
Antor,tzon nd Rmot,’ C’ootn,i, VoL 61, No. 7, Pore 1, 2000, pp. 1113—1124. Tun.tatd from Avtomotika Telrmekh,rntho, N. 7, 2000, pp. 55—67.
O-gmaI Rooton Trt Copynqht © 2000 &y Bodyoook.i, Vorob ‘eo.

STOCHASTIC SYSTEMS

Recurrent Neural Network Detecting Changes
in the Properties of Nonlinear Stochastic Sequences

E. V. Bodyanskli and S. A. Vorob’ev

State Technical University of Radioelectronics, Kharkov, Ukraine
Received February 16, 1998

Abstract—An approach is proposed to detecting changes in the properties of stochastic se
quences obeying nonlinear equations of autoregression moving average. It is assumed that the
changes in the sequence properties can have both the parametric and structural nonstationarity
(change of order) forms. An architecture of multilayer recurrent neural network and neuron
adjustment algorithms providing the maximal rate of learning are proposed. The possibility of
diagnosing stochastic sequences of arbitrary structure, high speed, and simplicity of computa
tions are the advantages of the approach proposed.

1. INTRODUCTION

The problem of detecting changes in the properties of stochastic sequences which is closely
related with technical and medical diagnosis was widely covered in th literature [1—5]. Numerous
approaches related mostly with the concepts of mathematical statistics, random-process theory,
pattern recognition, cluster analysis, and so on were proposed. Without going into criticism of the
existing results, we just note that the rigid assumptions about the statistical properties of series
limit the possibilities of these methods.

The multimodel approach [1, 5—8] where the diagnosed signal is passed through a set of models
each of which relies on an individual hypothesis about the nature of possible changes seems to be
more universal. If certain hypotheses are satisfied indeed, the updating signals at the outputs of
the corresponding models must be small. Therefore, the decision mechanism is based in essence on
finding the model with the minimal updating at the output, the probability of the corresponding
hypothesis being maximal. The advantages of this approach are certain, but in real life the sequence
is usually so complicated and diversified that none of the (usually, linear) models reflects fully its
changing properties.

The recent years witnessed a burst of studies in the area of theory and application of the
artificial neural networks, including the problems of diagnosis [9—15J. The proposed diagnostic
neural networks mostly realize the concepts of the theory of classification in the presence of learning
sample; here, the network cannot detect process states that were not envisioned in advance.

The present paper proposes an architecture of the multilayer recurrent artificial neural network
and algorithms to adjust its parameters which combine the advantages of the multimodel approach
and approximating properties of the predicting neural networks [16—19] with nonlinear activation
functions. Changes in the properties of a stochastic sequence are reflected by the diagnostic vector
whose elements are the synaptic weights of the output neuron.

2. ARCHITECTURE OF THE DIAGNOSTIC NEURAL NETWORK

The proposed architecture of the diagnostic recurrent neural network (Fig. la) consists of ele
mentary neurons differing in the form of the activation functions and learning algorithms, which
generally are the gradient procedures of unconditional or conditional optimization.
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1114 BODYANSKII, VOROB’EV

Fig. 1. (a) Architecture of the diagnostic network. (b), (c) Neurons of the hidden layers. (d) Output neuron.

The multilayer structure featuring optimal approximation and prediction [20, 21] is the prototype
of the proposed artificial neural network. Structures such as the multilayer perceptron or recurrent
Hopfield network respond to variations in the properties of the analyzed sequence by temporal
deterioration of their predicting properties which are later restored as the neurons in layers learn.
At the same time, these structures cannot establish the state of the monitored sequence after
imbalance. This problem can be solved using the concept of multimodel approach which currently
is rather well substantiated and developed [1, 5]—true, only for the linear systems. Realization of
the multimodel approach by the technologies of neural networks would extend the class of solved
diagnostic problems to the nonlinear objects.

The monitored stochastic sequence {x(t)}, t = 1, 2,... is fed into the input layer of the network
which is a sequence of pure-delay elements z1 : (z 1z(t) x(t — 1)). As the result, the layer
outputs a set of delayed values of the time series x(t — 1), x(t — 2),... , x(t — d); here, the greater
d, the wider the diagnostic possibilities of the neural network.

The first hidden layer consists of neurons of the McCulloch—Pitts type (see Fig. ib) to whose
summing inputs the delayed values of the summed sequence x(t) and—through the feedback—the
delayed values of the prediction ,(t), j 1,2,... , d, are fed. The inputs of neurons 2’1 correspond
to the inputs of the algorithm for adjustment of the synaptic weights; and f describes the nonlinear
function of neuron activation. As the result of processing the signal x(t) by the first-layer neurons,
they output the prediction estimates

1(t) = f (x(t — 1), 1(t — 1))

x2(t) = f (x(t — 1), x(t — 2), 2(t — 1), 2(t — 2))
2 1

Xd(t) = f (x(t — 1),... ,x(t — d),id(t — 1),..., Xd(t — d))

corresponding to the process of nonlinear autoregression moving average (NARMA-process) [17,
18] of the order ranging from 1 to d. Therefore, the neurons of the first hidden layer make up the

(a)

(b)

output neuron

i=Zd

(r)
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RECURRENT NEURAL NETWORK 1115

elementary “bricks” from which the second hidden layer “assembles” the optimal predictions of the
sequence x(t). The task of the network is to determine in real time the current value of the order
of the NARMA-process and time of its possible changes.

The neurons of the second hidden layer T2 (see Fig. ic) join the output pairs of the neurons T1

with the aim of getting the estimates (t), j 1,2,... , d — 1:

1(t) = c’(i(t),2(t),ci) ,

2(t) =cp(1(t),.3(t),c2,ci)
, (2.2)

Yd_1(t) = ‘(d_2(t),d(t),cd_1,cd_2 C)

and weight coefficients c3 characterizing precision of the predictions ji(t) and 3+i(t) that are

joined and the joint prediction 7j(t). It deserves noting that although the second layer formally
performs pairwise joining, it is not precisely the case at the physical level. If the first neuron of the
second hidden layer constructs the joint prediction on the basis of 5 (t) and 2 (t), then 72 (t) already
contains1(t), 2(t), and3(t); jj3(t)—1(t),2(t), ?3(t), and4(t), and soon. It is precisely in the
second hidden layer that the optimal qne-step predictions are generated which differ from each other
in the value of the prehistory used. The vector of current weights C(t) = (ci(t),c2(t),... , cd_l(t))T

describes the quality of prediction attained in the second hidden layer at each current time instant;
and changes in the relations between its elements are indicative by themselves of the changes in
the structure and parameters of the monitored sequence x(t). We note also that already at the
level of this layer one can establish from the number of the corresponding neuron the number of
“physical” first-layer neurons required to approximate the signal x(t).

As the result of learning, the neural network ensures optimal approximation of the monitored
sequence. Here, the estimates of the “contributions” (diagnostic attributes P(t) = (pl(t),p2(t)...,
pd_l(t))T) of each prediction (t) to the general model of the monitored signal are generated in
the single neuron of the output layer T3 (see Fig. id). The maximal weight p(t), which is the
counterpart of the hypothesis that the “true” state of the sequence x(t) is best described by the
estimate (t), corresponds to the greatest “contribution.” The maximal value of p,(t) defines the
order of the diagnosed NARMA-sequence at the current time t; and the continuous updating of the
vector P(t) by the appropriate neuron adjustment algorithms enables one to determine the instant
of imbalance in x(t).

Upon the occurrence of imbalance accompanied by changes in the properties of the monitored
signal, the “contributions” of individual j (t) change correspondingly; and the optimal prediction
is made by another combination of the second-layer neurons. It is only natural that in this case
the corresponding p3 (t) vary, which fact is reflected by the output neuron.

3. ADJUSTMENT ALGORITHM FOR THE NEURONS
OF THE FIRST HIDDEN LAYER

The output of the jth neuron of the first hidden layer is representable as

= — i) + wj,+(t)j(t — i) +wo(t))

= f (wtxt) f (t), (3.1)

where fj(•) is the activation function of the jth neuron; w(t) = (w3(t),(t), . . . ,wjj(t), w÷(t),
• .w323(t))T is the ((2j + 1) x 1)-vector of the adjusted synaptic weights; X3(t) (1, x(t — 1),
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1116 BODYANSKII, VOROB’EV

,x(t
— j),(t — 1),... — j))T is the vector of generalized inputs; X3(t) = WT(t)Xj(f),

j = 1,2,... , d; and t = 1,2,... is the current discrete time.
Expression (3.1) describes the nonlinear stochastic sequence of autoregression moving average

of the jth order. As was noted in [17], it is precisely the determination of the value of j that is the
most difficult problem. In this connection, it is advisable to make use of sufficiently large values of
d in particular problems.

By introducing the prediction error of the jth neuron

= x(t) - j(t) = x(t)
- f ((t)), (3.2)

the gradient procedure of adjusting the synaptic weights is representable as [22, 23]

w(t + 1) = w(t) + 17j(t)Ej(t)Vf ((t)) w(t) + (3.3)

where %(t) is the parameter of search step which is usually taken to be constant; andV1f((t)) =

G, (t) is the gradient of the function of activation by the synaptic weights.
We note that for the most popular activation functions

1 — exp
.f (x3(t)) = tanh (-yjx,(t)) =

1 + exp _27jXj(t)}
(3.4)

f7 (t))
1+ exp (_7(t))’

the gradients are as follows:

((t)) = G(t) = 7j (i_ (f (?(e)))2)X(t)

(i- (t)) X(t),
(35)

Vw,f7 (.(t)) = G7(t) = f7 (..(t)) (1
— f7 (.?2(t))) X,(t)

= ‘y,(t) (1 — j(t))X3(t).

Convergence of the gradient procedures of the type (3.3) is provided over a fairly long interval
of variations of the step ij (t). For the determinate case, this parameter must satisfy the conditions
o <llj (t) <2/Lp with Lp for the Lipschitz constant of the optimized function, and for the stochastic
case it must satisfy the Dvoretsky conditions. It seems natural to choose here the step providing
the maximal convergence rate.

Maximization of the function

l’V,(t) = lI&(t)lI2— &(t — 1)112 (3.6)

(here j (t)
= —

.‘j (t) and wj is the optimal vector of synaptic weights) leads to the nonconstruc-.
tive estimate

— (w — wj(t))TGj(t)
3 7

However, if the relationship

(w - w(t))TG(t) f(wX(t))
- fj(wT(t)Xj(t))

= x(t)
- f(wT(t)Xj(t)), (3.8)
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RECURRENT NEURAL NETWORK 1117

which is valid for the convex functions, is satisfied, then it follows from (3.7) that

0 < ij(t) < IIG(t)ll2. (3.9)

By considering the one-step variant of the Marquardt algorithm [24]

w(t + 1) = w(t) + (G(t)GT(t) + p(t)E)Gj(t)rj(t), (3.10)

where p(t) > 0 and E is the identity matrix, and using the well-known relationships

I urn (Gj(t)GT(t) + p(t)E’ = (G(t)GJ’(t))+,
4f (3.11)

(G(t)GT(t))Gj(t) = (GT(t)) = G(t)IIG(t)Ij2

of the theory of pseudoinverse matrices, one can write the speed-optimal variant of (3.3) [25]

x(t) —

w(t + 1) wj(t) +
G11’2

G3(t) (3.12)
I 3. I

which in the linear case coincides with the Widrow—Hoff algorithm for adjusting the synaptic

weights.

We note that for the activation function like (3.4), algorithm (3.12) is represented as

w(t +1) = w(t) +
(t)

2X(t),
y3( x( )Hl .,( )B 313

w7(t +1) = w’(t)
+ 7J(t)(1 - (t))IIX(t))}2t).

The following exponentially weighted modification

f wj(t + 1) = w(t) + r’(t) (x(t) — (t)) G(t),
(3 14

lrj(t) = arj(t— 1) + IIG(t)tl2, 0 a 1, rj(0) = 1
)

which coincides with (2.12) for c = 0 and, in the linear case, with the Goodwin—Ramadge--Caines

procedure of stochastic approximation [26] for c = 1, can be introduced to render additional

smoothing properties to algorithm (3.12).

4. ADJUSTMENT ALGORITHM FOR THE NEURONS

OF THE SECOND HIDDEN LAYER

In the second layer of the proposed neural network, the outputs of the first layer are joined

pairwise as

= c(t)j_i(t) + (1 — c(t))÷(t), (4.1)

where o(t) 1(t), j = 1,2,... ,d — 1, and the weights c,(t) define the comparative accuracy of

the predictions_1(t),+1(t) and make the prediction (t) unbiased.

To determine the value of cj(t) which makes j(t) optimal, we introduce (t x 1)-vectors of

observations and errors

X(t) = (z(1), z(2),.,. ,

(t) = ((1)(2),... ,(t))T,

((l),(2),... ,(t))T,

= X(t) — (t), V..1(t) = .K(t) —
= X(t) — X+i(t)
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1118 BODYANSKII, VOROB’EV

and write the evident relationship

= cj(t)j_i(t) + (1 — cj(t))V,j÷i(t). (4_2)

Then, we solve the equation

Oil Vj(t)112
= (4 3

Ocj(t)

and obtain

• vr t
V,+1(t)Vj_i(t)

c ( ) — i+i( ) llV,+i(t) -_1(t)II
44

1 t — VT ‘
_1(t) — V÷1(t)

- Cj( ) — j-1
— V,÷i(t)1j2’

Now, one can demonstrate that

JJ(t)lI2 - IIV,+1(tNi2=

- (iIv,+i(t)lI2 -V1(t)V,±1(t))2

ii1’j_i(t) — V,+i(t)II
(45)

(ltitHI2 -V1(t)V,+(t))2
2

•

2 *

_______________________________

< 0II “
— {1’_1(t) — V,+i(t){j2

that is, the accuracy of the joint prediction (t) can be never worse than that of the joint predictions
,_1(t) and+1(t). The weight coefficient c,(t) defines the “contribution” of_1(t) to (t) and,
therefore, closeness of the physical process x(t) to _1(t) or +1(t). Changes in c,(t) can signal
changes in the properties of the sequence x(t), and the vector C(t) = (ci(t),c2(t),... ,.cd_l(t))T can
be used as that of diagnostic attributes.

To operate in the real-time mode, it is advisable to represent (4.4) in the recurrent form. By
introducing the notation

f E3(t) = V,+1(t) — 1’_1(t), v3_1(t + 1) = x(t + 1) —_1(t+ 1),

1 v,j+i(t + 1) =x(t + 1)—+1(t+ 1), e(t + 1)=v,+j(t + 1)—vj_i(t + 1),

one can finally write

I
• 1

— r(t) v,+i(t + 1)ej(t + 1)
c3( +

F(t+
1)C)( ) +

F(t+ 1) (4.6)
(r,(t+ 1) =P(t) +e(t+1).

In some cases, it is recommendable to use in algorithm (4.6) the monitored sequence x(t) and
its predictions, rather than the updating signals. Taking into account that

E(t) = X(t) -+1(t) - X(t) +1(t) =1(t) -

e(t+ 1) = x(t+1) —÷(t+ 1) —x(t+ 1) +j_i(t+ 1)

=_1(t + 1) — +i(t + 1),

the algorithm for adjustment of the neurons of the second hidden layer is representable as

I — T,(t) v,+i(t + 1)(j_i(t + 1) —+1(t + 1))c( + )
— rj(t+1)c3( )+

FQ+1) (4.7)
1r(t+1) =r(t) +(_1(t+1) —(t-f-1))2.
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5. ADJUSTMENT ALGORITHM FOR THE OUTPUT NEURON

The output layer of the diagnostic network consists of a single neuron T’3 where the outputs

(t) = (1(t),2(t),... , d_l(t))T of the second hidden layer are joined as

d— 1

1(t) = p(t)j(t) =PT(t)i(t). (5.1)

j=1

Here, if the constraints

{Pit) = pT(t)J 1,
(5.2)

p(t)O, j=1,2,...,d—1,

where I is the ((d — 1) x 1) vector of unities, are imposed on the elements of the vector P(t) =

(pj(t),p2(t), ... , pa_i(t))T, then they can be treated as the probabilities of certain hypotheses one

of which states that the true structure of the process is most close to the structure of the prediction

7Li (t) having the maximal probability pj (t).

To determine the diagnostic vector of probabilities P(t), we consider the Lagrangian

t / d—1
\2 /d—I \ d—1

= > (x(i) PiJ(i)) +A I\ZPi _i)
— ZtUJPj

= (x(t) _(t)P)T(X(t) - (t)P) + A(PTI 1) Tp (53)

where i(t) = (i1(t), (t),... , %i_i(t)) is the (t x (d — 1)) matrix; ? is the indefinite Lagrangian

multiplier; and it is the ((d — 1) x 1) vector of the nonnegative indefinite Lagrangian multipliers

meeting the conditions for additional nonrigidity.

The vector P(t) can be established either by solving the system of Kuhn—Tucker equations

VpL(P, ?, p) = —2Y(t)X(t) + 2Y T()()p + XI— 0,

______

T 1—— — —

‘ (5.4)

= —pj 0; j 0; j = 1,2,... ,d— 1,
it)

or, which is more convenient in real time, by the Arrow—Hurwitz procedure which generally has

the form

P(t + 1) F(t) — 7p(t)VpL(P, ), , t),

A(t + 1) = )(t) + ‘y(t)OL(P, , , t)/ax. (5.5)

(it(t + 1) = Pr÷ (it(t) + y(t)VL(P, , t,t)),

and in essence is the weight adjustment algorithm for the output neuron 7’3. Here, 7p(t), 7(t), and

y,(t) are the parameters of the step of search and Pr+(.) is the projector on the positive orthant.

By taking into account (5.4), system (5.5) is representable as

( P(t + 1) = P(t) +7p(t) (2(t)7(t) — ?(t)I + it(t))

(t + 1) = (t) +7(t)(PT(t)I
— 1), (5.6)

it(t + 1) = Pr+(it(t) —

where e(t) = x(t) — PT(t)fj(t) = x(t) — 1(t) is the prediction error of the network output layer.

AUTOMATION AND REMOTE CONTROL Vol. 61 No. 7 Part 1 2000



1120 BODYANSK[I, VOROB’EV
To optimize the rate of adjustment of the output layer, the first relationship in (5.6) is multipliedfrom the left by T(t) and both sides of the resulting equation are subtracted from x(t):

x(t) -T(t)P(t +1) x(t) -T(t)P(t) -7p(t)(2(t)j(t)I2

-(t)T(t)I+ T(t)(t)) (57)

The expression in the left-hand side of (5.7) is the a posteriori error (t) after one cycle ofadjustment:

(t) = (t) — yp(t)(2(t)J(t)2
— A(t)7T(t)I +T(t)j.t(t)). (5.8)

By solving the equation

2
(t) o, (5.9)a7p(t)

one can readily obtain the optimal parameter of search step

p(t)
2(t)I(t)U2-A(t)T(t)I+T(t)(t)

. (5.10)

and finally write the adjustment algorithm of the output layer as

(t) (2(t)(t) — A(t)I +1i(t))(t +1) - P(t)
+ 2(t)(t)II2- A(t)T(t)I +T(t)(t)’

A(t + 1) = (t) +7(t)(PT(t)I
— 1), (5.11)

(t + 1) = Pr+(t(t) —

One can easily see that if conditions (5.2) are satisfied in the course of learning, then algorithm(5.11) assumes automatically the form

x(t) —PT(t)(t)P(t + 1) = P(t)
+ Il(t)fJ2 (t) (5.12)

which is the Widrow—Hoff algorithm that gained wide acceptance in the theory of artificial neuralnetworks {27J.
Therefore, the proposed artificial neural network is an extension of the multilayer structureswhich—along with prediction which is traditional for the theory of artificial neural networks—enables early real-time detection of the imbalances.

6. RESULTS OF MODELING
Example 1. We consider by way of example the problem of prediction and detection of variationsin the properties of the system obeying the difference equation

x(t) = O.3x(t — 1) + 0.6x(t — 2) + f(u(t)),

where the nonlinear function f(u(t)) = u3(t) + 0.3u2(t) — 0.4u(t) with u(t) = sin(2irt/250) untilt = 250 and u(t) = sin(2irt/250) + sin(2irt/250) after t = 250.

AUTOMATION AND REMOTE CONTROL Vol. 61 No. 7 Part 1 2000



RECURRENT NEURAL NETWORK 1121

Fig. 2. (a) Diagnosed sequence and its predictions. (b) Variances of the prediction errors on some neurons of
the hidden layers. (c) Components of the diagnostic vector P(t) : p(t) and pr(t).

The problem is solved using the diagnostic neural network with d = 7. To adjust the synaptic
weights of the neurons of the first hidden layer, algorithm (3.13) with the sigmoid activation function
is used. The neurons of the second hidden layer are adjusted using algorithm (4.7); and the output
neuron is adjusted using procedure (5.12). Preliminary training of the network was carried out
only over 500 steps using the input sequence of random variables uniformly distributed over the
interval [—1, 1].

Figure 2a shows the diagnosed sequence and its predictions obtained at the output of the fifth
neuron of the second hidden layer and at the output neuron of the entire network. One can readily
see that the prediction error remains small even when the diagnosed sequence changes and the
prediction error of the output neuron is even smaller than that of the fifth neuron of the second
hidden layer. One can see from Fig. 2b that the variance of the prediction error u (t) is smaller

than the variances of the prediction errors (t) and u (t), which corroborates the theoretical
conclusions from (4,5). At the instant of changes in the monitored sequence, the variances of
prediction errors increase insignificantly, which is the result of good approximating properties of
the neural network. As one can see from Fig. 2c, the components of the diagnostic vector P(t) are
modified at the instant of changes in sequence x(t). The value of p5(t) decreases, and p7(t), on

40
30
20

x(t 10

95(t) 0
—10
—20
—30

K
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1122 BODYANSKH, VORO]3’EV

Fig. 3. (a) Diagnosed sequence and its prediction at the output neuron. (b) Diagnostic vector P(t).

the contrary, increases, which is indicative of the fact that the network recognizes changes in the
properties of the sequence x(t). Figure 2c shows only two main components of the vector P(t) to
which two states of the system—before and after the changes in the properties of the diagnosed
system—correspond. The rest of the components of P(t) are close to zero over the entire course of
modeling.

Example 2. Let us consider one more example where, in contrast to the above example, the
diagnosed signal is distorted by additive noise, which complicated prediction, and the network is
not trained in advance.

Let at the first 250 steps of modeling the diagnosed signal obey the model

x(t) = 0.93 sin 2irft + (t),

where f = 10 and <(t) is the sequence of random variables with zero mean and variance 0.77. At
the 251st step of modeling, changes take place in the signal which results in one more harmonic,
the model becoming as follows:

x(t) = 0.93 sin 2w lOt + 0.84 sin 2ir24t + ((t).

To determine the precise number of the required input neurons, we rewrite the last model in the
operator form relative to the back-shift operator:

ñ (i — 2jz’ + z_2) x(t) =

where /3j = cos 2irf,; and upon returning to the time domain, we obtain

x(t) = 2/31x(t — 2) +32(x(t — 1) + x(t —3)) — x(t — 4) + <‘(t).

The maximal number of delays of x(t) is four. Therefore, it suffices to have only four neurons in
the input layer of the network. Although the above model describes in precise terms the monitored
sequence, we make use of the diagnostic network described in this paper.

t
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The results of modeling are depicted in Fig. 3. Figure 3a shows the diagnosed sequence and its
prediction at the output neuron of the network. The accuracy of prediction here is worse than in
the above example where the network was trained in advance. The graphs of the components of
the vector P(t) are shown in Fig. 3b. At the first 250 steps, the component pj(t) has the greatest

value, which is due to taking into account the first two backward-shifted values of the diagnosed

sequence which suffice for describing one harmonic. After the 250th step, the components of P(t)

are modified and now p3(t) has the greatest value and pi(t) and p2(t) approach zero. Additionally,

the rate of detecting the changes does not worsen as compared with the above example.

7. CONCLUSIONS

Although the quality of prediction is worsened if the network was not trained in advance and

the signal is distorted by noise, the properties of the network that are related with the rate of

detecting changes in the sequence remain the same. On the whole, model examples corroborate

the theoretical results obtained in this paper. The possibility of using the proposed network for
prediction and detection of changes in the properties of sequences described by the nonlinear
equation of autoregression moving average and sequences reducible to the models of the type of

nonlinear autoregression moving average is shown.
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