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A B S T R A C T   

In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI 
scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and 
robustly analyze images with white matter lesions. This method is here extended with subject-specific latent 
variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle 
morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the 
proposed method on multiple datasets of control subjects and patients suffering from Alzheimer’s disease and 
multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and 
two benchmark longitudinal methods. The results indicate that the method attains a higher test–retest reliability, 
while being more sensitive to longitudinal disease effect differences between patient groups. An implementation 
is publicly available as part of the open-source neuroimaging package FreeSurfer.   

1. Introduction 

Longitudinal imaging studies, in which subjects are scanned 
repeatedly over time, have several advantages over cross-sectional 
studies. Accordingly, longitudinal neuroimaging studies have provided 
valuable insights into temporal changes in healthy brain development 
(Giedd et al., 1999; Evans et al., 2006; Group, 2012; Choe et al., 2013; 
Mills et al., 2021) and aging (Scahill et al., 2003; Tamnes et al., 2013), as 
well as from neurodegenerative diseases such as Alzheimer’s disease 
(AD) (Fox et al., 1996; Laakso et al., 1998; Du et al., 2001; Halliday, 
2017) or multiple sclerosis (MS) (Audoin et al., 2006; Fisher et al., 
2008). In most instances, a longitudinal study design increases statistical 
power compared to a cross-sectional design. Furthermore, only longi-
tudinal studies allow for a reliable evaluation of interventions such as 
treatment effects. Most importantly, only longitudinal measures allow 
for monitoring the individual patient. In neuroimaging, preprocessing 
tools are commonly designed for cross-sectional data so that their use in 

longitudinal data may not fully exploit the advantages of the longitu-
dinal study design with the risk of an overestimation of statistical power 
or the need of a higher number of subjects, respectively. 

Over the last few decades, many dedicated neuroimage analysis tools 
have been developed to handle longitudinal data. These methods aim to 
exploit the expected temporal consistency in longitudinal scans to obtain 
more sensitive measures of longitudinal changes than is possible by 
analyzing each time point separately. One class of algorithms is designed 
to detect changes between two consecutive time points without explic-
itly segmenting each scan. These methods work by subtracting the two 
images to highlight locations of change (Hajnal et al., 1995; Free-
borough and Fox, 1997; Lemieux et al., 1998; Battaglini et al., 2014), or, 
more generally, by tracking corresponding voxel locations over time 
using nonlinear registration, and analyzing the estimated spatial de-
formations (Thirion and Calmon, 1999; Rey et al., 2002; Avants et al., 
2007; Holland and Dale, 2011; Elliott et al., 2019). Another class of 
methods explicitly segments each time point in longitudinal scans, 
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enforcing temporal consistency either on the segmentations themselves 
(Metcalf et al., 1992; Solomon and Sood, 2004; Xue et al., 2005; Xue 
et al., 2006; Wolz et al., 2010; Dwyer et al., 2014; Wei et al., 2021) or on 
spatial probabilistic atlases that are used to compute them (Shi et al., 
2010; Shi et al., 2010; Prastawa et al., 2012; Aubert-Broche et al., 2013; 
Iglesias et al., 2016; Tustison et al., 2019). In order to make the various 
time points comparable on a voxel-based level, these methods typically 
involve a temporal registration step, computed either prior to (Wolz 
et al., 2010; Aubert-Broche et al., 2013; Gao et al., 2014; Iglesias et al., 
2016; Tustison et al., 2019; Schmidt et al., 2019; Wei et al., 2021) or 
simultaneously with (Xue et al., 2005; Xue et al., 2006; Shi et al., 2010; 
Shi et al., 2010; Li et al., 2010; Wang et al., 2011; Prastawa et al., 2012; 
Wang et al., 2013) the segmentations. 

To date, most methods for analyzing longitudinal scans are designed 
to compute only very specific outcome variables, such as change in 
overall brain size (Hajnal et al., 1995; Freeborough and Fox, 1997; 
Smith et al., 2001; Smith et al., 2002) or global white/gray matter 
volume (Xue et al., 2005; Xue et al., 2006; Shi et al., 2010; Shi et al., 
2010; Prastawa et al., 2012; Gao et al., 2014), cortical thickness 
(Nakamura et al., 2011; Wang et al., 2011; Wang et al., 2013; Tustison 
et al., 2019), white matter lesions (Gerig et al., 2000; Solomon and Sood, 
2004; Elliott et al., 2013; Schmidt et al., 2019; Birenbaum and Green-
span, 2016; McKinley et al., 2020; Sepahvand et al., 2020; Denner et al., 
2020) or individual brain structures such as the hippocampus (Wolz 
et al., 2010; Iglesias et al., 2016; Wei et al., 2021). To the best of our 
knowledge, the most comprehensive tool for longitudinal analysis of 
structural brain scans is currently the one distributed with FreeSurfer 
(Reuter et al., 2012; Fischl, 2012). This tool segments many neuroana-
tomical structures simultaneously (both volumetric “whole-brain” seg-
mentations and parcellations of the cortical surface), and can readily 
handle data with more than two time points. However, it is specifically 

designed for T1-weighted (T1w) scans only – as such it is less well suited 
for studying populations with white matter lesions and other pathol-
ogies that are better visualized using other MRI contrasts (such as T2w 
or FLAIR). Furthermore, a recent study suggests that, even in T1w im-
ages, it may be less sensitive to longitudinal changes than the method we 
describe here (Sederevičius et al., 2021). 

The contribution of this paper is twofold. First, we make publicly 
available a new method for automatically segmenting dozens of 
neuroanatomical structures from longitudinal scans, using a model- 
based approach that can take multi-contrast data as input and that can 
also segment white matter lesions simultaneously. The method is fully 
adaptive to different MRI contrasts and scanners, and does not put any 
constraints on the number or the timing of longitudinal follow-up scans. 

Second, we conduct an extensive validation of the proposed tool 
using over 4,500 brain scans acquired with different scanners, field 
strengths and acquisition protocols, involving both controls and patients 
suffering from MS and AD. We demonstrate experimentally that the 
method produces more reliable segmentations in scan-rescan settings 
than the longitudinal tool in FreeSurfer and than a cross-sectional 
version of the method, while also being more sensitive to differences 
in longitudinal changes between patient groups. 

An example of longitudinal segmentations of an MS patient produced 
by the proposed method is shown in Fig. 1. A preliminary version of this 
work, with a limited validation, appeared earlier as a workshop paper 
(Cerri et al., 2020). 

2. Existing cross-sectional method – SAMSEG 

We build upon a previously validated cross-sectional method for 
whole-brain segmentation called Sequence Adaptive Multimodal SEG-
mentation (SAMSEG) (Puonti et al., 2016). SAMSEG segments 41 

Fig. 1. Whole-brain and white matter lesion segmentations (labeled in red) produced by the proposed method from T1w and FLAIR longitudinal scans of an MS 
patient. T1w=T1-weighted, FLAIR=FLuid Attenuation Inversion Recovery, MS=Multiple Sclerosis. 
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anatomical structures from brain MRI, and it is fully adaptive to 
different MRI contrasts and scanners. We here briefly describe the 
method as we extend it for longitudinal scans in the remainder of the 
paper. 

Let D = (d1,…,dI) be the image intensities of a multi contrast scan 

with I voxels, where di = (d1
i ,…, dN

i )
T 

is the vector containing the log- 
transformed image intensities of voxel i for all the available N contrasts. 
Furthermore, let l = (l1,…, lI)T be the corresponding segmentation labels, 
where li ∈ {1,…,K} denotes one of the K possible anatomical structures 
assigned to voxel i. In order to compute segmentation labels l from image 
intensities D, we use a generative model illustrated in black in Fig. 2. It 
defines a forward model composed of two parts: a segmentation prior 
p(l|x), with parameters x, that encodes spatial information of the labels l, 
and a likelihood function p(D|l, θ), with parameters θ, that models the 
imaging process used to obtain the data D. This forward model can be 
“inverted” to obtain automated segmentations, as detailed below. 

2.1. Segmentation prior 

We use a segmentation prior based on a deformable probabilistic 
atlas encoded as a tetrahedral mesh (Van Leemput, 2009). The mesh has 
node positions x, governed by a deformation prior distribution defined 
as: 

p(x) ∝ exp

[

− K
∑M

m=1
Um
(
x, xref

)
]

, (1)  

where M is the number of tetrahedra in the mesh, K > 0 controls the 
stiffness of the mesh, and Um

(
x, xref

)
is a topology-preserving cost 

associated with deforming the mth tetrahedron from its shape in the 
atlas’s reference position xref (Ashburner et al., 2000). 

Given a deformed mesh with node positions x, the probability p(li =
k|x) of observing label k at voxel i is obtained using baricentric inter-
polation. Assuming conditional independence of the labels between 
voxels finally yields 

p(l|x) =
∏I

i=1
p(li|x).

2.2. Likelihood function 

We use a multivariate Gaussian intensity model for each of the K 
different structures, and model the bias field artifact as a linear 

combination of spatially smooth basis functions that is added to the local 
voxel intensities (Wells et al., 1996; Van Leemput et al., 1999). Letting θ 
be the collection of the bias field parameters and intensity means and 
variances, the likelihood function is defined as 

p(D|l, θ) =
∏I

i=1
p(di|li, θ),

p(di|li = k, θ) = N (di|μk +Cϕi,Σk),

C =

⎛

⎜
⎜
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where P denotes the number of bias field basis functions, ϕi
p is the basis 

function p evaluated at voxel i, and cn collects the bias field coefficients 
for MRI contrast n. Furthermore, μk and Σk denote the Gaussian mean 
and variance of structure k, respectively. A flat prior is used for the 
parameters of the likelihood, i.e., p(θ)∝1. 

2.3. Segmentation 

Given an MRI scan D, a corresponding segmentation is obtained by 
first fitting the model to the data: 

x̂, θ̂ = argmax
x,θ

p(x, θ|D). (2)  

The optimization problem in (2) is solved using a coordinate ascent 
scheme, in which x and then θ are iteratively updated, each in turn. Once 
the model parameter estimates {x̂, θ̂} are available, the corresponding 
maximum a posteriori (MAP) segmentation is obtained as 

l̂ = argmax
l

p(l|D, θ̂, x̂).

Since p(l|D, θ̂, x̂)∝p(D|l, θ̂)p(l|x̂) and therefore factorizes over i, the 
optimal segmentation label can be computed for each voxel 
independently: 

l̂ i = argmax
k

N (di|μ̂k + Ĉϕi, Σ̂k)p(li = k|x̂)
∑K

k’=1
N (di|μ̂k’ + Ĉϕi, Σ̂k’)p(li = k’|x̂)

. (3)  

Fig. 2. Graphical representation of the proposed longitudinal generative model. For each time point t, in black the cross-sectional model of (Puonti et al., 2016), in 
which image intensities Dt are generated from likelihood parameters θt and segmentation labels lt – which in turn have been generated from an atlas-based seg-
mentation prior with node positions xt . In blue, the proposed additional subject-specific latent variables that encourage temporal consistency between longitudinal 
scans in the segmentation prior (through x0) and in the likelihood function (through θ0). Also shown, in gray, is the cross-sectional lesion extension of (Cerri et al., 
2021). For each time point t, zt is a binary white matter lesion segmentation, ht are latent variables encoding lesion shape information, and θt,z are lesion intensity 
parameters constraining lesion appearance. Shading indicates observed variables, while the plate indicates T repetition of the included variables. 
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More details can be found in (Puonti et al., 2016). 

3. Longitudinal method – SAMSEG-Long 

We now describe how we extend SAMSEG for longitudinal scans. In 
the remainder of the paper, we call the proposed longitudinal method 
SAMSEG-Long. 

In a longitudinal scenario, we aim to compute automatic segmenta-
tions {lt}T

t=1 from T consecutive scans with image intensities {Dt}
T
t=1. In 

contrast to the cross-sectional setting where each image is treated 
independently, here we can exploit the fact that all images belong to the 
same subject to produce more consistent (and potentially more accurate) 
segmentations. Towards this end, we introduce subject-specific latent 
variables x0 and θ0 in the segmentation prior and likelihood function of 
SAMSEG, respectively. The purpose of these additional components in 
the model – illustrated in blue in Fig. 2 – is to impose a statistical de-
pendency between the time points, encouraging the segmentations to 
remain similar to one another. 

In the following, we describe how the new subject-specific latent 
variables are defined in the segmentation prior and likelihood function, 
and how we obtain the corresponding segmentations accordingly. We 
will use the notation xt and θt to indicate the parameters of the prior and 
likelihood function at time t, respectively. 

3.1. Segmentation prior 

In order to obtain temporal consistency in the segmentation prior, we 
use the concept of a “subject-specific atlas” (Iglesias et al., 2016): a 
deformation of the cross-sectional atlas to represent the average subject- 
specific anatomy across all time points. In particular, we use 

p
(
{xt}

T
t=1

⃒
⃒x0
)
=
∏T

t=1
p(xt|x0)

with 

p(xt|x0) ∝ exp

[

− K
∑M

m=1
Um(xt, x0)

]

,

where x0 are latent atlas node positions encoding subject-specific brain 
shape, with prior 

p(x0) ∝ exp

[

− K 0

∑M

m=1
Um
(
x0, xref

)
]

.

Here the mesh stiffness K 0 is a hyperparameter of the model, the value of 
which we determine empirically using cross-validation (cf. Section 4.1). 

Note that this formulation of the longitudinal segmentation prior is 
very flexible, as it does not impose specific temporal trajectories (e.g., 
monotonic growth) on the anatomy of the subject. Furthermore, by 
using a very large value for its hyperparameter K 0, x0 can be forced to 
remain close to xref , so that cross-sectional segmentation prior of (1) for 
each individual time point is retained as a special case. 

3.2. Likelihood function 

In a similar vein, we also introduce subject-specific latent variables 
to encourage temporal consistency in the Gaussian intensity models. For 
each anatomical structure k, we condition its Gaussian parameters 
{μt,k,Σt,k}

T
t=1 on latent variables {μ0,k,Σ0,k} using a normal-inverse- 

Wishart (NIW) distribution: 

p
(
{θt}

T
t=1

⃒
⃒θ0
)
=
∏T

t=1
p(θt|θ0)

with 

p(θt|θ0)∝
∏K

k=1
N

(
μt,k

⃒
⃒
⃒μ0,k,P− 1

0,kΣt,k

)
IW
(
Σt,k
⃒
⃒P0,kΣ0,k,P0,k − N − 2

)
,

where θ0 = {μ0,k,Σ0,k}
K
k=1 collects the latent variables of all structures, 

and is assumed to have a flat prior: p(θ0)∝1. The effect of this longitu-
dinal model is to encourage the means and variances of each structure to 
remain similar to some “prototype” μ0,k and Σ0,k, respectively, without 
having to specify a priori what values these prototypes should take. The 
strength of this effect is governed by a hyperparameter P0,k⩾0 for each 
structure, which we determine empirically using cross-validation (cf. 
Section 4.1). 

Note that no temporal regularization is added to the parameters of 
the bias field model, since the bias field will typically vary between MRI 
sessions. (Differences in global intensity scaling between time points are 
automatically included in the bias field model as well.) Furthermore, by 
choosing hyperparameters P0,k = 0 the temporal regularization of the 
Gaussian parameters can be switched off, in which case the proposed 
likelihood function devolves into that of the cross-sectional SAMSEG 
method for each time point separately (Section 2.2). 

3.3. Segmentation 

As in the cross-sectional case, segmentations are obtained by first 
fitting the model to the data: 

θ̂0, x̂0, {x̂t, θ̂t}
T
t=1= argmax

θ0 ,x0 ,{xt ,θt}T
t=1

p
(
θ0, x0, {xt, θt}

T
t=1

⃒
⃒{Dt}

T
t=1

)
. (4)  

We optimize (4) with a coordinate ascent scheme, where we iteratively 
update each variable one at the time. Because p(xt |x0) is of the same 
form as the cross-sectional segmentation prior, and the NIW distribution 
used in p(θt |θ0) is the conjugate prior for the mean and variance of a 
Gaussian distribution, estimating xt and θt from Dt for given values of x0 
and θ0 simply involves performing an optimization of the form of (2) for 
each time point t separately. Conversely, for given values {xt , θt}

T
t=1 the 

update for θ0 is given in closed form: 

μ0,k ←

(
∑T

t=1
Σ− 1

t,k

)− 1
∑T

t=1
Σ− 1

t,k μt,k,

Σ− 1
0,k ←

(
1
T

∑T

t=1
Σ− 1

t,k

)
P0,k

P0,k − N − 2
,

whereas updating x0 involves the optimization 

argmin
x0

∑M

m=1

[

K 0Um
(
x0, xref

)
+ K

∑T

t=1
Um(xt, x0)

]

,

which we solve numerically using a limited-memory BFGS algorithm. 
Once all parameters are estimated, we obtain segmentations as 

described in the cross-sectional setting, i.e., by using (3) for each time 
point separately. 

3.4. Extension for white matter lesion segmentation 

We have previously extended the cross-sectional SAMSEG method 
using an augmented model that allows it to robustly segment lesions in 
the white matter (Cerri et al., 2021). In this extended version, lesions are 
modeled with an extra Gaussian in the likelihood function, and with 
lesion-specific location and shape constraints in the segmentation prior. 
These additional lesion components are illustrated in gray in the 
graphical model of Fig. 2; we refer the reader to (Cerri et al., 2021) for an 
in-depth description. 

The SAMSEG version with lesion segmentation ability can easily be 
integrated into SAMSEG-Long, as illustrated in Fig. 2. Due to the highly 
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varying temporal behavior of white matter lesions, we do not explicitly 
constrain their shape and appearance over time, as this could potentially 
degrade the segmentation performance of the method. As a result, there 
are no direct dependencies between the lesion-specific components of 
the model and the latent variables x0 and θ0 (note the absence of direct 
arrows between the two sets of variables in Fig. 2). Computing longi-
tudinal whole-brain and white matter lesion segmentations can there-
fore follow the same procedure described before (cf. Section 3.3), with 
only a few modifications in how, for each time point t, the parameters xt 
and θt are estimated, and individual segmentations lt are computed 
(Cerri et al., 2021). 

4. Implementation 

In our current implementation, it is assumed that all time points have 
been registered and resampled to the same image grid prior to seg-
mentation. To avoid introducing spurious biases by not treating all time 
points in exactly the same way (e.g., by resampling follow-up scans to a 
baseline scan) (Reuter and Fischl, 2011), for this purpose we use an 

unbiased within-subject template created with an inverse consistent 
registration method (Reuter et al., 2012). This template is a robust 
representation of the average subject anatomy over time, and we use it 
as an unbiased reference to register all time points to, resulting in 
resampled images that then form the input to our segmentation algo-
rithm. In case of multi-contrast images, this procedure is performed for 
one specific contrast (T1w in the experiments used in this paper), and 
the remaining contrasts (FLAIR in the experiments) are subsequently 
registered and resampled to the first contrast for each time point 
individually. 

To initialize the proposed algorithm, we first apply the cross- 
sectional method to the unbiased template, and use the estimated 
model parameters x̂ and θ̂ to initialize the corresponding parameters xt 
and θt at each time point t. The model fitting procedure of (4), which 
interleaves updating the latent variables {x0, θ0} with updating the 
parameters {xt , θt}

T
t=1, is then run for five iterations, which we have 

found to be sufficient to reach convergence. 
An illustration of the entire longitudinal segmentation process is 

provided in Fig. 3. Our implementation builds upon the C++ and Python 

Fig. 3. Schematic illustration of the entire longitudi-
nal segmentation process. Although the method is 
more general, here only the case of single-contrast 
scans and T = 2 time points is shown to avoid clut-
tering. In Step 1, an unbiased subject-specific tem-
plate is created with an inverse consistent registration 
method (Reuter et al., 2012), and each input scan is 
subsequently registered to it (Section 4). The cross- 
sectional method (Section 2) is then applied to the 
template in Step 2, and the estimated parameters x̂ 
and θ̂ are used to initialize the corresponding pa-
rameters xt and θt at each time point t. In Step 3, 
model parameters are estimated in an iterative pro-
cess (Section 3.3); this involves alternating updates 
for subject-specific latent variables x0 and θ0, with 
updates for time point parameters {xt , θt}

T
t=1. Once 

model parameters estimates are available, in Step 4 
each time point is segmented accordingly (Eq. (3)).   
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code of (Puonti et al., 2016 and Cerri et al., 2021), and is publicly 
available from FreeSurfer1. Segmenting one subject with 1 mm3 

isotropic resolution and image size of 2563 takes approximately 10 min 
per time point for SAMSEG-Long, while 5 additional minutes per time 
point are needed when segmenting also white matter lesions (measured 
on an Intel 12-core i7-8700 K processor). 

4.1. Hyperparameter tuning 

SAMSEG-Long has hyperparameters K 0 and P0,k that control, 

respectively, the strength of the regularization in the segmentation prior 
and likelihood function. Good choices for the value of these hyper-
parameters will aim to minimize differences between scans acquired 
within a short interval of time, while simultaneously maximizing the 
ability to detect known atrophy trajectories in different patient groups. 

We therefore tuned these hyperparameters by applying a grid search 
using 80 test–retest scans and 80 longitudinal scans of both cognitively 
normal (CN) and AD subjects. In particular, using T1w images from the 
MIRIAD-TR-HT (CN = 10, AD = 30) and the ADNI-HT (CN = 37, AD =
53) datasets summarized in Table 1 and detailed in Appendix A, we 
searched from the following values of the hyperparameters: K 0 = {5K ,

10K ,14K , 15K ,20K } and P0,k = {0.25Nk,0.5Nk,0.75Nk,Nk,1.25Nk}, 
where Nk is the number of voxels assigned to class k in the cross- 

Table 1 
Summary of the experiments and datasets used in the paper. CN=Cognitive Normal, CV=Converted, AD=Alzheimer’s Disease, MS=Multiple Sclerosis, S-MS=Stable- 
MS, P-MS=Progressive-MS, # scans=total number of scans, tp=time points, avg-tp=average number of time points per subject, time-tp=average time in days between 
each time point, HT=Hyperparameter Tuning, TR=Test–Retest, IR-FSPGR=Inversion Recovery prepared - Fast SPoiled Gradient Recalled, MP-RAGE=Magnetization 
Prepared - RApid Gradient Echo, FLAIR=FLuid Attenuation Inversion Recovery. For more details about each individual dataset, see Appendix A.  

Experiment Dataset Subjects # scans avg-tp (min, max) time-tp (min, max) Scanner Sequence 

Hyperparameter tuning 
MIRIAD-TR-HT CN=10, AD=30 80 2 (2, 2) 0 (0, 0) GE Signa 1.5T IR-FSPGR 

ADNI-HT CN=37, AD=53 285 3.56 (2,5) 313 (107, 1121) Multiple 3T scanners MP-RAGE  
IR-FSPGR 

Test–retest reliability 

MIRIAD-TR CN=13, AD=16 146 2 (2, 2) 0 (0, 0) GE Signa 1.5T IR-FSPGR 
OASIS-TR CN=72, CV=14,  

AD=64 
1845 3.55 (3, 4) 0 (0, 0) Siemens Vision 1.5T MP-RAGE 

Munich-TR MS=2 34 5.67 (5, 6) 3 (2, 7) 
Philips Achieva 3T 
Siemens Verio 3T 

GE Signa MR750 3T 

IR-FSPGR  
MP-RAGE  

FLAIR 

Detecting disease effects 

ADNI CN=66, AD=64 477 3.70 (2, 5) 298 (65, 903) Multiple 1.5T and  
3T scanners 

IR-FSPGR  
MP-RAGE 

OASIS CN=72, AD=64 336 2.47 (2, 5) 702 (182, 1510) Siemens Vision 1.5T MP-RAGE 
Munich MS=200  

(S-MS=100, P-MS=100) 
1289 6.45 (2, 24) 353 (18, 3287) Philips Achieva 3T MP-RAGE 

FLAIR 

Longitudinal lesion  
segmentation 

ISBI MS=14 61 4.36 (4, 6) 391 (299, 503) Philips 3T MP-RAGE 
FLAIR  

Fig. 4. Hyperparameter tuning by grid search over 
the hyperparameters of the proposed method. Top 
left: ASPC values across subjects and structures for the 
80 test–retest T1w scans of the 40 subjects of the 
MIRIAD-TR-HT dataset (CN=10, AD=30). Top right 
and bottom row: Cohen’s effect sizes computed from 
APCs estimates of the 80 subjects of the ADNI-HT 
dataset (CN=37, AD=53) for Hippocampus (HP), 
Lateral Ventricles (LV) and Cerebral Cortex (CT). 
APSC=Absolute Symmetrized Percent Change, 
CN=Cognitive Normal, AD=Alzheimer’s Disease.   

1 https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg 

S. Cerri et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 38 (2023) 103354

7

sectional segmentation of the within-subject template. 
The results are summarized in Fig. 4, which shows ASPC values in the 

test–retest scenario, as well as Cohen’s d effect sizes of APC values be-
tween CN and AD patients for hippocampus, lateral ventricles and ce-
rebral cortex – three structures known to be strongly affected in AD 
(Lombardi et al., 2020). The ASPC and APC metrics are defined in detail 
in Section 5.2, but in short assess volumetric changes between test and 
retest scans (ASPC), and the yearly rate of volume changes in longitu-
dinal scans (APC), both expressed as a percentage. 

The proposed method yielded consistent performance overall, with 
only minor differences between the various hyperparameter value 
combinations: ASPC and Cohen’s d values varied within a 5.8% and 
3.7% range compared to the average performance, respectively. 
Nevertheless, for the purpose of having fixed values for these hyper-
parameters, we used the combination K 0 = 20K and P0,k = 0.5Nk,∀k 
for all the experiments described below. 

5. Experiments 

In order to evaluate the performance of SAMSEG-Long, we con-
ducted experiments on multiple datasets acquired with many different 
scanner platforms, field strengths, acquisition protocols, and image 
resolutions. These datasets contain images of cognitively normal sub-
jects as well as AD and MS patients, and differ both in the number and 
timing of their longitudinal follow up scans, as well as in the number of 
MRI contrasts that are acquired. A summary of the datasets can be found 
in Table 1, with more detailed information for each individual dataset in 
Appendix A. Taken together, we believe these datasets are an excellent 
source to demonstrate the robustness and generalizability of the pro-
posed longitudinal method, which does not need to be retrained or tuned 
on any of these datasets. 

As a first experiment, we evaluated the method’s test–retest reli-
ability. Since test–retest scans are acquired within a minimal interval of 
time (usually within the same scan session or within a couple of weeks), 
no biological variations in the various structures are expected, and we 
therefore evaluated the ability of the method to produce consistent 
segmentations in these settings. Although this property is essential in a 
longitudinal segmentation method, an algorithm that produces the same 
segmentation for each given time point would, by definition, also have 
perfect test–retest reliability. Additional experiments are therefore 
needed to evaluate the ability of the method to also detect real longi-
tudinal changes if they exist. Ideally, this would involve comparing the 
longitudinal segmentations computed by the proposed method with 
manually delineated longitudinal data. However, to the best of our 
knowledge, such ground truth data is not currently available. We 
therefore performed an indirect evaluation of the sensitivity of the 
method, by assessing its ability to detect known differences between the 
temporal trajectories in different patient groups (CN vs. AD, stable vs. 
progressive MS). 

For all our experiments, we report the performance of the “vanilla” 
SAMSEG-Long method as described in Section 3.3 – except for MS pa-
tients, for which we use the method with its white matter lesion seg-
mentation extension (Section 3.4). 

5.1. Benchmark methods 

In order to benchmark the longitudinal whole-brain segmentation 
performance of SAMSEG-Long, we compared it against that of SAMSEG 
(which is cross-sectional), and the longitudinal stream of FreeSurfer 7.2 
(Reuter et al., 2012), called Aseg-Long in the remainder of the paper. 
Aseg-Long is the only publicly available and extensively validated lon-
gitudinal method that segments the same neuroanatomical structures as 
our method, representing a natural benchmark for evaluating its whole- 
brain segmentation performance. However, other tools exist that have 
reported better performance for estimating longitudinal volume changes 
in specific structures, such as the hippocampus, lateral ventricles or gray 

matter (Nakamura et al., 2014; Guizard et al., 2015). Note that Aseg- 
Long is unable to process multi-contrast scans, hence no comparison 
was performed on such data. 

For evaluating the lesion segmentation component of SAMSEG-Long, 
we compared its performance against that of both SAMSEG and the 
longitudinal white matter lesion segmentation method of (Schmidt 
et al., 2019), called LST-Long in the remainder of the paper. LST-Long is 
one the few methods that have a publicly available implementation. It 
segments lesions from T1-weighted and FLAIR MRI scans with multiple 
time points, and does not require retraining when tested on unseen data. 
Unlike our method, however, it does not provide further segmentations 
of the various neuroanatomical structures beyond white matter lesions. 

5.2. Metrics and measures 

Although the proposed method segments more structures, we 
concentrated on the following 25 main neuroanatomical regions: left 
and right cerebral white matter (WM), cerebellum white matter (CWM), 
cerebellum cortex (CCT), cerebral cortex (CT), lateral ventricle (LV), 
hippocampus (HP), thalamus (TH), putamen (PU), pallidum (PA), 
caudate (CA), amygdala (AM), nucleus accumbens (AC) and brain stem 
(BS). To avoid cluttering, we merged the results between right and left 
structures. For experiments that include MS patients, white matter 
lesion (LES) results are also reported. 

For evaluating test–retest reliability, we computed the Absolute 
Symmetrized Percent Change (ASPC) for each structure, defined as 

ASPC =
100⋅|v2 − v1|

(v1 + v2)/2
,

where v1 and v2 represent the volume of the structure in scan 1 and scan 
2, respectively. To check for under- and over-segmentation trends, we 
also computed Symmetrized Percent Change (SPC), defined in the same 
way as ASPC but without the absolute value. 

For assessing a method’s ability to detect disease effects, we 
computed the Annualized Percentage Change (APC): We fitted a line to 
the subject’s volumetric measurements, plotted as a function of time 
from the baseline, and computed the APC as the ratio of its slope to its 
intercept (evaluated at the time of the first scan). A negative APC value 
thus corresponds to a yearly shrinkage, in percentage, of the structure of 
interest, while a positive APC value indicates a yearly growth. Effect 
sizes between APCs of two patient groups were then computed using 
Cohen’s d (Cohen, 2013). We also report the minimum number of sub-
jects needed to detect a statistically significant difference in atrophy 
rates between two patient groups, by first fitting a generalized linear 
model with APCs and corresponding patient groups. We then performed 
a power analysis using the computed model coefficients and noise 
variance, with 80% power and 0.05 significance level (Cohen, 2013). 

For evaluating sensitivity to lesion activity in MS patients, we 
additionally assessed the apparent speed of lesion volume growth and 
shrinkage between segmentations at consecutive time points. Specif-
ically, we computed annualized lesion volume increase (LES_I) and 
decrease (LES_D) as 

LES I =
1

T − 1
∑T− 1

t=1

Nzt,t+1

Δt,t+1  

and 

LES D =
1

T − 1
∑T − 1

t=1

Nzt+1,t

Δt,t+1
,

respectively. Here Nzt,t+1 counts the number of voxels that were labeled 
as lesion at time point t+1 but not at time point t, while Δt,t+1 is the time 
passed between scan t and scan t + 1. Intuitively, LES_I (LES_D) counts 
by how many voxels the total lesion volume has grown (shrunk) in a 
year, on average, ignoring potential lesion areas where there was 
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simultaneous shrinkage (growth). In MS, lesions as depicted by MRI not 
only appear and grow (Gaitán et al., 2011) but also shrink and disappear 
(Sethi et al., 2017; Battaglini et al., 2022), and these metrics have 
therefore been suggested as markers of disease activity (Pongratz et al., 
2019). 

To evaluate the lesion segmentation performance of the proposed 
method against ground truth delineations, we computed Dice co-
efficients as: 

DICEX,Y =
2|X ∩ Y|
|X| + |Y|

,

where X and Y denote segmentation masks, and |⋅| counts the number of 
voxels in a mask. 

6. Results 

Throughout this section, we will refer to specific datasets with their 
names as defined in Table 1. As a mnemonic, datasets used to evaluate 
test–retest reliability have an affix “-TR” in their names. Whenever box-
pots are used, the median is indicated by a horizontal line, plotted inside 
boxes that extend from the first to the third quartile values of the data. 
The range of the data is indicated by whiskers extending from the boxes, 
with outliers represented by “x” symbols. 

6.1. Test–retest reliability 

In order to evaluate if the proposed longitudinal method produces 
consistent segmentations over time, we assessed its performance on 
test–retest scans of three different datasets: 146 T1w test–retest scans of 
the 29 subjects of the MIRIAD-TR dataset (CN=13, AD=16), 1845 T1w 
test–retest scans of the 150 subjects of the OASIS-TR dataset (CN=72, 
Converted=14, AD=64) and 34 T1w and FLAIR test–retest scans of the 2 
MS patients of the Munich-TR dataset. We thus computed automated 
segmentations for SAMSEG-Long and the benchmark methods, and 
assessed test–retest reliability performance in terms of ASPC values. 
When more than two test–retest scans were available for a subject, APSC 
values were computed for each possible combination of test–retest scan 
pairs. The results are shown in Fig. 5. 

Since we observed similar results in the MIRIAD-TR and the OASIS- 
TR datasets, we here only report on their combined results. (We redirect 
the reader to Fig. B.1 for the results on the individual datasets.) On the 
combined MIRIAD-TR/OASIS-TR dataset, the median ASPC across all 
structures was best for SAMSEG-Long: 0.39, compared to 0.62 for 
SAMSEG and 1.12 for Aseg-Long. Similarly, on the Munich-TR dataset 
the median ASPC was 0.69 for SAMSEG-Long vs. 1.07 for SAMSEG 
(Aseg-Long cannot be run on this multi-contrasts dataset). The overall 
weaker performance on the Munich-TR scans can be explained by the 
fact that these were acquired within a 3-week interval, whereas the 
scans of the combined MIRIAD-TR/OASIS-TR dataset were acquired 

Fig. 5. ASPC values for the test–retest T1w scans of the combined MIRIAD-TR (# scans: 146, AD=13, CN=16) and OASIS-TR (# scans: 1845, AD=72, Converted=14, 
CN=64) datasets (top) and for the test–retest T1w-FLAIR scans of the Munich-TR (# scans: 34, MS=2) dataset (bottom). The yellow boxplot shows the result for LST- 
Long for white matter lesions. ASPC values were computed for different brain structures and white matter lesion (LES) for the proposed method and the benchmark 
methods. Within each boxplot, the median ASPC value is also reported. Statistically significant differences between two methods were computed with a Wilcoxon 
signed-rank test, and are indicated by asterisks (“**” indicates p-value < 0.01). ASPC=Absolute Symmetrized Percent Change, CN=Cognitive Normal, 
AD=Alzheimer’s Disease, T1w=T1-weighted, FLAIR=FLuid Attenuation Inversion Recovery, MS=Multiple Sclerosis, BS=brain stem, CWM=cerebellum white 
matter, WM=cerebral white matter, CCT=cerebellum cortex, CT=cerebral cortex, AM=amygdala, HP=hippocampus, AC=nucleus accumbens, CA=caudate, 
LV=lateral ventricle, PU=putamen, PA=pallidum, TH=thalamus, LES=white matter lesion. 
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within a single scan session without repositioning. Fig. 5 top shows a 
high number of outliers for the combined MIRIAD-TR/OASIS-TR data-
set, with large ASPC values especially for Aseg-Long. This is mostly due 
to the high number of test–retest scans (approximately 2,000) of this 
combined dataset. 

As for ASPC values of white matter lesions in the Munich-TR dataset 
(Fig. 5 bottom right), SAMSEG-Long outperformed SAMSEG (median 
ASPC: 4.5 vs. 3.2) even though the method does not explicitly regularize 
white matter lesions longitudinally (see Section 3.4). This may indicate 

that more consistent model parameter estimates were obtained for 
SAMSEG-Long compared to SAMSEG as a result of enforcing temporal 
consistency on all the other structures. We also observe almost perfect 
test–retest reliability performance for LST-Long (median ASPC: 0.0), 
thereby outperforming both SAMSEG-LONG and SAMSEG by a large 
margin in this regard (but see below). 

To check whether some of the methods are prone to under- or over- 
segmenting on test–retest scans, we also report the SPC values (i.e., 
without taking absolute values) on the same data. The results, shown in 

Fig. 6. APCs computed from the T1w scans of the 130 subjects of the ADNI dataset (CN=66, AD=64) and 136 subjects of the OASIS dataset (CN=72, AD=64) for 
SAMSEG, SAMSEG-Long, and Aseg-Long. Cohen’s d effect size (d) and effective number of subjects (Ne) computed from a power analysis (80% power, 0.05 sig-
nificance level) are reported above each pair of box plots. Within each boxplot, the median APC value is also indicated. APC=Annualized Percentage Change, 
CN=Cognitive Normal, AD=Alzheimer’s Disease, T1w=T1-weighted, BS=brain stem, CWM=cerebellum white matter, WM=cerebral white matter, CCT=cerebellum 
cortex, CT=cerebral cortex, AM=amygdala, HP=hippocampus, AC=nucleus accumbens, CA=caudate, LV=lateral ventricle, PU=putamen, 
PA=pallidum, TH=thalamus. 
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Fig. B.2, did not indicate any particular trend in under- or over- 
segmenting specific structures for any of the methods (median SPC 
values for all the methods are close to 0), with SAMSEG-Long having the 
smallest SPC variances, followed by SAMSEG and Aseg-Long. 

6.2. Detecting disease effects 

Since we found similar findings across the two datasets, Fig. 6 shows 

the results for both datasets combined to ease readability. (We redirect 
the reader to Fig. B.3 and Fig. B.4 for individual dataset results.) All the 
methods were able to capture well-known differences in the atrophy 
trajectories of the hippocampus, amygdala and lateral ventricles be-
tween CN and AD patients (Lombardi et al., 2020). Effect sizes in these 
three structures differed between methods, with SAMSEG-Long having 
higher values for Cohen’s d [0.79–1.10], followed by Aseg-Long 
[0.52–1.01] and SAMSEG [0.22–0.77]. The results of the power 

Fig. 7. APCs of several structures computed from the T1w and FLAIR scans of the 200 patients of the Munich dataset (100 stable MS, and 100 progressive MS) for 
SAMSEG and SAMSEG-Long. For each comparison, Cohen’s d effect size (d) and effective number of subjects (Ne) computed from a power analysis (80% power, 0.05 
significance level) are shown above the boxplots. Within each boxplot, the median APC value is also reported. APC=Annualized Percentage Change, T1w=T1- 
weighted, FLAIR=FLuid Attenuation Inversion Recovery, MS=Multiple Sclerosis, BS=brain stem, CWM=cerebellum white matter, WM=cerebral white matter, 
CCT=cerebellum cortex, CT=cerebral cortex, AM=amygdala, HP=hippocampus, AC=nucleus accumbens, CA=caudate, LV=lateral ventricle, PU=putamen, 
PA=pallidum, TH=thalamus. 

Fig. 8. Lesion volume increase (LES_I) and decrease (LES_D) computed from the T1w and FLAIR scans of the 200 patients of the Munich dataset (100 stable MS, and 
100 progressive MS) for SAMSEG-Long and LST-Long. For each comparison, Cohen’s d effect size is shown above the boxplots. Within each boxplot, the median value 
is also reported. T1w=T1-weighted, FLAIR=FLuid Attenuation Inversion Recovery, MS=Multiple Sclerosis. 
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analysis closely mimick these findings: SAMSEG-Long requires fewer 
subjects to detect the differences in APC [22–42] compared to Aseg-Long 
[26–54] and SAMSEG [44–497]. Interestingly, only SAMSEG-Long 
showed a strong effect size for cerebral cortex (Cohen’s d: 0.74), 
whose atrophy trajectories are known to differ between CN and AD 
patients (Edmonds et al., 2020), while both Aseg-Long and SAMSEG 
report lower effect sizes (Aseg-Long: 0.09, SAMSEG: 0.34). 

Fig. 7 shows the same experiment for the 100 stable vs. the 100 
progressive MS patients of the Munich dataset. Both SAMSEG-Long and 
SAMSEG yielded large differences in the atrophy trajectories of the 
cerebellum cortex, amygdala, hippocampus and thalamus, with 
SAMSEG-Long yielding nominally higher effect sizes and smaller sample 
sizes (higher power) compared to SAMSEG in these structures (Cohen’s 
d: [0.37–0.53 vs. 0.33–0.50], sample sizes: [88–184 vs. 101–226]). 

These results are in line with previous studies showing more marked 
atrophy trajectories in progressive MS patients than stable MS patients 
(Eshaghi et al., 2018; Cagol et al., 2022). We also report in Fig. 8 the 
yearly volume increase and decrease of lesions – as defined in Section 
5.2, i.e., ignoring simultaneous shrinkage and growth, respectively – in 
stable and progressive MS patients, both for SAMSEG-Long and LST- 
Long. (Note that we cannot report such results for SAMSEG, as its seg-
mentations are not longitudinally registered, therefore not allowing 
voxelwise lesion comparisons.) Similar to the findings in (Pongratz 
et al., 2019), where lesion volume increase and decrease were found to 
be comparable in size but larger in more active patients, both SAMSEG- 
Long and LST-Long detected more lesion changes (in both directions, i. 
e., lesion growth and shrinkage) in the progressive patients compared to 
the stable ones. Both methods yielded similar effect sizes between the 
two patient groups, but in absolute terms the lesion volume changes 
estimated by LST-Long were an order of magnitude smaller than the 
ones computed by SAMSEG-Long (0.07–0.25 ml/year vs. 1.4–1.7 ml/ 
year). Considering also the almost perfect test–retest performance of 
LST-Long in Section 6.1, it seems that the method may be over- 
regularizing over time. 

As a final experiment to compare the various methods’ ability to 
detect longitudinal disease effects, we assessed whether their APC values 
contain enough information to correctly classify individual subjects into 
their respective population groups. In contrast to previous experiments 
that focused on each structure independently, here we utilized all 
structures simultaneously: For each method, we trained and tested a 
linear discriminant analysis (LDA) classifier on APC values using a 5-fold 
cross-validation procedure. For each fold, 80% of the data was used for 
training and the remaining 20% for testing. Fig. 9 (left) shows receiver 
operating characteristic curves (ROC) obtained by training LDA classi-
fiers on APC values computed from the ADNI and OASIS dataset for CN 
and AD patients. The LDA classifier trained on APC values computed by 
SAMSEG-Long achieved the highest area under the curve (0.83), fol-
lowed by the classifiers trained on SAMSEG and Aseg-Long APC values 
(SAMSEG: 0.78, Aseg-Long: 0.70). Using the same cross-validation 
procedure, we also trained an LDA classifier on the APC values 
computed from the Munich dataset for stable and progressive MS pa-
tients, and reported ROC curves in Fig. 9 (right). In line with the pre-
vious experiment, the LDA classifier trained on SAMSEG-Long APC 
values obtained a higher area under the curve compared to the classifier 
trained on SAMSEG APC values (0.68 vs. 0.64). 

Fig. 9. ROC curves for an LDA classifier trained on APC values computed from the T1w scans of the ADNI (CN=66, AD=64) and OASIS (CN=72, AD=64) datasets 
(left) and from the T1w and FLAIR scans of the Munich dataset (MS stable=100, MS progressive=100) (right). LDA classifiers were trained and tested using a 5-fold 
cross-validation procedure. For each method, the area under the curve (AUC) is reported, the mean ROC curve is displayed as a solid line, and the shaded area 
represents ±1 standard deviation error from the mean ROC curve. ROC=receiver operating characteristic curves, LDA=linear discriminant analysis, 
APC=Annualized Percentage Change, CN=Cognitive Normal, AD=Alzheimer’s Disease, MS=Multiple Sclerosis, T1w=T1-weighted, FLAIR=FLuid Attenuation 
Inversion Recovery, MS=Multiple Sclerosis. 

Fig. 10. Longitudinal lesion segmentation performance in terms of Dice over-
laps with manual raters computed from T1w and FLAIR scans on the 14 MS 
subjects of the ISBI dataset for SAMSEG and SAMSEG-Long. Each automatic 
segmentation is compared against each of the two manual segmentations pro-
vided in the dataset. No statistically significant difference was detected between 
the two methods using a two-tailed paired t-test. T1w=T1-weighted, FLAIR=-
FLuid Attenuation Inversion Recovery, MS=Multiple Sclerosis. 
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6.3. Longitudinal lesion segmentation performance 

In order to directly compare automatic longitudinal lesion segmen-
tations against “ground truth” lesion annotations performed by human 
experts, we analyzed the 14 MS patients with longitudinal scans pro-
vided by the ISBI dataset. Since the heavy preprocessing applied to this 
data proved problematic for LST-Long, we were unable to get results 
with this method, and therefore only report performance for SAMSEG 
and SAMSEG-Long. 

The ISBI challenge website2 allows users to upload lesion segmen-
tation masks, and ranks submissions according to an overall lesion 
segmentation performance score that takes into account Dice overlap, 
volume correlation, surface distance, and a few other metrics against 
manual annotations that remain hidden (see (Carass et al., 2017) for 
details). A score of 100 indicates perfect correspondence, while 90 is 
meant to correspond to human inter-rater performance (Carass et al., 
2017; Styner et al., 2008). SAMSEG obtained a score of 88.31, while 
SAMSEG-Long similarly scored 88.61. The Dice coefficients between the 
manual and the corresponding automatic lesion segmentations – 
computed for each rater, subject and time point individually – are also 
provided by the website, and are summarized in Fig. 10. The median 
Dice score was around 0.58 for both SAMSEG and SAMSEG-Long, and no 
statistical significance was found between the two methods. 

When interpreting these results, it is worth pointing out that, 
although the ISBI data itself is longitudinal, the manual annotations are 
not: As detailed in (Carass et al., 2017), the human raters were presented 
with the scan of each time point independently, resulting in poor lon-
gitudinal consistency in their manual annotations. Furthermore, both 
SAMSEG and SAMSEG-Long were used “out of the box” without any 
form of additional tuning. This should be taken into account when 
comparing their numerical scores against those obtained by methods 
that were specifically optimized for the exact scanner and imaging 
protocol of the challenge (typically by training on the matched training 
data that is also provided by the challenge). 

7. Discussion and conclusion 

In this paper we have proposed and evaluated a new method for 
segmenting dozens of neuroanatomical structures from longitudinal 
MRI scans. Temporal regularization is achieved by introducing a set of 
subject-specific latent variables in an existing cross-sectional segmen-
tation method. An extension for segmenting white matter lesions is also 
available, allowing users to simultaneously track lesion evolution and 
morphological changes in various brain structures in e.g., patients 
suffering from MS. The proposed method does not make any assump-
tions on the scanner, the MRI protocol, or the number and timing of 
longitudinal follow-up scans, and is publicly available as part of the 
open-source neuroimaging package FreeSurfer. 

Our experiments indicate that the proposed method has better 
test–retest reliability compared to benchmark methods, and that it is 
more sensitive to disease-related changes in AD and MS. In other words, 
our new tool generated results that were both more sensitive and more 
specific – suggesting that its use may bring several advantages, such as 
the need for fewer subjects in longitudinal studies, a better stratification 
of patients, and more precise evaluation of treatment efficacy. 

The robustness and generalizability of the method across different 
scanner platforms, field strengths, acquisition protocols and image res-
olutions was demonstrated by its successful “out-of-the-box” application 
(i.e., without any form of retraining or retuning) on a diverse set of 
longitudinal datasets. These datasets included single- and multi-contrast 
longitudinal scans with a range of time gaps and total number of time 
points, from both healthy and diseased subjects, comprising over 4,500 
MRIs in total. The cross-sectional methods the proposed technique 

builds upon have themselves previously been validated, by comparing 
their segmentations against those of manual raters on images acquired 
with different scanners and imaging protocols (Puonti et al., 2016; Cerri 
et al., 2021). Although this provides evidence of the generalizability of 
the method, a direct evaluation of its actual longitudinal segmentation 
performance has been hampered by the lack of manual longitudinal 
annotations that could serve as “ground truth”. As is common in the 
longitudinal segmentation literature, we therefore resorted to an indirect 
validation and tested the ability of the method to detect disease-related 
temporal changes instead. This, however, has the limitation that higher 
sensitivity to group differences does not necessarily imply anatomically 
more correct segmentations. 

Although we believe the proposed tool will be helpful for researchers 
and clinicians investigating temporal-morphological changes in the 
brain, the method still has several limitations. First, the method 
currently only produces volumetric whole-brain segmentations, as 
opposed to the longitudinal tool of (Reuter et al., 2012) that additionally 
also computes detailed longitudinal parcellations of the cortical surface. 
Second, although our tool can segment white matter lesions from lon-
gitudinal scans acquired with conventional MRI sequences, the signal 
changes that it detects in such images are nonspecific, with several 
different processes all resulting in similar MRI intensity profiles (Sethi 
et al., 2017; Pongratz et al., 2019). Disentangling the various underlying 
pathological changes due to e.g., demyelination, remyelination, 
inflammation or edema may ultimately become feasible with more 
advanced MRI techniques (Pirko and Johnson, 2008; Oh et al., 2019), 
but will likely require further development of the image analysis tech-
niques described here. Third, the method does not currently exploit the 
time dimension explicitly to constrain (Metcalf et al., 1992; Welti et al., 
2001; Solomon and Sood, 2004) or analyze lesion evolution (Thirion and 
Calmon, 1999; Gerig et al., 2000; Rey et al., 2002; Bosc et al., 2003; 
Elliott et al., 2013) in detail. Dedicated methods for detecting new or 
growing lesions by comparing two consecutive time points, in particular, 
have received ongoing attention (Commowick et al., 2021; Diaz- 
Hurtado et al., 2022): Many methods rely on image subtraction tech-
niques (Sweeney et al., 2013; Battaglini et al., 2014; Ganiler et al., 2014; 
McKinley et al., 2020; Sepahvand et al., 2020; Krüger et al., 2020; 
Klistorner et al., 2021), while others use spatial deformation information 
(Elliott et al., 2019; Preziosa et al., 2022). Although this type of func-
tionality is not directly provided by the proposed tool, its ability to 
tightly standardize longitudinal images – both in terms of removing 
global intensity scaling differences and bias field artifacts, and in terms 
of establishing accurate longitudinal nonlinear registrations across the 
various time points – may be leveraged to further develop such methods. 
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Appendix A. Datasets details 

We use disparate datasets for validating the proposed longitudinal method against benchmark methods, as well as for tuning the hyperparameters 
of the model. We here describe them in detail:  

• MIRIAD-TR-HT (Malone et al., 2013): This dataset consists of test–retest scans of 10 healthy elderly people and 30 AD patients from the Minimal 
Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) project3. T1-weighted (T1w) scans with voxel size of 0.9375 × 0.9375 × 1.5 mm 
were acquired on a GE Signa 1.5T scanner using an Inversion Recovery prepared - Fast SPoiled Gradient Recalled (IR-FSPGR) sequence. For each 
subject, 2 test–retest images were acquired without removing the patient from the scanner, for a total of 80 scans.  

• ADNI-HT: This dataset consists of T1w longitudinal scans of 80 subjects from the ADNI project4. Different 3T scanners from multiple sites were 
used for scanning subjects. For each subject, T1w scans were acquired using an IR-FSPGR or MP-RAGE sequence at different image resolution 
([min–max]: [1.18–1.21] × [0.92–1.31] × [0.93–1.29] mm), with minor resolution variations between follow up scans (⩽0.01 mm in each axis). 
Subjects were scanned on average 3.56 times (minimum: 2 times; maximum: 5 times; 285 scans in total), with a mean interval between scans equal 
to 313 days (minimum: 107 days; maximum: 1121 days). The mean age at baseline was 75 years (minimum: 57; maximum: 90). Subjects were 
divided into two groups: cognitive normal (CN) (n=37) and AD (n=53).  

• MIRIAD-TR (Malone et al., 2013): This dataset consists of test–retest scans of 13 healthy elderly people and 16 AD patients from the MIRIAD 
project – distinct from the subjects of the MIRIAD-TR-HT dataset. For each subject, 2 test–retest images were acquired at 2 or 3 different times 
without removing the patient from the scanner, for a total of 146 scans.  

• ADNI: This dataset consists of T1w longitudinal scans of 130 subjects from the ADNI project – distinct from the subjects of the ADNI-HT dataset. 
Different scanners from multiple sites and multiple field strengths (1.5T and 3T) were used for scanning subjects. For each subject, T1w scans were 
acquired using an IR-FSPGR or MP-RAGE sequence at different image resolutions ([min–max]: [1.17–1.21] × [0.91–1.31] × [0.92–1.31] mm), 
with minor resolution variations between follow-up scans (⩽0.01 mm in each axis). Subjects were scanned on average 3.70 times (minimum: 2 
times; maximum: 5 times; 477 scans in total), with a mean interval between scans equal to 298 days (minimum: 65 days; maximum: 903 days). The 
mean age at baseline was 76 years (minimum: 57; maximum: 89). Subjects were divided into two groups: CN (n=66) and AD (n=64).  

• OASIS (Marcus et al., 2010): This dataset consists of T1w longitudinal scans of 136 subjects from the Open Access Series of Imaging Studies (OASIS- 
2) project5. T1w scans with voxel size of 1 × 1 × 1.25 mm were acquired on a 1.5T Siemens Vision scanner using a MP-RAGE sequence. Subjects 
were scanned on average 2.47 times (minimum: 2 times; maximum: 5 times; 336 scans in total), with a mean interval between scans equal to 702 
days (minimum: 182 days; maximum: 1510 days). The mean age at baseline was 75 years (minimum: 60; maximum: 96). Scans were acquired on a 
Siemens Vision 1.5T scanner. Subjects were divided into two groups: CN (n = 72) and AD (n = 64).  

• OASIS-TR (Marcus et al., 2010): This dataset consists of the same subjects of the OASIS dataset plus 14 additional subjects from the same project 
that were diagnosed as converted, for a total of 150 subjects. For each subject, 3 or 4 individual T1w MRI scans obtained in single scan sessions 
were acquired, for a total of 1845 scans.  

• Munich-TR (Biberacher et al., 2016): This dataset consists of longitudinal T1w and FLuid Attenuation Inversion Recovery (FLAIR) scans of 2 MS 
subjects. For each subject, 6 repeated scans were acquired from 3 different 3T scanners (Philips Achieva; Siemens Verio; GE Signa MR750) within 3 
weeks (mean interval between successive scans equal to 3 days (minimum: 2 days; maximum: 7 days). Voxel sizes for the T1w scans were 1 × 1 × 1 
mm for the GE scanner, 1 × 1 × 1 mm for the Philips scanner and 1.1 × 1.1 × 1 mm for the Siemens scanner. Voxel sizes for the FLAIR scans were 
1 × 1 × 1 mm for the GE scanner, 1 × 1 × 1.5 mm for the Philips scanner, and 1 × 1 × 1 mm for the Siemens scanner. T1w scans were acquired 
using a IR-FSPGR or MP-RAGE sequence. Two scans of “Subject-1” were excluded from the dataset due to scanning protocol violations (Biberacher 
et al., 2016), and they are not included in the experiments.  

• Munich: This dataset consists of longitudinal T1w (MP-RAGE sequence) and FLAIR scans of 200 MS subjects acquired on a Philips Achieva 3T 
scanner. Subjects were scanned on average 6.45 times (minimum: 2 times; maximum: 24 times; 1289 scans in total), with a mean interval between 

3 https://www.nitrc.org/projects/miriad/  
4 http://adni.loni.usc.edu/  
5 https://www.oasis-brains.org/ 
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scans equal to 353 days (minimum: 18 days; maximum: 3287 days) and at least 365 days between the first and last visit. Voxel sizes for the T1w 
scans were either 0.75 × 0.75 × 0.75 or, after a scanner change, 1 × 1 × 1 mm, while voxel sizes for the FLAIR scans were either 0.75 × 0.75 × 0.75 
or 0.9 × 0.9 × 1.5 mm, respectively. Because some of the T1w scans have image resolutions that differ between time points of the same subject, we 
resampled all the T1w scans of this dataset to 1 mm isotropic resolution before using them in the experiments. The mean age at baseline was 40 
years (minimum: 18; maximum: 74). At each subject’s visit, an Expanded Disability Status Scale (EDSS) score was assessed (mean: 2.46; minimum: 
0; maximum: 8.5). Subjects were divided into two groups: stable (n=100) and progressive (n=100) according to the following three strata criteria 
(Lorscheider et al., 2016): Patients were classified as progressive if (1) the baseline EDSS score is 0 and there is an increase of 1.5 points from the 
baseline EDSS score to the last time point EDSS score; (2) the baseline EDSS score is between 1 and 5.5 and there is an increase of 1 point from the 
baseline EDSS sscore to the last time point EDSS score; (3) the baseline EDSS score is above 5.5 and there is an increase of 0.5 points from the 
baseline EDSS score to the last time point EDSS score. Patients were classified as stable otherwise.  

• ISBI: This dataset is the publicly available test set of the MS lesion segmentation challenge that was held at the 2015 International Symposium on 
Biomedical Imaging Carass et al. (2017). It consists of 14 longitudinal MS cases, scanned on average 4.36 times (minimum: 4 times, maximum: 6 
times), separated by approximately one year (mean: 391 days, minimum: 299 days, maximum: 503 days). All images were acquired on the same 
Philips 3T scanner, using a 3D T1w, T2w, PDw and FLAIR sequence. Voxel sizes were 0.82 × 0.82 × 1.17 mm for the T1w scans, and 0.82 × 0.82 ×

2.22 mm for T2w, PDw, and FLAIR. Images were first preprocessed (inhomogeneity correction, skull stripping, dura stripping, and again in-
homogeneity correction – see (Carass et al., 2017) for details). Each T1w baseline image was then registered to a 1 mm MNI template and used as 
target image for registering successive time point images. Each subject’s lesions were delineated by two different raters on the FLAIR scan, and, if 
necessary, corrected using the other contrasts. Note that the raters were presented with each scan independently, without aiming for longitudinal 
consistency in their segmentations. In our experiments we used the input combination T1w-FLAIR, which we have found to lead to good lesion 
segmentation performance in a previous study Cerri et al. (2021). 

Appendix B. Additional results  

Fig. B.1. ASPCs for the test–retest T1w scans of the MIRIAD-TR (# scans: 146, AD=13, CN=16) and OASIS-TR (# scans: 1845, AD=72, Converted=14, CN=64) 
datasets for different brain structures for SAMSEG, SAMSEG-Long and Aseg-Long. Within each boxplot, the median ASPC value is also reported. Statistically sig-
nificant differences between two methods, were computed with a Wilcoxon signed-rank test, and indicated by asterisks (“**” for p-value < 0.01 and “*” for p-value <
0.05). ASPC=Absolute Symmetrized Percent Change, T1w=T1-weighted, CN=Cognitive Normal, AD=Alzheimer’s Disease, BS=brain stem, CWM=cerebellum white 
matter, WM=cerebral white matter, CCT=cerebellum cortex, CT=cerebral cortex, AM=amygdala, HP=hippocampus, AC=nucleus accumbens, CA=caudate, 
LV=lateral ventricle, PU=putamen, PA=pallidum, TH=thalamus. 
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Fig. B.2. SPC values for the test–retest T1w scans of the combined MIRIAD-TR (# scans: 146, AD=13, CN=16) and OASIS-TR (# scans: 1845, AD=72, Con-
verted=14, CN=64) datasets (top) and for the test–retest T1w-FLAIR scans of the Munich-TR (# scans: 34, MS=2) dataset (bottom). SPCs values were computed for 
different brain structures and white matter lesion (LES) for the proposed method and the benchmark methods. Within each boxplot, the median SPC value is also 
reported. Statistically significant differences between two methods were computed with a Wilcoxon signed-rank test, and are indicated by asterisks (“**” for p-value 
< 0.01, and “*” for p-value < 0.05). SPC=Symmetrized Percent Change, T1w=T1-weighted, FLAIR=FLuid Attenuation Inversion Recovery, AD=Alzheimer’s Disease, 
CN=Cognitive Normal, MS=Multiple Sclerosis, BS=brain stem, CWM=cerebellum white matter, WM=cerebral white matter, CCT=cerebellum cortex, CT=cerebral 
cortex, AM=amygdala, HP=hippocampus, AC=nucleus accumbens, CA=caudate, LV=lateral ventricle, PU=putamen, PA=pallidum, TH=thalamus, LES=white 
matter lesion. 
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Fig. B.3. APCs computed from the T1W scans of the 130 subjects of the ADNI dataset (CN=66, AD=64) for SAMSEG, SAMSEG-Long, and Aseg-Long. Cohen’s d effect 
size (d) and effective number of subjects (Ne) computed from a power analysis (80% power, 0.05 significance level) are reported above each pair of box plots. Within 
each boxplot, the median APC value is also reported. APC=Annualized Percentage Change, CN=Cognitive Normal, AD=Alzheimer’s Disease, T1w=T1-weighted, 
BS=brain stem, CWM=cerebellum white matter, WM=cerebral white matter, CCT=cerebellum cortex, CT=cerebral cortex, AM=amygdala, HP=hippocampus, 
AC=nucleus accumbens, CA=caudate, LV=lateral ventricle, PU=putamen, PA=pallidum, TH=thalamus. 
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Fig. B.4. APCs computed from the T1W scans of the 136 subjects of the OASIS dataset (CN=72, AD=64) for SAMSEG, SAMSEG-Long, and Aseg-Long. Cohen’s 
d effect size (d) and effective number of subjects (Ne) computed from a power analysis (80% power, 0.05 significance level) are reported above each pair of box plots. 
Within each boxplot, the median APC value is also reported. APC=Annualized Percentage Change, CN=Cognitive Normal, AD=Alzheimer’s Disease, T1w=T1- 
weighted, BS=brain stem, CWM=cerebellum white matter, WM=cerebral white matter, CCT=cerebellum cortex, CT=cerebral cortex, AM=amygdala, HP=hippo-
campus, AC=nucleus accumbens, CA=caudate, LV=lateral ventricle, PU=putamen, PA=pallidum, TH=thalamus. 
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the discrimination power of the time domain for segmentation and characterization 
of active lesions in serial MR data. Med. Image Anal. 4 (1), 31–42. 

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., 
Paus, T., Evans, A.C., Rapoport, J.L., 1999. Brain development during childhood and 
adolescence: a longitudinal MRI study. Nat. Neurosci. 2 (10), 861–863. 

Group, B.D.C. (2012), Total and regional brain volumes in a population-based normative 
sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development, 
Cerebral Cortex 22(1), 1–12. 

Guizard, N., Fonov, V.S., García-Lorenzo, D., Nakamura, K., Aubert-Broche, B., 
Collins, D.L., 2015. Spatio-Temporal regularization for longitudinal registration to 
subject-specific 3D template. PloS one 10 (8), e0133352. 

Hajnal, J.V., Saeed, N., Oatridge, A., Williams, E.J., Young, I.R., Bydder, G.M., 1995. 
Detection of subtle brain changes using subvoxel registration and subtraction of 
serial MR images. J. Comput. Assisted Tomogr. 19 (5), 677–691. 

Halliday, G., 2017. Pathology and hippocampal atrophy in Alzheimer’s disease. Lancet 
Neurol. 16 (11), 862–864. 

Holland, D., Dale, A.M., 2011. Nonlinear registration of longitudinal images and 
measurement of change in regions of interest. Med. Image Anal. 15 (4), 489–497. 

Iglesias, J.E., Van Leemput, K., Augustinack, J., Insausti, R., Fischl, B., Reuter, M., 2016. 
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI 
using subject-specific atlases. NeuroImage 141, 542–555. 

Klistorner, S., Barnett, M.H., Yiannikas, C., Barton, J., Parratt, J., You, Y., Graham, S.L., 
Klistorner, A., 2021. Expansion of chronic lesions is linked to disease progression in 
relapsing–remitting multiple sclerosis patients. Multiple Sclerosis J. 27 (10), 
1533–1542. 

Krüger, J., Opfer, R., Gessert, N., Ostwaldt, A.-C., Manogaran, P., Kitzler, H.H., 
Schlaefer, A., Schippling, S., 2020. Fully automated longitudinal segmentation of 
new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. 
NeuroImage: Clinical 28, 102445. 

Laakso, M.P., Soininen, H., Partanen, K., Lehtovirta, M., Hallikainen, M., Hänninen, T., 
Helkala, E.-L., Vainio, P., Riekkinen, P.J., 1998. MRI of the Hippocampus in 
Alzheimer’s Disease: Sensitivity, Specificity, and Analysis of the Incorrectly 
Classified Subjects. Neurobiol. Aging 19 (1), 23–31. 

Lemieux, L., Wieshmann, U.C., Moran, N.F., Fish, D.R., Shorvon, S.D., 1998. The 
detection and significance of subtle changes in mixed-signal brain lesions by serial 
mri scan matching and spatial normalization. Medical Image Anal. 2 (3), 227–242. 

Li, Y., Wang, Y., Xue, Z., Shi, F., Lin, W., Shen, D., Initiative, A.D.N., et al., 2010. 
Consistent 4D cortical thickness measurement for longitudinal neuroimaging study. 
International Conference on Medical Image Computing and Computer-Assisted 
Intervention 133–142. 

Lombardi, G., Crescioli, G., Cavedo, E., Lucenteforte, E., Casazza, G., Bellatorre, A.-G., 
Lista, C., Costantino, G., Frisoni, G., Virgili, G., et al., 2020. Structural magnetic 
resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in 
people with mild cognitive impairment. Cochrane Database of Systematic Reviews 3 
(3). 

Lorscheider, J., Buzzard, K., Jokubaitis, V., Spelman, T., Havrdova, E., Horakova, D., 
Trojano, M., Izquierdo, G., Girard, M., Duquette, P., Prat, A., Lugaresi, A., 
Grand’Maison, F., Grammond, P., Hupperts, R., Alroughani, R., Sola, P., Boz, C., 
Pucci, E., Lechner-Scott, J., Bergamaschi, R., Oreja-Guevara, C., Iuliano, G., Van 
Pesch, V., Granella, F., Ramo-Tello, C., Spitaleri, D., Petersen, T., Slee, M., Verheul, 
F., Ampapa, R., Amato, M.P., McCombe, P., Vucic, S., Sánchez Menoyo, J.L., 
Cristiano, E., Barnett, M.H., Hodgkinson, S., Olascoaga, J., Saladino, M.L., Gray, O., 
Shaw, C., Moore, F., Butzkueven, H., Kalincik, T. and on behalf of the MSBase Study 
Group (2016), Defining secondary progressive multiple sclerosis, Brain 139(9), 
2395–2405. 

Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., Schott, J. 
M., 2013. MIRIAD–Public release of a multiple time point Alzheimer’s MR imaging 
dataset. NeuroImage 70, 33–36. 

Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L., 2010. Open 
Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and 
Demented Older Adults’. J. Cognit. Neurosci. 22 (12), 2677–2684. 

McKinley, R., Wepfer, R., Grunder, L., Aschwanden, F., Fischer, T., Friedli, C., Muri, R., 
Rummel, C., Verma, R., Weisstanner, C., Wiestler, B., Berger, C., Eichinger, P., 

S. Cerri et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2213-1582(23)00043-8/h0005
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0005
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0010
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0010
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0010
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0010
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0015
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0015
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0020
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0020
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0020
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0020
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0025
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0025
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0025
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0030
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0030
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0030
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0030
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0030
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0035
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0035
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0035
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0035
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0040
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0040
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0040
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0040
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0045
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0045
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0045
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0050
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0050
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0050
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0050
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0055
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0055
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0055
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0055
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0060
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0060
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0060
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0060
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0065
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0065
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0065
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0070
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0070
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0070
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0070
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0075
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0085
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0085
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0085
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0095
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0095
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0095
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0095
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0095
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0100
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0100
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0100
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0105
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0105
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0105
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0105
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0110
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0110
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0110
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0115
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0115
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0115
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0115
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0120
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0120
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0120
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0130
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0135
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0135
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0135
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0140
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0140
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0140
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0145
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0145
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0145
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0150
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0150
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0150
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0155
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0155
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0155
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0155
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0165
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0165
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0165
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0170
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0170
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0170
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0180
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0180
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0180
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0185
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0185
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0185
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0190
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0190
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0195
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0195
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0200
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0200
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0200
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0205
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0205
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0205
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0205
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0210
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0210
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0210
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0210
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0215
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0215
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0215
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0215
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0220
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0220
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0220
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0225
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0225
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0225
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0225
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0230
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0230
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0230
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0230
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0230
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0240
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0240
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0240
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0245
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0245
http://refhub.elsevier.com/S2213-1582(23)00043-8/h0245


NeuroImage: Clinical 38 (2023) 103354

19

Muhlau, M., Reyes, M., Salmen, A., Chan, A., Wiest, R. and Wagner, F. (2020), 
Automatic detection of lesion load change in Multiple Sclerosis using convolutional 
neural networks with segmentation confidence, NeuroImage: Clinical 25. 

Metcalf, D., Kikinis, R., Guttmann, C., Vaina, L. and Jolesz, F. (1992), 4d connected 
component labelling applied to quantitative analysis of ms lesion temporal 
development, in 1992 14th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society, Vol. 3, pp. 945–946. 

Mills, K.L., Siegmund, K.D., Tamnes, C.K., Ferschmann, L., Wierenga, L.M., Bos, M.G., 
Luna, B., Li, C., Herting, M.M., 2021. Inter-individual variability in structural brain 
development from late childhood to young adulthood. Neuroimage 242, 118450. 

Nakamura, K., Fox, R., Fisher, E., 2011. CLADA: cortical longitudinal atrophy detection 
algorithm. Neuroimage 54 (1), 278–289. 

Nakamura, K., Guizard, N., Fonov, V.S., Narayanan, S., Collins, D.L., Arnold, D.L., 2014. 
Jacobian integration method increases the statistical power to measure gray matter 
atrophy in multiple sclerosis. NeuroImage: Clinical 4, 10–17. 

Oh, J., Ontaneda, D., Azevedo, C., Klawiter, E.C., Absinta, M., Arnold, D.L., Bakshi, R., 
Calabresi, P.A., Crainiceanu, C., Dewey, B., et al., 2019. Imaging outcome measures 
of neuroprotection and repair in MS: a consensus statement from NAIMS. Neurology 
92 (11), 519–533. 

Pirko, I. and Johnson, A. (2008), Neuroimaging of demyelination and remyelination 
models, Advances in multiple Sclerosis and Experimental Demyelinating Diseases pp. 
241–266. 

Pongratz, V., Schmidt, P., Bussas, M., Grahl, S., Gaser, C., Berthele, A., Hoshi, M.M., 
Kirschke, J., Zimmer, C., Hemmer, B., Mühlau, M., 2019. Prognostic value of white 
matter lesion shrinking in early multiple sclerosis: An intuitive or naïve notion? 
Brain Behav. 9 (12). 

Prastawa, M., Awate, S.P., Gerig, G., 2012. Building spatiotemporal anatomical models 
using joint 4-D segmentation, registration, and subject-specific atlas estimation. 
2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, IEEE 
49–56. 

Preziosa, P., Pagani, E., Meani, A., Moiola, L., Rodegher, M., Filippi, M., Rocca, M.A., 
2022. Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis Disease 
Progression. Neurol.-Neuroimmunol. Neuroinflamm. 9 (2). 

Puonti, O., Iglesias, J.E., Van Leemput, K., 2016. Fast and sequence-adaptive whole-brain 
segmentation using parametric Bayesian modeling. NeuroImage 143, 235–249. 

Reuter, M., Fischl, B., 2011. Avoiding asymmetry-induced bias in longitudinal image 
processing. NeuroImage 57 (1), 19–21. 

Reuter, M., Schmansky, N.J., Rosas, D.H., Fischl, B., 2012. Within-subject template 
estimation for unbiased longitudinal image analysis. NeuroImage 61 (4), 
1402–1418. 

Rey, D., Subsol, G., Delingette, H., Ayache, N., 2002. Automatic detection and 
segmentation of evolving processes in 3D medical images: Application to multiple 
sclerosis. Med. Image Anal. 6 (2), 163–179. 

Scahill, R.I., Frost, C., Jenkins, R., Whitwell, J.L., Rossor, M.N., Fox, N.C., 2003. 
A longitudinal study of brain volume changes in normal aging using serial registered 
magnetic resonance imaging. Arch. Neurol. 60 (7), 989–994. 

Schmidt, P., Pongratz, V., Küster, P., Meier, D., Wuerfel, J., Lukas, C., Bellenberg, B., 
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