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Abstract
Modern multivariate methods have enabled the application of unsupervised techniques to ana-

lyze neurophysiological data without strict adherence to pre-defined experimental conditions. We

demonstrate a multivariate method that leverages priming effects to shed light on the organization of

memory representations in the brain. The current study focuses on the semantic relationships that

play a key role in the organization of our mental lexicon of words and concepts. The N400 component

of the event-related potential is considered a reliable neurophysiological response that is indicative of

whether accessing one concept facilitates subsequent access to another (i.e., one “primes” the other).

To further our understanding of the organization of the human mental lexicon, we propose to utilize

the N400 component to drive a clustering algorithm that can uncover, given a set of words, which

particular sub-sets of words show mutual priming. Such a scheme requires a reliable measurement of

the amplitude of the N400 component without averaging across many trials, which was here achieved

using a recently developed multivariate analysis method based on beamforming. We validated our

method by demonstrating that it can reliably detect, without any prior information about the nature

of the stimuli, a well-known feature of the organization of our semantic memory: the distinction

between animate and inanimate concepts. These results motivate further application of our method

to data-driven exploration of disputed or unknown relationships between stimuli.
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1 Introduction

Semantic priming experiments1 have revealed that accessing a word in our mental 1 McNamara and Holbrook, 2003; Neely,

1991lexicon facilitates future access to semantically related words. Since words usually

occur in a logical sequence, this “priming” behavior facilitates the processing of

likely continuations of a sentence or story2 and thereby contributes to our ability to 2 Neely, 1976

exchange messages with others at high speed.

The semantic priming effect has been helpful for studying the organization of hu-

man semantic memory.3 For example, the exact nature of the relationships that 3 e.g. Collins and Loftus, 1975; Kutas and

Federmeier, 2000causes one word to prime another word continues to be the focus of research.4
4 e.g. De Deyne, Navarro, and Perfors, 2016;

C. K. Van Petten, 1993
In this paper, we demonstrate how unsupervised techniques, such as hierarchical

clustering, are a particularly useful tool in this case and develop a new technique

to study the organization of semantic memory based on a neural correlate of the

semantic priming effect.

The boost in signal-to-noise ratio (SNR) provided by multivariate data analysis5 5 Friston et al., 1996; Norman, Polyn, Detre,

and Haxby, 2006enables an exciting paradigm shift in how new insights may be obtained from neu-
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rophysiological data. When the SNR is high enough, a researcher can approach

the data analysis in an unsupervised manner, instead of labeling data according to

some predetermined division (e.g., words vs. pseudowords or tools vs. vegetables).

Multivariate analysis reduces the need for averaging across trials, thus facilitating

the generation of sufficiently many data points for learning the underlying structure

in the data distribution, for example via clustering techniques.6 This allows for a 6 Jain, Murty, and Flynn, 1999

data-driven approach to complement theoretical work.

In the application of clustering techniques, the key component to consider is the

(dis)similarity score employed by the algorithm. This score is a measure of the

distance between two items and is used by the clustering algorithm to determine

which items to group together in a cluster. Hence, the effectiveness and validity of

clustering techniques in neuroscience depends a great deal on how the measured

brain activity is translated into a similarity score.

In the context of semantic relationships, the similarity score corresponds to the

concept of semantic distance.7 Such distance metrics are traditionally based on 7 Rips, Shoben, and Smith, 1973

behavioral data, such as the co-occurrence of words in a large text corpus,8 degree of 8 Jones, Willits, and Dennis, 2015

overlap of semantic features9 or the forward association strength (FAS) score which 9 De Deyne and Storms, 2008; Hutchison,

2003; McRae, Cree, Seidenberg, and

McNorgan, 2005
is produced by performing an association study where participants, presented with

a target word, are asked to write down which words come to mind.10 These metrics
10 De Deyne, Navarro, and Storms, 2013;

Nelson, McEvoy, and Schreiber, 2004
are all based on data that was produced by participants who were given enough

time to consciously think about their responses. However, for the purposes of this

study, a semantic distance metric is preferred that is based on a neurophysiological

response that occurs while the target word is being processed, before any conscious

decision making process can be completed.

Previous studies that have developed semantic distance metrics from brain activity

did so by showing that concepts belonging to the same natural semantic category

(e.g., tools, animals, etc.) produce similar brain activity. For example, functional

magnetic resonance imaging (fMRI) studies have shown that stimuli from the same

semantic category generate similar blood-oxygen-level dependent (BOLD) activity

patterns11 and electroencephalography (EEG) and magnetoencephalography (MEG) 11 Gerlach, 2007; Huth, De Heer, Griffiths,

Theunissen, and Jack, 2016, 2012studies have shown that they produce similar spatio-temporal time courses.12 How-
12 Chan, Halgren, Marinkovic, and Cash,

2011; Simanova, van Gerven, Oostenveld,

and Hagoort, 2010

ever, while some semantic categories may activate unique brain activity patterns,

there is currently no consensus that this should be the case for all categories13 or, for

13 Pulvermüller, 2013
that matter, other types of relationships that are important to the semantic systems

in our brain. In this study, we explore an alternative route to obtain a semantic

distance metric that is more closely tied to semantic priming.

The distance metric employed in this study is based on an component of the event-

related potential (ERP) as recorded through EEG, which has been shown to be reliably

modulated by semantic priming. By contrasting different levels of priming, an effect

can be seen that reaches its maximum around 400 ms post stimulus onset and the

component was hence named the N400.14 Since its discovery, relative changes in the 14 Kutas and Federmeier, 2011; Kutas and

Hillyard, 1984amplitude of the N400 component have been shown to correlate well with various

behavioral metrics of the strength of the semantic relationship between words, such

as word co-occurrence,15 FAS 16 and semantic feature overlap.17 15 C. Van Petten, 2014

16 Luka and Van Petten, 2014; van Vliet

et al., 2016

17 Koivisto and Revonsuo, 2001

In this study, we demonstrate how to find semantic clusters for a given set of words
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by measuring the amplitude of the N400 component that was evoked in a semantic

priming experiment. Since the semantic priming effect and its relation to the N400

component have been thoroughly studied, the metric and the clustering result it

produces are straightforward to interpret.

EEG was recorded while all pairwise combinations of the stimuli, a set of 14 written

words, were presented sequentially to the participants. For the second word of each

word-pair (the target), the amplitude of the N400 component of the evoked EEG

response was estimated using an linearly constrained minimum variance (LCMV)

beamformer,18 modified to be suitable for ERP analysis.19 The resulting N400 ampli- 18 Van Veen, Van Drongelen, Yuchtman,

and Suzuki, 1997

19 Treder, Porbadnigk, Shahbazi Avarvand,

Müller, and Blankertz, 2016; van Vliet et al.,

2016; Wittevrongel and Van Hulle, 2016

tudes formed the elements of a word-to-word distance matrix that served as input to

a hierarchical clustering algorithm, with the aim to discover clusters of semantically

related words. Since the main focus of this study is to explore if such a scheme can

work, the chosen stimuli in this study were either animals or furniture items, thus

items that most semantic theories place in separate clusters.20 The validity of the 20 Martin, 2007

method was assessed by determining whether the clustering algorithm reveals these

clusters.

Importantly, even though the stimuli in this study were designed with a clear di-

chotomy, the method will be agnostic to this fact. Accordingly, the proposed method

should also be suitable for exploring datasets where the proper clustering is am-

biguous or disputed. Furthermore, due to the unsupervised nature of the method,

additional sub-clusters may also be revealed that were not an intentional part of the

experimental design.

2 Methods

The study was performed with 19 participants. The data of two participants was

discarded due to poor sensor contact quality and the data of one participant was

discarded due to excessive eye blinks. Of the remaining 16 participants, 10 were

male and 6 female, in the age range of 20 to 58 years (mean 38, std 11 years), all but

one were right handed, 6 were native speakers of Walloon-French and the other 10

native speakers of Flemish-Dutch.

This study was performed at KU Leuven and ethical approval was obtained from

its university hospital’s medical ethics committee. All participants were unpaid

volunteers who signed an informed consent form before the experiment.

2.1 Stimuli and experimental procedure

Word-pairs were formed by using all possible prime–target combinations (182) of the

14 words listed in table 1. The list contains category exemplars for African animals

and common furniture items. The stimuli differ in length and frequency of usage,

which are normally controlled for in linguistic experiments. However, our method

is mostly insensitive to the influences of such word-specific properties, as will be

further argued in the Discussion section. The stimuli were presented in the native

language of the participant (Flemish-Dutch or Walloon-French). All possible word-

pairs were presented once, which means that each individual word was presented
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Dutch French English

bed lit bed
bureau bureau desk
deur porte door
giraf girafe giraffe
kast placard closet
leeuw lion lion
neushoorn rhinoceros rhinoceros
nijlpaard hippopotame hippopotamus
olifant éléphant elephant
stoel chaise chair
tafel table table
tijger tigre tiger
zebra zèbre zebra
zetel canapé couch

Table 1: Words used in the unsupervised
clustering study. The words were dis-
played in French or in Dutch, accord-
ing to each participant’s native language.
The English translation is only for the
sake of exposition and was not displayed
to the participants. The stimuli con-
sisted of all possible pairwise combina-
tions of these words.

26 times: 13 times as prime and 13 times as target.

Participants were seated in an upright position approximately one meter from a com-

puter screen. The hand used to give the button response rested upon a table with the

index and middle fingers on the mouse buttons. A trial consisted of the sequential

presentation of a single word-pair. The first word of the word-pair (the prime) was

presented for 200 ms and the second word (the target) for 1000 ms with a stimulus

onset asynchrony of 500 ms, after which a question mark appeared prompting a

response.

Following the advise of Renoult and Debruille (2011) for obtaining a semantic prim-

ing effect even when stimuli are shown multiple times during the experiment, the

participants were asked to determine whether the cue and target words belonged to

the same semantic category by pressing one of two mouse buttons. The mapping of

the yes/no response to the mouse buttons and the hand used to operate the mouse

were counterbalanced independently across participants.

2.2 Data recording and preprocessing

EEG was recorded continuously using 32 active electrodes (extended 10–20 system)

with a BioSemi Active II System (BioSemi, Amsterdam, the Netherlands), having

a 5th order frequency filter with a pass band of 0.16 Hz to 100 Hz, and sampled at

2048 Hz. Two additional electrodes were placed on both mastoids and their average

signal was used as a reference for the other sensors. Furthermore, four additional

electrodes were placed on the outer canthi of the eyes and above and below the left

eye to record a horizontal and vertical electro-oculogram (EOG).

The EEG and electrooculogram (EOG) signals were further bandpass filtered offline

between 0.3 Hz to 30 Hz by a 4th order zero-phase infinite impulse response (IIR)

filter to attenuate large drifts and irrelevant high frequency noise. Electrodes with

insufficient signal quality were detected based on visual inspection of the raw data

and replaced by a virtual channel using spherical interpolation of the remaining

electrodes.21 The EOG signal was used to attenuate eye artifacts from the EEG signal 21 Perrin, Pernier, Bertrand, and Echallier,

1989using the aligned-artifact average regression method described in.22 Individual
22 Croft and Barry, 2000
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trials were obtained by cutting the continuous signal from 0.1 s before the onset

of each target stimulus to 1.0 s after. All trials were used in the analysis. Baseline

correction was performed using the average voltage in the 0.1 s interval before the

stimulus onset as baseline value. Finally, since any high frequency content was

removed by the band pass filter, the signal was downsampled to 50 Hz without losing

much information. This step was included to reduce the dimensionality of the data

matrices, which improves the numerical stability of the beamformer filter.

2.3 Beamformer filter

After preprocessing the EEG signals, multivariate analysis was performed using a

spatio-temporal LCMV beamformer filter. The filter takes a weighted sum of the data

points from all EEG channels and all samples within an epoch. The result of this

summation represents the estimated amplitude of the N400 component of the ERP

within that epoch. For an in depth explanation and implementation details of the

method, see van Vliet et al. (2016).

The beamformer approach consists of two steps. The first step is to construct a

template of the desired signal: in this case the spatial and temporal shape of the

N400, which is derived with traditional ERP analysis and consists of averaging many

epochs across many subjects. The second step is to obtain the set of weights that

isolates this signal from the rest of the EEG, which entails estimating the inverse

signal covariance matrix of the recording currently under consideration (the target

recording). The advantage of this approach is that data recorded during previous

studies can be re-used to acquire the N400 template, which removes the requirement

for the target recording to have predefined experimental conditions, i.e., indicating

beforehand which trials are assumed to have a high or low N400 amplitude.

To obtain a template of the N400 component and fine-tune the beamformer filter, we

re-used data that was collected in a previous semantic priming study.23 In this study, 23 van Vliet et al., 2014

10 native speakers of Flemish-Dutch were shown 800 word-pairs with varying FAS, as

determined from an association norm database compiled by De Deyne and Storms,24 24 De Deyne et al., 2013; De Deyne and

Storms, 2008covering the whole range of completely unrelated to the strongest related words in

the database. The experimental procedure, recording setup and data processing

were identical to the one used for the unsupervised clustering study as described

above, with the exception that the responding hand was always the right hand and

the mapping of yes/no responses to the mouse buttons was not counterbalanced.

See van Vliet et al. (2014) for further details about the study.

The data of the previous study was re-analyzed by performing linear regression,

using the logarithm of the FAS of the stimuli as predictor and the EEG as response

variable, resulting in what Smith and Kutas (2015) refer to as a “slope” ERP. This slope

ERP is a generalization of the difference wave and can be thought of as “the part of the

ERP that changes when the FAS of the stimulus changes.” Next, we determined the

time point when the global field power (GFP) of the slope ERP reached its maximum,

which was at 430 ms after stimulus onset. The distribution of the slope ERP across the

sensors at that time point was taken to be the spatial pattern for the N400 component

(figure 1, left).
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temporal pattern Figure 1: Spatial pattern (left) and tem-
poral pattern (right) of the N400 com-
ponent of the ERP, evoked in a semantic
priming experiment. In the figure de-
picting the temporal template, the gray
line represents the result of the spatial
beamformer and the black line repre-
sents the result after multiplying with
a Gaussian kernel.

The temporal template was constructed by using the spatial template to create a

spatial LCMV beamformer,25 the output of which represents an estimation of the 25 van Vliet et al., 2016

summed activity at the cortical source locations of the N400 (figure 1, right, gray

line). This time course was further refined by multiplying it with a Gaussian kernel

(µ = 400ms, σ = 0.1ms) which has the effect of limiting the non-zero values to a

window of interest centered around the peak amplitude of the N400 (figure 1, right,

black line). Finally, the full spatio-temporal template was obtained by taking the

outer product of the spatial and temporal templates.

To compute the filter weights that will isolate the signal component described by

the template from the rest of the signal, the template must be multiplied with the

spatio-temporal covariance matrix Σ of the target data. This matrix can be readily

computed from the data of the current study, since it does not require contrasting

different experimental conditions. Due to the high dimensionality of this matrix, it

is recommended to employ heavy shrinkage during its estimation. In this study, we

employed shrinkage towards the diagonal:

Σ̂= XXᵀ, (1)

Σ= (1−α)Σ̂+α
TrΣ̂

n
I, (2)

where X is a matrix where each row corresponds to one of the n epochs and contains

a flattened version (i.e. all elements are placed on a single row) of the (channels ×
samples) matrix. Σ̂ is the empirical covariance matrix, “TrΣ̂” means the sum of the

diagonal elements of Σ̂, and I is an identity matrix.

The value of the shrinkage parameter α was optimized by designing beamformer

filters with different values for α and applying them to the data of the previous study.

The optimization criterion was to maximize the correlation between the output of

the filter and the FAS of the stimuli that were used in that study. This resulted in an

optimal α value of 0.9, which is the value we subsequently used to design the filter

for the present study.

Given the covariance matrix and the template of the N400 component, the estima-
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tion of the amplitude of this component (ŷ) for a given epoch is:

w = Σ−1 a

aᵀΣ−1 a
, (3)

ŷ = wᵀx, (4)

where Σ−1 is the inverse of the covariance matrix, a is a flattened version of the

(channels × samples) matrix containing the N400 template and x is the flattened

version of the (channels × samples) matrix containing the EEG epoch.

2.4 Hierarchical clustering

The amplitude of the N400 ERP component ŷ , as quantified by the spatio-temporal

LCMV beamformer filter, was further processed to obtain a suitable metric for the

semantic distance between the prime and target stimuli. For each participant, z-

scoring was performed across the ŷ ’s in order to equalize the scalings. The z-scored

N400 amplitude estimates were subsequently organized in a (words × words) matrix

D.

Since we are interested in the N400 effect, i.e. the relative amplitude difference of

the component across contrasting conditions, each column of D was normalized

by removing its mean. This has the effect of removing the baseline N400 response

to each word and only preserving relative changes in N400 amplitude as the target

word is presented in combination with different cue words.

Matrix D contains, for each pairwise combination of two words in table 1, two re-

sponses for each participant. One response for the case where the first word was used

as cue and the second word as association and another response for the reversed

case. Since the hierarchical clustering algorithm operates on geometric distance,

which is symmetric and positive, the distance matrix D should be symmetric and

positive as well. This was achieved by averaging D with its transposed form and

subtracting the lowest value:

Dsym = D+Dᵀ

2
, (5)

Dpos = Dsym −minDsym. (6)

The final matrix used as input for the hierarchical clustering algorithm was obtained

by averaging the distance matrices across participants. Since the N400 amplitude

estimates are noisy, it is beneficial to base the distance between two clusters on

as many measurements as possible. Therefore, average linkage (also known as

unweighted pair group methods with arithmetic mean (UPGMA) linkage) was chosen

as the clustering algorithm.26 It determines the distance between two clusters by 26 Jain et al., 1999

considering the average distance between all items in the clusters.27 We present the 27 Sokal and Michener, 1958

output of the clustering algorithm in the form of a dendrogram.
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2.5 Statistics

At each “node” in the dendrogram, where two sub-clusters are joined together to

form a new cluster, a statistical test was performed to provide an indication of

the reliability of the distinction presented by the two sub-clusters. To this end, a

linear mixed effects (LME) model was used to analyze the difference between the

estimated N400 amplitudes in response to the within-cluster word-pairs versus

the between-cluster word-pairs. Note that this test can only be performed if both

clusters consist of at least two words, otherwise there are no within-cluster word-

pairs. The normalized N400 amplitudes (the elements of the asymmetric matrix

D) were used as the dependent variable, with a dummy encoding of the labels

“within-cluster” (= 1) versus “between-cluster” (= 0) as fixed effect. Since the model

needs to generalize beyond the participants included in the study, participants were

modeled as random effect (random slopes and random intercepts). However, since

the model does not need to generalize beyond the words in the clusters, words were

not included as random effect. The model was fitted using restricted maximum

likelihood (REML), with degrees of freedom and the resulting p-values estimated

using Satterthwaite’s approximation.28 To control for family-wise error rate (FWER), 28 Satterthwaite, 1946

the p-values were Bonferroni corrected my multiplying them by the number of tests

performed. When this resulted in p > 1, we report p = 1.

2.6 Software

Stimulus presentation was performed using MATLAB in combination with the Psy-

chophysics toolbox.29 Data analysis was performed using Python in combination 29 Brainard, 1997

with the Psychic, NumPy and SciPy packages.30 Covariance estimation with shrink- 30 Oliphant, 2007

age was performed using the Scikit-learn package.31 Plots were created using the 31 Pedregosa et al., 2012

Matplotlib package.32 Statistical analysis was performed using R33 in combination 32 Hunter, 2007

33 R Core Development Team, 2015with the LME434 and lmerTest35 packages.
34 Bates, Maechler, Bolker, and Walker,

2015
35 Kuznetsova, Brockhoff, and

Christensen, 2015

A software implementation of the N400 template estimation procedures and spatio-

temporal LCMV beamformer can be found at:

https://github.com/wmvanvliet/ERP-beamformer.

3 Results

As expected, the button responses collected during the experiment showed that

the participants very consistently marked word-pairs as “related” and “unrelated”

according to a classification of animal versus furniture item. Furniture–furniture

pairs received a “related” response in 89.0 % of the time, animal–animals pairs 93.6 %,

furniture–animal pairs 1.1 % and animal–furniture pairs 0.6 %. It is likely that after a

few trials, the participants noticed the pattern and started to perform a classification

instead of a judgement of association task.

The distance matrix that was based on estimations of the amplitude of the N400

component (figure 2) also shows as overall trend a dichotomy between animal

versus furniture items. Although single-item measurements can be unreliable (e.g.

chair–hippo shows up as relatively related, which is probably a measurement error),
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Figure 2: Distance matrix based on the
amplitude of the N400 component, av-
eraged across participants. The order
of the words mirrors the order in which
they appear in the dendrogram (fig-
ure 3). Black lines mark the boundary
between the top clusters in the dendro-
gram.

lion tiger rhino zebra elephant giraffe hippo desk bed closet door table chair couch

t(15.00)=-1.99
p = 0.129 t(15.00)=-0.92

p = 0.747

t(26.54)=-3.16
p = 0.016

t(15.00)=-3.25
p = 0.021

Dendrogram for N400 amplitude

Figure 3: Dendrogram resulting from the hierarchical clustering algorithm applied to the distance matrix based
on the amplitude of the N400 component. Statistical tests were performed to test for differences in N400
amplitude in response to between-(sub)cluster versus within-(sub)cluster word-pairs. Reported p-values are
Bonferroni corrected.

hierarchical clustering can reveal the underlying patterns.

The dendrogram produced by the hierarchical clustering algorithm (figure 3) has as

the topmost two clusters all the animal stimuli versus all the furniture stimuli. The

fact that these clusters could be reliably reconstructed shows that the multivariate

analysis of the EEG data yielded a measurement with a high enough SNR to perform

this type of unsupervised clustering. As these clusters are themselves divided into

sub-clusters, the results are based on less data and therefore less reliable. Statistical

tests at each “node” of the dendrogram are an indication of this reliability and show

whether there is a significant difference in N400 amplitude between within-cluster

and between-cluster trials.

The only explicit distinction in the experimental design was a distinction between

animals and furniture items. However, the dendrogram suggests that there may be a

dichotomy in the chosen furniture stimuli. The cluster containing the animal stimuli

did not show any reliable further sub-clustering.

The grand average ERPs, obtained by assigning the labels “within-cluster” and

“between-cluster” based on the topmost clustering in the dendrogram, are presented

in figure 4. Two components can be observed in the ERP, the first being the N400
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component with a posterior distribution, present during both the within-cluster

and between-cluster conditions. The second component is only observed in the

between-cluster condition and has a more frontal distribution which can be possibly

classified as a P600 component, commonly observed when stimuli are repeated.36 36 Van Strien, Hagenbeek, Stam,

Rombouts, and Barkhof, 2005Note that in the distance matrix (figure 2), the estimated N400 amplitudes were

corrected by removing the mean along the columns in order to remove the “baseline”

N400 response to each word. The ERP shown in figure 4 are uncorrected and there-

fore any visible effects are partly due to differences in the properties of the target

words such as length, frequency, etc.

4 Discussion

The main result is that the distinction between animals and furniture items could

be reliably extracted, based purely on EEG responses. This could be done without

supplying any information about the nature of the clusters to the algorithm (i.e.,

no experimental conditions, no information about the clusters having an equal

number of members), thus giving confidence that the method can produce trust-

worthy results for datasets where the optimal clustering is not known beforehand,

provided that the distance (in our case semantic distance) between the clusters is

large enough.

We employed a semantic distance metric that is based on the amplitude of the N400

component of the ERP, evoked using a semantic priming paradigm. This metric

may capture different semantic relationships than earlier work that analyzed the

full spatio-temporal activity pattern evoked by single words.37 Furthermore, since 37 Chan et al., 2011; Gerlach, 2007; Huth

et al., 2016; Simanova et al., 2010the proposed metric does not require to distinguish brain activity between different

spatial locations, the measurement can also be performed using techniques that

have a relatively poor spatial resolution, such as EEG.

The method requires the detection of differences in N400 amplitude when a cue word

is presented in combination with different prime words. How large these differences

need to be in order for clusters to be differentiated depends on the SNR that can be

achieved in estimating the amplitudes. In this study, we employed a spatio-temporal

LCMV beamformer which has been shown to produce more reliable estimates of the

N400 amplitude than more traditional approaches, such as measuring the mean

voltage in a fixed time window.38 The experimental paradigm used in this study adds 38 van Vliet et al., 2016

some additional challenge, since stimuli need to be repeated in order to construct

a full word-to-word distance matrix. Stimulus repetition is known to degrade the

N400 effect due to semantic facilitation through short term memory (e.g., due to

the old/new effect).39 Nevertheless, our results reproduce the earlier finding that 39 Rugg and Curran, 2007

the N400 effect persists even when the stimuli are repeated,40 as long as the target 40 Debruille and Renoult, 2009; Renoult

and Debruille, 2011word cannot be predicted from the prime word and an explicit task is given to the

participant.41 41 Renoult, Wang, Calcagno, Prévost, and

Debruille, 2012
The ability of the beamformer algorithm to accurately estimate N400 amplitudes de-

pends greatly on the accuracy of the supplied template.42 The fact that good results 42 Treder et al., 2016; van Vliet et al., 2016

were obtained using a template based on an independent dataset (figure 1), provides

some validation that the component reaching a maximum around 400 ms (figure 4)
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is similar to the N400 component observed in classical priming experiments. If the

component evoked in this study would deviate too much from the template (either

in spatial distribution or timing), it would fall outside the passband of the filter.

However, it is likely that there are small differences between the template and the

N400 observed in this study, due to the repetition of stimuli, which can cause shifts

in the timing of the component.43 A template that is based on the data collected 43 Renoult et al., 2012

during this study is available upon request from the corresponding author, for use

in future studies that employ a methodology that is similar to that in the current

work.

It is worth noting that, although p-values are provided in the dendrogram, the

clustering result goes beyond the statistical statement these p-values make. While

there are many possible ways to cluster the stimuli in such a manner that there is a

significant difference in N400 amplitude between the within-cluster and between-

cluster pairs, the dendrogram reveals, out of all possible manners to arrange the

items, the strongest hierarchical clustering (according to the linkage metric). When

this clustering corresponds to the clustering predicted by a hypothesis (as it does in

this case) and the accompanying p-value is small, the evidence that the hypothesis

is correct is much stronger than is provided by a p-value alone.

Another advantage of the method is that it is insensitive to properties that are word-

specific, such as length, frequency of usage, age of acquisition, etc. This is achieved

by removing the mean of the columns of the distance matrix, i.e. the baseline N400

response to each word. The remaining values only reflect the change in N400 re-

sponse when a word is preceded by different prime words. Furthermore, since the

average linkage algorithm determines the distance between two clusters by com-

puting the ratio between the mean within-cluster distance and the mean distance

to every other cluster, the word-pairs relevant to the computation always cover the

complete set of words. This means that the dendrogram reflects effects that are

caused by the interaction between a target word and every other word in the stimu-

lus set, rather than effects that cause a certain word to have an intrinsically weak or

strong N400 response. This leaves the experimenter with much more freedom in

how to select the stimuli for the experiment.

The construction of a full word-to-word distance matrix of n items requires the

presentation of n2−n stimuli, hence the number of items that can be included in the

analysis is restricted. Since the method can more reliably reveal patterns in semantic

relationships when there are clearly distinguishable clusters in the stimulus set, the

items that are included should be carefully chosen. Also, although the proposed

method is unsupervised and will always produce some clustering solution, a careful

experimental design is needed to ensure that the result is interpretable. This includes

deciding at what level to “cut” the dendrogram.

In addition to answering a predefined research question, post-hoc analysis of the

dendrogram may be used as a starting point for future exploration. For example,

in our study, in addition to the top-level clusters, the dendrogram also hints at a

dichotomy among the selected furniture stimuli. Indeed, strong semantic clusters

may well exist within this category of words, for example based on the room that the

furniture pieces are commonly found in. While the present study does not include
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enough data to confirm such a hypothesis, the method suggests that this line of

inquiry may be fruitful.

5 Conclusion

We have demonstrated a way to employ amplitude measurements of the N400 ERP

component as a semantic distance metric between words. In order to obtain a

reliable measurement, a multivariate analysis procedure based on the LCMV beam-

former was successfully employed to overcome the low SNR of EEG signals. The

resulting distance metric allows for successful application of unsupervised tech-

niques, such as hierarchical clustering, to analyze how a chosen set of stimuli cluster

together.

Our results illustrate how unsupervised techniques can be leveraged to analyze

EEG data without strict adherence to predefined labels. This is particularly useful

when validating theories concerning the organization of memory systems in the

brain.
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