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Abstract
Linear machine learning models “learn” a data transformation by being exposed to examples of
input with the desired output, forming the basis for a variety of powerful techniques for analyzing
neuroimaging data. However, their ability to learn the desired transformation is limited by the quality
and size of the example dataset, which in neuroimaging studies is often notoriously noisy and small.
In these cases, it is desirable to fine-tune the learned linear model using domain information beyond
the example dataset. To this end, we present a framework that decomposes the weight matrix of a
fitted linear model into three subcomponents: the data covariance, the identified signal of interest,
and a normalizer. Inspecting these subcomponents in isolation provides an intuitive way to inspect
the inner workings of the model and assess its strengths and weaknesses. Furthermore, the three
subcomponents may be altered, which provides a straightforward way to inject prior information and
impose additional constraints. We refer to this process as “post-hoc modification” of a model and
demonstrate how it can be used to achieve precise control over which aspects of the model are fitted
to the data through machine learning and which are determined through domain information. As an
example use case, we decode the associative strength between words from electroencephalography
(EEG) reading data. Our results show how the decoding accuracy of two example linear models
(ridge regression and logistic regression) can be boosted by incorporating information about the
spatio-temporal nature of the data, domain information about the N400 evoked potential and data

from other participants.

Highlights:

* We present a framework to decompose any linear model into three subcomponents that are
straightforward to interpret.

¢ By modifying the subcomponents before re-assembling them into a linear model, prior infor-

mation and further constraints may be injected into the model.

* As an example, we boost the performance of a linear regressor and classifier by injecting
knowledge about the spatio-temporal nature of the data, the N400 evoked potential and data

from other participants.
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1 Introduction
Linear models are the workhorse behind many of the multivariate analysis techniques that are
used to process neuroimaging data,' with applications ranging from signal decomposition? to ! McIntosh and Misi¢, 2013

source modeling® and signal decoding.* Even though they may serve very different purposes, 2 Jutten and Herault, 1991; Uusitalo and

the data transformation performed by all linear techniques can be mathematically described ~ !Imoniemi, 1997; Vigario etal., 2000

3 Gross et al., 2001; Himaldinen and
Ilmoniemi, 1994; Hauk et al., 2019;

Matsuura and Okabe, 1995; Van Veen et al.,
computed. 1997

by a single matrix multiplication between the input data and a “weight matrix”. From this

point of view, the key difference between the various techniques is how the weight matrix is

4 Grootswagers et al., 2017; Lotte et al.,

Supervised linear machine learning algorithms compute the weight matrix based on examples
2007; Tong and Pratte, 2012

of the input data and the desired output. This class of algorithms have advanced the analysis Hastie, 2009
of neuroimaging data on two important fronts. First, by learning what is signal and what is
noise, the signal can be projected away from noise sources, which provides an alternative
method to increase signal-to-noise ratio (SNR) to signal averaging. This makes it for example

possible to perform single-subject and even single-trial analysis.® Second, by focusingon ¢

van Vliet et al., 2016; Parra et al., 2003;
patterns rather than individual data points, there is no longer a requirement for a one-to-one ~ Pernetetal, 2011
correspondence between the experimental manipulation and a change in the signal at a certain

location, time, or frequency, which enables more ambitious neuroimaging studies.” 7 Huth et al., 2016; Mitchell et al., 2008

The success of machine learning algorithms to find the desired transformation is for a large

part dependent on the ratio between the number of parameters that need to be estimated and

the number of provided training examples. In general, the more parameters that need to be

estimated, the more training data is needed to prevent overfitting of the model.2 Unfortunately, ® Babyak, 2004; Blankertz et al., 2011
it is common in neuroimaging studies for the data dimensionality to exceed the number of

trials in a recording, in which case restrictions need to be placed on the model in order to force

a unique solution. Especially in these cases, it is desirable to inspect the data transformation

that was “learned” by the algorithm to understand what aspects of the data contribute to the

output of the model, identify possible problems, and possibly impose further restrictions on

the model if the transformation was unsatisfactory.

In linear models, there are some effective general purpose approaches to place restrictions

on the learned data transformation, notably ¢, regularization,” which enforces sparsity of the 9 Tibshirani, 1996
weight matrix, and £, regularization,'® which enforces a small magnitude of the individual  '° Rifkin and Lippert, 2007
weights. Moving beyond these approaches, imposing further restrictions that are motivated

by domain information may lead to even better performance of the model. However, it is in

practice very difficult to express domain information in terms of the weight matrix,!! since ! Haufe etal, 2014
interpreting this matrix is not straightforward when there are co-linearities in the data, which

is almost always the case in neuroimaging.

To facilitate the interpretation of linear models, Haufe et al. (2014) introduced a way to trans-
form the weight matrix into a pattern matrix, which is easier to interpret (see section 2.2).
While Haufe et al. (2014) focused on the computation, visualization and interpretation of the
pattern matrix, they suggest that their work may have applications stretching beyond model
interpretability and form the basis for a method for incorporating domain information into
linear models. In the current paper, we continue this line of thought, leading to what we call

the “post-hoc modification” framework.

It is often more straightforward to formulate domain information in terms of the pattern matrix
than the model weights. This has been long known in the domain of electrophysiological
source estimation of electroencephalography (EEG) and magnetoencephalography (MEG) data,

where the pattern matrix corresponds to the leadfield (i.e., forward solution) and the weight
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matrix to the inverse solution. Methods for estimating EEG/MEG source activity often formulate
their domain information driven priors on the leadfield.!? The modified leadfield is afterwards
combined with a sensor-to-sensor covariance matrix and inverted to yield an inverse model
that incorporates the domain information. In this paper, we combine the insight of Haufe et al.
(2014) that a pattern matrix can be computed for any linear model, with the insight from source
estimation methods that priors that are formulated on the pattern matrix can be translated

into priors on the weight matrix.

In our framework, we decompose the weight matrix of a linear model into three subcompo-
nents, and hence divide the problem of estimating the weight matrix into three subproblems

(see section 2.2):

1. the pattern matrix of Haufe et al. (2014), associated with the subproblem of determining
signal components that carry information about the desired output

2. the data covariance, associated with the subproblem of estimating the relationships

between model inputs

3. the normalizer, associated with the subproblem of fine-tuning the mapping between the
model output and the desired output

Inspecting these subcomponents in isolation offers an intuitive way to gain insights into the
functioning of the model and possible problem points. We then proceed by modifying each
component to impose new constraints and incorporate domain information, before recom-
posing the subcomponents back into a weight matrix. Since the decomposition-modification-
recomposition cycle of the weight matrix takes place after the initial model has been con-
structed through a conventional machine learning algorithm, we refer to this process as

“post-hoc modification”.

While the framework is agnostic to the methods by which the initial linear model was con-
structed, and is hence applicable to a wide variety of data analysis techniques, we will use
linear regression as an example throughout this paper to provide context to our procedures
and equations. To provide practical examples, we demonstrate several ways in which the
framework may be used to combine machine learning with domain information to decode
the associative strength between words from an EEG recording, following a semantic priming
protocol.'® We explore a regression scenario with a ridge regressor as a base model, and also a
classification scenario with a logistic regressor. Using the post-hoc modification framework,
these two general purpose models were modified to incorporate 1) the dependency between
EEG sensors and time samples, 2) data recorded from the other participants, and 3) the timing
of the N400 component of the event-related potential (ERP), which occurs around 400 ms after

the onset of the second word stimulus.'*

Methods

Linear models

The post-hoc modification framework can operate on any type of linear model, regardless
of function and type of data, so there are many application areas. Since our examples are in
the domain of machine learning, we have chosen to adopt the general purpose terminology

used in that literature!® See Table 1 for a summary of the mathematical symbols used in this
paper.

We will refer to a data instance, for example a single epoch of EEG data or a single functional

magnetic resonance imaging (fMRI) image, as an “observation”. An observation consists of

12 Kohler et al., 1996; Lin et al., 2006;
Trujillo-Barreto et al., 2008; Wipf and
Nagarajan, 2009

13 Neely, 1991; van Vliet et al., 2014

14 Kutas and Federmeier, 2011; Kutas and
Hillyard, 1980

15 Hastie, 2009
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Table 1: A summary of the mathematical

Number of targets ey
symbols used in this paper.

Number of features describing an observation

Number of observations in a dataset

A row vector of length m that describes a single observation

A dataset consisting of n observations

An approximation of X

The empirical covariance matrix of X

A modified version of the empirical covariance matrix of X

A row vector of length k that describes the desired output for a single example
observation

The desired output of a model for n example observations

The actual output of a model, here an approximation of Y

The empirical covariance matrix of Y, also referred to as the normalizer

A modified normalizer

The weight matrix describing a linear transformation from X to Y

The updated weight matrix obtained by combining Zx, P and Z¢

The pattern matrix describing a linear transformation from Y to X

A modified pattern matrix

An identity matrix of appropriate size

Controls the amount of £2 regularization of the covariance matrix

Controls the shrinkage of the spatial component of the covariance matrix

Controls the shrinkage of the temporal component of the covariance matrix
Controls the center of the Gaussian kernel used as a windowing function for the
pattern matrix

Controls the width of the Gaussian kernel used as a windowing function for the
pattern matrix

0 Controls the weighting between the pattern matrix for the current recording and the
grand-average pattern matrix across all other recordings

< ™ ) P 4 =
DAL PO X 3 3

]
T™ R > "U?"OE)E@?_E)’]%)%

Q

m “features”, for example the voltage at each sensor and each each time point of an epoch,
or the beta weight for each voxel in an fMRI image. In this manner, a single observation is
described by row vector x € R'*”” and an entire data set, consisting of 7 observations, by matrix
XeR™Pm,

A linear model transforms the input data by making a linear combination of the m features
to produce output data with k dimensions, referred to as “targets”. In machine learning,
the desired transformation is deduced by exposing the algorithm to an example input data
set X along with the desired output Y € R”*¥. This process is referred to as “training” the

model.

To simplify the equations, it is assumed, without loss of generalization, that the columns of
both X and Y have zero mean. In practice, this can be achieved by removing the column-wise
mean from X and Y before entering them into the model and adding the removed offsets back
to the output. Under the zero-mean assumption, the data transformation that is performed
by a linear model can be represented by a multiplication between X and a weight matrix
W e Rk

Y =XW, o))

where Y € R”** denotes the output of the model. In the case of machine learning, W is chosen
such that Y approximates Y, given a certain data-fit cost function (also known as a loss function).
Example cost functions are the sum of squared errors, often used in linear regression, and the

logistic loss function in the case of logistic regression.
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2.2 Post-hoc modification

Haufe et al. (2014) showed the relationship between a linear decoding model W that approxi-

mates Y given X and the corresponding encoding model P € R”*F that does the opposite and
approximates X given Y:
P= zxwzg{l, )
X=Yp'. 3)

In the above equations, X is the approximation of X, Zx is the (empirical) covariance matrix
of X and Z‘Z{l is the inverse of the (empirical) covariance matrix of the output of the original

decoding model (see equation 1). When we solve for W in equation 2, we obtain:
W=3'P3y, 4)

and observe that the weight matrix may be thought of as a combination of three subcompo-

nents:
1. the covariance matrix of the data Xx
2. the pattern matrix P
3. the normalizer Zg

In the post-hoc framework, we replace the problem of finding the optimal weight matrix by the
subproblems of finding the optimal Xx, P and Z4. An initial estimate for the subcomponents
can be obtained by applying a linear machine learning algorithm and decomposing its weight
matrix using equation 2 (see also Figure 1). When understanding what the subcomponents
represent and the subproblems they are trying to solve, the data analyst may use their domain
information to refine the initial estimates at will. Afterwards, the modified subcomponents

can be recomposed into an updated weight matrix (Figure 1):

W=3'P3, (5)
where fx is a modified version of the data covariance, P is a modified version of the pattern
matrix, 2y is a modified version of the normalizer, and W is the updated weight matrix that

reflects the changes made to the subcomponents.

We will now take a closer look at the three subcomponents. For a visual explaination, see

Figure 2.

In order to design a mapping from X to Y, components of the data must be found that carry
information that would be useful for determining the value of the decoding targets (Figure 2D,
green line). Modifying the pattern matrix P allows for incorporating domain information on

how the decoding targets Y are manifested in the data X.

To paraphrase de Cheveigné and Simon (2008), the filter needs to observe all components
that “contaminate” the pattern components, so as to subtract them. Those observations may
themselves be contaminated, requiring subtraction of additional components, and so on. The
filter thus uses data from all input features, even the ones that carry no information about the
decoding targets, in order to cancel out any contaminants. This is achieved by transforming
the data such that all correlations between the input features are eliminated and the variance
of the data is equal in every dimension (Figure 2E), a process known as “whitening”. In other

words, a whitening transform is a linear transformation that transforms the data from having
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2.3

11

| compute initial weight matrix |

T
x = x'x decompose weight matrix
Ty = XW)TXW
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W= i)—(lfy i? reassemble weight matrix
!
W

covariance Zx to having a covariance matrix that is the identity matrix. The Z;{l term in
equation 4 represents a whitening transform that is applied to both the data and the pattern
matrix (see appendix A). The signal components can now be readily extracted by projecting
the whitened data unto the whitened pattern components (Figure 2F). Modifying the data
covariance matrix Xx allows for incorporating domain information on the correlations between
the input features, which is in turn used to compute the whitening transform that disentangles

these correlations.

The procedure described above attempts to eliminate any components that interfere with
the pattern components. However, since the whitening transform is computed using the
covariance of the data, not the pattern matrix, it does not untangle the pattern components

from each other, nor impose a scaling on them. In the case of k = 1, the whitened data is

projected onto the line that is defined by the whitened pattern matrix (Figure 2E, green line).

In the case of k > 1, the pattern matrix defines a plane. As a final step, a mapping must be
made between locations along the projection line/plane and the desired target Y. In the case
of k = 1, this amounts to a scaling factor (Figure 2C, orange scale) and in the case of k > 1, the
normalizer is a linear mapping between the locations on the projection plane to the model
outputs Y. Modifying the normalizer X¢ allows for fine-tuning of the relationship between the
projected data and the decoding targets Y.

Domain information is by definition study specific, so in order to provide concrete examples,
we will first introduce an example EEG study. In this study, the task of the linear model is to
decode the forward association strength (FAS) between two words,'® based on an EEG recording
of a participant reading the word-pair during a semantic priming experiment. We will then
explore some ways in which the subcomponents may be modified to tune the model for this

specific task.

EEG recordings

The decoding performance of two linear models was evaluated on an EEG dataset, which was
recorded with 24 participants (7 female, aged 22-38, mixed handedness and all native speakers
of Flemish-Dutch). Two recordings were dropped from the study: one was dropped due to

problems with the stimulus synchronization signal and the other due to excessive sensor

Figure 1: The post-hoc modification
framework. First, the initial linear
model W is constructed. This can for
example be done with a general pur-
pose linear machine learning algorithm.
Then, using equation 2, W is decom-
posed into data covariance Xy, pattern
P and normalizer Xg. These subcom-
ponents can then be manipulated at
will to impose further restrictions on the
model or inject prior information. Fi-
nally, the modified subcomponents Zx,
P and i? are reassembled into an up-
dated linear model W.

16 Nelson et al., 2000
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sensor 2

sensor 2

A: signal and noise components

B: measured data: signal + noise

C: regression result
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Figure 2: Visual explanation of the subcomponents of the post-hoc modification framework. This is a simulation of
a signal that is being observed through two sensors. Dots represent observations of the signal and the color of the dots
indicates the true signal strength during each observation.

Linear regression is used to decode the true signal strength from the observed data.
the model is to decode the color of a dot, based on its location in the graph.

A: The simulated data consists of two components. The first component (large dots) dictates how the signal is measured by
the sensors (i.e. the encoding model). In this simulation, there is a one-to-one relationship between the true signal strength
and the measurements at both sensors. The second component (small dots) is simulated using random numbers drawn
from a two-dimensional Gaussian distribution and is a simulation of noise that is unrelated to the strength of the signal.

B: The data that is recorded by the sensors (large dots) is the summation of both the signal and noise components. A linear
regression model was trained on these observations, with the true signal strength as target, to determine the optimal linear
transformation to map the measured data to signal strength. In this two-dimensional example, the model’s weights can be
visualized as a line (orange line). We see that the direction of the regression line is dictated by the noise rather than the signal
component, which is why the weight matrix is so hard to interpret.

C: Applying the linear regression to the data is equivalent to projecting the measured data onto the regression line (or-
ange axis). By projecting the data orthogonal to the noise, a near perfect reconstruction of the signal strength can be obtained.

In visual terms, the task of

In the post-hoc modification framework, the model weights (orange line) are decomposed into three subcompo-
nents, where each subcomponent solves a part of the regression problem.

D: The pattern matrix represents the signal of interest and, like the weight matrix, can be visualized as a line (green). This
line should approximate the direction of the actual signal (see panel A).

E: The data covariance matrix is used to construct a whitening operator, which removes the correlations within the data. The
data is projected such that all features are of unit variance and all cross-correlations between the features are eliminated.
This transformation is then also applied to the pattern matrix (green line). Performing linear regression is now equivalent to
projecting the whitened data onto the whitened pattern line.

F: Finally, the normalizer (orange axis) scales the result such that the position along the projection line maps to the true
signal strength.

An interactive version of this figure is available at https://aaltoimaginglanguage.github.io/posthoc, where the noise
component can be manipulated to study its effect on the subcomponents.
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2.4

2.5

impedance. Participants signed an informed consent form prior to participating. Ethical
approval of these studies was granted by an independent ethical committee (“Commissie voor
Medische Ethiek” of the Uz Leuven, Belgium). These studies were conducted according to the
most recent version of the declaration of Helsinki.

The participants read a series of sequentially presented words, organized in prime-target pairs,
and pressed one of two mouse buttons to indicate whether the two words of a word-pair were
related or not. The hand used to hold the mouse and the assignment of buttons to “yes”/“no”

responses was counterbalanced across participants.

The prime word was presented for 200 ms and the target word for 2000 ms with a stimulus onset
asynchrony (s0A) of 500 ms. Words were presented in white on a black background, rendered
in the Arial font. Since a speeded button response task will generate ERP components that can
mask N400 modulations,!” the participants were instructed to delay their button response
until the target word turned yellow, which happened 1000 ms after the onset of the target word.
The participants had 1000 ms to respond, or else a non-response code would be logged for the

trial.

In addition to capturing the button response of the participant, EEG was recorded continuously
using 32 active electrodes (extended 10-20 system) with a BioSemi Active II System, having
a 5th order frequency filter with a pass band from 0.16 Hz to 100 Hz, and sampled at 256 Hz.
An electro-oculogram (EOG) was recorded simultaneously using the recommended montage
outlined by Croft and Barry (2000). Two final electrodes were placed on both mastoids and

their average was used as a reference for the EEG.

Stimuli

The stimuli consisted of Flemish-Dutch word pairs (see section 2.11) with varying FAS between
the two words in each pair, as measured by a large-scale norming study performed by De Deyne
and Storms (2008). In this norm dataset, FAS is defined as the number of participants, out
of 100, that wrote down the target word in response to the prime word in a free association
task.

The stimuli used in the experiment were the top 100 word-pairs with highest FAS in the norm
dataset and 100 word-pairs with an assumed FAS of zero that were matched in length, frequency
and in-degree. Each word-pair with a high FAS consisted of words with a length of 3 to 10
letters, with no restrictions on frequency or in-degree. To construct the low FAS pairs, for each
word in the high FAS condition, a random word was selected with equal length, frequency and
in-degree (or, if no such word existed, a word that matched these as close as possible), and

random pairings were made from the resulting words.

Data preprocessing

All data processing was performed using the MNE-Python'® and auto-reject!? software pack-
ages. The EEG was bandpass filtered offline between 0.1 Hz and 50 Hz by a 4th order zero-phase
Butterworth filter to attenuate large drifts and irrelevant high frequency noise, but retain eye
movement artefacts. Individual epochs were obtained by cutting the continuous signal from
0.2 s before the onset of each target stimulus to 1 s after. Baseline correction was performed
using the average voltage in the interval before the stimulus onset (—200 ms to 0 ms) as baseline
value. The random sample consensus (RANSAC) algorithm was used to detect excessively noisy
channels, and those signals were subsequently replaced by interpolating the signals from

nearby sensors using spherical splines.?? Two EOG artifact elimination passes were performed

17 yan Vliet et al., 2014

18 Gramfort et al., 2013

19 Jasetal., 2017

20 Perrin et al., 1989
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2.6

2.7

on the data. First, the EOG channels were used to attenuate eye artefacts from the EEG signal
using the regression method outlined in Croft and Barry (2000). Second, the data was de-
composed using independent component analysis (ICA) and any components that correlated
strongly with one or more EOG channels were removed. Next, the signal was band pass filtered
further using a tight passband around the frequency range in which the N400 component
was found, namely between 0.5 Hz and 15 Hz, by a 4th order zero-phase Butterworth filter
and downsampled to 50 Hz to reduce the dimensionality of the data. Further artefacts were
removed using the autoreject procedure,?! which flags and interpolates noisy channels in each
individual epoch by measuring how well data from other epochs predicts the data of the epoch
currently under consideration. While autoreject can also flag and remove noisy epochs, this
functionality was disabled to ensure no epochs were dropped from the data.

A full report of the data preprocessing steps can be found at:

https://aaltoimaginglanguage.github.io/posthoc.

Initial linear models

In this paper, we give some examples on how to use the post-hoc modification framework
to inject domain information into two general purpose machine learning models. For the
regression scenario, we chose the ridge regressor as implemented in the Scikit-Learn package??
as the base model, and for the classification scenario the logistic regressor from the same
package was chosen. These two particular models were chosen because they are widely used
in neuroimaging and their performance on our example datasets is equal or better than other
commonly used linear models (e.g. shrinkage linear discriminant analysis (LDA) or linear

support vector machine (ISvm)).

Each epoch of the recording served as a single observation for the model, and the corresponding
row-vector X was obtained by concatenating the timecourses recorded at all EEG sensors. The
resulting vectors formed the rows of input matrix X, resulting in X € R?00*1600_[n the regression
scenario, the desired output of the model, Y € R?%°*! | was specified as the log-transformed Fas
of the word-pair presented during each epoch.?3 In the classification scenario, Y was formed by
specifying 1 if the word-pair presented during the epoch consisted of two associatively related

words, and —1 otherwise.

Because we have a maximum of 7 = 200 epochs available for each participant, the problem
of estimating 1600 weights from the data of a single participant is massively underspecified
and the model will overfit?* A common way to alleviate overfitting in linear models is to
introduce regularization when estimating the covariance matrix during the training of the
model. For example, with £2 regularization, a trade-off is made between maximizing the fit
between Y and Y and minimizing the absolute value of the weights |W]||, which prevents the
model from placing too much emphasis on a single feature.?® Both initial models (ridge and
logistic regression) implement such regularization. In the following subsections, we look at
the problem of overfitting not from the perspective of the weight matrix, but from that of the

subcomponents as defined by the post-hoc modification framework.

Strategies for modifying the covariance matrix

The data covariance matrix Xy is the subcomponent of a linear model that describes the (linear)
relationships between the input features. Overfitting of the model will occurs when the linear
relationships that were inferred from the training set do not hold on the test set, either because

the estimation was incorrect or because the relationships change across observations (e.g. they

21 Jasetal., 2017

22 Pedregosa et al., 2012

23 van Vliet et al., 2016

24 Babyak, 2004

25 Hastie, 2009; Rifkin and Lippert, 2007
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Spatial covariance matrix Full covariance matrix
1600 features, 32 groups of 50
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32 sensors

1600 features

Temporal covariance matrix
50 time samples

covariance (uV?)

50 time samples

change over time due to nonstationarity of the signal). In this case, the model will benefit from
de-emphasizing the relations that were estimated on the train set in favor of a conservative

ground truth that is expected to hold in both the training and test sets.

The ¢2 regularization that is imposed on Xx by the initial models (ridge and logistic regression)

adds a constant value to each diagonal element of the initial covariance matrix Xx:
ix =Al+ ZX, (6)

where I is an identity matrix of the appropriate size and A € [0...00) is a parameter that
controls the amount of regularization. One effect of this regularization scheme is that as
A approaches infinity, igl and hence W approach zero (equation 5). This effect is directly
encoded in the optimization criterion for ridge regression.?® However, from the point of view
of the subproblem that the covariance matrix represents, a second effect becomes apparent,
namely that the covariance matrix is steered towards a scaled identity matrix. This means the
model is steered towards a ground truth that none of the features are linearly related, meaning
any of the relationships inferred from the training set are untrustworthy. It is this second effect
that provides a straightforward insight into why ¢2 regularization prevents overfitting and

lends itself to schemes for incorporating domain information.

An approach that has the second effect, but not the first, is “shrinkage” regularization:27

_ trace(Zx)
- m
x = ayl+(1-a)2x, ®)

) @)

where a € [0...1] controls the amount of shrinkage and yI is an identity matrix that is scaled by
the mean of the diagonal elements of the empirical covariance matrix. In this regularization
scheme, the covariance is steered towards a ground truth of no relationships between the

features, without affecting the overall scaling of the matrix.

Both regularization schemes drive the covariance matrix towards a scaled identity matrix,
penalizing all relationships equally in favor of the ground truth. One way of incorporating
domain information is to distinguish between different kinds of relationships, and encode our

belief that some may be estimated more reliably from the training data than others.

Figure 3: Shown on the right is the grand
average covariance matrix. This ma-
trix can be approximated with the Kro-
necker product of the grand average spa-
tial covariance matrix (upper left) and
grand average temporal covariance ma-
trix (bottom left).

26 Hastie, 2009; Rifkin and Lippert, 2007

27 Blankertz et al., 2011; Engemann and
Gramfort, 2015
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2.8

In our EEG example, X was obtained by concatenating the timecourses for each sensor. Such an
approach to vectorizing the input data introduces a striking regularity in the covariance matrix,
see Figure 3. The covariance matrix can be approximated by the Kronecker product?® between
the spatial covariance matrix X (i.e., the linear relationship between the sensors) and temporal

covariance matrix X (i.e., the linear relationship between the samples in time):2?
Ix =X ®2y, 9)

where (®) denotes the Kronecker product.

With this in mind, we propose a variation of the shrinkage approach that we call “Kronecker
shrinkage”. First, we shrink of Xx towards Zs ® I, where I; denotes an identity matrix of the
same dimensionality as the temporal covariance matrix. Then, we substitute the result into

equation 8 instead of Zx:
Sx=ayl+(1-a)(BZs L+ (1-H)Zx), (10)

where a controls the shrinkage of the spatial component and  controls the shrinkage of the
temporal component of the covariance matrix. This allows us to encode different amounts of

confidence in the estimates of these two types of relationships from the training data.

Strategies for modifying the pattern matrix

The root problem that causes overfitting of the model is a lack of available training data. There-
fore, for datasets that include multiple participants or recording sessions, one might expect
that the model performs better if it had access to all recordings. However, in a neuroimaging
setting, linear models that aim to generalize across participants are often outperformed by
participant-specific models, even when the models have access to more training data.3? Since
the optimal weights depend on both the signal of interest and any interfering signals, it is often

not straightforward to transfer a weight matrix from one participant to another.

The pattern matrix Zp is the subcomponent of a linear model that describes only the signal
components that are informative of the targets, as opposed to other “noise” components. In
some cases the pattern matrix is likely to be similar across participants. In our example study,
the task was to decode FAS from the EEG signal, in which case the literature notes the N400

component of the ERp3!

as the primary signal of interest. While there are factors that affect
the latency of this component, such as age,3? the participants in our example study were
drawn from a homogeneous pool (university students), so we can expect the timing of the
component, as well as its distribution across sensors, to be relatively stable. Also in the case
of other, similar N400 studies, the pattern matrix has been successfully transferred between
participants.3® Hence, a good strategy for improving the estimation of the pattern matrix may
be to bias it towards a grand-average pattern matrix that was obtained from the recordings of

other participants.
Let P be the average of the pattern matrices for all recordings, excluding the recording currently
under consideration. Then:

P=pP+(1-p)P, 11

where p controls how much the pattern matrix is steered towards the grand average. This oper-
ation can be beneficial if the model has difficulty identifying the signal of interest during the

training phase (e.g, due to noisy data, lack of training data, or absence of a Y matrix3*).

28

29

30

Loan, 2000

Bijma et al., 2005

Fazli et al., 2009; Lotte et al., 2009;

Reuderink et al., 2011

31

Kutas and Federmeier, 2011; Kutas and

Hillyard, 1980

32

33

Kutas and Iragui, 1998

van Vliet et al., 2016; van Vliet et al.,

2018

34

van Vliet et al., 2018
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Another approach to correcting inaccuracies in the pattern matrix is to leverage the fact that in
our semantic priming study, the signal of interest (the N400) is well localized in time. One way
of achieving this would be to restrict the data X to a time window surrounding 400 ms. However,
this would deprive the model from potentially useful observations of the noise components
that the model is attempting to cancel out. A good example can be found in the domain of
EEG/MEG source estimation, where, even if the goal is to estimate activity at a single dipole
source, it is beneficial to create a spatial filter using many sensors, and not only the sensors
that are most sensitive to activity at the source dipole.3® The post-hoc modification framework
allows us to place restrictions on the pattern timecourses alone, keeping information about

the noise components intact.

In our example study, we multiplied the timecourses in the pattern matrix with a Gaussian

kernel (Figure 4):

_ _l(‘;ﬂ)z
P(c,t)=¢e 2V ) P(c, 1), (12)

where c iterates over all channels, ¢ iterates over all time samples, and P(c, f) denotes the
element of P that corresponds to channel ¢ at time ¢. Parameters p and o determine the center
and width of the Gaussian kernel (Figure 4).

Strategies for modifying the normalizer

Modifications to the covariance and pattern matrices result in changes to the projection line
(k=1) or plane (k > 1) of the model. This means that the normalizer needs to be recomputed

to re-map locations along the projection line/plane to the model outputs.

One way to compute an appropriate normalizer is to find the least-squares mapping between

Figure 4: Example of multiplying the
pattern matrix with a Gaussian kernel. A:
Parameters p and o determine the posi-
tion and shape of the kernel. B: Example
of a pattern matrix, with the timecourse
for each sensor drawn in black. An ex-
ample Gaussian kernel is drawn in blue.
For this visualization, the pattern was
normalized to have a maximum ampli-
tude of 1 to have the same visual scale as
for the kernel. C: The result of multiply-
ing the pattern matrix with the Gaussian
kernel.

35 de Cheveigné and Simon, 2008
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the output of the “raw” filter X> ' P and Y, through linear regression:

~ -1 - 1~
Se=0'Y) Y X5('P) (13)

Model evaluation and automated tuning of the hyperparameters

The performance of each model was evaluated for each participant separately, using 10-fold
crossvalidation. The order of the observations in the recording (the rows of X and Y) were
shuffled and then assigned to ten folds. Two crossvalidation loops were used, which we will

refer to as the “outer” and “inner” loops.

In the outer crossvalidation loop, nine folds were used as training data and one fold was used as
test data. Normalization of X was performed inside the outer crossvalidation loop, such that the
mean and standard deviation of each feature across observations was computed on the training
data only, and subsequently used to normalize the features of the test data. By repeating this
ten times, such that each fold has been used as test data once, and collecting the output of the
model for each run, the full matrix Y was constructed, containing the crossvalidated model
output for each epoch. The performance of the model, p, was then quantified in the regression
scenario using the Pearson correlation between Y and Y, and in the classification scenario

using the classification accuracy.

When a model incorporates data from other recordings (the “multiple subjects” and “all in-
formation” models, see section 2.8), a distinction was made between the recording for which
the model was currently being evaluated and the recordings made on the other participants.
During the outer crossvalidation loop, the training data was augmented with the data from the

other participants, while the test data was left untouched.

Both initial models (see section 2.6) have a parameter (@) that determines the amount of ¢,
regularization, and throughout sections 2.7 to 2.8, we have defined several more parameters
(B, p, 1, 0) that control various aspects of the model. These parameters can be used to impose
hard constraints on the model, for example, ¢ and o limit the time-range in which the model
will search for the signal of interest. Alternatively, they can be treated as parameters that need

to be learned, just like the model weights.

In our example analysis, we used an “inner” leave-one-out cross-validation loop to learn these
parameters during the training phase. Since searching the entire parameter space would be
too time consuming, we first evaluated 100 random values for the parameters, taking the
best performing parameter set as rough first estimate. This estimate was then fine-tuned
using a convex optimization algorithm (Limited-memory Broyden-Fletcher-Goldfarb-Shanno
with box constraints (L-BFGS-B)6). This algorithm searches for the optimal parameters by
alternating between two phases: 1) estimating the direction of maximum performance gain
by making tiny changes to each parameter and measuring the effect on the leave-one-out
performance of the model, followed by 2) updating the parameters in the direction of maximum
positive effect on the performance. This process is repeated until no changes to the parameters

can be found that improve the leave-one-out performance.

The optimization approach employed by the L-BFGS-B algorithm requires that the chosen
model performance evaluation function is continuous and differentiable. This is why, for the
classification model, we used the logistic loss function rather than classification accuracy or
receiver operating characteristic — area under curve (ROC-AUC), since the latter two are not
differentiable. For the regression model, Pearson correlation between the leave-one-out model

output and the desired output (Y) was used as a loss function, as this is the measure we report

36 Byrd etal., 1995
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Table 2: Models that were evaluated

Model name Description

ridge The initial ridge regression model (section 2.6). Employs ¢2 regular-
ization of the covariance matrix.

Im The initial logistic regression model (section 2.6). Employs #2 regular-
ization of the covariance matrix.

kronecker Employs Kronecker shrinkage of the covariance matrix (section 2.7).

multiple subjects Employs Kronecker shrinkage of the covariance matrix and biases the

pattern matrix towards the grand average pattern matrix (section 2.8).
temporal information Employs Kronecker shrinkage of the covariance matrix and applies a
Gaussian kernel to the pattern matrix (section 2.8).
all information Employs Kronecker shrinkage of the covariance matrix and biases the
pattern matrix towards the grand average pattern matrix, followed by
application of a Gaussian kernel to the pattern matrix.

in the results section. This measure is closely related to the more traditional mean squared
error (MSE) loss function, but is easier to interpret, as it has been normalized to range from
Oto 1.

Data and code availability

Electronic supplementary information is available at: https://aaltoimaginglanguage.github.
io/posthoc. This includes a Python package that provides an implementation of the post-
hoc modification framework that is compatible with Scikit-Learn.3” The package contains
optimized implementations (see appendices B and C) of all modification strategies discussed
in this paper and provides an interface for implementing new ones.

The consent form that was signed by the participants stated that the raw data would not
be shared publicly without limitations. This data can be obtained upon request from the
corresponding author, for reasons such as replication, assessment of other analysis methods,

or aid in future studies on semantic processing.

All nonsensitive data can be found in the electronic supplementary information, including the
grand-average pattern matrices, the preprocessing reports for the data of each participant, the

output of the models and the stimulus list.

Results
We determined the effectiveness of the strategies for incorporating domain information by
comparing the performance of the models that incorporates domain information to that of the

original models. See Table 2 for an overview of the models that were evaluated.

The performance of the models was evaluated using 10-fold cross validation (the epochs were
shuffled before being assigned to folds) and presented in Figure 5. For regression models, we
report the Pearson correlation between the model output and the FAS of the word-pairs as
the performance metric (Figure 5A). For classification models, we report the classification
performance using the RoC-AUC score (Figure 5B), where the classification task was to assign
each epoch to either the low-Fas or high-FAS category.

Taken individually, each manipulation strategy provided a small improvement to the perfor-
mance of the initial model (for statistics, see top of Figure 5). Taken together (the “all infor-
mation” model), the performance was substantially improved by using post-hoc modification
to inject domain information for both the initial ridge regression (effect size: 0.088, pair-wise
t-test: t =5.526, p < 0.001) and logistic model (effect size: 0.045, ¢ = 6.550, p < 0.001).

The post-hoc modification strategies for incorporating domain information were set up such

37 Pedregosa et al., 2012
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Figure 6: For each participant (1-22), the pattern that was learned by the initial linear models, for both the regression (left,
ridge regression) and classification (right, logistic regression) scenarios. The timecourses of all electrodes are shown overlaid.
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Figure 7: For each participant (1-22), the pattern that was used in the linear model that incorporates all post-hoc modifica-
tions (the “all information” model), for both the regression and classification scenarios. The timecourses for all electrodes
are shown overlaid.
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Regression Classification
subject a B o u(s) O'(S)‘ a B p us) o)

1 097 011 1.00 077 096 | 060 0.07 050 042 0.24
2 071 0.01 021 038 0.08 074 000 028 041 0.24
3 090 0.03 015 037 0.07 | 066 002 024 037 0.07
4 094 036 032 040 032|097 072 052 075 090
5 070 000 064 041 024|080 0.00 0.65 041 0.24
6 003 003 026 065 038|001 0.07 099 0.10 0.35
7 100 035 022 030 078|099 0.00 0.00 030 0.78
8 054 0.00 011 047 094 | 046 0.00 0.12 047 094
9 082 0.00 023 038 0.07 092 000 062 022 0.95
10 096 0.02 082 022 095|080 0.01 032 041 0.24
11 024 002 036 066 037|022 0.02 019 0.66 0.37
12 0.61 001 022 066 071 | 026 0.00 0.12 0.66 0.71
13 0.64 0.00 031 037 0.07| 064 000 023 037 0.07
14 0.05 0.18 0.14 038 0.10 | 0.02 0.04 0.08 0.08 0.69
15 0.86 0.08 0.00 038 0.08 | 075 005 003 038 0.09
16 0.18 001 0.03 066 071 | 0.17 0.01 0.02 0.66 0.71
17 053 004 029 024 039|032 0.01 027 0.08 0.69
18 043 0.13 036 042 044 | 050 003 038 0.74 0.88
19 048 0.02 031 047 094 | 030 0.01 0.19 047 094
20 0.63 005 081 029 0.10| 058 0.03 038 038 0.08
21 090 0.17 0.61 0.00 0.82 | 085 0.06 046 0.40 0.31
22 075 1.00 041 0.64 0.05] 055 042 029 073 0.26

that the model could always fall back to not incorporating any domain information. Hence,
in theory, the models should incorporate domain information only when it is beneficial. In-
specting the optimized parameters (Table 3) reveals which types of domain information were
incorporated by the model. In practice, the models optimized their parameters based on
the training set only, using an inner cross-validation loop, hence can be suboptimal for the
test set due to overfitting. Indeed, for participant 8, where the initial models performed best,
incorporating domain information proved detrimental (Figure 5, gray lines). Generally, for
recordings on which the initial models had low performance, the models had the most to gain
from incorporating domain information, with diminishing returns for cases in which the initial

model was already performing well (Figure 5C).
We will now look more closely into the effectiveness of the individual strategies.

One factor that influences the performance of the model is the amount of noise and the ability
of the model to accurately determine the “direction” of the noise (see Figure 2). By applying
regularization to the covariance matrix, the estimated direction of the noise is steered towards
being spherical (i.e. equal in all directions). Both initial models already apply ¢, regularization.
In the regression scenario, Kronecker shrinkage (Figure 5, left, “kronecker”), which controls
the amount of shrinkage for the spatial and time dimensions separately, outperforms the
¢, regularization approach (paired z-test: ¢ = 2.81, p < 0.05). In the classification scenario,
Kronecker shrinkage is beneficial in some cases, but detrimental in others (Figure 5, right,

“kronecker”) and does not significantly outperform ¢, regularization (¢ = 1.48, p > 0.05).

Table 3 lists the parameters chosen by the “all information” model, for each subject, fitted to
the entire dataset. Heavy shrinkage is applied by most models (high values for a), however,
many models made little use of shrinking the temporal component of the covariance matrix

(low values for f).

Inspecting the pattern matrices (Figure 6), computed with equation 2, reveals another con-
tributing factor that influences the performance of the models. The N400 component is a

Table 3: Optimal parameters for the “all
information” model
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prominent signal of interest for determining FAS from EEG data.3® In some patterns (e.g, partic-
ipants 3 and 20), the N400 is clearly visible as a peak at around 400 ms. However, in almost all
patterns, there are other peaks, indicating that the model has learned other signals of interest

as well. The question is how well these features generalize beyond the training set.

We introduced two strategies to bias the pattern matrix towards isolating the N400 component.
First, a template of the N400 component was constructed by computing the grand-average
pattern across participants other than the one currently being analyzed. Taken in isolation, the
“multiple subjects” strategy improved the model beyond the “kronecker” model, both in the
regression (paired ¢-test: t = 4.89, p < 0.001) and classification (¢ = 3.27, p < 0.01) scenarios.
Second, the pattern was limited in time, allowing the model to focus on a single ERP component.
Taken in isolation, the “temporal information” strategy performed equally well, both in the
regression (vs. “kronecker”: t = 3.58, p < 0.01 vs. “multiple subjects”: t = 0.24, p = 0.81) and
classification (vs. “kronecker”: t = 3.77, p < 0.01 vs. “multiple subjects”: ¢ =1.10, p = 0.29)
scenarios. When both strategies were applied in tandem (“all information”), performance was
increased even further, compared to the “multiple subjects” model, in both the regression
(t=2.39, p <0.05) and classification (¢ = 3.81, p < 0.01) scenarios. Compared to the “temporal
information” model, the “all information” model’s performance was significantly better than

the “temporal information” model only in the regression scenario (¢ = 2.54, p < 0.05).

Looking at the “all information” model, for most participants, the optimizer chose to bias the
pattern matrix towards the grand-average (Table 3, high values for p). Then, for a selection
of participants, the optimizer chose to further refine the pattern by restricting it to a narrow
time window surrounding the N400 component (Table 3, u around 400 ms and low values for
o). Overall, the optimized patterns show a much more pronounced N400 effect (Figure 7)
compared to the patterns of the initial models (Figure 6), indicating that the N400 was indeed
a stable feature of interest that generalizes well beyond the training set. For some participants,
the initial models failed to find a signal that clearly resembles the N400 potential, yet when a
template N400 signal was mixed in with the pattern matrix, the decoding accuracy increased,
which suggests that the N400 potential was present in the EEG of the participant after all (e.g.,

compare Figure 6 and Figure 7 for participants 5 and 13).

Discussion

We have demonstrated how domain information can be incorporated into general purpose
linear models with the post-hoc modification framework. When using this framework, we shift
our focus away from estimating a weight matrix towards the subproblems of 1) modeling the
signal of interest (the pattern matrix), 2) establishing the relationship between input features
(the data covariance) and 3) performing a normalization step.

As Haufe et al. (2014) pointed out, there is a strong parallel between the pattern matrix and
the concept of a leadfield or “forward solution”, as used in source estimation.3® From this
perspective, the decoding targets are similar to the source dipoles and the weight matrix is
similar to the inverse operator. The main difference is that the pattern matrix is not constructed
by modelling volume conduction in the head, but rather through a linear machine learning
algorithm. In this work, we have extended the parallel further by observing that the domain of
source estimation has always approached the computation of the inverse operator (or spatial
filters) as a multi-step process, where first the covariance matrix is computed on the sensor
data, which is then combined with the leadfield,*® and we may use the same approach when

fitting decoding models.

From this point of view, possibilities for incorporating domain information into the model

38 Kutas and Federmeier, 2011

39 Himildinen et al., 1993

40 Hamaldinen et al., 1993; Sekihara and

Nagarajan, 2008
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become obvious. In this work, we have explored a few possibilities to modify a ridge regression

and logistic regression model to:
1. employ Kronecker shrinkage that takes the spatio-temporal nature of EEG into account
2. use the grand-average pattern across multiple recordings as a prior for the current model

3. use information about the temporal characteristics of the N400 potential as a further

prior

The resulting models show a remarkable improvement over the initial general purpose models

(Figure 5).

The post-hoc modification framework opens up a wide range of possibilities to design strategies
for incorporating domain information. Our examples aim to demonstrate the capabilities of
the framework and serve as inspiration for designing new strategies for other study paradigms

or recording modalities.

One may explore more informative priors for the covariance matrix than an identity matrix.
For example, bandpass filtering the signal will introduce a predictable dependency between
consecutive time samples, which may be used as a shrinkage target for the temporal component
of the covariance matrix. Likewise, for EEG and MEG studies, volume conduction in the head
will impose a predictable dependency between the signals at different sensors, which can be
modeled using a leadfield.*! Also for the pattern matrix, there are other avenues of domain
information to explore. For example, the N400 potential has a well defined spatial signature*?
that may be used as a prior for the pattern matrix. Finally, there might also be opportunities
to incorporate domain information through the normalizer, although we did not explore this
in this study and treated the normalizer as a mere scaling of the model output. Inspiration
for normalization schemes can be found in the beamformer literature.*® For example, if the
pattern matrix has been crafted to be in some measurement unit, one may wish to enforce that
model output adheres to the same unit. The unit-gain constraint the of the linearly constrained
minimum variance (LCMV) beamformer, WP =1, ensures that units are preserved. Using post-
hoc modification, we can apply the unit-gain constraint of the LcMv beamformer to any linear
model by using:

S =TSP . (14)

A common approach to reducing data dimensionality is to first apply a spatial filter, followed
by a temporal filter.** While the resulting model becomes blind to interactions happening
in a different locations at different times, the reduction in dimensionality will decrease over-
fitting, potentially offsetting the disadvantages. Such an approach can be explored in the
post-hoc framework as well, with the benefits that the choice of whether to treat space and
time separately or jointly no longer has to be made model-wide, but can be done for each
subcomponent separately. For example, the empirical covariance matrix can be replaced with
the Kronecker product of the spatial and temporal covariance matrices, and the pattern matrix
can be replaced with the outer product of a spatial and temporal pattern, for example obtained
using non-negative matrix factorization.*® As in our example modifications, a hyperparameter
can be defined to scale the matrices between the full spatio-temporal forms and the reduced
forms that treat space and time separately, allowing the model to dynamically seek out the

most suitable approach.

In our examples, we optimized the hyperparameters («, §, p, i, o) using only the decoding

performance of the resulting model as performance metric, but one can imagine using other

41 Himaliinen et al., 1993

42 Kutas and Federmeier, 2011

43 Sekihara and Nagarajan, 2008

44 Blankertz et al., 2008; Hoffmann et al.,
2006; Rivet et al., 2009

45 Delis et al., 2016
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metrics. For example, decoding models are often employed to explore the signal of interest
that was learned, in which case interpretability of the model is more important.*6 In this case,
one may wish to optimize a tradeoff between sparsity of the pattern matrix (not to be confused

with sparsity of the weight matrix) and decoding performance.*’

Furthermore, the fact that a signal is useful for a decoding task does not necessarily mean
that it is of interest to the study. For instance, in our example EEG study, eye artefacts can be
a predictor for FAs*® and, despite the preprocessing steps to attenuate them, are likely still
present in the pattern matrices (e.g., Figure 6, participant 22). Furthermore, given that most
models in neuroimaging are overfitting due to the ratio of number of features versus the size of

the training set, the pattern matrix can be noisy and/or biased.

If the goal of the analysis is to study a specific signal of interest, it may be desirable to fix
aspects of the pattern. For example, if the goal is to measure the timing of the N400 potential,

we may explicitly set the pattern matrix to a time-shifted version of a suitable N400 template.

Restricting the pattern allows for precise control over which aspects are “learned” from the data
and which are dictated by the researcher. If P is completely fixed, the model is transformed
into a beamformer®? and no ground truth (Y) is required to train the model. For example, it is
possible to train a model on a dataset for which a ground truth is available, and transplant the
resulting pattern matrix into a new model that is fitted to a dataset for which no ground truth
is (yet) available.>°

Taking the opposite view, one may wish to use the post-hoc modification framework to steer
the model away from signals that are known to be relevant for the decoding task, in order to
force the model to explore as yet unknown signals. In this case, the known signals of interest
may be removed from P, which will result in this signal being explicitly tagged as noise to be
filtered out.

While the above examples are all in the domain of machine learning, linear models are also
widely used in the domain of statistics, where applications range from familiar t-tests, through
ANOVA F-tests, to more advanced multilevel models. The post-hoc framework can by applied
here as well. For example, the “multiple subjects” model, which biases the pattern matrix
to a group average, parallels a linear mixed-effects model which performs a similar trick to

compute both a group-level slope as well as slopes for individuals.>!

We envision the post-hoc modification framework as an iterative process, where an initial
model is fitted to the data without any restrictions. This is followed by an inspection of
the resulting patterns, covariance and normalizer by the data analyst, who then proceeds
to place restrictions using post-hoc modification. The model is fitted again, taken the new
restrictions into account and the cycle continues until finally, a model is obtained that satisfies

all requirements of the study. In this manner, machine learning becomes less of a “black box’

and more a dialogue between data analyst and model.

Conclusion

In the post-hoc modification framework, the weight matrix of a linear model is regarded as
a combination of three subcomponents: a pattern matrix, a data covariance matrix, and a
normalizer. The problem of computing a weight matrix can accordingly be split up into the
subproblems of estimating each subcomponent. We showed how domain information can
often be straightforwardly formulated in terms of these subcomponents. An initial estimate for
the subcomponents can be obtained by decomposing the weight matrix as produced by a linear

machine learning algorithm. In what we call “post-hoc modification” each subcomponent

can then be refined at will, which provides opportunities to incorporate domain information.

46 Haufe et al., 2014; Parra et al., 2003

47 Kaetal, 2017

48 see electronic supplementary

information: “Decoding performance using
EOG channels only”, Quax2019

49 van Vliet et al., 2016; Treder et al., 2016

50 van Vliet et al., 2018

51 Baayen et al., 2008
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Afterwards, the modified subcomponents are re-assembled into a weight matrix, which now

incorporates the injected domain information.

We have presented some strategies for incorporating domain information and demonstrated
their effectiveness on an example EEG dataset, where the task of the linear model was to
predict, given a single epoch, the associated relatedness between the two words that were
presented during the epoch. Through post-hoc modification of two general purpose models, a
ridge regression and logistic regression model, information was incorporated about the spatio-
temporal nature of EEG data, the recordings performed on other participants, and the N400
potential. The resulting domain specific models achieved an increase in decoding performance

compared to the initial, general purpose models.

However, as domain information is study specific, so are post-hoc modification strategies.
While some of the presented strategies can be appropriate for other EEG studies, they mainly
serve as examples of how the post-hoc modification framework offers many possibilities to
implement modification strategies to suit the many different purposes of linear models in

neuroimaging and other fields.
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Appendix A: The relationship between X' and whitening
The Z,‘(l term in equation 4 represents a whitening transform that is computed using X and
subsequently applied to both the data X and the pattern matrix P. This becomes clear when

we rewrite Z)‘(l in terms of the eigendecomposition of Zx:

%l=QA7lQT, (15)

where Q is a matrix where each row is an eigenvector of x and A is a diagonal matrix where
each diagonal element is the corresponding eigenvalue. Then, the linear transformation @ that

whitens X is defined as:

®=QA2 (16)
Hence, Z;(l can be rewritten as:
Qo' (18)

and we can show that that when the model is applied, it performs a whitening transformation
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on both the data X and the pattern matrix P:

Y=XW 19)
=Xzg' P, (20)
= (XD) (@' P) Z4. 1)

Appendix B: Optimizing covariance computation

Computing the empirical covariance matrix Zx and its inverse Z;(l can be time consuming,
given the number of features in EEG and especially MEG epochs. Typically, however, the number
of features far exceeds the number of epochs, which allows us to compute equation 5 efficiently
by applying the matrix inversion lemma,>? which states that for any matrices A, B, U, and V of

appropriate size, the following holds:
A-UBV) '=A"'+AlUB T -VATlD) VAT (22)

This allows us to reformulate X' X, which is for our example EEG dataset a 1600 x 1600 matrix,
in terms of XXT, which is in our example a 200 x 200 matrix.

For example, in the case of Kronecker shrinkage, equation 5 may be computed as:

W=[ayl+(1-a)(fZs oL+ (1- HX X)) Py, (23)

= layl+(1-a)pseli+1-a)(1-HX X" PE, (24)
A=ayl+(1-a)pssel, B=I, U=—(1-a)1-pX', V=X (25)
G=A"'U, K=I+XG, (26)
W=@A"+GK 'XA P, @27

Appendix C: Optimizing the inner cross-validation loop

Our optimization strategy (section 2.10) depends on evaluating the leave-one-out performance
of the model many times. The computationally most expensive operation in equation 27 is
computing K~'. However, this matrix only needs to be computed once, whereafter the leave-
one-out case where one observation i is left out can be obtained efficiently by only computing
the change caused by leaving one observation out, instead of re-computing the matrix from
scratch. Let K(;) denote the leave-one-out version of K, which in the case of this matrix means
the i’th row and column are removed. Salmen et al. (2010) have devised an efficient updating

algorithm for this case, using the matrix inversion lemma.

Begin by computing K(;) and K(‘l% in a conventional manner. Then, K;) can be constructed for
i > 1 by replacing the (i — 1)’th row and column of K(;) with the first observation. Note that this
results in a non-standard ordering of the rows and columns of K;), so care must be taken to

order the leave-one-out versions of X and Y in the same manner. The update rule of the inverse

52 Tylavsky and Sohie, 1986
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can then be formulated as:

K = Koy +D)7, 28)
0 o ki —koi ...0
0 .0
D=Ky-Ky=|kii—kio -+ kii—-ki; -kin—kinl| (29)
kn,l - kn,i

where k; ; refers to the element at row i and column j of the original matrix K and 7 is the total

number of observations in K.

To apply the inversion lemma (equation 22), D must be formulated in terms of UBV, which

yields:
k11— ko 0
ko —ks,i 0
ki—ni1—ki-ni O 1 0
U= (i-1),1 (i-1),i ’ B= , (30)
ki1 —ki; 1 0 1
kirni—kin,i O
kn,l_kn,i 0
vo| O 0 0 1 0 0
kin—koi koa—ksi o ka-pa—ka-ni 0 kgeng—Kgeni o0 kna—kni)
(31)
Then, applying equation 22:
-1 -1 -1 -1 -1 B QS B —
K| = Koy +UBY) ™ =K} - K uB~" + VK, U) 'K (32)
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