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Abstract. Although N3 is perhaps the most widely used method for
MRI bias field correction, its underlying mechanism is in fact not well
understood. Specifically, the method relies on a relatively heuristic recipe
of alternating iterative steps that does not optimize any particular objec-
tive function. In this paper we explain the successful bias field correction
properties of N3 by showing that it implicitly uses the same generative
models and computational strategies as expectation maximization (EM)
based bias field correction methods. We demonstrate experimentally that
purely EM-based methods are capable of producing bias field correction
results comparable to those of N3 in less computation time.

1 Introduction

Due to its superior image contrast in soft tissue without involving ionizing radia-
tion, magnetic resonance imaging (MRI) is the de facto modality in brain studies,
and it is widely used to examine other anatomical regions as well. MRI suffers
from an imaging artifact commonly referred to as “intensity inhomogeneity” or
“bias field”, which appears as low-frequency multiplicative noise in the images.
This artifact is present at all magnetic field strengths, but is more prominent
at the higher fields that see increasing use (e.g., 3T or 7T data). Since intensity
inhomogeneity negatively impacts any computerized analysis of the MRI data,
its correction is often one of the first steps in MRI analysis pipelines.

A number of works have proposed bias field correction methods that are inte-
grated into tissue classification algorithms, typically within the domain of brain
MRI analysis [1–7]. These methods often rely on generative probabilistic mod-
els, and combine Gaussian mixtures to model the image intensities with a spa-
tially smooth, multiplicative model of the bias field artifact. Cast as a Bayesian
inference problem, fitting these models to the MRI data employs expectation-
maximization (EM) [8] optimizers to estimate some [7] or all [1, 3, 4, 6] of the
model parameters. Specifically tailored for brain MRI analysis applications, these
methods encode strong prior knowledge about the number and spatial distribu-
tion of tissue types present in the images. As such, they cannot be used out of
the box to bias field correct imaging data from arbitrary anatomical regions.
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In contrast, the popular N3 [9] bias field correction algorithm does not require
any prior information about the MRI input. This allows N3 to correct images
of various locations and contrasts, and even automatically handle images that
contain pathology. However, despite excellent performance and widespread use,
its underlying bias field correction mechanism is not well understood. Specifically,
the original paper [9] presents N3 as a relatively heuristic recipe for increasing
the “frequency content” of the histogram of an image, by performing specific
iterative steps without optimization of any particular objective function.

This paper aims to demonstrate how N3 is in fact intimately linked to EM-
based bias field correction methods. In particular, N3 uses the same generative
models and bias field estimation computations; however, instead of using dedi-
cated Gaussian mixture models that encode specific prior anatomical knowledge,
N3 uses generic models with a very large number of components (200) that are
fitted to the histogram by a regularized least-squares method.

The contribution of this paper is twofold. First, to the best of our knowledge,
this is the first study offering theoretical insight into why the seemingly heuristic
N3 iterations yield such successful bias field estimations. Second, we demonstrate
experimentally on datasets of 3T and 7T brain scans that standard EM-based
methods, using far less components, are able to produce comparable bias field
estimation performance at reduced computational cost.

2 Methods

In this section, we first describe the N3 bias field correction method and its
practical implementation. We then present EM-based bias field correction and
the generative model it is based upon. Finally, we build an analogy between the
two methods, thereby pointing out their close similarities.

2.1 The N3 method in its practical implementation

The following description is based on version 1.121 of the N3 method. In order
to facilitate relating the method to a generative model in subsequent sections,
we deviate from the notational conventions used in the original paper [9]. Fur-
thermore, whereas the original paper only provides a high-level description of
the algorithm (including integrals in the continuous domain, etc.), here we de-
scribe the actual implementation in which various discretization, interpolation,
and other processing steps are performed.

Let d = (d1, . . . , dN )T be the intensities of theN voxels of a MRI scan, and let
b = (b1, . . . , bN )T be the corresponding gains due to the bias field. As commonly
done in the bias field correction literature [1, 3, 4, 6], N3 assumes that d and b
have been log-transformed, such that the effect of b is additive. The central idea
behind N3 is that the histogram of d is a blurred version of the histogram of the
true, underlying image due to convolution with the histogram of b, under the

1 Source code freely available from http://packages.bic.mni.mcgill.ca/tgz/.
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assumption that b has the shape of a zero-mean Gaussian with known variance.
The algorithm aims to reverse this by means of Wiener deconvolution and to
estimate a smooth bias field model accordingly. This reversal process is repeated
iteratively, because it was found to improve the bias field estimates [9].

Deconvolution step: The first step of the algorithm is to deconvolve the his-
togram. Given the current bias field estimate denoted b̃, a normalized histogram
with K = 200 bins of bias field corrected data d − b̃ is computed2. The bin
centers are given by

µ̃1 = min(d− b̃), µ̃K = max(d− b̃), µ̃k = µ̃1 + (k − 1)h, (1)

where h = (µ̃K − µ̃1)/(K − 1) is the bin width, and the histogram entries
{vk, k = 1, . . . ,K} are filled using the following interpolation model:

vk =
1

N

N∑
i=1

ϕ

[
di − b̃i − µ̃k

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Defining v̂ as a padded, 512-dimensional vector such that v̂ = (0T156,v
T ,0T156)T ,

where v = (v1, . . . , vK)T and 0156 is an all-zero 156-dimensional vector, the
histogram is deconvolved by

π̂ ← F−1DFv̂. (2)

Here F denotes the 512× 512 Discrete Fourier Transform matrix with elements

Fn,k = e−2πj(k−1)(n−1)/512, n, k = 1, . . . , 512

and D is a 512× 512 diagonal matrix with elements

Dk =
f∗k

|fk|2 + γ
, k = 1, . . . , 512

where γ is a constant value set to γ = 0.1, and f = (f1, . . . , f512)T = Fg. Here
g denotes a 512-dimensional vector that contains a wrapped Gaussian kernel
with variance

σ̃2 =
f2

8 log 2
, (3)

such that

g = (g1, . . . , g512)T , gl =

{
hN ((l − 1)h|0, σ̃2) if l = 1, . . . , 256

g512−l+1, otherwise,
(4)

where f denotes a user-specified full-width-at-half-maximum parameter (0.15
by default), and N (·|µ, σ2) denotes a Gaussian distribution with mean µ and
variance σ2.

After π̂ has been computed by means of Eq. (2), any negative weights are set
to zero, and the padding is removed in order to obtain the central deconvolved
200-entry histogram π̃.

2 A flat bias field: b̃ = 0 is assumed in the first iteration.
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Bias correction step: When the histogram π̃ has been deconvolved, the cor-
responding “corrected” intensity d̃µl

in the deconvolved histogram is estimated
at each bin center µ̃l, l = 1, . . . ,K by

d̃µl
=
∑
k

wlkµ̃k with wlk =
N
(
µ̃l|µ̃k, σ̃2

k

)
π̃k∑

k′ N (µ̃l|µ̃k′ , σ̃2
k′) π̃k′

,

and a “corrected” intensity d̃i is found in every voxel by linear interpolation:

d̃i =

K∑
l=1

d̃µl
ϕ

[
di − b̃i − µ̃l

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Finally, a residual r = d − d̃ is computed and smoothed in order to obtain a
bias field estimate:

b̃ = Φc̃ (5)

where

c̃←
(
ΦTΦ+NβΨ

)−1
ΦTr. (6)

Here Φ is a N ×M matrix of M spatially smooth basis functions, where element
Φi,m evaluates the m-th basis function in voxel i; Ψ is a positive semi-definite
matrix that penalizes curvature of the bias field; and β is a user-determined
regularization constant (the default is β = 10−7).

Post-processing: N3 alternates between the deconvolution step and the bias
field correction step until the standard deviation of the difference in bias esti-
mates between two iterations drops below a certain threshold (default: ς = 10−3).
By default, N3 operates on a subsampled volume (factor 4). After convergence,
the bias field estimate is exponentiated back into the original intensity domain,
where it is subsequently fitted with Eq. (6), i.e., with r = exp(b̃). The resulting
coefficients are then used to compute a final bias field estimate by evaluation of
Eq. (5) with Φ at full image resolution. The uncorrected data is finally divided
by the bias field estimate in order to obtain the corrected volume.

2.2 EM-based bias field estimation

In the following we describe the generative model and parameter optimization
strategy underlying EM-based bias field correction methods3.

3 Several well-known variants only estimate a subset of the parameters considered here
– e.g., in [1] the mixture model parameters are assumed to be known, while [3] uses
fixed, spatially varying prior probabilities of tissue types.
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Generative model: Maintaining the notation d to denote a log-transformed
image and b = Φc to denote a parametric bias field model with parameters c, the
“true”, underlying image d−b is assumed to be a set of N independent samples
from a Gaussian mixture model withK components – each with its own mean µk,
variance σ2

k, and relative frequency πk (where πk ≥ 0,∀k and
∑
k πk = 1). Given

the model parameters θ = (µ1, . . . , µk, σ
2
1 , . . . , σ

2
K , π1, . . . , πK , c1, . . . , cM )T , the

probability of an image is therefore

p(d|θ) =

N∏
i=1

[
K∑
k=1

N (di −
M∑
m=1

cmΦi,m|µk, σ2
k)πk

]
. (7)

The generative model is completed by a prior distribution on its parameters,
which is typically of the form

p(θ) ∝ exp[−λcTΨc],

where λ is a user-specified regularization hyperparameter and Ψ is a positive
semi-definite regularization matrix. This model encompasses approaches where
bias field smoothness is imposed either solely through the choice of basis func-
tions (i.e., λ = 0, as in [3]), or through regularization only (i.e., Φ = I, as in [1]).
The prior is uniform with respect to the mixture model parameters.

Parameter optimization: According to Bayes’s rule, the maximum a poste-
riori (MAP) parameters are given by

θ̂ = argmax
θ

log p(θ|d) = argmax
θ

[log p(d|θ) + log p(θ)] . (8)

By exploiting the specific structure of p(d|θ) given by Eq. (7), this optimization
can be performed conveniently using a generalized EM (GEM) algorithm [8,
3]. In particular, GEM iteratively builds a lower bound ϕ(θ|θ̃) of the objective
function that touches it at the current estimate θ̃ of the model parameters (E
step), and subsequently improves ϕ(θ|θ̃) with respect to the parameters (M
step) [8, 10]. This procedure automatically guarantees to increase the value of
the objective function at each iteration. Constructing the lower bound involves
computing soft assignments of each voxel i to each class k:

wik =
N
(
di −

∑
m c̃mΦi,m|µ̃k, σ̃2

k

)
π̃k∑

k′ N (di −
∑
m c̃mΦi,m|µ̃k′ , σ̃2

k′) π̃k′
, (9)

which yields the following lower bound:

ϕ(θ|θ̃) =
∑
i

[∑
k

wik log

(
N (di −

∑
m cmΦi,m|µk, σ2

k)πk
wik

)]
− λcTΨc. (10)

Optimizing Eq. (10) simultaneously for the Gaussian mixture model parameters
and bias field parameters is difficult. However, optimization with respect to the
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mixture model parameters for a given set of bias field parameters is closed form:

µ̃k ←
∑
i w

i
k(di −

∑
m c̃mΦi,m)∑

i w
i
k

, σ̃2
k ←

∑
i w

i
k (di −

∑
m c̃mΦi,m − µ̃k)

2∑
i w

i
k

(11)

π̃k ←
∑
i w

i
k

N
. (12)

Similarly, for a given set of mixture model parameters the optimal bias field
parameters are given by

c̃←
(
ΦTSΦ+ 2λΨ

)−1
ΦTSr, (13)

with

sik =
wik
σ̃2
k

, si =
∑
k

sik, S = diag(si), d̃i =

∑
k s

i
kµ̃k∑

k s
i
k

, r = d− d̃.

Valid GEM algorithms solving Eq. (8) are now obtained by alternately updating
the voxels’ class assignments (Eq. (9)), the mixture model parameters (Eqns. (11)
and (12)), and the bias field parameters (Eq. (13)), in any order or arrangement.

2.3 N3 as an approximate MAP parameter estimator

Having laid out the details of both N3 and EM-based bias field correction, we
are in a position to illustrate parallels between these two methods. In particu-
lar, as we describe below, N3 implicitly uses the same generative model as EM
methods and shares the exact same bias field parameter update (up to numer-
ical discretization aspects). The only difference is that, whereas EM methods
fit their Gaussian mixture models by maximum likelihood estimation, N3 does
so by regularized least-squares fitting of the mixture model to the histogram
entries. Thus, whereas N3 was conceived as iteratively deconvolving Gaussian
bias field histograms from the data without optimizing any particular objective
function, its successful performance can be readily understood from a standard
Bayesian modeling perspective.

Considering the generative model described in Section 2.2, we postulate that
N3 uses K = 200 Gaussian distributions that are equidistantly spaced be-
tween the minimum and maximum intensity, i.e., the parameters {µk} are fixed
(Eq. (1)). Furthermore, all Gaussians are forced to have an identical variance
that is also fixed: σ2

k = σ̃2,∀k, where σ̃2 is given by Eq. (3). Thus, the only free
parameters in N3 are the relative class frequencies πk, k = 1, . . . ,K and the bias
field parameters c. We start by analyzing the update equations for c.

For the specific scenario where σ2
k = σ̃2,∀k, the EM bias field update equation

(Eq. (13)) simplifies to

c̃←
(
ΦTΦ+ 2σ̃2λΨ

)−1
ΦTr, with d̃i =

∑
k

wikµ̃k, r = d− d̃,
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where wik is given by Eq. (9). When the hyperparameter λ is set to the value
λ = Nβ/2/σ̃2 this corresponds directly to the N3 bias field update equation
Eq. (6), where the only difference is that N3 explicitly computes d̃µl

for just 200

discrete intensity values and interpolates to obtain d̃i, instead of computing d̃i
directly for each individual voxel.

For the remaining parameters π = (π1, . . . , πK)T , N3 implicitly uses a regu-
larized least-squares fit of the resulting mixture model to the zero-padded nor-
malized histogram v̂:

π̂ ← argmax
x

‖v̂ −Ax‖2 + γ‖x‖2, (14)

where A is a 512×512 matrix in which each column contains the same Gaussian-
shaped basis function, shifted by an offset identical to the column index:

A =


g1 g512 . . . g2
g2 g1 . . . g3
...

...
. . .

...
g512 g511 . . . g1

 ,

i.e., the first column contains the vector g defined in Eq. (4), and the remaining
columns contain cyclic permutations of g. To see why Eq. (14) is equivalent to
Eq. (2), consider that because A is a circulant matrix, it can be decomposed as

A = F−1ΛF with Λ = diag(f),

where F and f were defined in Section 2.1. The solution of Eq. (14) is given by

π̂ ←
(
ATA+ γI

)−1
AT v̂ =

(
F−1ΛHFF−1ΛF + γI

)−1
F−1ΛHF v̂

=
(
F−1ΛHΛF + γF−1F

)−1
F−1ΛHF v̂ = F−1

(
ΛHΛ+ γI

)−1
ΛH︸ ︷︷ ︸

D

F v̂,

where AH denotes the Hermitian transpose of A and where we have used the
properties that AT = AH and FH = 512 · F−1.

An example of N3’s mixture model fitted this way will be shown in Figure 1.
The periodic end conditions in A have no practical impact on the histogram fit,
as the support of the Gaussian-shaped basis functions is limited, and only the
parameters of the 200 central basis functions are retained after fitting. Although
this is clearly an ad hoc approach, the results are certainly not unreasonable, and
N3 thereby maintains a close similarity to purely EM-based bias field correction
methods.

3 Experiments

Implementation: In order to experimentally verify our theoretical analysis
and quantify the effect of replacing the N3 algorithm of Section 2.1 with the EM
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algorithm described in Section 2.2 and vice versa, we implemented both methods
in Matlab. For our implementation of N3, we took care to mimic the original
N3 implementation (a Perl script binding together a number of C++ binaries)
as faithfully as possible. Specifically, we used identically placed cubic B-spline
basis functions Φ, identical regularizer Ψ , and the same sub-sampling scheme and
parameter settings as in the original method. Our EM implementation shares
the same characteristics and preprocessing steps where possible, so that any
experimental difference in performance between the two methods is explained
by algorithmic rather than technological aspects.

During the course of our experiments, we observed that N3’s final basis
function fitting operation in the original intensity domain (described in Sec-
tion 2.1, “Post-processing”) actually hurts the performance of the bias field cor-
rection. Also, we noticed that N3’s default threshold value to detect convergence
(ς = 10−3) tends to stop the iterations prematurely. To ensure a fair comparison
with the EM method, we henceforth report the performance of N3 (Matlab) with
the final fitting operation switched off, and with a more conservative threshold
value that guarantees full convergence of the method (ς = 10−5).

For our EM implementation, we report results for mixture models of K = 3,
K = 6, and K = 9 components. We initialize the algorithm with the bias
field coefficients set to zero: c = 0 (no bias field); with equal relative class
frequencies: πk = 1/K,∀k; equidistantly placed means given by Eq. (1) and
equal variances given by σ2

k = ((max(d)−min(d))/K)2,∀k. For a given bias field
estimate, the algorithm alternates between re-computing wik,∀i, k (Eq. (9)) and
updating the mixture model parameters (Eqns. (11) and (12)), until convergence
in the objective function is detected (relative change between iterations < 10−6).
Subsequently, the bias field is updated (Eq. 13) and the whole process is repeated
until global convergence is detected (relative change in the objective function
< 10−5).

MRI data and brain masking: We tested both bias field correction methods
on two separate datasets of T1-weighted brain MR scans. The first dataset was
acquired on several 3T Siemens Tim Trio scanners using a multi-echo MPRAGE
sequence with a voxel size of 1.2 × 1.2 × 1.2 mm3. It consists of 38 subjects
scanned twice with varying intervals for a total of 76 volumes. The second dataset
consists of 17 volumes acquired on a 7T Siemens whole-body MRI scanner using
a multi-echo MPRAGE sequence with a voxel size of 0.75 × 0.75 × 0.75 mm3.
Since N3 bias field correction of brain images is known to work well only on
scans in which all non-brain tissue has been removed [11], both datasets were
skull-stripped using FreeSurfer4.

Evaluation metrics: Since the true bias field effect in our MR images is un-
known, we compare the two methods using a segmentation-based approach. In
particular, we use the coefficient of joint variation [12] in the white and gray mat-
ter as an evaluation metric, measured in the original (rather than logarithmic)

4 https://surfer.nmr.mgh.harvard.edu/
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domain of image intensities, after bias field correction. This metric is defined as
CJV = σ1+σ2

|µ1−µ2| , where (µ1, σ1) and (µ2, σ2) denote the mean and standard devi-

ation of intensities within the white and the gray matter, respectively. Compared
to the coefficient of variation defined as CV = σ1/µ1, which is also commonly
used in the literature [11, 13] and which measures only the intensity variation
within the white matter, the CJV additionally takes into account the remaining
separation between white and gray matter intensities.

In order to compute the CJV, we used FreeSurfer to obtain automatic white
and gray matter segmentations, which we then eroded once in order to limit
the influence of boundary voxels, which are typically affected by partial volume
effects. We observed that the segmentation performance of FreeSurfer was sub-
optimal in the 7T data because this software has problems with field strengths
above 3T. This problem was ameliorated by bias field correcting the 7T scans
with SPM85 prior to feeding them to FreeSurfer.

In addition to reporting CJV results for the two methods, we also report
their run time on a 64bit CentOS 6.5 Linux PC with 24 gigabytes of RAM,
an Intel(R) Xeon(R) E5430 2.66GHz CPU, and with Matlab version R2013b
installed. For the sake of completeness, we also include the CJV and run time
results for the original N3 software (default parameters, with the exception of
the spacing between the B-spline control points – see below).

Stiffness of the bias field model: The stiffness of the B-spline bias field
model is determined both by the spacing between the B-spline control points
(affecting the number of basis functions in Φ) and the regularization parameter
of Ψ that penalizes curvature (β in N3, and λ in the EM method).

As recommended in [13], we used a spacing of 50 mm instead of the N3 de-
fault6, as it is known to be too large for images obtained at higher-field strengths.
Finding a common, matching value for the regularization parameter in both
methods proved difficult, since we observed that the methods perform best in
different ranges. Therefore, for the current study we computed average CJV
scores for both methods over a wide range of values. We report results for the
setting that worked best for each method and for each dataset separately7.

4 Results

Figure 1 shows the histogram fit and the bias field estimate of both our N3
implementation and the EM method with K = 6 Gaussian components on a
representative scan from the 7T dataset. In general, the histogram fit works well
for both methods; however for N3 a model mismatch can be seen around the
high-intensity tail. This is the result of zeroing negative weights after Wiener
filtering.

5 http://www.fil.ion.ucl.ac.uk/spm/
6 200 mm, appropriate for the 1.5T data the method was originally developed for.
7 A more elaborate validation study would determine the optimal values on a separate

training dataset; however, this is outside the scope of the current workshop paper.
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Fig. 1. Correction
of a 7T volume
(above) with N3
(top right) and
EM with K = 6
components (bot-
tom right). For
each method, the
estimated bias field,
the corrected data,
and the histogram
fit (green curves
represent individual
mixture compo-
nents, red curve
represent the full
mixture model) is
shown.
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Dataset Average computation time (seconds)

EM (3G) EM (6G) EM (9G) N3 (Matlab) N3

3T 12.7 20.7 29.7 86.0 53.5
7T 50.6 79.2 102.0 415.5 170.8

Table 1. Average computation time for correcting a volume within each dataset.

Figure 2 shows the CJV in the two test datasets, before bias field correction
as well as after, using the EM method (for K = 3, K = 6, and K = 9 compo-
nents), our Matlab N3 implementation, and the original N3 software. Overall,
the EM and N3 (Matlab) methods perform comparably, except for EM with
K = 3 components which seems to have too few degrees of freedom in the 7T
dataset. The original N3 implementation is provided as a reference only; its un-
derperformance compared to our own implementation is to be expected since its
settings were not tuned the same way.

Table 1 shows the average computation time of each method. Due to the much
higher resolution of the 7T data, computation time increased for all methods
when correcting this dataset. In all cases, the EM correction ran three to six
times faster than the N3 Matlab implementation, depending on the number of
components in the mixture. As before, results for the original N3 method are
provided for reference only.
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Fig. 2. Scatter plots showing the CVJ between white and gray matter in the 3T (left)
and 7T (right) datasets. Lower CVJ equates to better performance. The red line rep-
resents the mean, while the blue box covers one standard deviation of the data and the
red box covers the 95% confidence interval of the mean.

5 Discussion

In this paper we have explained the successful bias field correction properties of
the N3 method by showing that it implicitly uses the same type of generative
models and computational strategies as EM-based bias field correction methods.
Experiments on MRI scans of healthy brains indicate that, at least in this ap-
plication, purely EM-based methods can achieve performance similar to N3 at a
reduced computational cost.

Future work should evaluate how replacing N3’s highly constrained 200-
component mixture model with more general mixture models affects bias field
correction performance in scans containing pathology. Conversely, while N3’s
idiosyncratic histogram fitting procedure was found to work well in our experi-
ments, it is worth noting that it precludes N3 from taking advantage of specific
prior domain knowledge when such is available. For instance, the skull stripping
required to make N3 work well in brain studies [11] typically involves registra-
tion of the images into a standard template space, which means that probabilistic
brain atlases are available at no additional cost. It is left as further work to eval-
uate whether this puts N3 at a potential disadvantage compared to EM-based
methods, which can easily take this form of extra information into account [3, 7].
Future validation studies should also include comparisons with the publicly avail-
able N4ITK implementation [14], which employs a more elaborate but heuristic
B-spline fitting procedure in the bias field computations.
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