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Abstract. In this paper we propose a probabilistic model for multi-
modal non-linear registration that directly incorporates the mutual infor-
mation (MI) metric into a demons-like optimization scheme. In contrast
to uni-modal registration, where the demons algorithm uses repeated
spatial filtering to obtain very fast solutions, MI-based registration cur-
rently relies on general-purpose optimization schemes that are much
slower. The central idea of this work is to reformulate an often-used his-
togram interpolation technique in MI implementations as an explicit spa-
tial interpolation step within a generative model. By exploiting the spe-
cific structure of this model, we obtain a dedicated and fast expectation-
maximization optimizer with demons-like properties. This also leads to
an easy-to-implement Gibbs sampler to infer registration uncertainty
in high-dimensional deformation models, involving very little additional
code and no external tuning. Preliminary experiments on multi-modal
brain MRI images show that the proposed optimizer can be both faster
and more accurate than the free-form deformation method implemented
in Elastix. We also demonstrate the sampler’s ability to produce direct
uncertainty estimates of MI-based registrations – to the best of our
knowledge the first method in the literature to do so.

1 Introduction

An accurate and efficient way of non-linearly aligning two images with similar
contrast properties is to minimize the sum-of-squared-differences (SSD) between
them. The properties of the SSD criterion can be exploited to yield a dedicated
optimization algorithm, the so-called demons algorithm [1,2], which repeatedly
computes deformation “votes” at each voxel location, and spatially filters these
votes to yield a spatially consistent deformation field. This results in fast opti-
mizations of highly flexible, nonparametric deformation fields, taking only a few
minutes on a standard desktop computer. Furthermore, the SSD criterion can
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be cast within a probabilistic modeling framework, making it possible to quan-
tify registration uncertainty by approximating the relevant posterior probability
distributions, using either variational [3–6] or sampling [7–10] methods.

In contrast to these methodological advances in deformable uni-modal reg-
istration, the de facto standard in the field of multi-modal registration using
mutual information (MI) remains the free-form deformation approach [11],
in which a parametric deformation model of B-spline basis functions is opti-
mized with general-purpose optimization algorithms (e.g., [12,13]). This app-
roach yields accurate registration results, but at a considerable computational
cost when deformations with many degrees of freedom are needed (small spacing
between the B-spline knots). Although attempts have been made to adapt faster,
demons-like optimization schemes to the MI criterion [14–16], these methods
have merely replaced the SSD-based demons “votes” with spatial MI gradients,
a heuristic that does not necessarily optimize any specific objective function.
Unlike the SSD criterion, MI does not currently have an associated probabilistic
model [17], and consequently no principled way to quantify registration uncer-
tainty.

In order to bring the SSD-specific techniques for uncertainty estimation and
fast, nonparametric registration into the realm of MI-based registration, the con-
tribution of this paper is threefold. First, we show that the partial volume inter-
polation technique for computing MI using fractional histogram counts [18,19]
can be re-cast as a generative probabilistic model with an explicit spatial inter-
polation model. Second, we derive a tailor-made optimization algorithm that
makes judicious use of latent variables in this model to obtain local “votes” of
voxel-wise deformations that are subsequently regularized, allowing for a simi-
lar efficient optimization of nonparametric deformation models as in the demons
algorithm. And third, using largely the same code base as the proposed optimizer,
we also derive a practical technique for Monte Carlo sampling from the registra-
tion posterior, allowing for direct visualization and quantification of uncertainty
in MI-based models. In contrast to existing methods for uncertainty estima-
tion in uni-modal registration [3–10], this sampler does not involve variational
approximations that may significantly underestimate uncertainty [9]; does not
require tuning of various Metropolis-Hastings proposal distribution parameters;
and can readily handle full 3D nonparametric deformation models with orders-
of-magnitude more degrees of freedom than the sparse models used so far.

2 Generative Model

Let u = (u1, . . . , uI)T denote an image with I voxels, where the intensities
ui ∈ {1, . . . , L} can take L discrete values. We model u as being generated from
another image v = (v1, . . . , vJ )T with J voxels that we will refer to as “nodes”,
with intensities vj ∈ {1, . . . , K} taken from K discrete levels, which we will call
“classes”. This is achieved by associating with each voxel i a spatial deformation
di that maps that voxel to a spatial location xi + di in v, where xi denotes the
voxel’s initial position in v. We also associate with each class k a class-specific
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intensity distribution parameterized by θk = (θk,1, . . . , θk,L)T, where θk,l denotes
the probability that the kth class generates an intensity with value l. In the
remainder, we assume periodic boundary conditions, and we only present the
case in 1D, although the extension to higher dimensions is straightforward.

Using the notation d = (d1, . . . , dI)T and θ = {θk}K
k=1 for the deforma-

tion field and the collection of all intensity distribution parameters, respectively,
the generative process of u proceeds as follows: Let n = (n1, . . . , nI)T, ni ∈
{1, . . . , J} denote latent node assignments, whereby each voxel i is associated
with one node by centering a bth order B-spline βb (·) around its deformed posi-
tion xi +di, and using the B-spline value at each node location as the probability
of that node being selected:

p(n|d) =
I∏

i=1

p(ni|d), p(ni = j|d) = βb (yj − (xi + di)) ,

where yj denotes the spatial location of the jth node. Subsequently, an intensity
is drawn in each voxel from the distribution associated with the class of the
selected node:

p(u|n,θ) =
I∏

i=1

p(ui|ni,θ), p(ui|ni = j,θ) = θvj ,ui
.

This induces a marginal distribution

p(u|d,θ) =
∑

n

p(u|n,θ)p(n|d) =
I∏

i=1

(
K∑

k=1

πk(xi + di)θk,ui

)

where πk(z) =
∑J

j=1[vj = k]βb(z − yj) is a spatial map of the probability of
class k, obtained as a B-spline expansion of the class assignments in the nodes
of v. Thus, the model effectively generates u by drawing, in each voxel i, a class
from these probabilistic maps at location xi + di, and subsequently generating
an intensity from the selected class-specific intensity distribution.

The model is completed by specifying a prior encouraging spatial smoothness
in the deformation field p(d) ∝ exp

(−γ
2 ‖Γd‖2), where Γ is a I × I circulant

matrix implementing a high-pass filter, and a prior p(θ) =
∏K

k=1 Dir (θk|α0),
where Dir (·|α0) denotes the Dirichlet distribution with parameters α0. (A flat
prior p(θ) ∝ 1 is obtained by choosing α0 = 1.)

3 Optimization

Registration of u with v can be obtained by fitting the model to the data:
(d̂, θ̂) = arg max(d,θ) p(d,θ|u) where p(d,θ|u) ∝ p(u|d,θ)p(d)p(θ). For this
purpose, we propose an expectation-maximization (EM) algorithm that exploits
the latent node assignments n in the model to achieve an efficient optimiza-
tion strategy. In particular, we iteratively increase log p(d,θ|u) from the cur-
rent parameter estimates (d̃, θ̃) by considering a lower bound Q(d,θ|d̃, θ̃) ≤
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log p(d,θ|u) that touches the objective function at the current estimates, i.e.,
Q(d̃, θ̃|d̃, θ̃) = log p(d̃, θ̃|u), and subsequently optimizing this lower bound to
find new parameter estimates:

(d̃, θ̃) ← arg max
(d,θ)

Q(d,θ|d̃, θ̃). (1)

By design, this scheme guarantees that log p(d,θ|u) is increased with every new
iteration. The lower bound is constructed using Jensen’s inequality, effectively
“filling in” the unknown node assignments with their expectations:

Q(d, θ|d̃, θ̃) ≡
I∑

i=1

J∑

j=1

wi,j(d̃, θ̃) log

[
p(ui|ni = j, θ)p(ni = j|d)

wi,j(d̃, θ̃)

]
+ log

[
p(θ)p(d)

p(u)

]

≤
I∑

i=1

log

[
J∑

j=1

p(ui|ni = j, θ)p(ni = j|d)

wi,j(d̃, θ̃)
wi,j(d̃, θ̃)

]

︸ ︷︷ ︸
p(ui|d,θ )

+ log

[
p(θ)p(d)

p(u)

]

= log p(d, θ|u),

where

wi,j(d,θ) = p(ni = j|ui,d,θ) =
θvj ,ui

βb (yj − (xi + di))
∑J

j′=1 θvj′ ,ui
βb (yj′ − (xi + di))

(2)

weighs the association of each voxel i with each of the j nodes, so that∑J
j=1 wi,j = 1,∀i. Note that most wi,j = 0, due to the limited spatial support

of B-splines.
Finding new parameter estimates by solving Eq. (1) readily yields the fol-

lowing closed-form update for θ:

θ̃k,l ← Nk,l + (αl
0 − 1)

∑L
l′=1

(
Nk,l′ + (αl′

0 − 1)
) ∀k, l, (3)

where

Nk,l =
I∑

i=1

J∑

j=1

[ui = l][vj = k]wi,j (4)

can be interpreted as the effective number of voxels with intensity l that were
assigned to nodes of class k. The corresponding update for d is not given in closed
form, but an efficient and accurate approximation can be obtained by observ-
ing that B-splines rapidly become more Gaussian-like as the order b increases:
βb(z) � N (z|0, σ2

b ) for an appropriate choice of variance σ2
b . Plugging in this

approximation yields an objective function that is quadratic in d, and that there-
fore has a closed-form solution:

d̃ � arg min
d

⎡

⎣
I∑

i=1

J∑

j=1

wi,j
(yj − xi − di)

2

σ2
b

+ γdTΓTΓd

⎤

⎦ = Sδ, (5)
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where

S =
(
II + γσ2

bΓ
TΓ

)−1
, δ = (δ1, . . . , δI)T, δi =

J∑

j=1

wi,j yj − xi. (6)

Thus, in each voxel i a local “vote” for a displacement δi is made that would
recover the distance between the node(s) the voxel associates with, and its actual
position. These local votes are then spatially smoothed by a I × I matrix S that
implements a shift-invariant low-pass filter, to give the new estimate for d. In
summary, the proposed EM optimizer iteratively cycles between updating the
expected node assignments wi,j (Eq. (2)) and the estimates of θ (Eq. (3)) and
d (Eq. (5)). In the Appendix, we show that this optimization scheme effectively
performs MI-based registration with partial volume interpolation [18,19].

In our implementation, we initialize the algorithm by setting θ0k,l = 1/L,∀k, l

and d0i = 0,∀i, and we use cubic B-splines (b = 3) in order to obtain an accu-
rate Gaussian approximation, where σ2

b is set so that N (0|0, σ2
b ) = βb(0). For Γ,

we use a filter that computes local curvature using finite differences (a so-called
bending energy or biharmonic model), and we use α0 = 2·1. Since the smoothing
matrix S is circulant, the filtering can be performed as element-wise multiplica-
tion in the Fourier domain. Implemented in ITK 5.0 and MATLAB 9.6 on an
Intel Core i7-5930K computer with Intel MKL’s FFTW library, one iteration of
the EM algorithm takes around 3.5 s for images of size 256 × 176 × 256.

4 Sampling

Rather than simply obtaining point estimates (d̂, θ̂), the uncertainty of these
estimates can be quantified by Monte Carlo sampling from the posterior dis-
tribution p(d,θ|u). Since p(d,θ|u) =

∑
n p(d,θ,n|u), we can again exploit the

latent node assignments n to obtain an efficient sampling strategy: Starting from
an initialization (d(0),θ(0)) = (d̂, θ̂), a Gibbs sampler of p(d,θ,n|u) is obtained
by the iterative scheme

n(τ+1) ∼ p(n|d(τ),θ(τ),u) =
I∏

i=1

J∏

j=1

{
wi,j(d(τ),θ(τ))

}[ni=j]

θ(τ+1) ∼ p(θ|u,n(τ+1)) =
K∏

k=1

Dir (θk|αk) , αk = (N (τ+1)
k,1 , . . . , N

(τ+1)
k,L )T + α0

d(τ+1) ∼ p(d|u,n(τ+1)) = N
(
d |Sδ(τ+1), σ2

bS
)

,

where N
(τ+1)
k,l , and δ(τ+1) are as defined in Eqs. (4) and (6) but with hard node

assignments wi,j = [n(τ+1)
i = j]. After discarding the first T0 burn-in sweeps, the

set {d(τ),θ(τ)}T
τ=T0+1 contains (T − T0) valid samples of the target distribution
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p(d,θ|u). Since the required computations are very similar to those of the EM
algorithm (d(τ+1) can again be computed via the Fourier domain), implementing
the sampler requires very little additional code, and the computation time of a
single sweep is comparable to that of one EM iteration.

As in other work [3–9], the deformation regularization parameter γ can also
be inferred automatically, rather than set by the user. When a non-informative
gamma distribution Gam(γ|α0, β0) with shape α0 = 1 and rate β0 = 0 is used as
a conjugate prior for γ, this can be accomplished by simply including a fourth
step in the sampler: γ(τ+1) ∼ p(γ|d(τ+1)) = Gam( I

2 + 1, 1
2‖Γd(τ+1)‖2).

5 Experiments

In order to perform an initial, preliminary comparison of the performance of the
proposed optimizer with that of the well-known free-form deformation method
Elastix (v. 4.8) [13], we co-registered the T2-weighted brain scans of 6 healthy
subjects to the T1-weighted scan of 10 other healthy subjects in the OASIS
database [20]. We first segmented and bias field corrected each image (includ-
ing an additional T1w scan for the 6 subjects with T2w) with a whole-brain
segmentation tool [21], and affinely pre-registered each of the registration pairs
with Elastix. Registration accuracy was quantified by computing the Dice scores
between the T1-based segmentations for each of the 60 T2-T1 registration pairs,
averaged over the 10 largest brain structures.

For Elastix, we varied the B-spline grid spacing between 4, 3.5, 3, and 2.5 vox-
els, and the number of iterations per multi-resolution level between 500 (which is
the default) and 2000 (which is recommended for best results). For each param-
eter variation, we used recommended and default settings, with a 4-level multi-
resolution strategy and 5000 off-grid samples per iteration. The proposed method
used the same multi-resolution regime, and varied the deformation regularization
parameter γ between 14.9, 8.7, 4.8 and 2.3 to achieve the same effective number
of degrees of freedom (measured as the trace of the smoothing matrix S [22])
as the corresponding B-spline deformation models in Elastix. The number of
iterations per resolution level was also varied, between 25, 50 and 100.

The middle row of Fig. 1 shows an example registration obtained with the
proposed method when the maximum degrees of freedom and 100 iterations are
used. The top row shows quantitative results for the proposed method across the
various settings, along with the corresponding results obtained with Elastix. It
can be seen that the computational burden (left plot) of the proposed method is
independent of the flexibility of the deformation models, whereas for Elastix the
computation time increases sharply as more degrees of freedom are added. Fur-
thermore, whereas it is possible to obtain better Dice scores for both algorithms
by increasing the number of iterations and the degrees of freedom (middle plot),
the proposed method does so more effectively, reaching higher average accuracy
levels in 2.5 min (25 iterations at the highest flexibility), than the best achievable
performance of Elastix, taking around 23 min (2000 iterations at B-spline spac-
ing of 3 voxels). Finally, we also show the percentage of voxels with a Jacobian
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determinant lower or equal to zero for both methods (right plot), indicating that
the proposed method’s deformation model is better behaved.

The bottom row and the last image on the middle row of Fig. 1 illustrate
the proposed sampler (initialized by the optimizer with γ = 2.3) across 4000
samples after a burn-in of 1000 sweeps, where γ was kept constant for the first
100 sweeps. The uncertainty (last image, middle row) is shown as the standard
deviation (measured in voxels) in each of the three spatial directions, and is
encoded as red for superior-inferior, blue for left-right, and green for anterior-
posterior. The bottom row shows the estimated posterior distribution of γ, and
two deformation field samples (also including superior-inferior), zoomed-in on a
region of interest and color-coded according to displacement magnitude.

Fig. 1. Top: computation time; Dice scores; % of voxels with |Jacobian| ≤ 0. Middle:
v; u with segmentations partially overlayed; deformed v; uncertainty map. Bottom:
posterior of γ; two deformation field samples. P = Proposed method, E = Elastix.
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6 Discussion

In this paper we have proposed a probabilistic model that directly incorporates
the MI metric into a demons-like optimization scheme. We have shown that
the resulting algorithm can potentially be more accurate and significantly faster
than the free-form deformation method implemented in Elastix. We have also
demonstrated that a Monte Carlo sampler, using largely the same code base, can
directly produce uncertainty estimates in MI-based registration – to the best of
our knowledge the first method in the literature to do so.

We note that although the generative model encodes MI in this paper, it
can be used for a wide range of predictive distributions, including the Gaussian
noise assumption underlying the SSD criterion. Although not reported here, pre-
liminary experiments indicate that the proposed optimizer achieves comparable
registration accuracies to the original demons algorithm [2] in this setting. The
proposed sampler directly endows the demons algorithm with the first method
to assess the uncertainty in its nonparametric deformation fields, the effective
number of degrees of freedom of which is in the millions (compared to mere
thousands in existing work for uncertainty estimation in registration [3–10]).

Given the close similarity between the two methods, in future work we plan
to investigate whether the same update modification that makes the demons
algorithm diffeomorphic [2] can also be used with the proposed optimizer.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lo-dowska-Curie
grant agreement No 765148; the Danish Council for Independent Research under grant
number DFF611100291; and the NIH National Institute on Aging under grant number
R21AG050122.

Appendix: Connection with MI-based registration

MI-based registration with partial volume interpolation can be interpreted as
implicitly using the proposed generative model but with a different optimization
strategy, in which EM is used to estimate θ but not d. In particular, d̂ can also
be estimated by optimizing log p(d, θ̂d|u) for d with a general-purpose optimizer,
where θ̂d = arg maxθ log p(d,θ|u) involves an inner optimization that for each
d estimates a matched θ̂d de novo from starting values θ0k,l = 1/L,∀k, l by
interleaving the EM Eqs. (2) and (3). When a flat prior p(θ) ∝ 1 is used, the
resulting effective registration criterion is then directly related to MI as follows:

log p(d, θ̂d|u) � IMI(d) + log p(d) + const, (7)

where

MI(d) =
K∑

k=1

L∑

l=1

nk,l log
nk,l

nk nl
with nk,l =

Nk,l

I
, nk =

∑

l

nk,l, nl =
∑

k

nk,l
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is the MI criterion using partial volume interpolation [18,19], in which
joint histogram counts Nk,l are computed from fractional weights w̄d

i,j =
βb (yj − (xi + di)) as in Eq. (4). To see why Eq. (7) holds, we can also write
MI(d) as

MI(d) =
1
I

I∑

i=1

J∑

j=1

w̄d
i,j log θ̄d

vj ,ui
−

L∑

l=1

nl log nl

︸ ︷︷ ︸
const

with θ̄d
kl = nk,l/nk, (8)

and, since log p(d, θ̂d) = Q(d, θ̂d|d, θ̂d),

log p(d, θ̂d|u) − log p(d) =
I∑

i=1

J∑

j=1

ŵd
i,j log θ̂d

vj ,ui

−
∑

i

DKL

[
p(ni|ui,d, θ̂d) ‖ p(ni|d)

]
+ const, (9)

where ŵd
i,j = wi,j(d, θ̂d) and DKL(.‖.) denotes the Kullback-Leibler (KL) diver-

gence. Comparing Eqs. (8) and (9), and noting that w̄d
i,j and θ̄d are precisely

the weights and estimate of θ in the first iteration of the inner EM optimization,
MI-based registration can therefore be interpreted as making a “lazy” attempt
at measuring log p(d, θ̂d), using only a single iteration in the inner optimization
of θ̂d, and ignoring the KL divergence between the prior and the posterior node
assignment distributions. In the special case where p(ni|d) takes only binary
values {0, 1}, the approximation in Eq. (7) will be exact since the EM algorithm
then immediately finds θ̂d in its first iteration and the KL divergence term van-
ishes. This will happen when B-splines of order b = 0 are used, or for first-order
B-splines (b = 1) whenever the image grids of u and v perfectly align.
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