O(n) [28]. Herein || - || denotes the I3 norm.

Assuming that g(z) has strong convexity parameter p4, > 0, we use the following
strong convexity transfer

T J .
(13)  F(a)=(f(2) + 52z = wol ) +7(9(a) = E2lla = wol?) = f(2) + ri(a),
to facilitate the tractability of the derivations presented in the sequel. Based on (1.3),
we have Lf =Ly + Tpg, [ = pf + Thg and pg = 0.

For all y € Q, where Q is a closed convex set and L > L P let us define

(1>

(1.4) my(y; v) f(y)+Vf(y)T(x*y)+§Hﬂf —y|P+79(2).

The following bounds for f(z) and §(z) will be useful in the analysis
(1) F@) < 50 + 9 F) 0 =) + “Llly =l
(1.6) 9(x) = 9(y) + s(m)" (z — ),

Considering (1.4) and (1.5), we have

(1.7) mp(y;z) > F(x),Ve,y € Q.

This manuscript is for review purposes only.



94

95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS 3

Next, we define the composite gradient mapping as
(1.8) Ti(y) = argmin m (y;z).
We conclude by introducing the reduced composite gradient
(1.9) rr(y) £ Ly = Ti(y)).

Consider now the optimality conditions for (1.8):

Ve (y; Te(y)) " (@ = Te(y)) >0,

(1.10) (V) + L(Te(y) =) + s0(y)” (@ = Te(y) 2 0,
where sr,(y) is a subgradient and F'(77(y)) is the subdifferential. In (1.10), let
(1.11) VIy) + L(Tw(y) —y) + 7s.(y) = 0.
Considering (1.9) and (1.11) yields
(1.12) ro(y) = Lly = To(y)) = VI (y) + 752 (y)-

Last, we note that in the paper we will make use of the following bounds [26, 27]

- R i 1

(L13)  F(a) 2 f(Tu)+7d(Te@)+ru)" (@ = v)+ e =yl P+ 57 @),
* L *

(1.14)  F(xo) < F(a") + 3 ||wo — 27|

In this paper, we will focus on designing first-order methods. For such methods,

at any iteration ¢, the iterates are in the span of the gradients, i.e., zx € xo +

span{V f(xo),... Vf(xg_1)} for k =0,1,2,...,t. Then, set Q = span(zy,2,...).

1.3. The main idea. Contrasting the analysis conducted for AMGS in [22] with
FGM in [4], we can see that different estimating functions were used. The method in
[26, 27] is also devised using the estimating sequences framework. As discussed earlier,
the lack of uniqueness of the estimating sequences is one of the main challenges we
face in developing methods under such framework. In theory, when used to solve
convex problems, both methods exhibit an accelerated convergence rate. Moreover,
in [29, 30] the authors have shown how to devise generalized estimating sequences,
which can be used to construct faster algorithms. Thus, it is of practical interest to
develop the framework for non-differentiable functions.

1.4. Contributions. The main contributions of the article are as follows.

e We introduce a new structure for the estimating functions, which we call the
generalized composite estimating functions. The proposed estimating func-
tions are devised by making use of the following: i) A new term created by
adding the previously constructed estimating functions ii) The gradient map-
ping framework [11]. i) The tighter lower bound on the objective function
presented in (1.13).

e Using our proposed estimating sequences, we devise a new accelerated method
for minimizing (1.1). Moreover, we present an efficient line-search strategy
which is used to estimate the step size. Our proposed method requires only
one projection-like operation per iteration, which is lower than the respective
requirement for AMGS.
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e We prove that our proposed method exhibits an accelerated convergence rate,
despite the imperfect knowledge of the Lipschitz constant.

e We prove that the way our proposed method is initialized is robust to the
inexact knowledge of 2 which further reduces the additional computational
burden of having to estimate such parameter.

e We demonstrate the efficiency of our proposed method as compared to the
existing benchmarks. Using real-world datasets, in our computational experi-
ments we also highlight the robustness of our proposed method in cases when
i and Lf are not known.

1.5. Contents. The article is organized as follows. In Section 2, we present
the generalized composite estimating sequences and show how they can be used to
build our proposed method. In Section 3, we prove the convergence results for our
proposed method. In Section 4, we depict the numerical performance of our proposed
method and compare with several existing benchmarks. We consider several types of
optimization problems and demonstrate the efficiency of our proposed metod. Last,
in Section 5, we summarize the main findings of the paper.

2. Proposed Method. Consider the following definition for the generalized
composite estimating sequences.

DEFINITION 2.1. The sequences {®y}r and {\i}x, A > 0, are called generalized
composite estimating sequences of the function F(-) defined in (1.3), if there exists a
sequence of bounded functions {Yg}tr, \g = 0 as k — oo, and Vx € Q, Vk > 0 we
have

(2.1) Dp(2) < A®o(@) + (1= A) (F(2) — Pr(2)) -
Next, let us use the generalized composite estimating sequences to characterize the
convergence rate of the minimization process
LEMMA 2.2. If for some sequence {zy}, we have F(zy) < ®F émirQlCI)k(ac), then
e
F(z) — F(a*) < A\, [Po(z*) — F(2*)] — (1 — Ap)Yx(z*), where x* = arg miIQlF(J?),
xe

Proof. By the assumption of Lemma 2.2, we have
(2.1)
F(zr) < @) = min®x(z) < min\y@o(x) + (1 — M) | F(z) — ()
z€Q T€Q

< Me®o(2*) + (1 \p) (F(ac*) - wk(x*)) .

Regrouping the terms concludes the proof. 0

So far, we have presented the generalized composite estimating sequences and
shown why they are useful. In the sequel, we present the estimating functions that
will be used to devise our proposed method.

LEMMA 2.3. Assume that there exist sequences {ay}i, where oy, € (0,1) Vk, such
that Y5 g ax = 00; {Yr}x with an upper bound Uy, such that {¢1}r > 0; and an
arbitrary sequence {yi}i. Furthermore, let ¥o(x) = 0, Ao = 1 and assume that the
estimates Ly, of the Lipschitz constant L ; are selected in a way that inequality (1.5) is
satisfied for all the iterates xy, and yi. Then, the sequences {®y}r and { A}k, which

This manuscript is for review purposes only.



158

159

160

161

162

163
164
165
166

167

168

169

170

176

178

179

180
181
182
183
184
185
186

GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS 5

are defined recursively as

(2.2) Ae+1 = (1 — o) Ak,
Ppr1(z) = (1 — ag) (Pr(2) + Yr(2)) — Yry1(z) — Vg

o (F (To. (90)) + () + ﬁnmym?)
(23) +au (rea ) =) + e = )

are composite estimating sequences.

Proof. We prove this by induction. At step k = 0, considering (2.1) together with
the facts that A\g = 1 and g (x) = 0, we can write: $g(z) < AoPo(x)+(1 — Ao) F(x) =
Dg(x). At iteration k, assume (2.1) holds true, which results in
(2.4) Dp(x) — (1= M) Fx) < Apg@o(x) — (1 — i) Yr ().

Utilizing (1.13) in (2.3), yields

(2.5) Ppi1(z) < (1—ag) (<I>k(;17) + ¢k(36)) + ag <F(m) + wk(m)) — Ypt1(x) — Vg

Considering that ¥y is an upper bound on 9 (z), and adding to the right-hand side
(RHS) of (2.5), results in

Ppop1(w) < (L— o) Ppe (@) +o F(2) +(1 — ag) (1 — M) F()
(2.6) — (1= )1 = M) F(2) — Ypsa(2).

Relaxing the RHS of (2.6), yields

(2.7) Ppn(z) < (1—ak)<@k($)—(1—/\k)F(l')>+(ak+(1—Ak)(l—ak))F(w)—d)m(fﬂ)«
Substituting (2.4) in (2.7), results in

(2.8)  Ppp(z)<(1—ag)k (‘Po(f)— (1= Ag)tw (-’E)) + (1=t F(2) = (@)
Last, relaxing the RHS of (2.8) and using (2.2) yields

(2.9) Ppt1(2) < M1 Po(@) + (1 = Aiya) (F(ﬂf) - ¢k+1(9€)>- 0

Let us now compare between the different estimating sequence constructions that exist
in the literature. First, observe that the estimating sequences used to construct FGM
in [4, Lemma 2.2.4] are the instance of our proposed generalized composite estimating
sequences obtained when 7 = 0 and {¢;}r = 0. Moreover, both types of estimating
sequences can be used to measure the convergence rate of the minimization process.
In this sense, the framework presented herein, is a generalization of the estimating
sequences framework. Comparing our generalized composite estimating sequences to
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6 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

[26, 27], we can see that the introduction of the terms {1y}, can have an additional
impact on the convergence rate of the minimization process.

We observe now that there are different ways to choose the terms {®4}, and
{Yr(x)}i. Let yx € RY, v, € R™, Vk =0,1,... and define the terms {®} as

(2.10) Op(x) = ¢k+*\|vak|| Yr(2), VE=1,2,...,

If we have no prior knowledge about the particular structure of F(z), the terms of
the sequence {t(x)}x can be chosen to account for the accumulation of the terms in
the sequence {®y(x)}y as follows

(2.11) Zﬂzk lle—uil[?, vk,

where ;1 € [0,1],Vi=1,...,k—1.

Considering the definition introduced above for ®x(x) and 1 (z), it is of interest
to assess the conditions for ¢y (x) that ensure the convexity of ®x(z). Since both
functions are twice differentiable, assessing the second order condition for (2.10), we

have Zf;ll Bi.kvi < & Moreover, we also restrict Zi:ll Bi ki < p. Combining these
conditions, we reach

k—1
(2.12) D Biwye < min (e, 1) -

i=1

We can find the minimal value of the estimating function introduced in (2.10) as

k—1
. . o Yk Bi ki
(2.13) | = mindy(z) = ¢j + 3||1’q>k — ] - Z 22 |y, —vil
=1

where z3, = argmin, ®x(x). The values of the parameters still need to be com-
puted in a recurrent manner. The following Lemma captures these relations for the
components of {®y} introduced in (2.10).

LEMMA 2.4. Assume that the coefficients B; 1, are selected such that (2.12) is sat-
isfied and let ¢o(x) = ¢+ ||z —vo||?, where vo € R andvg € R™. Then, the process
defined in Lemma 2.5 preserves the canonical form of the function ®y(x) presented in
(2.10), where the sequences {vi}r, {vk}r and {¢}}k can be computed as

k-1
(2.14) e = (1 —ar)ye + o <,Uf + Zﬁi,k%) ;

=1
k-1
1
(2.15)  vpq1 = -~ ((1 Q) VeV + (Mfyk+ > Biwvi — Llye — T, (?ﬂc)))) ;
i=1

This manuscript is for review purposes only.
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k—1
215 Gy = (1 — aw) oy, +Olk<F (T, (yr))+ H?”Lk(yk WP+ Biwvillyk — vz||>

i=1

2 1—a ( Nl . )
T At DTN i P)
29+ 27Vk41
k
_ (I—ou)ve |, « 2 Bi k1% 9
217 +7%H |z, — vkl +;7|| B0 — vill
1 « o k-t
- k T k
218 Bik k) o (W) + —— > Bixvillvi — yrll 7L, (Yk
- z =90 an) + 2 5 Bl il )|
(2.16)
apyr(l — ag) kol
V(L — ay
219 S — (Uk—yk)TTLk(yk)‘FZﬂi,k%Hyk—vi|| llyr — vl| |-
Vk+1 )
220 Proof. Recall that for k = 0, we have ¥g(x) = 0. Thus, V2®q(z) = y0l. Assume

221 that for step k we have: V2®,(z) = vl — Z:.:ll Bikvil. For step k4 1, consider the
222 following

i=1 i=1

k k—1
2.3
223 (2.17) VQCI)H-I(I) (2.3) (1 —ag)yl — Z Bi kil + o (,uf + Z ﬁi,k%) 1.

224  Massaging (2.17) we obtain:

k—1
225 (2.18) Vi1l = (1 = )y d + ag (uf +>° @,k%) I.

i=1
226 Substituting (2.14) in (2.18) is sufficient to establish that the quadratic cannonical
227 structure for {®}y is preserved.
228 Let us next focus on finding the recurrent relations for the terms {vy}. First,
229 replacing (2.10) in (2.3) and making some algebraic manipulations, results in

b

250 Gt o o= P = (1—an) (G5B llo—ve[F) — Wi m(F (To(ye))+ Yx(@)
_ Bi e g2
231 (2.19) 2L o I @ell® + 7o ()" (@ = w) + [l — il )
232 Observe that both sides of (2.19) are convex in z. From the first-order optimality
233 conditions we have
(2.20)
k—1
231 yep(@—ven) = (1—ow)(z—ve) + o (ﬂf(ﬂf—yk)+TLk(yk)+25i,k%(1?—vi)) .
i=1
235 Substituting (2.14) in (2.20), and reducing the dependency on x results in
k—1
236 (2.21) —Vk4+1Vk+1 = Qg (rLk (yx) — Yk — ZBi,k%%‘) — (1 — ag)yxvk-
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8 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS
Substituting (1.9) into (2.21) yields the desired (2.15).
Let us now focus on finding the terms {¢j}r. A straightforward approach is to

assume that there exists a sequence of estimating functions {©y (yx) }« for the sequence
{yk }x that has the following structure

k—1
. Vk Bi ki
(2.22) @k(yk)zekJr?Hyk*UkW*ZTH?M*W\F
i=1
Next, consider (2.3) with & = y;

Ors1(yr) =(1—ar) (On(yr) + Vr(yr)) — Yrr1(ye) — Vi

(2:23) o (F (Tlm)) + vuln) + 5l P).

Substituting (2.11) and (2.22) into (2.23), and relaxing the RHS, results in
* ’yk‘+ * Yk 2
O i1+ —5—lyr — vk <(1—ax) (05 + 2 e = oxll®) + el F (Tey(yk))
k—1
1 Bi ki 2
2.24 — 2 P22 g — wil P
(224) Fap Il + 32 25 e =l

Using (2.15), we can write
k—1
1
(2.25) vky1—yk= S ((1 — Q) VeV Ot (ﬂf@/k —rr (k) + Y ﬁz‘,wwi) - ’YkJrlyk) .
+ i=1
Substituting (2.14) into (2.25), and making some algebraic manipulations, results in

(2.26)

Vg1 — Yk = L ((1 — k)Y (Uk - yk) + ak(kilﬁi,k%(vi —yk) — TLk(yk))>~

T+ i=1

Taking || - || of (2.26), multiplying with 25 and extending the RHS, we reach

Vi1 (1—ar)®7i o
o1 =2 = g o — g P 5l ()2
Vk+1 +1
k—1
+||Zﬂz,k/yz (%3 yk |> k Zﬂzk'ﬁ (% ) rLk(yk)
=1
ok (1—aw) vk
(2-27) *T (Uk*yk TLk Zﬁzk% Ui — (’Uk*yk)-
+
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GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS 9

Substituting (2.27) into (2.24), yields:

Oit1 <

(2.28)

l-«a . 1— oy
(1-anp; + L= (1 = k”’“) Iy — v +ak(F (T, (1)
Ye+1
k—1 k—1
1 62,1@72 62 ki
+*2Lkum<yk>n2+27uw ym) - gt (15 2% -

+|TLlc(yk)|2> Z zk’% ) ) TLk.(yk)

+0"€(10"C)7’€<( v —yr) e, ( Zﬁzk% Ui = Yk) (”’Cyk))

V41

In (2.28), using the Cauchy-Schwartz inequality and relaxing the upper bound, yields

Op+1<

(2.29)

ok (1 — an)(pj+ S Biwn)

2
2 Yk — Vk

k—1
1 Bi ki
+Oék<F (Tr(yr)) +72Lk 7L, () |” + ; 772 v — yk|2>

2
ag (1 — ap)ye
27 ||rL,c<yk>H2+72 2%, — vil[*
2 k—1 3 k—1
ak T A
E r + 23" B willo: — wellllre,
et 52 k71 7 yk) Lk(yk) Vit 1 gt /Bl7k,yl|| 1 kaH Lk(yk)H

2 k
@ Z Z Bik+1%i |y«
. Bz k'Y'L i )TTLK- (yk) + ‘ 9 ‘ ||1:q>k+l - Ui||2

’ch 1 Pt

k—1
o (1 — o) vk
(o = w) T (k) + Y Biwvillvi — wkllllow — wrll |-

Vh+1 i=1

Last, recall that we want the estimating function to be as close to the objective
function as possible. Thus, we let 6}, equal to the upper bound obtained in (2.29).
Letting ¢; = 6}, Yk concludes the proof. ]

Comparing the result obtained in Lemma 2.4 with that of [4, Lemma 2.2.3], it can
be seen that the recursive relations obtained for computing the elements of {vy}g
and {¢}}r now reflect on the usage of a new lower bound on the function that is
being minimized, and the reduced composite gradient. Moreover, observe that the
recurrent relations for computing {vx}x, {vk}r and {¢;}x all reflect the presence of
the added memory terms that was used to construct them. Comparing the above
obtained results [26, 27], we can observe the additional terms coming from the newly
introduced memory terms into the generalized composite estimating sequences.

To devise our proposed method, we will use an inductive argument. Assume that
for a step k we have

(2.30)

gy L

k—1
o L Yk BikYi||
¢k+7llwq>k*vkllzfz ’2 “|a, —vil|* > F(ag).
=1
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10 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

For the inductive argument to be complete, we need to establish that ®; | > F(zg1).
Considering the assumption for iteration k, and using (1.9) in (2.16), yields

oo 0o
W N

k-1
284 P = (1= ak)F(wk)ﬂLak(F(TLk(yk)) oz, T (We) NP+ Biwvillye = vz|>

i=1

k—
ol e ) (uf+2i:115i,m)” -
28: ~a. k—LL k + L — Uk
J 2Yk+1 ! < 29,41 Y
k

(I—ar)Ve | . 2 Bik+1%i | « 2
e * VE+1 qu}k = uell” + Z qu)kJrl - UkH

3 k—1
287 Bi k ) L )+ —% N8yl —ya ez, (s

W Z a0 T )+ eailes el ()|

k-1

apye(l —ag

288 (2.31) + # ((Uk —y) 7, (k) + Z/Bi,k%’”yk —villllye — Uk|>'
i=1

289 Using (1.13) in (2.31), we reach

00 B> (o) (PO ) o) o)+ el P+ )

k-1
291 +Oék<F(TLk(yk)) ||TLIc(yk 12+ Biwvillyw —Uz|>
=1
LiakH R apye(l—ag) (MerZZ 1»3m%)” "
292 k=1L, (Yk)|| ™+ k—Vk
295+ Y o 2k Y
k
(A—ar)Vh | « 2 Bik+1%i || 2
293 - — oerrs _
# g, a4 3 B,
o3
294 Bik ) e (e)+— ) Biwvillvi—yelllIr e, (uk
'Yk+1 Z i ki (vi—y « (Uk) 7’““121 5 kil [0 — k7L, (ye) |
apye(l — ag) Rl
k(1 — ag
205 (2.32) + ————| (v — yi) "rr (k) + > Biwvillys — villllys — vell )
Th+1 i=1
296 Massaging (2.32) yields
* Bikt1y
* i, k+1")0
297 Grrr = F(To () + (1= an)re, ()" (o —yi)+ Y %Hﬁbm —vil|?
i=1
1 042 2 0‘%(1*0‘1@) — T
298 +—=— — =)L u)” + 22— Birvi(vi — yr) 7L, (Uk
(57~ gy ) s+ B80S =g o
) Ve (1l — ag
209 (2.33) +M(Uk—yk)ipmk(yk).
V41

300 Adding 5|2y, | — vk+a|[® to the left-hand side (LHS) of (2.33), as well as moving
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GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS 11

the term Zle L"‘;l%

x%  —wv;||? to the LHS, we can write
DPpq1

1 o
)l

Bis 2 F (T, () -1 = andraaon) ) + (51 = 5o

2 k-1

az (1 — Q. (6775077 1- e

(2.34) + % > Biwvilvi —y) rr, () + %(% — i) L (yr)-
i=1

From (2.34), we have

(2.35) ap = ) 2L

Substituting (2.14) into (2.35), the solution for «y is found as

2
pi+ Ei-:ll BikYi — Y + \/(uf + Zi-:f Bikvi — %) + 4Ly
(236)  ay = .
2Ly

This allows to simplify (2.34) as

. 2(1 — ap) =2
B 2 F (T () + 10 ra) o)+ 50— 5 o) o)
i=1

apve(l — ag
+ L(vk —yi) T (ye)-
Yk+1
Next, let us set
Y a2 k—1
EYk
(2.37) Tp — Yk + (0 —yk) + — D Binyi(vi —yi) =0,
Vi+1 Ve+1 T

which yields

2 k—1
 Ver1Tk T QpYEVE + 0g D iy B kv

(2.38) Yk —
Ve+1 + Ve + o2 Zlel Bi ki

Letting w41 = 11, (yi) ensures that ®pq > F(zg41).

Before introducing our proposed method, let us also present a backtracking line-
search strategy that will enable the convergence of the minimization process.! Since
the true values of L i and p # are not known, and considering the typical applications
[25], we prioritize: i) robustness to the imperfect initialization of the estimate of L
at iteration k = 0; ii) the need to adjust the value of the estimates of Lj. This is
achieved by selecting the parameters n,, > 1 and 7y €]0, 1], which are used to increase
and decrease the estimate of L across different iterations. Considering this choice of
parameters 7, 74, despite the initialization of Ly, we can always write

(2.39) L < Lipax & max{ndLO,nuLf}.
We conclude by presenting our proposed method in Algorithm 2.1.

INote that several backtracking strategies have already been proposed in the literature (see for
example [22, 24]).

This manuscript is for review purposes only.



12 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

Algorithm 2.1 Proposed Method

1: Input g € R", Ly > 0, Kz Yo S [O,/Jf[U[Q,LLf,?)LQ + /Lf},
1y > 1 and ng4 €]0, 1[.
Set £k =0,7=0 and vg = zg.
while k < Kpax” do
i/i — nde
while True do

— N — N 2 2
6: Q& lLf*JrZ,’f:ll Bm,k'}’i*'}’k‘f’\/(ﬂf‘+2§:f ﬂi,k’ﬁ*’ﬂ«) +4L;vg
’ v 2L,

. ; . i .
7: Fig1 (1= @)y + & (Mf + Zi:f Bi,k%’)

N N 2 k-1 N
~ Fip1Te+&iveve+a; 3721 BikFivi

A

8 Yi Fis1+aive+a2 S i A
9: Tiy1 prOXiQ (Ql — in(gz))
. N N N k— N Ao

10: Vjy1 € ﬁ ((1 — Qi) ek Gy (Mfyi + Zizll Bi ki — Ly (Z/z‘*xz'-rl)))
11: if F(i’erl) < mp. (g“ i’iJrl) then
12: Break from loop
13: else .
14: Li+1 — nuLz
15: end if
16: 1—i1+1

17:  end While

18:  Lpq1 < L, g1 < Ty, g < Qi1 Yk < Yim1s Yet+1 < Vir Vb1 & 04, 1 < 0,
k+—k+1

19: end while

20: Output z; =0

Comparing our proposed method to FGM, we can observe (from lines 6 and 7
in Algorithm 2.1) the differences in computing the iterates ay and 7. In our case,
their values are also dependent on the memory terms that were used in devising the
estimating sequences. The update of yj is also different, and independent of Iz A
major difference is the update for xzj, which is now done through a proximal gradient
step. The last difference between the methods can be observed from the update of
the iterates vg, which now depend on the selected subgradient. Further, comparing
between our proposed method to the one presented in [26, 27] for minimizing convex
functions with composite structure, we can see that the major differences arise from
making use of the additional memory terms. Observe that our proposed method
reduces to FGM when 7 = 0 and ¢ (z) = 0,Vk = 0,1,.... Moreover, observe that
our proposed method reduces to the method presented in [26, 27] when ¢(z) =
0,Vk = 0,1,.... In this sense, our proposed method is a generalization of all the
aforementioned estimating sequence methods.

3. Convergence Analysis. Considering the results established in Lemma 2.2,
the convergence rate of the minimization process is controlled by the rate at which
the terms {\g}r decrease and the rate at which the terms {¢y } increase.

2Note that Kmax denotes the maximum number of iterations.
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GENERALIZED ESTIMATING SEQUENCES FOR CONVEX COMPOSITE FUNCTIONS 13
THEOREM 3.1. Ifwelet \g =1 and A\ = Hfz_ol (1 — ay), Algorithm 2.1 generates
a sequence of points {xy}x such that

(3.1) F@@-F@ﬂgm4Fu@—F@ﬂ+%w%—fW)—u—Aww@y

Proof. Let us begin by setting ®f = F(z¢). Further, evaluating (2.10) for k =0
and © = g we have: ®o(z0) = F(20)+ 2 ||zo—vo||>. Moreover, using the initialization
vg = xo as suggested in Algorithm 2.1 we obtain F(xzy) < ®f. Last, note that the
proposed method is designed to ensure F(zy) < ®5, Yk = 1,2,.... Applying the
findings from Lemma 2.2 suffices to conclude the proof. 0

Let us now establish the rate at which the terms {\x}, decrease.

LEMMA 3.2. For all k > 0, Algorithm 2.1 guarantees that
1. If v € [0,,uf[, then

(3.2)
Q1 s
Ak < Hi <o 21 5
kil (”erZ’)‘?;llﬁi*kﬂ'i) Bl (“f+zi?:7113i,k“fi) (k+1)
Lple2 Vo g2V e
2. If v € [2uf73Lo +Mﬂ, then
A1 »
A < My .
k1 (“f+2?=_11 B%’”i) k+1 (“_f+2?:_11 Bz,k’Yz‘)
(o—pp)fe” VT —e TV
4L
33 < b

(o = pg)(k+1)*

Proof. Let 7o € [0, uj[U[2417,3Lo + puf] and apply (2.14) to

k—1 k—1 k—1
(34) Yrp1— <uf+25i,k%> =(1—ou)ye+ou (MJH'Z ﬁi,k'}’i) - (,uf+25i,k%> .

i=1 i=1 i=1
Moreover, since Ag = 1, we can re-write (3.4) as
k—1 k—1
(3.5) V41 — (,uf + Zﬁi,k%) ;= (1= ar)o |:’Yk - (Mf + Zﬂm%)} :
i=1 i=1

Substituting (2.14) into (3.5), results in

k-1 k-1
(3.6) V41 — <,uf + Z 5i,k%> = Akt1 [70 - <uf + Zﬂm%)} .

i=1 i=1

Next, we note that (2.2) and (2.35) are connected through «y as follows

k—1 k—1
(3 7) -1 )\k+1 _ Vi+1 . (luf—’_Zv:l Bz,k’}/z) +fyk+1 - (.uf—’_Zv:l 5171672)
' = eV L Ly, Ly, '
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14 E. DOSTI, S. A. VOROBYOV AND T. CHARALAMBOUS

Moreover, replacing (3.6) in the RHS of (3.7), and making some manipulations yields

k—1 k—1
(3 8) Ak — Mgt 1 (lu’f + Zi:l Biﬁkvi) Y0 — (:U’f + Zi:l Bz}k’}/i)
4 = + :
Ak Akt1 VAt A1 Ly Ly,
Observe that LHS of (3.8) can be written as ﬁ - i Replacing the relation for

the difference of squares in the LHS of (3.8) results in

1 1 1 1 1
(\/ Ak+1 - m) (\/M;H +m> B vV Ak+1

(u,a+2f;fﬁi,m) Yo— (ﬂf"’Zf;fﬂi,k%)
+ .
Ai+1Lk Ly

(3.9)

Observe that in Lemma 2.3 we define ay, € [0,1]. Moreover, based on (2.2) we
can establish that A\, are non-increasing in k. This allows for replacing ﬁ in the

LHS of (3.9) with ————, which would have a bigger value. So, we obtain

(3.10)
2 ( 1 1 ) 1 (/Lf"JFZf:_f Bi,k%‘) ’Yo*(MerZf:_ll ﬁi,k%)

T B = +
VNt \W k1 VA T VA Ak+1Lg Ly,

We can now observe that the convergence rate of the minimization process is
dependent on the value of vy. We will prove convergence separately for v € Ry =
[0,,uf[ and 79 € Ro = [2,uf,3Lk + uf], We start with 7o € Ry and introduce the
following

Lmax

((“f + Y] ﬂi,k%’) - 'yo) Ao

(1>

(3.11) &Ry

Next, we can revise (3.10) as

2 2 (Mf +3 ﬁi,k%) -
(3.12) >
VA1 VA Ly,
p i L

+ 1.
LypAps ((Mf + Zi-:f 5i,k’7i) - 70)

o - Lo elds
Revising the LHS in (3.12) and multiplying by \/(u_erEf;f T E— yields

k—1 2
1 (H P2 sz%) 3 1,R
(3.13) SRy~ EeRy 2 5 ! L

Lmax
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Next, we prove by induction that

V2 L;,
.14 > Y2 [Tk | (k+1)6 (k+1)6
(3.14) §k Ry 15 = [e e } ,

(#waZf;f ﬁi,k”/i)

where § = 1 First, considering (3.11) at iteration & = 0 and

2 Liax
recalling that Ao = 1, yeids
LIIIB.X LIIlaX
3.15 Sory = = ,
(3.15) \/(Nf-+’¥—1 — 7)o \/#f’Yo

Embedding (2.39) in (3.15), results in

2 L 2 L
(3.16) oRy > £ R [e\/ﬁ/z — eiﬂ/ﬂ > £ k [65 — 676] .
2\ np— 46 \[ py =0

The last inequality in (3.16) holds true because the RHS increases together with 4,
which is designed such that § < @
Now suppose that (3.14) holds true at step k, and prove the relation for step k+1

by contradiction. Let w(t) £ % HJAL%% [e(t+1)0 — e=(t+1)9] * Based on [4, Lemma

2.2.4] w(t) is convex in t. So, we have

k-1
1 (Mf +> i ﬁi,k%‘) &,
(3.17) w(t) < &ery < EeriRe 7 -1,

where the second inequality stems from (3.13). Moreover, suppose that {p41.7, <
w(t + 1) and substitute the relation in (3.17). This yelds

k—1 2
1 (:“ F 2ot ﬂiﬁk%‘) $ir1 R
(3.18) wit) <w(t+1) -5 d - R

Applying the definition for §, together with (3.14), results in

2
1 V2 Ly,
‘ < Lz |2k (s o428 |
(3.19) w(t) <w(t+1) 3 46 |:46 =0 (e e )} 1

<wlt+1)— V2 | Ly [e(t+2)6 n e—(t+2)6]
- 4\ g =0
=wlt+ 1)+ (t+1)E—(E+1) <w(t).
The last inequality is obtained based on the supporting hyperplane theorem of convex
functions. At this point, we highlight the contradiction with the earlier assumption,

ie., &+1,my < w(t+1). So, it must be true that (3.14) holds for all iterations
E=0,1,...
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We can now prove (3.2). Considering (3.11), we have
LmELX

513+1,721 ( (,u,f* + Zf;ll /Buk%') - ’YO)

Substituting (3.14) into (3.20), yields

(3.20) A =

46 2Lmax
(3.21) A < (49) -
2L} [e(kﬂ)& _ e(k+1)5]
The first inequality in (3.2) is obtained by replacing the definition of § in (3.21). The
second inequality in (3.2) can be proved as follows. First, let us define the following
abbreviation

2
(Hf+2i:11 ﬁi,k'Yi)
(3.22) Lk
Now, consider
B (#erZf;ll ﬁiqk"m‘,)
(3.23) (k) T 2,

Applying the definition of the hyperbolic cosine function in (3.23), yields

(Nf + Zi:ll ﬂi,k%)
Ly,

(3.24) A}, =2cosh (k+1)-2

Taking the Taylor expansion of cosh(-), yields
(3.25)
2
(#erZf:_fﬂi,k%) (k+1)? ) (Mf +Y 52',1@%') (k+1)*
2Ly, * 411,

Discarding the additional terms in (3.25) we obtain
k—
(Mf + Zizll Bi,k%)
Ly,
Replacing (3.26) in the denominator of the first inequality of (3.2) concludes the first
part of the proof. The results for the case when vy € Ry can be established by
following the analysis conducted for FGM in [4, Lemma 2.2.4]. The main update
would need to be the addition of the term Zf:_ll Bi ki in the update for the sequence
{7k }te- O

Compared to [4, Lemma 2.2.4], Lemma 3.2 exhibits the following benefits: i): Con-
vergence of our proposed method is established also for the cases when the exact value
of L; is not known. ii) Our proposed method converges for a broader range of .
Such a result is relevant because it enables the robustness of the initialization of our
proposed method in the absence of the true value of p 7

A =—2+2+2

+ ...

(3.26) Aj > (k+1)2.

Combining Lemma 3.2 and (1.14) with Theorem 3.1, yields the following acceler-
ated convergence rate for the proposed method.
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THEOREM 3.3. Algorithm 2.1 generates a sequence of points such that
1. If yo € [O,Nf[, then

(3.27)
15 (Lo +70)|lzo — z*[?

2. If 0 € [2u7,3Lo + pyl, then

(3.28)

Fog)—F(z") <

4. Numerical study. We now present the numerical performance of our pro-
posed method and compare to the existing black-box benchmarks, specifically, AMGS
and FISTA. We consider both quadratic and logistic loss functions. To simulate very
ill-conditioned instances of our selected problems, we also use elastic net regularizer
and select different values of the hyperparameters. Throughout all the tested in-
stances, we demonstrate the efficiency of our proposed method when compared to the
selected benchmarks. In our simulations, we make use of both synthetic and real-
world datasets, the altter being chosen from the Library for Support Vector Machines
[31]. Moreover, throughout our simulations, We find z* by using CVX [32].

In our simulations, we choose the terms 3;; = min (1, %%1 , fori =k —1.

Depending on the selection of the terms 7y, we will consider the following instances
of our proposed method: 1) We set 79 = 0, and refer to it as “Proposed 17; 2)
We set 9 = 1, refer to it as “Proposed 2”; 3) We set 79 = 3Lg + B, and refer
to it as “Proposed 3”. To estimate the value of the Lipschitz constant for AMGS
and FISTA we make use of the line-search strategies introduced in the corresponding
papers [22, 24]. Last, in all the computational examples shown below, we select the
point zg at random and use it as a starting point for all the algorithms that are
compared.

4.1. Minimizing the quadratic loss function. Let us begin with the follow-
ing cost function

m

o 1 T
(4.1) minimize 5;(61?%%)& 5 ll2ll® + 7allells,
where ||-||1 is the /1 norm. The aim of the Section is to validate the theoretical results

obtained above and demonstrate that such gains are also sustained when considering
the practical deployments of the proposed method. For this purpose, we thoroughly
evaluate the performance of the different benchmarks with respect to different values
of the condition number of the problem. In our computational analysis, we also
consider cases wherein the value of the Lipschitz constant is not known and needs to
be estimated.
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Let us start our evaluations by considering the cases where the Lipschitz constant
and strong convexity parameters are known. This corresponds to the simplest case to
analyze, and facilitates an unbiased evaluation of the efficiency of the methods that
are being compared. For this setup, we will utilize simulated data which are generated
by uniformly sampling m elements from the set {10°, 1071, 1072,...,107¢}. These
elements are then used to populate the diagonal of a sparse matrix A € R™*™.
The other entries of A are set to 0. Considering the design of the matrix A, we
have L = 1 and py = 107%. Thus, the condition number of the problem becomes
k = 10%. The entries of y € R™ are uniformly sampled from the interval [0, 1]™.
Last, the other simulation parameters are set to m € {500,1000}, & € {3,7} and
T =7 € {107,107 7}.

Our findings for the aforementioned simulation setup are summarized in Fig. 1.
When compared to the selected benchmarks, we can observe that our proposed method
is more efficient both in terms of the obtained distance to the optimal solution z*,
as well as in the number of iterations needed to converge to such solution. Another
advantage of our proposed method is that it exhibits better monotonic properties.
Moreover, observe that all the methods that are being evaluated are sensitive to the
condition number of the problem. The higher the value of the condition number
is, the more iterations the methods require to converge in the vicinity of z*. Last,
comparing between the selected instances of our proposed method, we can observe
that they exhibit a commensurate degree of similarity, which is also clear based on
our theoretical analysis. Nevertheless, we can see that the best performing instance
is the one obtained when choosing vy = 0.

Let us next consider the case where the true value of the Lipschitz contant is not
known. For this purpose, we shall consider initial estimates of the Lipschitz constant
that are 10 times higher and lower than the true value, i.e., Ly € {0.1ng7 10Lf}.
Following the recommendations presented in [33], for our line-search procedure we
choose 1, = 2 and 1g = 0.9. We also assume the true value of the strong convexity
parameter fi is not known. Instead, we use the lower bound on the true value which
can be controlled by the selection of the regularizer term in (4.1). In the following
examples, we will use data from the “ala” dataset, for which A € R1695%123  For the
considered dataset, the true values of the Lipschitz constant is L«,1,» = 10061. The
values of the regularizers are selected to be 71 = 7 € {1074,107°}, which ensures

L:
that the condition number of the problem x = #—f has a high value.
i

Our findings are summarized in Fig. 2. Therein, we can observed that our pro-
posed method is more efficient than the selected benchmark. Similar to the results
presented in Figure 1, the iterates produced from our proposed method exhibit better
monotonic properties and have the smallest distance to the optimal solution. More-
over, accross all simulations, we can observe that our proposed method converges to
z* in a smaller number of iterations. Considering the result for different values of
regularizers and Lipschitz constant estimates, we can observe the robustness of our
proposed method and AMGS to the imperfect selection of Ly. A difference between
these two methods, however, is that AMGS exhibits a higher per iteration complex-
ity. Such results cannot be observed for FISTA, whose performance is very sensitive
to the initialization of the Lipschitz contant estimate. This comes because the line-
search strategy introduced for FISTA, does not allow for decreasing the estimate of
the Lipschitz contant across iterates. Comparing between the different versions of
our proposed method, we can observe that in most cases they are equally efficient.
Nevertheless, the variant obtained when initializing vy = 0 is preferred because it

This manuscript is for review purposes only.
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Fig. 1: Performance evaluation of our proposed method and the selected benchmarks
on synthetic data. We consider quadratic objective function and elastic net regular-

izer.
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Fig. 2: Performance evaluation of our proposed method and the selected benchmarks
on the “ala” dataset. We consider quadratic objective function and elastic net regu-
larizer, and assume that the true value of L 7 is not known.
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4.2. Minimizing the logistic loss function. We also test the performance of
our algorithm and selected benchmarks in minimizing the following function.

s s 1 - —b;xa; T1 2
(4.2) minimize E;log (1+e )+§||x\| + mol|zl|1-
We also consider different datasets from the previous Section, namely “rcvl.binary”,
for which A«.cy1 binary” € R1000x2000 "4\ 5 subset of “triazine”, for which A «triagine” €
R186x61 Moreover, in the earlier Section we observed that the convergence of FISTA
is significantly affected by the selection of Lg, which happens because the line-search
strategy proposed for FISTA does not allow for decreasing the estimate of the Lipschitz
constant. Since in this paper the goal is to devise more efficient black-box algorithms,
for the upcoming simulations we will assume that the true value of L ; is known. For
the selected datasets, we have Leycyi binary” = 1.13 and Legiazines = 25.15. Regarding
the strong convexity parameter, we follow a similar approach as in the earlier examples
and select its value to be the same as the Iy regularizer term in (4.2), which are selected
tobe 1y = 7 € {107%,107°,1075,1077}. Last, since there is little performance
difference between the different variants of our Proposed method, in the sequel we
simulate only the first variant, namely Proposed 1. Our findings are depicted in Fig.
3, and from it we can clearly see that our proposed method significantly outperforms
the selected benchmarks also in minimizing the regularized logistic loss function.

5. Conclusions and Discussion. A new class of generalized composite estimat-
ing sequences has been introduced for minimizing convex functions with composite
structure with a non-smooth term. Using these newly introduced class of estimat-
ing sequences, a new accelerated black-box first method has been presented. The
proposed method is endowed with an efficient backtracking line-search strategy, and
exhibits an accelerated convergence rate even when the true value of the Lipschitz
constant of the objective function is not known. The convergence results presented in
the paper suggest that our proposed method exhibits such an accelerated convergence
when o € [0,3L + qu i.e., the initialization of our proposed method is robust to the
imperfect knowledge of the strong convexity parameter. From a computational view-
point, our proposed method has been shown to outperform the existing benchmarks
when tested in solving practical problems modeled by both simulated and real-world
datasets.

The results presented in this paper can be extended in multiple directions. First,
it would be of interest to explore alternative structures for ¢ (x), which can be used
for devising estimating sequences applicable to different optimization methods, e.g.,
higher-order methods, stochastic methods, non-convex methods etc. Another rivet-
ing research direction is related to investigating extensions of the framework devised
herein in the context of the inexact oracle framework. Last, it would also be of inter-
est to consider the impact of restarting in the practical performance of our proposed
methods.
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