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Pair programming is an intensive form of  programmer collaboration where two programmers design, code and 
test software collaboratively at one computer. Pair programming has been proposed to provide several benefits 
for software development. This work studied the effects of  pair programming for productivity, defects counts, 
design quality, knowledge transfer, enjoyment of  work, and effort estimation accuracy. The research consisted of  
an experiment with five four-person teams each doing a 400-hour project based on the same specifications, 
technologies and process guidelines. The only difference between the teams was that three of  the teams used 
pair programming for all development work and the other teams used solo programming. 

In the experiment pair programming increased the development effort of  the first few use cases, but after that 
there were almost no differences in the use case efforts compared to solo programming. Surprisingly, higher use 
case complexity did not favor pair programming. Due to the less productive learning time the pair programming 
teams had worse overall project productivity. However, in an industrial context the causes for the learning time 
are usually avoided, because developers already know each other and after the first pair programming project are 
already familiar with the practice. Even if  there still were learning time involved, its effects become negligible in a 
large project. 

The pair programming teams had less pre-delivery but more post-delivery defects. Their attitude towards system 
testing might have been less careful due to an over-reliance on the peer review taking place during coding. Our 
efforts at contrasting the resulting design quality were inconclusive. 

Pair programming improved both the breadth and depth of  knowledge transfer. In the pair programming teams 
each code package was understood well by more developers than in the solo programming teams. On the average 
developers in the pair programming teams also understood well more packages than developers in the solo 
programming teams. 

About half  of  the developers in the pair programming teams favored solo programming over pair programming, 
but still most developers liked working in the pair programming teams. Thus developers’ feelings toward pair 
programming should not hinder deploying pair programming. 

The pair programming teams were slightly better in estimating efforts required for implementing externally 
specified use cases early in the project. However, when updating the effort estimate just before the implementa-
tion of  a use case, solo programmers were accurate more often than pairs.  

These results certainly shed some more light on the topic, even though this experiment, like all the previous 
ones, contained many deficiencies such as the small sample size. Based on the results, it seems that the use of  
pair programming leads to fewer defects in code after coding and better knowledge transfer within the 
development team without requiring additional effort if  the learning time can be avoided. These benefits are 
likely to decrease the further development costs of  the system and increase an organization’s productivity due to 
improved competence of  the developers. 
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Pariohjelmointi on ohjelmoijien välistä intensiivistä yhteistyötä, jossa kaksi ohjelmoijaa suunnittelevat, koodaavat 
ja testaavat ohjelmistoa yhdessä yhden tietokoneen ääressä. Pariohjelmoinnin on esitetty tarjoavan useita hyötyjä 
ohjelmistokehitykselle. Tämä työ tutki pariohjelmoinnin vaikutuksia tuottavuuteen, virhemääriin, koodin 
rakenteen laatuun, tiedon siirtymiseen, työtyytyväisyyteen ja työmäärien arviointitarkkuuteen. Tutkimus koostui 
kokeesta, jossa viisi neljän hengen ryhmää tekivät kukin 400 tunnin projektin perustuen samoihin määrittelyihin, 
teknologioihin ja prosessiohjeisiin. Ainoa ero asetelmassa ryhmien välillä oli se, että kolme ryhmistä käytti 
pariohjelmointia kaikkeen kehitystyöhön, kun taas muut ryhmät käyttivät yksinohjelmointia. 

Kokeessa pariohjelmointi suurensi kehitykseen käytettyä työmäärää muutamien ensimmäisinä toteutettujen 
käyttötapauksien kohdalla, mutta sen jälkeen erot käyttötapauksiin käytetyissä työmäärissä verrattuna 
yksinohjelmointiin olivat mitättömiä. Yllättäen pariohjelmoinnin vaikutukset työmääriin eivät olleet suotuisampia 
monimutkaisempien käyttötapauksien kohdalla. Pariohjelmoinnin vaatiman tuottavuudeltaan tehottomamman 
opetteluajan takia pariohjelmointiryhmien projektitason tuottavuus oli huonompi. Kuitenkin teollisessa 
ympäristössä opetteluaika tavallisesti vältetään, koska kehittäjät tuntevat toisensa ja viimeistään ensimmäisen 
pariohjelmointiprojektin jälkeen osaavat myös pariohjelmointia. Vaikka opetteluaikaa ei voitaisiinkaan välttää, niin 
isossa projektissa sen vaikutukset tuottavuuteen ovat olemattomat. 

Verrattuna yksinohjelmointiryhmiin pariohjelmointiryhmien ohjelmissa oli vähemmän virheitä ennen toimitusta, 
mutta toimituksen jälkeen jäljelle jääneiden virheiden määrä oli suurempi. Pariohjelmointiryhmät mahdollisesti 
luottivat liikaa koodauksen aikana parin toimesta tapahtuvaan koodin katselmointiin ja olivat siksi 
järjestelmätestauksessaan huolimattomampia kuin yksinohjelmointiryhmät. Mahdollisiin eroihin designin laadussa 
eivät tuloksemme anna selkeää vastausta.   

Noin puolet kehittäjistä pariohjelmointiryhmissä sanoivat pitävänsä enemmän yksinohjelmoinnista kuin 
pariohjelmoinnista, mutta kuitenkin useimmat kehittäjät pitivät työskentelystä pariohjelmointiryhmissä. Siten 
kehittäjien tuntemuksien pariohjelmoinnista ei pitäisi olla pariohjelmoinnin käyttöönottoa estävä tekijä. 

Pariohjelmointiryhmät olivat hieman parempia arvioimaan ulkopuolisten kuvaamien käyttötapauksien vaatimia 
työmääriä projektin alussa. Kuitenkin, kun verrattiin juuri ennen toteutusta toteuttajan toimesta tehtyjä päivitettyjä 
työmääräarvioita, yksinohjelmoijat olivat tarkkoja arvioissaan useammin kuin parit. 

Nämä tulokset varmasti valaisevat aihetta hieman lisää, vaikka tämä koe kaikkien aikaisempien kokeiden tapaan 
sisälsi monia heikkouksia kuten otoksen pieni koko. Tulosten perusteella vaikuttaa siltä, että pariohjelmoinnin 
käyttö vähentää koodauksen jälkeen koodissa olevia virheitä ja lisää tiedon siirtymistä ryhmän sisällä vaatimatta 
enempää työtä, jos opetteluun kuluva aika saadaan vältettyä. Nämä hyödyt saattavat vähentää 
jatkokehityskustannuksia ja lisätä organisaation tuottavuutta kehittäjien parantuneen ymmärryksen myötä. 
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1 Introduction 

1.1 Motivation 

Pair programming is an intensive form of  programmer collaboration where two pro-
grammers design, code and test software collaboratively at one computer (Williams and 
Kessler 2002). Lately it has received lots of  publicity being one of  the practices of  
Extreme Programming (XP) (Beck 2000). However, pair programming has been known 
for a long time before XP, and is by no means limited to be used with XP only.  

Based on previous studies which compared pairs with solo programmers (Williams 2000, 
Nosek 1998), it seems that pairs produce better design with fewer defects in the code, in 
shorter elapsed time and more enjoyably without using significantly more effort. Benefits 
for teamwork, knowledge transfer and learning have also been proposed (Cockburn and 
Williams 2000). More effective learning of  the development tools and domain most likely 
leads to higher productivity, as does higher enjoyment of  work. Improved knowledge 
transfer of  the developed system is a way to decrease the risk of  having critical persons in 
the team. It also accelerates new developers in becoming productive in their work. If  the 
increase in the development effort when using pair programming is low or nonexistent, 
the realization of  just some of  the proposed advantages would make the overall effect of  
pair programming positive from the project’s and organization’s point of  view.  

However, the results of  the previous studies are quite varying and even contradictory in 
some aspects. The experimental designs have varied between different studies, they have 
not been described accurately, and they have contained certain deficiencies. Most of  the 
studies have concentrated on studying individuals and pairs in isolation, even though in 
industry software is typically developed by a team of  developers. Due to all these reasons, 
it is difficult to assess the validity of  the results, generalize them to the industrial context 
or replicate the experiments elsewhere. In order to make the research more reliable and 
replicable, it is important to make more experiments using improved and more explicitly 
described experimental designs. 

1.2 Terminology 

Pair programming means that two persons work simultaneously on analyzing, designing, 
coding or testing the same software development task sitting at the same computer 
continuously collaborating with each other. The person typing at the keyboard or writing 
down the design is called the driver. The other person is called the navigator, who should 
continuously look for defects in the solution and on a higher level make sure that the pair 
is heading to the right direction. These roles should be switched between the developers 
during the work of  a task (Williams and Kessler 2000 p. 3-4, Beck 2000 p. 50-51) 

Solo programming means in this work programming mostly alone, but being allowed 
communicate with and ask help from other team members during the development work. 
This should mean the most typical way of  developing software in industry nowadays. 
Term individual programming (Nawrocki and Wojciechowski 2001, Gallis et al. 2003) has 
also been used in the literature to distinguish the normal way of  programming from pair 
programming. 

Concepts related to time often cause confusion when discussing about pair programming. 
In this work term elapsed time is used to denote stop-watch time when a pair or an 
individual finished a task. Term effort is used to denote the total effort related to the work. 
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For an individual the effort is equal to the elapsed time, but for a pair effort is twice the 
elapsed time. 

1.3 Objectives and scope of  the research 

The research problem of  this work is to understand:  

How does the use of  pair programming affect product quality, project productiv-
ity, knowledge transfer, enjoyment of  work, and effort estimation accuracy when 
small, co-located teams develop software? 

Defining unambiguously the desired amount of  collaboration within a co-located team is 
difficult. Therefore this research focuses only on comparing the effects of  two quite 
easily definable, but realistic alternatives. The first is pair programming (PP) applied as 
described by Williams and Kessler (2002), and used for all development tasks and 
activities (analysis, design, coding, unit testing) as recommended in extreme programming 
(Beck 2000). The second is solo programming (SP) as defined in the previous section. 
Other alternatives would be, e.g., paired developers working with the same task using two 
computers or developers working alone without any daily communication with other 
team members. 

The research questions of  this work aim to answer how pair programming used in a team 
context affects the following project attributes: 

1. project productivity 
2. use case implementation effort 
3. the number of  defects 
4. design quality 
5. knowledge transfer within the team 
6. the enjoyment of  work 
7. effort estimation accuracy 

 
The first research objective is to analyze all previously made pair programming experi-
ments in order to identify relevant hypotheses related to the benefits of  pair program-
ming, but also to identify weaknesses in the experimental designs. The second objective is 
to execute a well-planned experiment where pair programming is used in a more realistic 
and industry like context than in the previous experiments and based on the experiment 
answer the stated research questions.  

1.4 Structure of  the thesis 

The thesis consists of  six chapters: Introduction, Literature research, Research design, 
Results and discussion, Evaluation of  the experiment, and Conclusions. Chapter 2 
summarizes the relevant pair programming literature and focuses especially on analyzing 
the previous experiments. Chapter 3 presents the research questions, related hypotheses 
and the experimental design. Chapter 4 contains the results of  the experiment and 
discussion of  the results. Chapter 5 evaluates the threats to the validity of  the results and 
chapter 6 contains conclusions and discussion on future work. 
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2 Literature study 

This chapter summarizes pair programming literature to the extent that is relevant for 
this research.  

2.1 Scope 

The first goal of  this literature study was to understand what pair programming is and 
why it may be a beneficial practice. The second goal was to analyze all previous pair 
programming experiments in order to learn from their research designs for my experi-
ment and to compare my results to the other studies. The last goal was to find tips on 
how pair programming should be done in practice in order to do pair programming in 
the most efficient way in my experiment. 

The material for the literature study was collected through searches to ACM Digital 
Library and IEEE Xplore using keywords “pair programming” and “collaborative 
programming”. The papers included for the study were filtered based on their title and 
abstract. Relevant references found from the included papers were handled recursively 
with the same process. The amount of  papers strictly discussing pair programming or 
collaborative programming was moderate and they were all read through. 

Summaries of  the previous pair programming studies have already been made by Gallis et 
al. (2003) and by Boehm and Turner (2003). The book by Williams and Kessler (2002) 
covers most areas around pair programming, but even though it contains lots of  
references to their own and others’ studies to back up its claims, it is evident that there 
are still many topics that are yet lacking scientific studies. 

2.2 History of  pair programming 

Pair programming is a very tight form of  collaboration between two people developing 
software. The other end is a solo programmer working alone in her own room. In the 
middle ground are partner programmers (Gallis et al. 2003) working with their own tasks 
with their own computers but in the same physical workspace allowing them to easily ask 
help from each other.  

Even though software development has been seen as the work of  individuals, some 
degree of  collaboration between developers is a normal way of  working and it has 
certainly been performed since the early days of  software development. A member of  a 
software development team most certainly asks help to a problem with a development 
task from a colleague, at least after struggling with the task long enough. Some tasks such 
as software design and specifying interfaces between modules developed by different 
people are quite naturally made by two or more developers together. Actually, De Marco 
and Lister (1999) refer to an old study claiming that software developers spend only 30% 
of  their time working alone. 

Due to the naturalness of  collaboration between developers naming a certain point of  
time as the beginning of  pair programming is difficult. Probably the most striking 
characteristic separating pair programming from a casual collaboration is the requirement 
for working together at the same computer for long periods of  time, e.g., for designing, 
programming and testing a whole software feature. It is something that probably does 
not just emerge without active encouragement of  such collaboration. 
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The first statement in the literature about pair programming kind of  collaboration is 
probably Larry Constantine’s observation during his visit to Whitesmith Ltd. in the late 
1970s1. He saw developers sitting paired, two at each terminal. The pairs were discussing 
about programming related topics and frequently switching places for allowing the other 
partner to sit at the keyboard. Constantine called these pairs dynamic duos. (Constantine 
1995) Randall W. Jensen recalls an experiment, which he made in 1975 in a large software 
organization. Based on his good experiences from using teamwork during his under-
graduate electrical engineering studies, he executed an experiment in the organization in 
order to find ways to improve programmer productivity. In the experiment a 50 000 LOC 
system was developed by a 10-person team split into five pairs who worked at the same 
terminal. Roles in the pairs were changed daily. (Jensen 2003) In 1993 Wilson et al. made 
an experiment with students comparing individuals and pairs writing a small program 
(Wilson et al. 1993). John Nosek, who participated in the previous study, made later a 
similar study in industrial environment (Nosek 1998). James Coplien published in 1995 
the “Developing in Pairs” pattern, reasoning that two persons can solve problems better 
than an individual. An extended description of  the pattern has been published in a later 
book (Coplien and Harrison 2004). 

The rise of  pair programming to the knowledge of  the larger audience happened 
together with the hype around extreme programming (XP) (Beck, 2000) since 2000. Pair 
programming is one of  the twelve practices of  XP. XP dictates using pair programming 
for developing all code to be released in an XP project. In the academic front Williams 
made in 1999 a larger pair programming experiment than that of  Nosek’s. Her doctoral 
dissertation (Williams 2000) and several papers discussed the results of  the experiment 
(Williams et al. 2000, Cockburn and Williams 2000) and pair programming in general 
(Williams and Kessler 2000). Both the increased publicity of  XP and Williams’s positive 
results of  the benefits of  pair programming were probably the reasons for the increase 
of  the deployment and research about pair programming. In 2001-2002 Cusumano et al. 
(2003) made a global survey in several companies charting which practices are used in 
software projects. They reported that pair programming was used by 35.3% of  the 
projects in their sample. 

Critique against pair programming has also appeared. XP as a controversial development 
methodology with its fanatic supporters has aroused hard criticism against XP, and the 
pair programming practice has also received its share of  the critique (Stephens and 
Rosenberg 2003, Keefer 2003). However, their critique against pair programming focuses 
mostly on the requirement in XP to use pair programming for all development tasks by 
everyone in an XP team, not on the pair programming practice itself. Williams and 
Kessler (2002) disprove several typical negative myths about pair programming based on 
their reasoning and experiences. Due to the lack of  conclusive studies on most aspects of  
pair programming the debate certainly continues. 

2.3 Proposed benefits of  pair programming 

Pair programming has been said to benefit software development in many ways. Williams 
and Kessler (2002) mention benefits to quality, time, morale, trust and teamwork, 
knowledge transfer, and enhanced learning. Their list of  benefits mostly covers the 

                                                 

1 Constantine does not mention the year of  the visit, but says he visited the company soon after J.P. Plauger 
had started it. According to http://www.plauger.com/resume.html the company was started 1978. 
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proposed benefits from all other sources discussed in this thesis, but additional references 
are included in the discussion below. 

2.3.1 Factors behind the benefits 

Williams and Kessler (2002 p. 21-31) and Williams (2000) discuss several behaviors which 
should contribute to the achievement of  the proposed benefits of  pair programming. 
They say that these behaviors tend to happen naturally with pairs, i.e., the pairs work in a 
different, better way than individuals. The behaviors are: 

• Pair pressure. People work harder in order not to disappoint their partner and in 
order to finish the task within the limited time allocated to the pair programming 
session. 

• Pair negotiation. Williams and Kessler refer to many studies and conclude that 
solving a problem by more than one person leads to better solutions and allows 
solving harder problems.  

• Pair courage. If  both partners have the same opinion of  something, they have 
courage to do things they might avoid doing alone. If  neither of  the partners un-
derstands something, they ask help from someone else sooner than a person 
working alone. 

• Pair reviews. Reviews are an efficient way to find defects, but are often neglected 
in practice, because developers don’t like them. Pair programming is a continuous 
review done immediately when the code is written. 

• Pair debugging. Williams and Kessler refer to several anecdotes from software 
developers, who advocate explaining a problem in a program aloud in order to 
solve the problem. When doing pair programming there is always someone who 
can comment on the explanation. 

• Pair learning. Knowledge related to programming language, tools etc. passes con-
stantly between partners. When partners are changed the knowledge spreads effi-
ciently among the whole team. 

• Pair trust. Developers learn to know and trust other team members, which is 
beneficial for the team. 

Cao and Xu (2005) studied activity patterns between pair programmers and found that 
pair programmers engaged in activities such as asking for opinions, requesting explana-
tions, critiquing partner’s approach and summarizing current status. They conclude that 
these activities lead to a deeper level of  thinking and thus to better learning. They suggest 
that these patterns can help explain the benefits or pair programming. 

Bryant (2004) notes that thinking aloud is natural when doing pair programming and that 
this verbalization has been proposed to change programmers’ behavior by forcing them 
to be more reflective.  

Domino et al. (2003) propose based on previous research that task conflicts, i.e., 
occurrences of  incompatible preferred outcomes between two parties, enhance perform-
ance, when the conflicts appear in low to moderate levels. 

Next we will discuss the proposed benefits in more detail, i.e., what aspects are improved 
and why the improvement should happen. The evidence supporting or refuting the 
claims will be discussed in section 2.5. 
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2.3.2 Quality 

Improvements to software quality have been discussed in several sources. Constantine 
(1992) noticed that pairs produced nearly 100% bug free code, which was also better, 
tighter and more effective. He proposes that the reason for the improvements was the 
increased work visibility. Wilson et al. (1993) read about studies done with children 
proposing that collaboration improved problem solving success. By generalizing those 
results, they hypothesize that student programmers working in pairs would produce more 
readable and functional solutions to programming problems. Beck (2000 pp. 101) 
proposes that people are more disciplined in following agreed on practices, e.g., writing 
unit tests, when working with a pair. Better discipline should lead to improved quality, if  
the selected practices are effective for improving code quality. According to Williams and 
Kessler (2002) continuous review of  the code by the navigator finds many defects in the 
code early. They also propose that the pairs end up in better solutions to problems 
because together the pair evaluates more alternative solutions and picks the best one. Van 
Deursen (2001) suggests that pair programming benefits program comprehension due to 
better code and due to learning the code and program understanding strategies from the 
partners. 

2.3.3 Elapsed time 

When talking about the elapsed time in conjunction with pair programming one must 
note that two person’s effort is used. If  a pair finishes a task in half  the elapsed time 
compared to an individual, the total effort is equal. 

Nosek (1998) found that pairs used shorter elapsed time when he made an experiment 
about the effect of  pair programming to software quality. He proposes that this decrease 
in elapsed time could be utilized to speed up the development, and would sometimes be 
valuable even if  the total effort was higher. Williams and Kessler even claim that the 
shortening is so remarkable that the total effort between pairs and individuals is equal, 
i.e., pairs finish their work in half  the elapsed time used by individuals. They discuss 
several factors that contribute to the decrease in the elapsed time. People work harder 
when pairing and spend less time on unproductive tasks. People cut down time spent on 
phone calls and e-mail during the pair programming session. Two people are also less 
likely to hit a dead end and are able to find a new alternative solution faster. (Williams and 
Kessler, 2002) Pair programmers may also be more predictable what comes to the effort 
spent (Nawrocki and Wojciechowski, 2001).  

Williams et al. (2004) have examined the relationship of  pair programming and Brook’s 
law (Brooks 1975) saying that adding man power to a late software project makes it later. They use 
a mathematical model of  Brooks’ law with values for the model’s parameters obtained 
from their survey to practicing pair programmers. They conclude that adding manpower 
to a late project will yield productivity gains to the team more quickly if  the team employs 
the pair programming technique.  

2.3.4 Human factors 

Several human factors are affected by the use of  pair programming. Wilson et al. (1993) 
hypothesize that pair programming increases developer’s confidence for their solutions 
and enjoyment of  work. Being a happier programmer should improve morale and 
decrease the likelihood of  leaving the job (Williams and Kessler 2002). Pair programming 
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makes people familiar with each other and thus builds trust and improves teamwork 
(Williams and Kessler 2002). 

2.3.5 Knowledge transfer 

Improved knowledge transfer is a consequence of  improved communication. If  people 
pair with many different people, they learn more about the system under development. 
This decreases the negative consequences of  a key person leaving the team. The partners 
exchange knowledge of  the used tools and programming tips. All people have different 
skill sets, so everyone can learn something from anyone. If  an expert and a novice pair 
with each other, the expert may get a better understanding of  a topic when she explains it 
to the novice. An important consequence of  improved learning is that new developers 
can be made productive faster. (Williams and Kessler 2002) 

2.3.6 Summary of  the proposed benefits 

Table 1 summarizes the proposed benefits classified as quality, elapsed time, human 
factors and knowledge transfer. 

Table 1 The proposed benefits of  pair programming. 

Category Effect 

Quality 
• decreases the number of  defects 
• leads to better solutions to the problems, e.g., to better design
• improves the comprehensibility of  code and design  

Elapsed time 
• a pair finishes a task faster than an individual 
• a project may be finished sooner by adding more people 
• facilitates making more accurate effort estimates 

Human factors 
• higher satisfaction and confidence to own work 
• improves trust and team work 
• adds more discipline to work 

Knowledge transfer 
• people learn more from each other 
• the number of  critical experts decreases 
• new employees become productive faster 

2.4 Costs of  pair programming 

The most notable cost of  pair programming is that it may add some effort for the 
development tasks. Different studies have reported figures for the effort increase from 
15% (Williams 2000) to 100% (Nawrocki and Wojciechowski 2001). The effort increase is 
higher when starting to do pair programming (Williams 2000). Padberg and Müller (2004) 
propose two reasons for this effect. The reasons are learning to do pair programming and 
learning to work with a new person. Bryant (2004) has found a difference between more 
and less experienced pair programmers. When two experienced pair programmers work 
together, no matter who is acting as the driver/navigator the driver/navigator behaves in 
a similar way, i.e. the partners switch behavior when they switch roles. Two less experi-
enced partners also change behavior when they switch roles, but the partners do not have 
a similar behavior to their partner in the same role. Bryant does not draw any conclusions 



 Literature study 8 
 

 

whether this difference could be the reason why the learning time is less productive. Lui 
and Khan (2003) report that when two persons with different skill level work together, 
they finish the task as quickly as the more skillful of  the partners would have done alone, 
meaning that only the effort of  the less skillful programmer is lost. Thus the decrease in 
productivity equals to what the less skillful programmer would have been able to do alone 
with the same effort. However, when working together the worse programmer may learn 
something that increases her productivity later. 

Some less quantifiable disadvantages of  pair programming are related to human factors. 
Some people don’t want to pair and some people don’t get along with each other (Beck 
2000). Williams and Kessler (2002) mention that pair programming is efficient because 
people work harder, but they also admit that is too intense for many to do all day 
continuously.  

Two economic models for evaluating the feasibility of  pair programming have been 
proposed (Williams and Erdogmus 2002, Padberg and Müller 2003). Both models 
consider variables such as pair speed advantage, i.e. shorter elapsed time, defect advan-
tage, personnel costs and economic value of  shorter time to market. By assigning context 
specific values to the model variables it should be possible to evaluate whether pair 
programming is beneficial in a certain context or not. Padberg and Muller have later 
refined their model by considering the improvement in the efficiency of  pair program-
ming after a learning time (Padberg and Müller 2004).  

2.5 Studies on pair programming 

The amount of  pair programming research has increased steeply after Williams published 
the results of  her pair programming experiment (Williams 2000). Below I discuss the 
experimental designs and results of  the previous pair programming studies put into four 
categories. The first two categories contain experiments focusing on studying the 
differences in effort and quality when using pair programming vs. some other way of  
developing software. The experiments in the first category compare individuals and pairs 
in isolation, i.e., not within a team. The second category contains studies where pair 
programming is performed within a development team. The third category contains 
experiments studying the effects of  pair programming from the viewpoint of  learning 
programming in the context of  introductory programming courses. The fourth category 
contains experiments studying some detailed aspects of  pair programming. 

2.5.1 Overview 

Some analyzes and summaries of  the previous studies have already been made. Gallis et 
al. (2003) summarize the experimental designs and results of  six pair programming 
studies. They identified apparent contradictions in the results of  the experiments and 
therefore propose an initial framework for supporting better research on pair program-
ming. They identify and discuss the independent variable (level of  collaboration), 
dependent variables (time, cost, quality, information and knowledge transfer, trust and 
morale, risk) and countless context variables from a research viewpoint. Boehm and 
Turner (2003 p. 230-233) summarize shortly the results of  seven pair programming 
experiments regarding effort, quality and developer’s satisfaction. 

There are many common challenges in making good experiments comparing pair 
programming and solo programming. Defining exactly what is meant by pair program-
ming is not trivial. How should partners behave during a pair programming session? How 
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much true pair programming should be used and are some looser forms of  collaboration 
between partners allowed? How should pair programming be taught to the subjects? 
Should the partners be familiar with each other? Are the subjects allowed to choose 
themselves whether they are using pair programming or the other way? 

In all of  the studies discussed here the participants have done pair programming as a part 
time assignment some hours a week, which means that they may have been fresher for 
the pair programming sessions than a person who does considerable amounts of  pair 
programming every day. 

2.5.2 Individuals vs. pairs in isolation 

The most relevant experiments comparing pairs working themselves to individuals 
working alone are presented in Table 2. These experiments have been done in a context 
where the pairs are forced to pair most of  the time and individuals are not allowed to 
collaborate or ask help from anyone at all. It is important to do this kind of  experiments 
in order to understand the inner workings of  pair programming, but one must be very 
careful in generalizing their results to a team context. The context is far from the typical 
industrial way of  developing software where you mostly write code alone, but when 
facing a problem can ask help from your colleagues. The developed programs have also 
been quite small. Typically, any larger software system is developed by a team containing 
more than one or two persons. Working as a part of  a team doing a whole software 
project is a different situation from doing small, separated programming tasks alone or 
with one single partner. If  the tasks in the experiments had been larger, it would have 
been more realistic to compare pairs to pairs, because then it would have been necessary 
for the solo programmers to divide and integrate their work as was done by Heiberg et al. 
(2003). 

Table 2 Pair programming experiments with experienced programmers writing small 
programs alone vs. with a pair. 

 (Nosek 1998) (Williams 2000) 
(Nawrocki and Wo-
jciechowski 2001) 

Comparison PP vs. solo CSP (pairs) vs. PSP (solo) XP2 vs. XP1 (=no PP) 
N 15 (= 5*2 + 5*1) 41 (= 14*2 + 13*1) 15 (= 5*2 + 5*1) 
Randomization  yes yes, with same avg. GPA yes, with same avg. GPA 

Subjects 
professional programmers, 
but a new problem for all 

advanced students, 2-3 years 
of  C++ experience 4th year students 

Context at a company, familiar tools a course at Univ. of  Utah a course at Univ. of  Poznan
PP training not mentioned effective pp was taught not mentioned 
Type of  project fixed scope fixed scope fixed scope 
Type of  
assignment 

a script for database 
consistency check four small programs  the four PSP assignments

Language a script language C++ C or C++ allowed 
Programming 
effort 

less than an hour a few hours per program a few hours per program,
120-420LOC (avg./prog.)

RESULTS (PP vs. the other way) 

Effort  42% 60%, 15%, 15% (prog. 1-3) ~100% (prog. 1-4) 

Quality 
better readability and 

functionality 

90 vs. 75% test cases passed,
results more consistent, 

LOC smaller 

same number of  re-
submissions, LOC smaller, 

st. dev. of  LOC smaller 
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2.5.2.1 Evaluation of  the experiments 
Nosek’s (1998) study is interesting because it was made with professional programmers in 
corporate environment using tools familiar for the programmers. However, the number 
of  programmers was rather low (fifteen) and they did only one tiny program (max. 60 
minutes of  effort). Despite of  the small sample Nosek was able to find statistically 
significant differences between the performance of  pairs and individuals. 

Williams (2000) had 41 computer science students, who developed four rather small 
programs2. Students were asked for preferences for working alone or with a pair and with 
whom they would like to work and with whom not. In addition students’ GPAs were 
used ensure that there were the same amount of  high, average, and low performers 
among solo and pair programmers. Individuals used a modified personal software process 
(PSP) and pairs used the same process adapted for pair programming. One threat for the 
validity of  the results is that the pairs developed an additional program after each 
program developed by all participants in order to balance the effort required. This may 
have given them an advantage of  learning more about, e.g., the used technologies. 

Nawrocki and Wojciechowski (2001) had 21 computer science students, who developed 
four small programs. Based on student’s GPAs, they divided them in three equally skilled 
groups, one using a modified XP process with pair programming, one using the same XP 
process without pair programming, and one using the personal software process (PSP) 
without pair programming,. Studying the effects of  pair programming is justified here 
only between both forms of  XP, because PSP differs so much from XP.  

2.5.2.2 Effects to the quality 
The results of  all these experiments indicate some improvements in quality when using 
pair programming. The differences are statistically significant in Nosek’s and Williams’ 
studies. Nosek found that the functionality of  the developed scripts evaluated by an 
objective evaluator was better for pair programmers (mean 5.60 vs. 4.20 on scale 0-6). 
Williams found that the average number of  passed instructor’s test cases was higher in 
pairs’ programs. Individuals’ programs passed 70-79% test cases (avg. for each program) 
whereas pairs’ programs passed 86-94% of  test cases. The difference was about 15 
percentage units for each program, i.e., pairs made about 60% less bugs (about 10% vs. 
25% failed test cases). Williams also reports superior high level designs from pairs in the 
form of  better exploitation of  object oriented programming constructs, e.g., encapsula-
tion and better class-responsibility alignment, but the only hard data she reports is about 
20% lower number of  LOC in pairs’ programs. 

Nawrocki and Wojciechowski (2001) assessed quality by calculating the number of  re-
submissions of  corrected programs to acceptance testing until all the tests passed. He 
found almost no difference in the number of  re-submissions between pair programmers 
and solo programmers. Nawrocki and Wojciechowski found that pair programmers 
implemented the same programs with less lines of  code (LOC) and also the standard 
deviation of  LOC was smaller for pairs’ programs than for individuals’ programs. 

Wilson et al. (1993) made a similar experiment with students as Nosek made later in the 
industry. They found that pairs wrote more readable programs (mean 1.75 vs. 1.29 on 
scale 0-2) and the difference was statistically significant (p<.1). The degree to which the 

                                                 

2 The only published measure of  the size is the summed development effort for programs 2 and 3 
(Williams 2000, pp. 65). The median value was about 9 hours for both pairs and individuals.  
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programs solved the problem was also higher in pairs’ programs (mean 4.20 vs. 3.03, 
scale unknown3), but this difference was not statistically significant. 

Arisholm (2002) had industrial programmers doing the same programming task by 123 
individuals and 4 pairs. Each programmer was classified by her experience as junior, 
intermediate and senior. Each pair contained a junior and a senior. The correctness of  
pairs’ programs was 74% compared to 62% of  those from intermediate individuals. Thus 
pairs made 32% less defects (26% vs. 38%). 

2.5.2.3 Effects to the effort 
Nosek (1998) found that the pairs spent on the average 42% more effort than individuals 
but the difference was not statistically significant. Williams (2000) analyzed the effort 
differences for the separate programs. For the first program pairs spent 60% more effort, 
but for programs 2 and 3 pairs spent only 15% more effort. For programs 2 and 3 the 
effort differences were not statistically significant. 

Nawrocki and Wojciechowski (2001) found that pairs spent 100% more effort for each 
of  the four programs in their experiment. An interesting finding was that the standard 
deviation of  the pairs’ efforts was only half  of  that of  individuals proposing that pair 
programming is more predictable than solo programming. 

Rostaher and Hericko (2002) compared pair programmers and individuals in an industrial 
environment, where people had already used pair programming before. He found that 
pairs and individuals used almost the same amount of  elapsed time (358 vs. 362 minutes), 
which indicates 98% increase in effort when using pair programming. 

In the experiment by Arisholm (2002) pairs needed 98% more effort than individuals 
(118min vs. 60min). 

Of  all these experiments Nawrocki and Wojciechowski (2001) is the only one where a 
similar level of  quality was ensured by the experimental design. One must take into 
account that requiring the same level of  quality for all programs would have required 
extra effort from those developers having more defects at the first attempt.  

2.5.3 Individuals vs. pairs in a team context 

Table 3 summarizes the experiments where pair programming was studied in an envi-
ronment more similar to real software development projects. Some of  the proposed 
benefits of  pair programming, e.g., knowledge transfer within the team and improvement 
of  trust and team work between the team members, are related to using it in a team 
context. If  these benefits are true, it can be assumed that they lead to better quality of  
work and decreased total effort spent for a project carried out by a team. These effects 
cannot be studied in experiments with isolated individuals or pairs. 

 

 

 

                                                 

3 Scale is documented as 0-2, but this is impossible based on the mean values. 



 Literature study 12 
 

 

Table 3 Pair programming experiments with experienced programmers developing a 
larger system as a team. 

 (Williams 2000) 
(Ciolkowski and 
Schlemmer 2002) 

(Baheti et al. 2002) 

Comparison CSP (pairs) vs. PSP (solo) PP vs. unsystematic 
collaboration PP vs. solo 

N 7 + 3 teams, 4 persons/team 3 + 3 teams, 6persons/team 9 + 16 teams, 2-4 per-
sons/team 

Randomization
same GPA in CSP and PSP 

groups not mentioned no, self  selected members and 
type of  working 

Context 
advanced students, 2-3 years 

of  C++ experience on a 
course at Univ. of  Utah, 1999

2nd year students on a 
course at Univ. of  
Kaiserlauten, 2002 

graduate class, O-O Languages 
and Systems course at North 

Carolina State University 
PP training effective pp was taught  material given for all teams not mentioned 
Project type not mentioned fixed scope not mentioned 
Language C++ Java Smalltalk/Java4 
Assignment 
type 

a project extend and modify an 
existing web quiz system teams made different projects

Program size not mentioned ~4000LOC not mentioned 

Project effort not mentioned ~700 hours, of  which  
programming ~40h/person not mentioned 

Duration 4 weeks 5 weeks5  5 weeks 
RESULTS (PP vs. the other way) 

Effort -28% 9% (coding & testing only) 3% 

Quality -2% (passed test cases) LOC smaller, 
coupling factor smaller 

pairs received 1% better (93.6 
vs. 92.4 of  110) grade  

 

The experiment by Ciolkowski and Schlemmer (2002) used quite a large project, where 
teams of  six persons spent together about 700 hours of  effort. However, only about 40 
hours of  effort per person was spent on programming work. The researchers were not 
able to evaluate software quality using defects metrics, but used LOC and coupling factor 
measures instead. Both of  these were slightly smaller for pair programming teams 
indicating slightly better design quality. The difference in effort was evaluated based on 
data of  the programming tasks (including writing test case) for two consecutive iterations 
lasting 5 weeks in total. In both iterations pair programmers spent about 9% more effort. 
No statistical analysis was made for evaluating the significance of  the results. 

Williams (2000 p. 77-78, 100-101) continued her experiment described in the previous 
section by assigning the students to a four-week project in four-person teams. She does 
not mention the total effort used or the size or type of  the software developed. She 
found that on the average pair programming teams spent 28% less effort, but solo 
programming teams passed 2% more test cases. Neither of  the differences was statisti-
cally significant. In this experiment the students using pair programming were experi-
enced pair programmers after having used it in the previous experiment.  

                                                 

4 The course taught Smalltalk and Java, nothing is mentioned about the project. 

5 The whole project lasted 13 weeks, but programming phase only 5 weeks 
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Baheti et al. (2002) studied pair programming with 132 students working in self-selected 
teams of  two to four. Each team selected themselves whether they were going to use pair 
programming or solo programming and whether they were going to work co-located or 
physically distributed. We discuss here only the differences between the 25 co-located 
teams. Each team made one of  several possible assignments during a 30 days long 
project. The co-located pairs had slightly worse productivity than the co-located individu-
als (14.8 LOC/h vs. 15.2 LOC/h), i.e., pairs needed 3% more effort for writing the same 
amount of  LOC. The quality of  the systems was evaluated by a teaching assistant on 
scale from 0 to 110 based on a 30 minute demo. The pairs received slightly better grades 
(mean 93.6 vs. 92.4). Neither the productivity nor quality differences were statistically 
significant. The experimental design can be criticized for not using randomized design 
either for forming the teams or selecting the type of  programming, having different 
projects made by different teams and using vague quality metric. 

When comparing these experiments to those performed with isolated pairs and develop-
ers doing small tasks, the effort increase incurred by pair programming was smaller or 
even negative. Comparing quality is hard due to the different metrics used, but it seems 
that the quality improvements were smaller in the team context. However, it may be that 
the smaller effort difference explains decreases in quality. 

2.5.4 Pair programming and learning to program 

The use of  pair programming on introductory programming classes has been studied 
with hundreds of  students in North Carolina State University (McDowell et al. 2002; 
McDowell et al. 2003a; McDowell et al. 2003b) and University of  California Santa Cruz 
(Nagappan et al. 2003). All these experiments have compared students working as pairs 
to students working individually. The results of  these experiments are summarized in 
(Williams et al. 2003). These studies provide strong support for certain benefits of  pair 
programming. Students working as pairs got same or higher percentage of  good grades, 
performed at least similarly in the exam, produced better programs, were not hampered 
in future solo programming courses, and were more likely to pursue computer science 
related majors one year later (Williams et al. 2003). 

Hanks et al. (2004) analyzed the programs developed at UC Santa Cruz more carefully 
regarding their external and internal quality. They found that pairs made more functional 
programs measured by the amount of  features implemented and the number of  
remaining defects. There were no differences in the internal quality evaluated using 
source code size and complexity metrics in the first two programs, but the third programs 
from the pairs were longer and more complex. McDowell et al. (2003a) analyzed the 
elapsed time between pairs and individuals and found that the pairs were 25% faster, i.e. 
they spent 50% more effort on the average, but the difference in the elapsed time was not 
statistically significant. 

Heiberg et al. (2003) studied the productivity of  pair programming with 110 first year 
computer science students at University of  Tarto. The pairs developed one program as 
far as they could during four 90 minutes lab sessions. The special aspect of  this experi-
ment was that it compared two partners working together to two partners working with 
the same task but alone, i.e. the effects of  coordinating work between two people 
working alone with the same tasks were taken into account. The students were given 
automated acceptance tests to test their code during development. The amount of  
functionality developed was measured by calculating the number of  passed tests, 
effectively combining the measurement of  quality and scope. In this setting Heiberg et al. 
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did not found a statistically significant difference in the effort usage between the two 
types of  pairs. 

2.5.5 Other studies 

Müller (2004a) compared pair programming to solo programming with code review using 
27 experienced students on a programming course at University of  Karlsruhe as the 
subjects. He discusses a typical problem of  pair programming (and other) experiments, 
i.e., both the quality and effort being outcome variables because a program is considered 
ready when its developer thinks so. Müller solved the problem by forcing programmers 
fix bugs until the programs passed at least 95% of  the acceptance tests. He analyzed 
separately time spent on implementation and on quality assurance. The quality assurance 
included bug fixing starting from the first execution of  the acceptance tests. After the 
implementation in the first run of  the acceptance tests the pairs passed more tests than 
the individuals (mean 57% vs. 44%), but spent 15% more effort for the implementation 
(mean 409min vs. 357min). Neither of  the differences was statistically significant. The 
quality assurance phase ended when the participants delivered a program passing at least 
95% of  the tests, so that the quality of  all programs was similar. When including the 
effort spent on quality assurance the pairs spent only 7% (mean 490min vs. 467min) 
more effort. The difference was not statistically significant. This study suggests that 
reviews produce the same code quality with slightly smaller cost when compared to pair 
programming. It must be noted that the reviews were made by persons who had just been 
solving the same programming task themselves, which may increase the efficiency of  the 
review. However, Müller notes that the reviews did not create many comments, which 
may indicate that the bare existence of  a review makes a programmer write better code. 
In another paper Müller and Padberg (2004) re-analyzed data from the experiment 
described above and from its replication (Müller 2004b) considering also programming 
experience and feelgood factor, i.e., how comfortably the developers feel in a pair session. 
They found no correlation between programming experience and performance, but they 
found a positive correlation between feeldgood factor and performance. Even though 
existence of  a correlation does not reveal which factor drives which, they propose 
feelgood factor as a candidate driver for the performance of  a pair. 

Parrish et al. (2004) analyzed the performance of  programming pairs having high vs. low 
amounts of  collaboration when developing the same software module in a context of  a 
large industrial project. Here the collaboration did not mean pair programming in the 
normal sense, but just that two persons were somehow working on the same day with the 
same module. They found that high amount of  collaboration led to clearly worse 
productivity, and propose that pairs working together aren’t naturally productive, but the 
role-based protocol provided by true pair programming combats the productivity loss. 
This finding indicates that the way how two persons collaborate has a considerable effect 
on productivity. 

Lui et al. (2003) made two experiments regarding problem solving by pairs. In the first 
experiment fifteen industrial programmers were divided to five pairs and five individuals 
who solved algorithmic problems by answering multiple choice questions. After deliver-
ing the results, participants were given told the amount of  errors left until all their 
answers were correct. At the first attempt pairs spent 20.9% more effort (26.6 min vs. 
22 min), but when all errors had been corrected pairs had spend 4.2% less total effort 
(36.4 min vs. 38 min). In the second experiment all subjects solved deduction problems 
as both individuals and pairs in shift. Again at the first attempt pairs used 73% more 
effort (130 min vs. 75 min), but the work done by pairs had already 85% correctness 
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compared to 51% for the individual work. After correcting the errors the pairs had spent 
5.3% less total effort. 

Canfora et al. (2004) made an experiment with forty-five 3rd year students in order to test 
the effect of  pair designing on knowledge building. The knowledge building was 
measured using a query before and after each of  the three phases of  a design assignment. 
In all phases the pairs increased their knowledge more than solo designers, but the 
difference was statistically significant (p<0.05) only in the first phase. 

Williams et al. (2004) made a survey of  how quickly a new employee becomes productive 
when mentoring is done using vs. not using pair programming. The averages were 12 vs. 
27 days and the required mentoring efforts 26% vs. 37% of  mentors work time showing 
clear benefits for using pair programming. 

2.6 Advice for practicing pair programming 

There are not yet many published studies discussing the details on how to do pair 
programming in the most efficient way. Instead the studies have so far focused on 
comparing solo programming to pair programming in some but not very formally 
defined way. Some advice have been proposed in the literature but they are mostly based 
on the personal observations and reasoning of  the corresponding authors. 

Cao and Xu (2005) observed 23 students doing pair programming and found that pairing 
two highly skilled developers worked best for both knowledge generation and quality 
improvement, but pairing two medium developers did not show interesting benefits in 
terms of  either knowledge generation or quality improvement. Jensen (2003) has 
reported similar findings from industry, proposing that partners with different skill levels 
is a more beneficial situation for pair programming than equally skilled partners. 

Williams and Kessler analyze what kind of  developers match together considering 
developer’s skill level, personality (extrovert-introvert), gender and cultural issues. People 
with excess ego cause problems with everyone else and large difference in skills requires 
mentoring attitude from the more skillful partner, but other types of  pairs work well. 
Most people first resist pair programming, but after trying it, most people prefer it over 
solo programming. However, no one should be forced to pair. (Williams and Kessler 
2002) 

Williams and Kessler propose rotating pairs regularly, e.g., on a daily basis so that 
developers end up pairing with many different partners. Pairs should be formed very 
casually, e.g., as a part of  a daily scrum meeting or just by letting a developer ask an 
appropriate person to pair with her. Each task should have an owner, who recruits a 
partner to work with her for the various parts of  the task. Williams and Kessler consider 
workspace needs proposing common and personal areas in the office for having some 
privacy and protecting solo programmers from noise. Suitable tables are needed so that 
both can see the display and switch the keyboard easily, or alternatively two display, 
keyboards and mice can be provided. Standard development environment including a 
common coding standard is recommended. Williams and Kessler discuss certain 
behaviors during a pairing session mostly related to being a good communicator in all 
respects. Pairing is most important for analysis and design activities, and especially when 
working with more complex tasks. (Williams and Kessler 2002) 

Coplien and Harrison (2004, p. 165-167) emphasize forming pairs by self  selection so 
that pairs work well together. They also discourage dictating the style of  doing pair 
programming, e.g., that no code may be written unless both are at the keyboard. 
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Beck (2000) proposes in XP pair programming should be used for all production code. 
Williams and Kessler (2002 p. 14-15) made a survey on several practicing pair program-
mers and found that 22% of  them spent more than 75% of  their work day doing pair 
programming and 30% less than half  of  the day. Williams and Kessler (2002 p.15) 
propose that because pair programming is very intense form of  work and there are 
schedule constraints, it should be used only for the most complex tasks if  people don’t 
want to use it all the time. In that case they recommend that there are dedicated pair 
programming hours when everyone pairs and no one interrupts the work. 

2.7 Summary 

Collaboration between developers is not a new thing, but pair programming as a very 
tight form of  collaboration has gained more publicity only during the last few years. It 
has been proposed that the use of  pair programming has many benefits related to quality, 
elapsed time, human factors and knowledge transfer. Several studies comparing pair 
programming to solo programming have been made. Software quality has been better for 
the pairs or similar in most of  the experiments. The results about the required effort have 
varied quite a lot. The elapsed time has always been the same or shorter for the pairs, but 
the total effort has been -28% - 100% larger for the pairs. Pair programming has also 
been studied in the context of  learning programming in introductory university courses. 
The results have been very positive. Students working as pairs got same or higher 
percentage of  good grades, performed at least similarly in the exam, produced better 
programs, were not hampered in future solo programming courses, and were more likely 
to pursue computer science related majors one year later. There are not yet many 
published studies discussing the details on how to do pair programming in the most 
efficient way. Some advice have been proposed in the literature but they are mostly based 
on the personal observations and reasoning of  the corresponding authors. It may be that 
the details have not been considered very important, e.g., many sources propose being 
very casual when forming of  pairs. 



 Research design 17 
 

 

3 Research design 

This chapter deals with the experimental context and design. Preliminary guidelines for 
empirical research in software engineering have been proposed by Kitchenham et al. 
(2002). Their guidelines for the empirical context and empirical design have been 
considered when planning and reporting this study. Section 3.1 describes the research 
questions and hypotheses of  the study. A motivation is given for each hypothesis and 
practical issues related to measuring the intended attributes are discussed. Section 3.2 
describes the pair programming experiment, which was executed in order to answer the 
research questions. In the experiment several teams made a similar project, half  of  the 
teams used pair programming and the other half  solo programming. Section 3.3 
describes how certain realities affected the experimental design. 

3.1 Research questions and hypotheses 

Each research question is described below with some motivation and background 
information. Related to each question, one or several hypotheses are derived based on 
literature and what I have personally learnt from discussions with industrial developers 
who have used pair programming in their work. Finally the challenges of  measuring the 
related phenomena are discussed. The context for all research questions and hypotheses 
is comparing the performance of  pair programming (PP) teams to solo programming 
(SP) teams when four-person teams develop software as described in section 3.2. 

3.1.1 Productivity 

The key question when deciding on the use of  pair programming or any other practice is 
how it affects the overall productivity of  the organization. Productivity, i.e., the amount 
of  work results divided by the effort used, can be analyzed on several levels. We concen-
trate on analyzing productivity in connection with a release project and the implementa-
tion of  a use case. 

Research question 1: Does pair programming affect project productivity? 

I assume that even though pair programming may increase the effort for the develop-
ment work related to individual programming tasks, it may decrease the overall project 
effort due to all the proposed benefits of  pair programming described in section 2.3. 

In similar experiments (Ciolkowski and Schlemmer 2002; Williams 2000; Baheti et al. 
2002) the difference in project effort when comparing pair programming to solo 
programming has been between -28% and 9%. The largest figure 9% was reported by 
Ciolkowski and Schlemmer, but they analyzed only effort spent for programming and 
writing tests instead of  the whole project. This may have disregarded some of  the 
benefits of  pair programming on the project level. 

Hypothesis 1.1: The PP teams have higher project productivity than the SP teams. 

In the experiment the total effort spent is the same for all teams, which means that the 
amount of  work results varies between the teams. Measuring project effort means just 
summing up all hours spent on the project, e.g., on design, programming, unit testing, 
system testing, bug fixing, meetings, and studying the existing system and new technolo-
gies and tools.  

Measuring the amount of  work results could be done easily using lines of  code (LOC). 
However, LOC is not a reliable measure because different designs and coding styles may 
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lead to different LOC for the same amount of  functionality implemented. What really 
matters related to the amount of  work results is what the software provides for the end 
users. Therefore the amount of  work results is measured as the amount of  use cases 
implemented in the software. All teams must implement the use cases in the same order. 
The total amount of  implemented use cases per team puts the teams reliably in produc-
tivity order. 

Based on the amount of  implemented use cases it is not possible to say how many 
percentages the difference in productivity between two projects is because the use cases 
are not of  equal size. Function points could be used to calculate the absolute amount of  
functionality in each use case, but their have several limitations (Fenton and Pfleeger 1996 
p. 262) and are not used here. I estimate the size of  each use case by taking the average 
of  the efforts different teams spend on implementing the use case. The productivity 
differences are estimated by summing up the sizes of  the use cases each team imple-
mented.  

When comparing productivity based on the amount of  work results, the quality of  the 
work results must be of  similar level in order for the comparison to make sense. 
Therefore the goal of  aiming for high and thus similar quality is emphasized to the 
participants. Systems must be tested afterwards to ensure that use cases are implemented 
successfully and with similar quality. If  major bugs are found, the related use cases are 
not counted as implemented.  

Research question 2: Does pair programming affect use case implementation effort? 

The implementation effort of  a use case covers designing, coding, unit testing, correcting 
found bugs, and documenting the code. Use case productivity is the inverse of  the use 
case implementation effort. 

Previous research (Nosek 1998; Williams 2000; Nawrocki and Wojciechowski 2001) has 
observed an increase of  15%-100% in the programming effort when pair programming 
is used in the context of  small separated tasks and without a surrounding development 
team. Some proposed benefits of  pair programming, e.g., knowledge transfer and better 
design, are likely to become more relevant in a typical project context, where several 
related task are performed by a team. The team context may somewhat decrease the use 
case implementation effort of  the PP teams in this experiment compared to the results 
of  the above-mentioned experiments. However, I believe that there is still some increase 
in the use case implementation effort when using pair programming. 

The productivity of  pair programming may be related to the type of  task under work. 
Williams and Kessler (2002) propose using pair programming at least for complex tasks. I 
have heard many practitioners reporting that pair programming is quite useless for trivial 
tasks and more efficient when used for complex tasks. 

Hypothesis 2.1: The PP teams have lower use case productivity than the SP teams. 

Hypothesis 2.2: Higher use case complexity favors PP teams as measured on use case 
productivity. 

Measuring the effort per use case is not as easy as measuring project effort, because 
sometimes development effort may be related to several use cases, and different develop-
ers may report the effort to different use cases. 

The quality criterion in this experiment is based on the opinion of  the developers, i.e. 
they believe the code is ready and works. Other quality aspects of  the code (comprehen-
sibility, exact correctness etc.) are not taken into account here. These aspects may affect 
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the effort required for modifying the code later, and the effects can partially be seen in 
project productivity. 

Evaluating the difficulty of  implementing a use case is done subjectively. A scale from 
one to five (1=very easy, 3=moderate, 5=very difficult) is used. In the end of  the project, 
the developers evaluate the complexity of  each use case they implemented. The evalua-
tions of  pair programmers are omitted, because pair programming may affect the 
perceived complexity in some cases and here we are interested in the complexity as 
perceived in the traditional way of  working, i.e., solo programming. The complexity of  a 
use case is defined as the average of  the evaluations by solo programmers from different 
teams who implemented the use case. 

3.1.2 Defects 

A lower number of  defects in the code after the code has been written and unit tested 
improves productivity as less time is required for fixing defects found during system 
testing or at worst by the end users.  

Research question 3: Does pair programming affect the number of  defects? 

Several experiments mention better functionality or higher test case pass rate when using 
pair programming (Wilson et al. 1993; Nosek 1998; Williams 2000; Arisholm 2002). The 
improvements in quality have been used to justify the economic efficiency of  pair 
programming compensating the costs of  increased effort during the development work 
(Williams and Erdogmus 2002). 

Hypothesis 3.1: After coding and unit testing the PP teams have fewer defects than the 
SP teams.  

Hypothesis 3.2: After system testing and bug fixing the PP teams have fewer defects 
than the SP teams. 

The developers report all defects found in the finished code. The defects in any unfin-
ished code are not interesting for this study. Defects can be found, e.g., during the 
development of  other use cases or during the system testing before a delivery. A 
researcher tests all the systems after their final delivery in order to assess the quality of  
the final systems and the quality of  testing done by the teams.  

3.1.3 Design quality 

Defining good design quality is difficult. From a practical point of  view good design 
supports efficient maintenance or further development of  the product. This goal can be 
achieved, e.g., if  the code is easy to understand, modify and test.  

Research question 4: Does pair programming affect design quality?  

Previous studies have proposed that pair programming improves design quality. Previous 
studies have used smaller LOC as an indication of  better design quality (Williams 2000; 
Nawrocki and Wojciechowski 2001), but LOC can hardly be justified as a good measure 
of  design quality. Ciolkowski and Schlemmer (2002) found a slightly smaller coupling 
factor in the designs of  the PP teams. I have personally heard from many pair program-
mers a subjective opinion that pair programming improves design quality. 

Hypothesis 4.1: The PP teams create better software design than the SP teams. 

A practical indirect measure of  design quality would be the effort required for modifying 
the code preferably by someone else than the original developers. Unfortunately in this 
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experiment this cannot be arranged. Another approach is to use some code metrics for 
evaluating the design quality. Lots of  metrics for this purpose have been proposed, e.g. by 
Fenton and Pfleeger (1996 p. 279-335). 

There are many challenges in using code metrics for design quality evaluation in this 
experiment. The teams receive core architecture for the system, which largely defines the 
higher level design. The sizes of  the final systems vary, because the teams are likely to 
implement different numbers of  use cases. Varying size may affect many code metrics, 
even if  the metrics did not directly measure software size. Alternatively intermediate 
versions of  the systems each having the same set of  use cases could be compared, but in 
this case the snapshots would originate from a different phase of  the project, e.g., early or 
late in an iteration. Because the design quality may be affected by, e.g., system testing, bug 
fixing, refactoring and delivery preparation activities occurring typically in certain phases 
of  the iteration, the latter approach is not reliable either.  

I concentrate on analyzing the design quality on the method level using the following 
code metrics. LOC per method is used to analyze the size of  a method, a reasonably 
small value being better for a good design. McCabe’s cyclomatic complexity per method 
(McCabe 1996) counts the number of  flows through the method, a smaller value being 
an indication of  less complex code and thus better design. The number of  a method’s 
parameters is used to analyze how much information is passed to the method when it is 
called, a reasonably small value being better for good design. Unfortunately even these 
metrics are probably affected by the growth of  the system. Up to a certain threshold the 
design is as good as one with a smaller value. Therefore the proportion of  methods 
having a very poor value for a metric, thus indicating a poor structure, is probably a 
better metric. 

3.1.4 Knowledge transfer  

Improved knowledge transfer is a favorable property for any software development 
project. We can analyze both the breadth and depth of  a developer’s understanding of  
the developed system. The breadth of  understanding characterizes how many modules 
of  the system a developer knows. The depth of  understanding characterizes how well a 
developer knows a specific module. We can analyze the understanding also from the 
perspective of  an individual module. For example, if  a particular module is understood 
well by only one developer, there is a high risk of  having a critical person, who cannot be 
replaced easily. 

Research question 5: Does pair programming affect knowledge transfer within the 
team? 

Williams and Kessler (2002) propose that pair programmers, especially if  the pairs are 
rotated, know more about the overall system, but neither they nor other researchers have 
analyzed this claim more carefully or reported any data about this aspect. 

When pair programming is used, tasks (use cases in this experiment) are allotted to only 
half  the number of  worker units compared to solo programming projects. Therefore in a 
pair programming team each developer participates in twice as many tasks as in a solo 
programming team, if  the same tasks are completed in both teams. This distributes a 
developer’s involvement to the development of  different modules more broadly in pair 
programming teams. However, this also means that each developer spends less effort 
working with each module.  
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The depth of  a developer’s understanding of  a module is probably related to the amount 
of  her involvement in the development of  that module. The acquired depth of  under-
standing may also be affected by the type of  involvement, i.e., solo programming or pair 
programming. The effect of  pair programming may be positive when a person learns new 
things from the partner or when a partner allows solving a problem that the developer 
alone could have spent huge amounts of  time without learning anything. These positive 
situations may realize especially when a developer works with a more skillful partner. The 
effect of  pair programming on the acquired depth of  understanding may be negative 
when a person does not have to think deeply enough about the solution and existing 
code, and thus the new understanding may be quite superficial. Finding a solution to a 
difficult problem alone can sometimes be very educational.  

Hypothesis 5.1: Higher involvement in the development of  a module leads to higher 
understanding of  that module. 

Hypothesis 5.2: In the PP teams more developers understand each module well than in 
the SP teams.  

Hypothesis 5.3: In the PP teams each developer understands more modules well than in 
the SP teams. 

Hypothesis 5.4: In the PP teams developers achieve deeper understanding of  a module 
than in the SP teams with the same amount of  involvement with that module. 

After the project the developers answer to a web questionnaire, where they evaluate the 
degree of  their involvement in and understanding of  the developed modules. 

3.1.5 Enjoyment of  work 

Higher enjoyment of  work is likely to increase work motivation and thus productivity and 
quality. It also decreases the possibility of  a person leaving her job, which would almost 
always cause a negative effect for the performance of  a project. 

Research question 6: Does pair programming affect the enjoyment of  work? 

Williams and Kessler (2002) report that almost all who try pair programming like it. I 
have personally heard developers commenting that the higher confidence on the 
solutions when building critical systems with a pair reduces the stress they experience due 
to work. 

Hypothesis 6.1: In the PP teams developers enjoy their work more than in the SP teams. 

The overall enjoyment of  work can only be measured by asking it from the developers. 
The developers who use pair programming can evaluate which they like more, pair 
programming or solo programming, and which they consider better for the overall 
success of  this kind of  a project. 

3.1.6 Effort estimation 

More accurate effort estimates help planning and controlling a project. Effort estimates 
can be done by different people, e.g., by a project manager, by the development team 
collectively, e.g., as in the XP planning game (Beck 2000) or by the developer or pair who 
is going to implement a task, e.g. as in the XP iteration planning (Beck 2000). Some 
estimates are typically done in the beginning of  a project or an iteration and they may be 
refined later when the implementation becomes closer or just before the implementation 
starts. 
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Research question 7: Does pair programming affect effort estimation accuracy? 

Nawrocki and Wojciechowski (2001) reported that the standard deviation of  develop-
ment times and program sizes were smaller for programs developed by pairs. This may 
be, e.g., due to a pair’s lower probability of  facing problems too hard to solve or being 
able to solve them faster. Smaller deviations in realizations between different pairs should 
help making the estimate by anyone, pair or team. Höst and Wohlin (1998) reported that 
effort estimates for a programming task combined from several developers were better 
than those from individual developers. I assume this effect can be seen already when 
making estimates by a pair vs. individual. 

Hypothesis 7.1: The PP teams estimate use case effort more accurately than the SP 
teams in the beginning of  an iteration. 

Hypothesis 7.2: Pairs estimate use case effort more accurately than solo programmers 
just before its implementation. 

From a project’s perspective the estimates made already in the beginning of  an iteration 
are much more important, because the iteration’s resourcing/scoping decisions are based 
on these. From the same perspective, the sum of  the errors in all of  the estimates matters 
most, because if  positive and negative estimation errors compensate each other, the 
overall estimate for the project was perfect and the project achieved exactly what was 
planned. Sometimes the estimates for individual use cases may go more wrong than the 
estimate for a set of  use cases because in the latter case it may be easier to estimate some 
logical whole than possibly overlapping use cases. However, the true accuracy of  
estimates needs to be analyzed on a use case basis. Because different teams implement 
different amounts of  use cases, comparison of  the accuracy of  the estimates can be done 
only for those use cases that are implemented by all the teams. 

All teams report the estimates done per use case in the beginning of  an iteration and 
updated estimates done just before starting the implementation of  a use case.  

3.2 Experiment 

The context for the experiment is discussed below along with the instrumentation 
required for the data collection. 

3.2.1 Project 

The experiment was performed at Helsinki University of  Technology (HUT) in the 
spring of  2004 during a project course teaching the Java 2 Platform Enterprise Edition 
(J2EE) technology. The course contained first a two-week training period containing 
about 15 hours of  lectures about the subject given by professional J2EE developers. The 
theory taught in the lectures was applied in practice in two personal home assignments 
taking a few hours each. Both the lectures and the home assignments were mandatory for 
all participants. After the training period the participants started a nine-week develop-
ment project in four-person teams.  

Passing the course required participation to the lectures, following certain work practices 
as defined by the course organizers, and answering a couple of  inquiries. The evaluation 
of  the course was announced to be on pass/fail scale. 

The topic of  the project was developing a distributed, multi-player casino system using 
the J2EE technologies. The project included developing, testing and delivering the 
software, which was described in a requirements specification (see Appendix A) written 
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by the course organizers. The specification was comprehensive discussing the main 
domain concepts, potential user groups, and some non-functional requirements. Each of  
the 30 use cases was described in a separate about one-page long use case description (see 
Appendix B). The desired user interface was specified by providing static HTML-pages 
of  all parts of  the user interface (see Appendix C). 

The students were given a pre-made 10-page long technical specification and implemen-
tation of  the core architecture including examples of  suitable J2EE design patterns and a 
build/deployment script. The core architecture contained about 1000 lines of  code6 plus 
almost 1500 lines of  comments. The development environment was provided pre-
installed in the laboratory’s computer class, but clear instructions were provided on how 
to set up the environment to any other computer. 

The tools used were J2EE 1.4 SDK as the development platform, XDoclet 1.2 for 
generating the J2EE interface descriptors etc., JBOSS 3.2.1 with Tomcat 4.1.24 and 
Hypersonic SQL database as the application server, Eclipse 3.0 as the IDE, Ant 1.6.0 as 
the build tool, and CVS 1.11 as the version control tool. 

3.2.2 Experimental design 

Five four-person teams did a similar project simultaneously but independently of  other 
teams. All the teams had to work mostly as a co-located team and use the same develop-
ment process, work practices, tools, and specifications.  

The experiment had a one-factor randomized design (Juristo 2001 p. 85-86), where the 
only factor was the type of  programmer collaboration. The studied alternatives were pair 
programming (PP) and solo programming (SP). Either of  the alternatives was randomly 
assigned to each participating group. The PP teams had to use pair programming for all 
development work and the SP teams were not allowed to use pair programming for more 
than occasional collaboration. The PP teams had to participate in a one hour lecture 
discussing what pair programming is before the experiment. 

3.2.3 Experimental subjects 

The experiment was marketed as a practical J2EE course for the computer science 
students at HUT through the university’s news groups and Software Business and 
Engineering (SoberIT) laboratory’s web pages. The course was arranged solely in order to 
get participants to the experiment. The pair programming experiment and the require-
ment of  using pair programming by half  of  the participants were mentioned in the 
course brochure. The only mandatory prerequisite for participation was the basic 
knowledge of  Java programming language. The course was not mandatory for anyone. 
Students majoring in Software Engineering were allowed to include the course to their 
major subject studies, but for others it was a totally optional course.  

Twenty-four students signed up for the course. Four of  them gave up after the training 
period, because they were not able to allocate the required effort for the project. Thus the 
total number of  participants assigned to the teams was 20. They were all at least 4th year 
students at HUT, and the time during which they had been actively doing programming 
tasks varied between 1.5 and 10 years (average 4.7 years) of  which 1-6 years (average 2.2 
years) was using Java. The average grade from their previous programming courses was 

                                                 

6 Only non-blank lines of  code within method bodies included. 
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3.9 on scale 1-5 (5=best), and they all personally considered being similar or somewhat 
better than average programmers when compared to their fellow computer science 
students at HUT. As most of  the computer science students at HUT work at software 
companies during their studies the participants can be claimed to be similar people to 
those developing software in industry.  

Before the experiment the participants were ranked by their programming skills. A 
comparison value for ranking was calculated for each participant based on the time she 
spent on the two personal J2EE programming assignments, her previous programming 
experience, her average grade from programming courses, and her personal opinion on 
her capability as a programmer compared to her fellow computer science students at 
HUT. After this five names at a time were taken from the top of  the list and randomly 
assigned into five different teams. Thus the result was five teams with one person from 
each skill quartile. 

Finally three teams were randomly selected to act as the PP teams and two as the SP 
teams. The number of  the PP teams was higher because the total number of  the teams 
was uneven and we were more interested in getting observations from the PP teams than 
from the SP teams. 

3.2.4 Development process 

The participants had to follow certain work practices. The practices were described in a 
mostly pre-written project plan document (see Appendix D) given to the teams and on a 
1-hour lecture. The project plan also listed the goals of  the project in the following 
priority order: 

1) follow the defined work practices 

2) report the required data in a disciplined fashion 

3) minimize the amount of  bugs 

4) implement as many use cases as possible 

5) do not waste effort on unnecessary things 

The project effort was fixed to 400 hours, i.e., 100 hours per person. Each person had to 
spend at least 75% of  her hours in team sessions lasting 4-8 hours. Co-location of  the 
team was required for all team sessions. It is the natural setting of  developing software 
and otherwise the pair programmer teams would have automatically had lots of  co-
location and other teams probably not because typically students have problems arrang-
ing times for team work sessions. 

The projects were divided into three phases as shown in Figure 1. The first phase was 
project planning and studying lasting one week and requiring about 10 hours per person. 
It was followed by two implementation iterations each lasting four weeks and requiring 
about 45 hours per person. The teams were allowed to divide the effort as they wanted 
during the iterations, but they had to plan the weekly effort usage and the times of  the 
team sessions in the beginning of  the project. In the end of  both iterations, the teams 
had to deliver certain documents and all code to the course organizers. The code was 
delivered by delivering the whole version control system repository. 
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Figure 1 The development process. 

The mandatory practices included co-located team sessions, iteration planning, steps for 
iteration execution (implementing use cases, system testing, fixing bugs, updating 
technical specification), collective ownership, version control, coding standard, continu-
ous refactoring, unit testing, system testing, time reporting, defect reporting, source code 
size reporting and documenting. For half  of  the teams pair programming was a manda-
tory practice and other teams were not allowed to use it for more than occasional 
collaboration. All the teams had to implement the use cases in the same order. Using any 
existing code other than that provided by the course organizers was forbidden. Commu-
nicating with the other teams was not allowed. The detailed guidelines for these work 
practices are included in the project plan in Appendix D. 

3.2.5 Instrumentation 

The effort data was collected using a web-based system called Trapoli developed at HUT. 
Each participant reported her work hours per each task immediately after a work session. 
Typical tasks, e.g., implementing a certain use case, were preconfigured to the system. For 
each reporting entry a work type such as programming, pair programming or testing was 
required. The same system was used to collect the task effort estimates in the beginning 
of  the iterations and the updated estimates just before starting the implementation of  a 
task.  

The use of  the CVS version control system was mandatory and source code was 
collected for analysis by collecting the whole CVS repositories in the end of  both 
implementation iterations. Check-in timestamps in the repositories can be used to cross-
check the reliability of  the time reporting entries. 

Each team had to report found defects by writing them down into a simple table. Defects 
related to unfinished use cases were not reported. Each report had to contain a short 
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description of  the defect, related use case and source code class, finding activity (devel-
opment/system testing), who found the defect and when, and the current status (open, 
fixed). 

Two inquiries were made using web forms (see Appendix E). The first collected the 
background information of  the participants before the projects, and the second asked 
some opinions about the project and the developed system after the project.  

One of  the participants was a graduate student, who had a special assignment of  making 
notes on how his team followed the process and reporting guidelines. His notes can be 
used to evaluate the reliability of  the reported data. 

3.3 Realities affecting the experimental design 

The goals for the experimental design were to have a close to industrial like context (e.g., 
team size, the skills of  the developers, size and complexity of  the developed software, 
and the type of  the development process and practices) and be able to collect the data 
reliably. Arranging full control of  the participants was of  course impossible and therefore 
special care was needed for ensuring that the experimental design supported getting 
reliable data and enforcing compliance to the defined work practices.  

3.3.1 Team size 

It is not easy to get a large number of  students to a voluntary course requiring both a 
large amount of  effort and working tightly in a large team during times suitable for all 
team members. In theory the team size could have been four or six or even eight, but 
because the expected number of  students was low and the software size unnatural for a 
larger team, four was selected. Four was also easier for the students because they had to 
arrange several co-located team sessions. However, a larger team would have been a more 
realistic choice when compared to industry and would have also provided a more 
interesting setting for studying knowledge transfer within the team. 

3.3.2 Project topic 

There are several requirements for the technologies and the domain for this kind of  an 
experiment. They have to be interesting from the perspective of  the students in order to 
get a high number of  participants. They should be ageless in order to be able to replicate 
the experiment later. Platform independency and free development tools also improve 
the possibilities for replication. The domain has to be familiar to the participants or 
simple enough to be described unambiguously in order to be able to move to the 
development work soon. The technologies have to be similar to those used in the 
industry in order to be able to generalize the results. Objective testing of  the developed 
software must be possible and preferably efficient in order to evaluate the quality. 
Building the casino system using the J2EE technologies matches most of  these require-
ments quite well. 

A software project contains either developing further some existing software or starting 
the project from scratch. When considering an experiment, a larger size of  existing 
software would bring more realism to the project, especially when the experiment covers 
only quite a limited amount of  effort. Existing software would also enforce or guide 
students in a certain direction what comes to the software architecture, which is good for 
the experiment, because big differences in the architecture may be major factors affecting 
project effort and software quality later in a project. However, getting familiar with 
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existing software requires lots of  effort from the developers, which would make the 
effort available for the development work smaller. It may also be more complicated to 
design an assignment on top of  existing software. 

I chose to provide a small, well-documented implementation of  core architecture in order 
to force certain aspects of  the architecture and to alleviate the steep learning curve of  the 
J2EE technology. I was fortunate enough to have two professional J2EE developers to 
prepare the core architecture and give training of  the architecture and J2EE to the 
participants.  

3.3.3 Facilities 

In an optimal, fully controlled setting all teams would have their own working room, and 
a researcher would always be present observing the work. In this experiment there were 
one large room with 12 computers and one small room with two computers available. 
The rooms were open for the students 24 hours a day 7 days a week and the students 
were encouraged to avoid simultaneous work even in the larger room. Only the partici-
pants in this experiment used the rooms during the experiment. All the work stations 
were similar. They were powerful enough for fluent development work and had 19” 
monitors. Large tables and rolling chairs provided a proper environment for pair 
programming. The students were allowed to work at home with non-development tasks 
such as system testing for at most 25% of  the project effort. 

3.3.4 Development process 

In order to be able to evaluate the effects of  the pair programming practice the software 
development process and all the other development practices had to be as similar as 
possible in all teams. Collecting reliable data also presumes something from the process. 
Making sure that the participants understand and follow the defined process sets several 
requirements for the process as described in Table 4. 

Where the process conformance can be clearly observed, it can be ensured quite well by 
the threat of  failing the course if  not following the process. Elsewhere it is necessary to 
trust the morale of  the participants after emphasizing them the importance of  following 
the process.  
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Table 4 The requirements for the development process. 

Requirement Reasoning/consequences 

The amount of  process 
discipline required from the 
teams should be rather low so 
that the process is realistic and 
easy to follow. 
 

• Voluntary process conformance is crucial due to 
the lack of  full control during the project. If  the 
process does not feel like a natural way of  work-
ing the conformance suffers. 

• Collecting the data needed for the experiment 
unavoidably causes some bureaucracy, but all 
unnecessary bureaucracy should be minimized. 

The process should be 
incremental with fixed dates 
for the iterations’ ends.  

• Deadlines force the teams to divide work more 
evenly during the project and to converge the 
work into a working product. 

• Common deadlines simplify course arrangements.

Two of  the three project 
control variables, effort, scope 
and quality must be fixed.  

• Fixing simplifies data analysis. For example, 
comparing the productivity is very hard if  all vari-
ables have different values between the teams. 

Effort and quality must be 
fixed, and thus scope is 
variable. 

• Effort is fixed because then the students know 
the required effort beforehand. 

• Quality is fixed to high because it is a realistic and 
quite unambiguously communicable choice. 

The use cases must be 
implemented in the specified 
order, one use case at a time 
per individual/pair. 

• The same implementation order simplifies 
comparing the achieved scope and thus the pro-
ductivity between teams. 

3.4 Summary 

The experiment presented here tried to answer several research questions related to the 
effects of  pair programming. The hypotheses related to the research questions were 
derived based on literature and my personal experiences. There are many challenges in 
measuring the effects proposed in the hypotheses. These challenges and the resulting 
measures were discussed after each hypothesis. The experiment was performed at 
Helsinki University of  Technology with five four-person teams as subjects. The subjects 
were older students having quite a lot of  programming experience. Each team used 400 
hours for developing a software system based on the same requirements specification 
given to all teams. Three of  the teams were using pair programming for all development 
work. All teams followed a similar development process. A time reporting system, a 
version control system, defect sheet and web inquiries were used to collect the data 
required by the research. Even though aiming for as realistic setting as possible the course 
context set certain limitations to this kind of  an experiment. 
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4 Results and discussion 

This chapter presents the results of  the experiment. The results are also discussed and 
compared to previous research. Threats to the validity of  the results are described in the 
next chapter. 

All five teams finished the projects according to the schedule and spending the required 
400 hours of  effort. However, the analysis contains only two pair programming teams 
(PP1 and PP2) and two solo programming teams (SP1 and SP2). The third pair pro-
gramming team abandoned the use of  pair programming in the middle of  the project, 
and was therefore removed from the analysis. The removed team was the least successful 
team based on the amount of  use cases they were able to finish. 

4.1 Productivity 

H 1.1: The PP teams have higher project productivity than the SP teams. 

H 2.1: The PP teams have lower use case productivity than the SP teams. 

The number of  implemented use cases by each team can be seen in Table 5. The PP2 
team had started four more use cases, but three were not finished and one was rejected in 
the acceptance testing of  the delivered system. All the other teams had started one more 
use case, and all the implemented use cases were accepted. 

Both SP teams finished more use cases than the PP teams. The differences in the 
amounts of  implemented use cases are enlarged by the smaller implementation effort 
required for the latter use cases (see Figure 3). Therefore we estimated the size of  each 
implemented system in addition to the number of  use cases by summing up the sizes of  
all implemented use cases. The size of  each use case was estimated by the median of  the 
effort different teams spent on implementing the use case. The last row of  Table 5 shows 
the sum of  the sizes of  implemented use cases. Based on this data the project productiv-
ity of  the PP teams was 29% lower ((190-266)/266) corresponding to 41% higher effort. 
This finding refutes hypothesis 1.1. 

Table 5 Use cases implemented by the different teams (µ=mean). 

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP

Number of  implemented use cases 20 10 25 27 15 26 -42% 
System size (i.e. sum of  use case sizes) 226 154 258 273 190 266 -29% 
 

The PP1, SP1 and SP2 teams spent about the same amount of  hours for use case 
implementation work (250h, 250h, 266h) but PP2 only 229h. The rest of  the 400h effort 
was spent for non-implementation tasks (see Figure 2). PP2 spent considerably more 
effort than other teams in studying tools and technologies. However, if  PP2 had been 
given the same amount of  effort to spend on use cases they would have implemented 
only 5-6 more use cases, still far less than the others did. Both of  the PP teams reported 
more effort than the SP teams on bug fixing and re-testing activities in the end of  
iterations, but the reason for this is mainly that the SP teams reported many hours for 
this task instead of  a specific use case implementation task already before system testing. 
The SP teams reported hours for bug fixing and re-testing tasks only after system testing. 
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Figure 2 Effort spent on other than use case implementation tasks. 

The implementation effort of  each finished use case is shown in Figure 3. There is a gap 
in the line of  the SP1 team, because they did not finish use case 22. Both of  the PP 
teams performed really poorly in implementing the first three (PP2) or four (PP1) use 
cases. Thereafter the differences in effort between the PP and SP teams are minimal. 
Actually, PP1 spent for their last use cases (17-20) less effort than either of  the SP teams. 
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Figure 3 The effort used per use case. 

Table 6 shows the implementation efforts for different subsets of  the use cases. For use 
cases 1-10, which were implemented by all four teams, the PP teams used on the average 
44% more effort than the SP teams. If  we leave out use cases 1-4, where the PP teams 
performed very poorly, the PP teams used 5% less effort than the SP teams. 
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Table 6 The efforts spent for different subsets of  the implemented use cases. 

Use cases µPP µSP PP vs. SP

1-10 191h 133h +44% 
1-4 121h 59h +107% 
5-10 70h 74h -5% 

 

The reason for the lower project productivity of  the PP teams seems to be the consid-
erably larger effort they spent on the three or four first use cases. This decreased the 
whole project’s productivity. Later in the projects the PP teams finished use cases with 
about the same or even lower effort as the SP teams. It must be noted that because the 
PP teams spent much time with the first use cases, they may have learned something that 
helped them also with the later use cases. The SP teams also spent slightly more time for 
bug fixing, which actually meant additional effort related to the use cases, but is not 
included in the efforts in Table 6. We can argue that pair programming is more produc-
tive for a project, if  the project is long enough to compensate the learning time ineffi-
ciency or if  there is no learning time because people already know each other and have 
used pair programming before. 

The PP teams had lower productivity in the three or four first use cases, but thereafter 
pair programming took same or smaller effort than solo programming refuting hypothe-
sis 2.1. There was almost no difference in the amount of  effort spent for non-
implementation tasks. Therefore the advantages of  pair programming for the project’s 
productivity seem to be based on the decreased use case implementation effort after the 
learning time. 

Previous research has also noticed the learning time with pair programming, but there is 
no data about the reason for it, i.e., is it, e.g., due to learning to use pair programming for 
the first time or learning to work with a new partner. In Williams’ (2000) experiment the 
pairs did much worse in the first assignment (60% effort increase) than in the later 
assignments (15% effort increase) with the same pair. In the experiment by Ciolkowski 
and Schlemmer (2002) the additional effort for pair programming was 9% in both studied 
iterations indicating no learning effect. However, in that experiment the developers had 
worked as a team for several weeks before the observed iterations, inspecting and 
modifying the requirements and design documents. It seems that this kind of  teamwork 
removes the inefficient learning time for pair programming. In my experiment at least 
four use cases were implemented before everyone had pair programmed with everyone 
once, which might explain the poor performance of  the PP teams with the first three or 
four use cases. 

H 2.2: Higher use case complexity favors PP teams as measured on use case productivity. 

The diamonds in Figure 4 show the complexity of  each use case as evaluated by the solo 
programmers (1=very easy, 5=very difficult). The squares show the difference in use case 
implementation effort between the SP and PP teams. If  there were a correlation between 
the complexity and efficiency of  pair programming the curves should follow each other. 
However, there is no correlation (r=-0.02) between the two variables, refuting H 2.2. 

The lack of  correlation contradicts with the recommendation by Williams and Kessler 
(2002) and the opinion of  pair programmers with whom I have talked. It may be that the 
feeling of  the usefulness of  pair programming comes from the assumed higher resulting 
quality, and thus developers’ impressions are not solely based upon effort differences. 
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The researchers of  the social facilitation theory dealing with the impact of  social 
presence on individual performance have found that social facilitation effects impair 
performance in case of  complex tasks (Aiello and Douthitt, 2001). These studies have 
focused on studying persons who are not familiar with each other, which was also the 
case in the early phase of  our experiment, where the pairs performed poorly. 
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Figure 4 Perceived complexity of  a use case vs. effort increase of  pair programming. 

There may be a problem in analyzing the data this way, because the productivity of  a 
team probably increases during the project due to learning of  the domain etc. The 
increase may happen faster in the PP teams if  the claim of  better knowledge transfer in 
the PP teams is true. In addition, learning to do pair programming may be a factor 
increasing the productivity of  the PP teams during the project as was seen in Figure 3. 

4.2 Defects 

H 3.1: After coding and unit testing the PP teams have fewer defects than the SP teams.  

H 3.2: After system testing and bug fixing the PP teams have fewer defects than the SP 
teams. 

Defects found by a team itself  during system testing at the end of  an iteration are called 
pre-delivery defects. Defects found during development are also counted as pre-delivery 
defects if  they are related to a use case, which the responsible developer/pair considered 
to be ready. Defects found after delivery by an external tester are called post-delivery 
defects. The amounts of  pre- and post-delivery defects normalized by the number of  
implemented use cases are listed in Table 7. 

Table 7 The amount of  defects per implemented use case.  

 PP1 PP2 SP1 SP2 µPP µSP PP vs. SP

Pre-delivery 
defects 

0.95 
(19/20) 

0.75 
 (9/12) 

1.60 
(40/25) 

0.78 
(21/27) 0.850 1.189 -29% 

Post-delivery 
defects 

0.30 
(6/20) 

0.33 
 (4/12) 

0.12 
(3/25) 

0.04 
(1/27) 0.317 0.079 +303% 

Sum 1.25 
(25/20) 

1.08 
(13/12) 

1.72 
(43/25) 

0.81 
(22/27) 1.167 1.267 -8% 
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The SP teams found more pre-delivery defects than the PP teams, but there may have 
been differences in the system testing even though the total effort for it between the 
teams was similar. The last row of  the table lists the sum of  pre- and post-delivery 
defects and is the best estimate of  the total number of  defects in the code at the point of  
time when the responsible developer(s) considered it ready. According to this data, pair 
programmers made 8% less defects to the code during the development supporting 
hypothesis 3.1.  

Interestingly, after delivery the PP teams had considerably more defects than the SP 
teams, refuting hypothesis 3.2. The SP teams found and fixed a larger proportion of  
defects before the delivery than the PP teams. The percentual difference is huge, because 
the absolute amounts of  post-delivery defects were so small. The small number is 
partially explained by the focus of  the post-delivery system testing, performed by the 
author of  this thesis, on the basic functionality and common error situations instead of  
more exotic error situations, which the teams themselves had tested. The PP teams may 
have had a less careful attitude towards finding defects during system testing, because 
they may have relied too much on the peer-review during pair programming. 

4.3 Design quality 

H 4.1: The PP teams create better software design than the SP teams. 

The source code of  the final systems was analyzed using Metrics 1.3.57 plug-in for the 
Eclipse IDE. All the systems contained lots of  code comments (4200-5600 lines) from 
which a large portion was used for generating J2EE bean classes automatically using the 
XDoclet tool. Neither the comments nor the automatically generated code was included 
in the analysis. Table 8 shows the analyzed metrics for all final systems and the core 
architecture on top of  which all systems were built. The LOC metric contains only non-
blank and non-commented lines inside method bodies. It must be noted that each system 
contains a different amount of  use cases, and thus different amounts of  code. 

All the method level metrics, when analyzing the averages of  all methods within a system, 
show slightly better values for the PP teams. However, it may be that the values correlate 
with the LOC of  the system, which was higher for the SP teams. Therefore it is not 
possible to say whether the smaller values are due to smaller LOC or due to use of  pair 
programming.  

Analyzing the percentage of  bad methods should be less dependent on the size of  the 
software. The proportion of  very long methods is smaller for the PP teams. The 
proportion of  very complex methods is clearly smallest for PP2, but for other teams 
there are no differences. The proportion of  methods with a long parameter list is clearly 
best for SP2 and worst for PP1. 

Based on this analysis it is not possible to draw any conclusions on the effects of  pair 
programming on the design quality. The differences and superiority between the PP and 
SP teams depend on the metric used, and the metrics may be affected by the size of  the 
analyzed software, which was larger in both SP teams. Thus, we cannot say anything 
conclusive regarding hypothesis 4.1. 

                                                 

7 Available at http://metrics.sourceforge.net/ 
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Table 8 Source code metrics. 

Metric CORE PP1 PP2 SP1 SP2 

System level metrics 

Number of  use cases 0 20 10 25 27 

LOC 1022 4180 2635 4956 5550 

Number of  methods 202 565 525 643 704 

Method level metrics 

LOC (avg.) 4.82 7.16 4.96 7.61 7.67 

McCabe cyclomatic complexity (avg.) 1.69 2.25 1.71 2.35 2.36 

Number of  parameters (avg.) 0.72 0.72 0.64 0.73 0.80 

Percentage of  bad methods 

LOC > 50 0.00% 2.12% 0.76% 2.33% 2.27% 

McCabe cyclomatic complexity > 10 0.50% 2.30% 0.95% 2.49% 2.27% 

Number of  parameters > 5 0.99% 1.77% 0.76% 0.78% 0.57% 

4.4 Knowledge transfer 

After the project all developers were asked to evaluate for each Java package their: 

• involvement, i.e., how much did you participate in its development 

• understanding, i.e., how well do you understand its internal structure 

The scale was: none (1), little (2), some (3), quite a lot (4), very much (5). The individual 
answers are listed in Appendix F. All teams had the same ten packages originating from 
the core architecture given to them. 

H 5.1: Higher involvement in the development of  a module leads to higher understand-
ing of  that module. 

There was a high correlation (r>0.5) between the involvement and understanding for 
eight of  the ten packages, when taking into account all levels of  involvement and 
understanding. This finding supports hypothesis 5.1. 

Figure 5 shows the average number of  persons per package in the PP vs. SP teams, who 
were involved “quite a lot (4)” or “very much (5)” in the development of  the package. 
The PP teams had a higher value for six packages, the same value for two packages and a 
lower value for only two packages. In the PP teams, on average 1.3 of  the four persons 
were involved at least “quite a lot” in the development of  each package, compared to 1.1 
in the SP teams. 
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Figure 5 The distribution of  the involvement to the development of  each module. 

H 5.2: In the PP teams more developers understand each module well than in the SP 
teams.  

Figure 6 shows the average number of  persons per package in the PP vs. SP teams, who 
understood “quite a lot (4)” or “very much (5)” of  the package. The PP teams reported 
higher values for seven, the same for two and lower for one package than the SP teams. 
In the PP teams, on average 1.8 of  the four persons understood at least “quite a lot” 
about each package. In the SP teams the value was 1.4, supporting hypothesis 5.2. 
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Figure 6 The distribution of  the understanding of  each package. 

H 5.3: In the PP teams each developer understands more modules well than in the SP 
teams. 

Table 9 shows the number of  packages that the PP vs. SP developers on the average 
understood with at least a certain depth of  understanding. For example, on the average 
the developers in the PP teams understood at least “little” about 8.9 packages. The 
differences between the PP and SP teams are quite small and depend on the depth of  
understanding. When analyzing good depth of  understanding (≥4), the PP developers 
knew 32% (4.5 vs. 3.4) more packages compared to the SP developers. This supports 
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hypothesis 5.3, but one must note that for the other thresholds of  the depth of  under-
standing the situation is different. 

Table 9 The number of  the packages understood with at least a specific depth. 

Number of  packages (max=10) Depth of 
understanding Average of  PP developers (N=8) Average of  SP developers (N=8) 

≥ little (2) 8.9 8.5 
≥ some (3) 6.9 7.1 
≥ quite a lot (4) 4.5 3.4 
= very much (5) 0.8 1.0 
 

H 5.4: In the PP teams developers achieve deeper understanding of  a module than in the 
SP teams with the same amount of  involvement with that module. 

Table 10 shows the averages of  each developer’s all package evaluations. In the PP teams 
a slightly higher (2.8 vs. 2.6) involvement in the development of  different packages lead 
to a slightly higher (3.1 vs. 3.0) depth of  understanding than in the SP teams. The 
difference was larger in the involvement than in the understanding, which refutes 
hypothesis 5.4. It seems that the developers in both kinds of  teams achieve about the 
same depth of  understanding after a similar amount of  involvement. 

Table 10 The averages of  each developer’s all package evaluations.  

PP teams  SP teams 

Dev. Involvement Understanding  Dev. Involvement Understanding

P1 3.0 3.4  S1 2.6 2.7 

P2 3.0 3.0  S2 2.6 2.9 

P3 2.6 3.1  S3 2.2 2.0 

P4 3.2 3.6  S4 2.4 3.4 

P5 2.4 2.3  S5 2.8 2.7 

P6 2.7 3.2  S6 2.6 3.3 

P7 2.5 2.0  S7 3.0 3.6 

P8 3.0 4.2  S8 2.9 3.4 

Avg. 2.8 3.1  Avg. 2.6 3.0 
 

Analyzing the answers of  all individual developers increased the sample size from four 
teams to 16 developers and allowed us to make a statistical analysis of  the significance of  
the differences between pair programmers and solo programmers. According to the 
Mann-Whitney U-test (Siegel 1956) none of  the differences related to knowledge transfer 
were statistically significant, which was quite natural due to the small sample size. 

4.5 Enjoyment of  work 

H 6.1: In the PP teams developers enjoy their work more than in the SP teams. 
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After the project, the developers were asked in a web questionnaire about their feelings 
about the way their team did the development work in general (Table 11). The scale was 
from “1-It was terrible” to “5-I liked it a lot”. The most satisfied developers were in the 
SP2 team. However, seven developers in the PP teams liked the way they worked 
(answered 4 or 5), but in the SP teams only five had this opinion. Thus the data gives 
some support for H 6.1 

Table 11 The enjoyment of  the way the team did the development work. 

Team Developers’ enjoyment

PP1 {5, 4, 4, 4} 

PP2 {5, 4, 4, 2} 

SP1 {4, 3, 2, 2} 

SP2 {5, 5, 5, 5} 
 

Two other questions were also asked (Table 12). Three of  the eight developers in the PP 
teams preferred pair programming and four solo programming. However, only two 
considered pair programming the more successful choice for this kind of  a project. 

Table 12 The feelings of  the developers (N=8) in the PP teams about pair programming. 

Question PP SP Neutral

Which do you like more, pair programming or solo programming? 3 4 1 

Which do you consider better for the overall success of  this kind 
of  a project? 2 5 1 

4.6 Effort estimation 

The initial effort estimates for the use cases were made in the beginning of  an iteration 
by the team collectively. The estimates were updated just before the implementation of  
the use case by the responsible individual or pair. 

H 7.1: The PP teams estimate use case efforts more accurately than the SP teams in the 
beginning of  an iteration. 

Table 13 shows the sum of  the estimation errors for each team. Both PP teams and the 
SP1 team did quite well in the estimation in the beginning of  the iterations. The SP2 team 
spent considerably less effort than they thought. The bad estimates by the SP2 team give 
some support for hypothesis 7.1. 

Table 13 The sum of  the estimation errors for all use cases each team implemented.  

Team Sum of  the errors in the initial estimates

PP1 -61h 

PP2 -39h 

SP1 59h 

SP2 -205h 
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H 7.2: Pairs estimate use case efforts more accurately than solo programmers just before 
its implementation. 

Table 14 shows the number of  good updated estimates each team made. A good estimate 
means here that the estimate was at most 50% higher or lower than the realized effort. 
The analysis contains only use cases 1-10 that were finished by all the teams. The 
estimates made by solo programmers compared to those made by pairs are clearly better 
(SP avg. 75% vs. PP avg. 45%). The differences are almost similar even if  the first four 
use cases, where pair programming was most inefficient were removed. The finding 
contradicts with hypothesis 7.2. It may be that people are quite experienced in estimating 
their own work, but new pair programmers do not know how they should consider the 
fact that two people participate in the development work.  

Table 14 The amount of  good updated estimates (error max. 50%, use cases 1-10). 

Team Good updated estimates 

PP1 60% (6 of  10) 

PP2 30% (3 of  10) 

SP1 60% (6 of  10) 

SP2 90% (9 of  10) 

4.7 Summary 

The SP teams had clearly better project productivity. However, the difference was largely 
due to the PP teams spending considerably more effort for the first three or four use 
cases. This phenomenon was probably caused by the learning time involved before pair 
programming becomes efficient. Later in the projects the PP teams spent same or even 
slightly smaller amount of  effort for implementing use cases than the SP teams. The 
claim that pair programming would be most useful with complex tasks was not supported 
by this experiment at least from the perspective of  productivity. 

The code written by pair programmers contained fewer defects per use case when the 
teams started system testing. However, the SP teams were much more successful in 
finding and fixing the defects and in the end of  the project they delivered systems with 
lower number of  defects per use case. The code from the PP teams had slightly better 
quality measured by the method size and method complexity metrics. However, the 
explanation behind this difference may be the potential correlation of  the software size 
and these metrics. The SP teams developed larger systems, and therefore these metrics 
may show worse values for them. 

In the SP teams developers had high involvement with more packages than developers in 
the PP teams. Probably related to this, in the PP teams each package was understood well 
by more developers, and each developer understood more packages well in the PP teams. 

When asking for opinions from the developers which they like more solo programming 
or pair programming, both alternatives got about the same number of  supporters. 
However, most people liked working in projects using pair programming.  

Both PP teams and the other SP team made good initial effort estimates, but the other SP 
team made a large estimation error. However, solo programmers were more often 
successful than pair programmers with their updated estimates made just before the 
implementation of  a use case.  
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5 Evaluation of  the experiment 

This chapter analyzes different threats to the validity of  the results. Then the strengths of  
the experimental design are discussed and finally improvements to the experimental 
design are proposed.  

5.1 Threats to internal validity 

The average skill level of  the teams was balanced, but there may have still been skill 
differences affecting the performance of  the teams. The skills of  a team’s most skillful 
person may be very important in a project including learning quite a challenging new 
technology. A team may save lots of  effort when they have someone who can solve the 
hardest problems quickly. The two most experienced developers having ten years of  
programming experience were in the two most productive teams SP1 and SP2, and the 
third experienced one (eight years) in the third productive team PP1. In the last two 
teams the most experienced developer had seven or six years of  programming experi-
ence.  

The participants were not under full control of  the researcher during the project. This 
may have affected how disciplined they were in following the development practices and 
reporting requirements. It has also been proposed that pair programmers have more 
discipline in following the process, which may have caused bias between solo and pair 
programming teams. The change log data in the version control system has not been 
analyzed for cross-checking the reliability of  the time reporting data. 

The realized effort was collected per use case, but allocating the hours for a certain use 
case was not necessarily uniform between the teams when use cases related to each other 
were implemented. For example, different teams may have reported architectural work 
related to several use cases in a different way. Also some of  the hours that were reported 
to bug fixing and re-testing tasks before system testing should have been allocated to the 
related use cases. These problems did not affect the project productivity analysis, but may 
have affected the use case productivity analysis. 

The differences in the project productivity were quantified by measuring the sizes of  the 
use cases based on the average effort spend on implementing them. This is not an 
accurate measure, and for the latter use cases it may have given too small values, because 
the size was estimated based on only the efforts spend by the most productive teams. 

The analysis of  the correlation between the use case complexity and the usefulness of  
pair programming may have been be inaccurate, because the productivity of  the PP 
teams may have changed during the project in a different way than that of  the SP teams. 
The productivity may increase faster in the PP teams if  the claim of  better knowledge 
transfer is true. In addition, the learning time related to pair programming may be a 
factor increasing the productivity of  the PP teams during the project, but also making 
them less productive in the beginning of  the project. 

No guidelines were given to the teams on how to make effort estimates except that by 
whom and when they should be made. Some teams probably did not spend much 
thought for making the estimates. The tool for collecting the estimates was also clumsy, 
and some teams had to be advised during the project to enter the estimates in the system 
in a correct way. 



 Evaluation of  the experiment 40 
 

 

The acceptance testing was done by the author of  this thesis, who knew the number of  
bugs the teams had found themselves and whether a tested system was done by an SP or 
PP team. This may have biased the testing activity. 

Evaluating design quality with code metrics may have been unreliable, especially because 
the compared designs had different amount of  functionality and code in them. There is 
no common understanding about the best code metrics indicating good design, and code 
metrics may be awkwardly affected by the total size of  the software. The core architec-
ture given to the basis of  the projects also certainly affected the code metrics of  the final 
systems. 

The inquiry about the involvement to and understanding of  the packages had many 
deficiencies. It was made after the project and through the web. It is not possible to say 
how many respondents checked the source code when answering, or how much time they 
spent answering the inquiry. Respondents may have had a different understanding of  the 
scale used, e.g., they may have compared themselves to other members of  the team. The 
biggest problem is that the answers were based on opinions, not on some objective test 
of  understanding or on time reporting data of  involvement. 

5.2 Threats to external validity 

The number of  the teams was so low and the variations in the response variables within 
the SP and PP teams so high that there was no sense doing analysis of  the statistically 
significance of  the team level results. 

The requirement for using pair programming for all coding tasks was not the most 
natural and probably also not the most beneficial choice. The optimal amount of  using 
pair programming may be anywhere between using it for all development work by 
everyone and using it for nothing. 

This study did not observe how the students really did pair programming, e.g., how 
actively they switched roles and communicated during the pair programming sessions. 
The students were told on a lecture how to do pair programming, but it may not have 
been enough for becoming an efficient pair programmer. For example, Dick and Zarnett 
(2002) report about a case where switching roles did not work in spite of  frequent 
intervention by the team coach. 

The proposed benefit of  pair programming as a means of  decreasing the amount of  
external interruptions during the development work may not become as apparent in a 
student project as in a typical office environment. In this experiment each team was 
having a kind of  a meeting whenever they were doing team development sessions and 
there were not any co-workers around them. Therefore the number of  interruptions was 
by default minimized. 

Data about whether the team members were familiar with each other before the project, 
or what kind of  personalities were in each team was not collected. Differences in these 
variables may have affected the success of  the teams. Potential participants knew before 
entering the course that 50% of  the participants must use pair programming. This may 
have kept away people who are strongly against pair programming. 

The J2EE technology was new to the participants. Therefore the context was learning a 
new technology instead of  routine development with familiar technologies. However, 
learning new technologies is not uncommon even in industry projects. 
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One of  the PP teams abandoned the use of  pair programming during the project, 
because they found it inefficient when the work involved lots of  studying. They believed 
that their productivity would increase without pairing. This team was removed from the 
data analysis, because the data was not comparable. Their productivity was the worst of  
all teams. If  they had continued using pair programming and the data were included in 
the analysis, the average productivity of  the PP teams may have decreased. 

5.3 Strengths of  the experimental design 

The experiment was done in project context with a moderately large effort and co-
located teams. The requirement of  co-location is important, because it alone may 
increase the knowledge transfer within a team considerably. Co-location also enforces 
simultaneous work between the developers making the development more realistic. 

The participants quite well represented industrial professionals. Their programming 
experience was on average 4.7 years and many had worked as professional software 
developers during their studies. Also due to the content of  the course, the participants 
were students who were likely to be interested and skilled in programming work. 

The project topic and technologies enticed quite many students to voluntarily take the 
laborious course. The training and core architecture allowed the students the start real 
work quite soon, and there were almost no problems related to the requirements 
specification, core architecture or any other materials. 

One of  the participants was a graduate student, who made a special exercise by observing 
how well his team followed the process and how reliable the reported data was. His 
observations were valuable for analyzing the threats to the validity of  the results and for 
conceiving improvements to the experiment. 

Compared to what other researchers have previously been able to study, this experiment 
was worth carrying out. Ciolkowski and Schlemmer (2002) are the only researchers, 
whose experimental setting has been orderly planned and reported. However, they 
analyzed only the programming phases of  the project, not including, e.g., design activities. 
They also failed in studying any defect metrics. Williams (2000) reported her results of  
the team experiment only very shortly and Baheti et al. (2002) did not use either a 
randomized study design or similar projects for the different teams. All the other 
previous studies have concentrated on observing pairs as isolated entities. 

5.4 Improvements to the experimental design 

The long list of  threats to the validity of  the results indicates that the experimental design 
has space for improvements. The recommendations presented below are valuable for 
anyone who is thinks of  replicating this experiment or designing a similar experiment. 
Some of  the improvements can be easily implemented if  considered already when 
planning an experiment. Others require additional resources compared to the experiment 
described in this thesis.  

There should be more control on the process conformance. The researcher could 
participate to a couple of  development sessions with each team in order to ensure they 
start using the mandatory practices. The researcher should make sure during the project 
that the data is reported on time and immediately ask for missing data. Later in the 
project the pair programming sessions should be observed somehow, at least randomly.  
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There should be a couple of  exercises before the real project done by the teams in order 
to decrease the effects of  getting familiar with other team members and learning new 
tools and technologies, which may decrease the productivity in the beginning of  the 
project in a different way in different teams. In accordance with these exercises pair 
programming could be taught in practice by an on-site expert. By extending these 
exercises a little bit more the whole development process could be taught in practice by 
doing a mini iteration before the project. 

Fixing the scope of  the project instead of  effort would simplify the analysis of  design 
quality and defect counts. The students would also be even more motivated, when they 
had the possibility of  finishing the project in less than the nominal effort required for 
getting the study credits. The trade-off  is that the maximum amount of  effort that may 
be required from a team is not known in advance, and also software quality may suffer, if  
the students hurry too much in finishing the work.  

The analysis of  the design quality could be improved by reviewing certain parts of  the 
code by some external experienced developers. Even thought their findings would be 
subjective, the results might be more reliable than analysis made by code metrics. 

An alternative experimental design would be to have all teams make two projects, one 
using pair programming and another using solo programming. All teams should use pair 
programming and solo programming in the same order, because the experience of  using 
pair programming may affect how the team works afterwards more than if  the team uses 
solo programming for the first project. Two projects would allow blocking the effect of  
different teams. This design would require either doubled effort from the participants or 
smaller projects. Also another assignment should be prepared. 

Rotating the pairs only after finishing a task makes organizing the work difficult in a four- 
person team. When a pair finishes a task, the other pair is typically still working and the 
two have to find some tasks they can do alone until the other pair is ready. Rotating the 
pairs after each session would simplify the rotation, but it might be inefficient because 
one of  each pair would not be familiar with the incomplete tasks. However, I have 
interviewed an industrial four-person project team where the rotation of  the pairs after a 
constant time was considered a useful practice. 

The inquiry about the understanding of  the packages should be made in a controlled 
environment, and preferably so that the participants have the source code available. The 
complexity of  the use cases should be asked at least initially immediately after finishing a 
use case. 

Some guidelines for making the effort estimates should be taught and the estimates for 
each use case should be collected in a simpler way than into a clumsy time reporting 
system. 

If  there are top performers considerably better than the average participants they should 
not be assigned to the experimental teams unless all teams can be provided with a top 
performer with similar skills. Otherwise students of  this kind should be collected to a 
team of  their own and thus let them still participate to the course, but not the experi-
ment.  

The project was arranged as a part time course requiring about 10 hours/week. If  a full 
time project of  2-3 weeks could be arranged, it would imitate better a real software 
project. 
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5.5 Summary 

There are many threats to the validity of  the results. The threats to the internal validity 
are related to, e.g., different top performers in the teams, limited control of  the process 
conformance, difficulties in reporting work hours for different tasks in a similar way, 
measuring the scope of  the project, potentially varying productivity during the projects, 
lack of  guidelines for making effort estimates, potentially biased acceptance testing, use 
of  code metrics for evaluating design quality and too loosely controlled inquiry of  the 
understanding of  the packages. 

Threats to the external validity are related to the small number of  teams, unnatural level 
of  pair programming, lack of  data on details within pair programming sessions, superfi-
cial training of  pair programming, lack of  data about people’s familiarity with each other 
before the experiment, context as a student project, new implementation technology, and 
one of  the teams abandoning the use of  pair programming in the middle of  the experi-
ment. 

Despite of  the long list of  threats to the validity of  the results, this was one of  the first 
experiments studying pair programming in a team context. The participants were also 
quite experienced programmers, even though they were students. The materials for the 
project were of  high quality and there were no practical problems during the experiment. 
The results of  this experiment should be interpreted carefully, but lots of  ideas for 
improving the experimental design have been identified. 
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6 Conclusions 

6.1 Summary and conclusions 

This work studied the effects of  pair programming on development effort, software 
quality, knowledge transfer, enjoyment of  work, and effort estimation accuracy. The 
results certainly shed some more light on the topic, even though this experiment, like all 
the previous ones, contained several deficiencies such as the small sample size. Hopefully 
this work invites others to execute even better pair programming experiments.  

The PP teams had 29% lower project productivity than the SP teams. However, the 
reason was the considerably larger effort they spent for the first three or four use cases. 
The inefficiency was probably caused by the learning time involved in getting familiar 
with new people and with the pair programming practice. Later in the projects the PP 
teams spent 5% less effort than the SP teams for implementing the use cases. If  the 
inefficient learning time is not taken into account, the productivity of  the PP teams 
seems to be equal to that of  the SP teams. In a typical organization the learning time can 
usually be neglected because most people already know each other and at least after the 
first pair programming project are familiar with it. Even if  there still were some learning 
time involved, the cost of  a day or two per developer for the learning is insignificant. The 
claim that pair programming is most useful with complex tasks was not supported by this 
experiment at least from the perspective of  the required effort. 

The code written by pair programmers contained 8% less defects per use case when the 
responsible developers considered the code ready. However, the SP teams were much 
more successful in finding and fixing the defects and in the end of  the project they 
delivered systems with lower number of  defects per use case. This indicates that pair 
programmers write code with fewer defects, but the benefits may be lost unless careful 
system testing is performed. 

The PP teams had slightly better design quality measured by the method size and 
complexity metrics. However, the explanation may be the potential correlation between 
software size and these metrics. The PP teams developed systems with less functionality, 
and therefore these metrics may show better values for them. 

In the PP teams developers generally had high involvement with more packages than 
developers in the SP teams. Probably related to this, in the PP teams there were generally 
more developers (1.8 vs. 1.4) with good understanding of  each package, and each 
developer understood more packages (4.5 vs. 3.4) well. These differences indicate better 
knowledge transfer within the PP teams. 

Even though half  of  the developers in the PP teams enjoyed solo programming more 
than pair programming and half  vice versa, most of  them liked working in the PP teams. 
Thus developers’ feelings about pair programming should not hinder its deployment. 

Both PP teams and the other SP team made good initial effort estimates, but the other SP 
team made a large estimation error. However, solo programmers were more often 
successful than pair programmers with their updated estimates made just before the 
implementation of  a use case.  

It seems that the use of  pair programming leads to fewer defects in code after coding and 
better knowledge transfer within the development team without requiring additional 
effort if  the learning time can be avoided. These benefits are likely to decrease the further 



 Conclusions 45 
 

 

development costs of  the system and increase an organization’s productivity due to 
improved competence of  the developers. 

6.2 Future work 

I will package all the necessary materials and publish them on the web in order to provide 
more help for those interested in replicating this experiment. I believe that with only 
minor modifications the experiment package can be used for studying some other 
development practice such as test driven development. I am also planning improving the 
experimental design and then replicating the experiment with a larger number of  students 
at Helsinki University of  Technology or in co-operation with some other educational 
institution. 

My studies about pair programming will extend to case studies at companies using pair 
programming. In companies it is very challenging to arrange even quasi-experiments, but 
also case studies can give valuable information on, e.g., how pair programming should be 
done in practice. 
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Appendix A. Requirements specification 

This appendix contains the requirements specification given to the student teams. 

1. Purpose of the document 

The system to be built is a distributed, web-based, multiplayer card game gambling 
platform including implementations of certain card games.  

The intended audience of this document is described in table 1. 

Table 1. Possible readers of this document. 
Group of  the readers Reasons for reading 

System developers To understand what functions and properties the system must 
contain 

Testers To test the system against the requirements 
Project team To follow-up the status of  the project against the requirements

2. Business goals 

The customer wants to start an on-line casino for the students at HUT in order to steal 
their money before they spend them on pizza and beer. 

3. Main domain concepts 

Table 2 describes the main domain concepts and figure 1 shows the relationships 
between them. 

Table 2. Main domain concepts. 

Concept Description 
Casino Casino is the place where everything in the system happens. 

Player 

Players are the main actors in the system. They play games, form groups, 
communicate with each other etc. in the casino.  
A player can also act in the role of a group boss or a table boss for certain 
groups and tables. The boss is able to perform some additional opera-
tions. 

Group 
A group consists of  players that often play games together. Each group 
has a boss, who can invite, accept and remove members to and from the 
group. 

Account 
Each player has an account, to which he can transfer money using his 
credit card number. The account is updated when the player spends or 
wins money in the casino.  

Transaction 
Whenever a player spends money (bets in a game, or performs an 
operation) or receives money (wins in a game round) a transaction is 
stored to his account. 

Game 

There are several different games in the casino such as Black Jack, video 
poker, stud poker etc. Each game has different rules which describe how 
the game is played: e.g. dealing and changing cards, betting, hand 
comparisons, min. and max. number of  players etc. A game can be a single 
player game than is played alone or a multiplayer game that needs at least two 
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players. 

Table 

Multiplayer games are played in tables. Only one type of  game can be 
played in a table. Table is either public i.e. visible to all players or private.  
The order of seats in the table, i.e. who is sitting next to each other, is 
significant as stated in game rules. 
A player in a table may be either active or passive (not participating to a 
game round).  
One of the players in a table is the table boss. The players in a table may 
or may not belong to the same group.  

Round When a game is played there are consecutive game rounds. During one 
round the cards are dealt, (changed), bets placed and winner determined. 

  

 

Figure 1: Relationships between main domain concepts. 

4. System overview 

Casino-HUT is a distributed, web-based, multiplayer card game gambling platform. It 
allows users to play card games against each other or against computer players with or 
without money. Users can form permanent groups to simplify starting a game session. 
Users can buy game tokens by giving their credit card number and cash their wins to a 
bank account, but the system does not contain an automatic integration to the credit 
card/banking systems.  

The system is hosted by the Casino of Otaniemi. The administrator of the system can 
view reports of players, played games and cash flows.  

5. User groups 

Table 3 describes the intended users of the system.  

Table 3. Users of the system. 

User group Description Number of users 

Administrator System administrators can change "every-
thing" in the system. a couple of persons 

Player 
Players play games in the casino and may also 
perform some administrative tasks. Table and 
group bosses are also ordinary players. 

dozens 
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6. Functional requirements 

Table 4. Use cases. 

# Use case Notes 
- 0.1 register Implemented in the core. 
- 0.2 login Implemented in the core. 
1 0.3 logout   
2 1.1 start new game   
3 1.2 play poker machine   
4 1.3 transfer money   
5 2.1 modify personal information   
6 2.2 play roulette   
7 2.3 view account   
8 3.1 send message Sending to a single player only. 
9 4.1 browse account history   
10 4.2 view casinos account summary   
11 4.3 view casinos account details   
12 4.4 view players account report   
13 4.5 view top players   
14 5.1 create team   
15 5.2 explore teams   
16 5.3 send message Sending to a team. 
17 5.4 invite to team   
18 5.5 join team   
19 5.6 leave team   
- 5.7 modify team Removed before the project. 
20 5.8 request to join team   
21 6.1 accept request Accept joining both to a table and team. 
22 6.2 send message Sending to a table. 
23 6.3 invite to table   
24 6.4 join table   
25 6.5 leave table   
26 6.6 request to join table   
27 7.1 remove registered player   
28 8.1 play Indian poker   
29 9.1 play draw poker   
30 10.1 play stud poker   
31 11.1 play blackjack   
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7. Properties (quality requirements, non-functional 
requirements) 

The performance of the system must be adequate (<2 second delays on player actions) 
with at least 50 simultaneous players on 2Ghz/512Mb Win2000 server, and 
1GHz/256Mb Win2000 client. 

The reliability of the system is very important as the server will not be continuously 
monitored. 

Special care should be put to guarantee that the number of remaining bugs is as low as 
possible, because the system will be maintained by non-professionals, who will not be 
very good in fixing the system. 

The usability of the system is not an issue. Do the simplest possible user interface from 
the implementation point of view. 

8. Constraints 

8.1 Technologies 

The system must be implemented using Enterprise Java Beans (EJB) and other J2EE 
technologies. The following tools must be used: 

• J2SDK 1.4.1  

• JBoss 3.2.2  

8.2 User interface 

The user interface consists of three parts. 

Web browser Text based game 
window(s) 

Text based system info 
window 

• creating, exploring and modi-
fying groups/tables  

• viewing reports  

• sending invitations  

• sending requests for joining a 
group/table  

• administrator's operations  

• playing 
games  

• receiving on-line 
invitations  

• messages from/to 
on-line players  

Web browser 

The web browser interface should be minimalist, no fancy usability tricks are required 
and Javascript must not be used. JSP technology should be used to generate the pages. 

Text based game window 

The user interface for the games must be text based. The output must follow the one 
shown below. 
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Example: Video poker 

Select bet (1-5, 0=quit):3 
Your cards 5H, 8S, 5C, KD, QD 
Select cards to hold (1,2,3,4,5): 1 3 
Your cards: 5H, 5S, 5C, 2D, 3D 
You win 15! 
Select to double (y/n): y 
Select high or low (h/l): h 
Card 4h. You lose! 

Select bet (1-5, 0=quit):3 
... 

Example: 5 card stud poker 

Your cards 5H, 8S  
Mikko's cards XX, QD 

Mikko raises 5, pot=5 
Check, raise, drop (c, r [1-10], d):r 10 
Mikko checks 10, pot=30  

Your cards 5H, 8S, KS  
Mikko's cards XX, QD,9S 

Pass, raise (p, r [1-10]):r 10 
Mikko raises 5, pot=50 
Check, raise (c, r [1-10]):c 

Your cards 5H, 8S, KS, 5S  
Mikko's cards XX, QD,9S, 6S 

...  

9. References 

Name of  the document URL 
General poker rules http://www.casino-info.com/gambling_tips/poker.html 
Draw poker rules http://www.pagat.com/jerrycooley/drawpoker.html 
Stud poker rules http://www.pagat.com/jerrycooley/studpoker.html 
Video poker example http://www.pelaamo.ray.fi/pelit/jokeripokeri.html 
Poker hand ranking http://www.pagat.com/vying/pokerrank.html 
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Appendix B. An example of  a use case description  

This appendix contains one of  the use case descriptions given to the student teams. 

Play poker machine 

Short description 
The actor plays poker machine. 

Actors 
Player. 

Preconditions 
The actor is logged on and has a valid session. 

Postconditions 
The actor’s winnings or losses are updated to his account. 

Trigger 
The actor chooses to play poker machine. 

Normal flow 
The actor may play several rounds. System displays the actor’s account balance and 
current bet. Bet is initially 1 euro, but between rounds actor may choose a bet of  1, 2, 3, 4 
or 5 euros.  

The actor starts a round. System deals actor 5 cards from one freshly shuffled 52-card 
deck. The actor selects any number of  cards to keep. System deals new cards to replace 
discarded cards. The actor wins or loses according to following table: 

Combination Win (including bet!)
Straight flush (e.g. 3-4-5-6-7 of  spades) 20x 
Four of  a kind (e.g. 4 jacks) 15x 
Full house (e.g. 3 tens and 2 eights) 8x 
Flush (e.g. all hearts) 4x 
Straight (e.g. 4-5-6-7-8 regardless of  suit) 3x 
Three of  a kind (e.g. 3 fives) 2x 
Two pairs (e.g. 2 fives and to sevens) 2x 

Alternative flows, errors 
If  the actor doesn’t have enough money on his account, system displays an error 
message. 

If  there is a database or communication error, a descriptive error message is shown. 

Features not to be implemented 
- 
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Appendix C. An example of  an HTML layout 

This appendix contains one of  the HTML layouts given to the students teams. The 
layouts were provided as static HTML pages, which the teams had to implement as 
dynamically generated pages. 
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Appendix D. Project plan 

This appendix contains the partially written project plan given to the student teams. It 
contains the guidelines for the development process. 

Project Plan 

This is a partially completed template of a project plan. Remove/replace texts in italics when completing 
the plan. 

1. Introduction 

1.1 Purpose and scope of project 

The purpose of the project is to build an on-line casino software for the Casino of 
Otaniemi. The project includes developing, testing and delivering the software, which is 
described in the requirements specification written by the customer. Project effort is 
limited to N hours during which a maximum amount of value for the customer should be 
produced.  

1.2 Terminology and definitions 

None, yet. 

2. Stakeholders and staffing 

2.1 Project group 

Present the actual project group; the members and their contact information (Name,  
Telephone, E-mail) 

2.2 Other stakeholders 

Customer:N.N.  

3. Goals and end criteria 

3.1 Goals of the customer 

Goal Verification criteria 

1. Team follows the defined work practices Analyzing data from CVS and time report-
ing system and produced documentation. 

2. Team reports their work in a disciplined 
fashion 

Analyzing data from CVS and time report-
ing system and produced documentation. 

3. Number of  bugs in the delivered system 
is as low as reasonably possible 

Number of  bugs found by an objective 
tester after the project. 

4. Amount of  implemented features is as 
great as possible Number of  features implemented. 

5. No effort is wasted on unnecessary 
things not forced in the process or 
requirements specification 

Analyzing data from the time reporting 
system. 
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3.2 Project abort criteria  

Project is cancelled if any member of the group is not able to put the required amount of 
effort in the project.  

3.3 Project end criteria 

The project ends on the day defined in the schedule in section 6. 

4. Resources and budget 

4.1 Personnel 

The first version of the project plan should contain estimates of the hours each individual group member 
will spend on the project on various weeks. The amount should be roughly the same between all members. 
If personal absences are known beforehand, they should be noted here as restrictions and be considered 
when dividing effort.  

Plan the time and location for all group sessions in advance. Fill each member's hours for each week 
(group session hours + personal hours). 

Wk 
Session 

1  
Session 

2 
Session 

3 
Session 

4 
Member 

1 
Member 

2 
Member 

3 
Member 

4 
Total

1 lecture lecture     9 (0+9) 9(0+9) 9 (0+9) 9 (0+9) 36 

2 lecture       11 
(0+11)

11 
(0+11)

11 
(0+11)

11 
(0+11) 44 

3 
Mo 8-13 

T-bld       10 (5+5) 10 (5+5) 10 (5+5) 10 (5+5) 40 

4 
Mo 9-12 
A218 

We 9-12 
A218 

Th 15-18 
A218   12 (9+3) 12 (9+3) 12 (9+3) 12 (9+3) 48 

5 
Mo 8-11 
X123 

We 8-12 
X123 

Th 8-11 
X123   12 

(10+2)
12 

(10+2) 
12 

(10+2) 
12 

(10+2) 48 

6                   
7                   
8                   
9                   
10                   
11                   
T         120 120 120 120 480

4.2 Materials 

Key hardware resources and premises where the work is done should be listed here. If the availability of 
these resources is not self-evident the restrictions must be documented. 

5. Work practices and tools 

This section lists all practices, methods, and tools used in the project. Each chosen topic and its 
application to the project must be listed and shortly discussed here.  
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5.1 Practices 

Describe here all planned work practices at least briefly. The following practices are mandatory for all 
teams. 

Work organization an planning 

Co-located team and group sessions. The team must do all development work 
together in group sessions lasting 4-8 hours. Each person may spend max. 20 hours for 
personal work during the project (weeks 3-11), e.g. for studying technologies and tools, 
but no production code may be developed during the personal time. 

Iteration planning 

Iteration planning must be done in the beginning of iterations 1 and 2. 

In the beginning of Iteration 1 the team takes one requirement at a time in the priority 
order and estimates collectively the effort required to implement (=design, code, unit test 
and comment code) it. This is repeated until the team is sure it has estimated more 
requirements than they can implement in the iteration. The estimates are stored in 
Trapoli (Modify Tasks: Est. Effort field) for the corresponding tasks (each requirement 
has a corresponding task). In the beginning of Iteration 2 those requirements that were 
not already implemented are re-estimated, and enough new ones estimated. 

In addition, the team plans tasks, which are not related to implementing individual 
requirements and estimates their effort. Such tasks are, e.g., meetings, architectural code, 
system testing, bug fixing after system testing and documenting. New tasks and their 
effort estimates are stored into the Trapoli system. 

After the iteration planning, the plan must be copy-pasted from Trapoli to section 6 of 
the project plan. 

Iteration execution 

1. Make the minimum architecture. In the beginning of an iteration, do the minimum 
core architecture required for those requirements that you believe you are able to 
implement during that iteration. Don't spend too much time on this, but try to do and 
report most architectural work later as a part of implementing individual requirements. 

2. Pick a requirement. A person/pair takes a requirement from the top of the require-
ments list. Preferably only one person/pair is responsible for implementing a certain 
requirement, but when unavoidable (e.g. in the beginning of the project) you may split 
one requirement to several tasks that are concurrently made by several persons/pairs. 

3. Implement the requirement. First, spend a few minutes re-estimating how much it will 
take from you/the pair to implement the requirement, and store the new estimate as the 
first effort left value for the task in Trapoli, i.e. add a row (hours done=0.1, hours 
left=[new estimate]). Then design, code, unit test and comment the code of the require-
ment.  

A person/pair is responsible for the work, but of course may ask help from other team 
members. If the specs are ambiguous or the team considers it is not able to implement a 
requirement, contact t76633-customer#soberit.hut.fi and describe your problem. 
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4. Repeat steps 2-3 until all hours reserved for implementing the requirements during the 
iteration have been used. Complete a partially finished requirement, even if the hours run 
out during its implementation.  

5. Execute system testing and fix bugs. 

6. Update the technical specification. 

7. If you are still below the allocated hours for the iteration, e.g. because no time was 
needed for bug fixing, implement one more requirement and test it. 

Development 

Collective ownership. Anyone in the team is allowed to change any code. 

Version control. Source code must be managed using CVS version control system 
through Eclipse. Changes must be committed to the repository at least whenever a 
requirement has been both coded and successfully unit tested. CVS server provided by 
the course must be used, or otherwise a zipped project repository must be delivered in 
the same way as project documentation in the end of iterations. 

Pair programming. (PP TEAMS) All production code and unit tests must be written by 
two persons sitting in front of one computer. The pairs must be actively switched, but 
preferably after completing a requirement. Of course both pairs do not finish their work 
at the same time. In these cases you can either do some (non-programming work) alone 
for a while or switch pairs in the middle of implementing a requirement. The maximum 
amount of time for programming without changing the partner is 12 hours.  

Pair programming. (NON-PP TEAMS) You are not allowed to implement a whole 
requirement with another person sitting with you on the same workstation. You are 
allowed to communicate frequently with other members, and even implement some parts 
of the requirement together, if you find it useful. If you work together with another 
person, you must always track the following thing: how many minutes, who participated, 
what requirement.  

Coding standard. Sun's Coding Conventions for the Java Programming Language must 
be followed everywhere in the code. 

Unit testing. Unit tests must be written to all reasonable places in the source code. Unit 
tests must be written using EJBUnit or JUnit.  

System testing. In the end of each implementation iteration, the produces system must 
be tested. Each team member must spend 3 hours for running ad-hoc tests for all 
implemented requirements based on the requirements specification.  

Reporting 

Time reporting. Time reporting must be done using the Trapoli system. By default it 
contains a task for each requirement in the requirement specification. Teams must add 
other required tasks to the system. The effort estimates done in the beginning of an 
iteration must also be reported to the system (planned hours field). Realized effort must 
be reported after each working session. 

The hours spent before the actual project on lectures and doing personal exercises must 
not be reported to Trapoli. 
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Bug reporting. Bug reporting must be done to a text-file/Excel sheet (see template). All 
bugs found in the system are reported, except those that are related to the code of a 
requirement currently under development. 

Source code size reporting. Lines of code (LOC) must be calculated in the end of 
iterations. A program called CCCC is used to calculate the LOC. 

Documentation. The following documents must be produced: 
• A short project plan (this document refined)  

• Reasonable code comments for all relevant methods  

• A short technical specification (system overview, architecture, design principles, 
high-level module descriptions, …). The level of  detail should be defined based 
on what the team considers useful for their own purposes during the develop-
ment.  

• Final report (see template, contains e.g. summaries of  effort used, bug counts, 
LOC, evaluation of  the developed system, course feedback)  

Documents must be delivered in HTML format to the course via the delivery system by 
23:59 on Sunday in the end of project planning and implementation iterations. 

Forbidden things 

You are not allowed to use existing code related to the business domain of the exercise 
except the code given to you by the course organizers. However, you are allowed to use 
small code snippets e.g. patterns related to the architectural solutions of the system from 
J2EE textbooks or other public sources. 

Non-pair programming teams are encouraged not to search for and read material about 
pair programming during the project. 

5.2 Tools 

List tools used in the project. 

• Eclipse 2.1  
• Ant  
• CVS 1.11  
• J2EE SDK 1.4  
• JBoss 3.2  
• MS Frontpage for documentation?  
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6. Phasing 

This section lists the phases of the project, their deliverables and any critical dates during the phases. The 
project must follow the schedule presented below. N=number of people in the group. 

6.1 Tentative schedule 

Week Event Effort

1-2 Training   

1-2 

Training sessions 
• Tu 17.2. 14-15: course overview, 15-18: J2EE lecture (Servlets, 

JSPs), HelloWorld-exercise  
• Th 19.2. 14-18: development technologies: J2EE lecture (EJBs) and 

more advanced exercise  
• Tu 24.2. 14-16: J2EE design patterns, 16-18: core architecture and 

use cases  
• Th 26.2. 14-15: development process, 15-17: tools, 17-18.30: pair 

programming (only for pp groups)  
Personal studying  

• exercises (6h)  

N*20h

3 Project planning iteration   
3 Project planning and studying  N*5h
3 High level architectural design N*5h
x.y. DL: Project plan, architectural design   
4-7 Iteration 1   
4 Iteration planning N*1h
4-6 Design & implementation N*30h
7 System testing, bug fixing N*8h
x.y. DL: Project plan, architectural design   
8-11 Iteration 2   
8 Iteration planning N*1h
8-10 Design & implementation N*30h
11 System testing, bug fixing N*15h
x.y. DL: Project plan, architectural design   

6.2 Project planning 

Goals: 

• Plan when, how much and where the team works  
• Read the requirements specification  
• Study the new technologies, practices, and tools  
• Study the provided EJB example  
• Complete the project plan based on the pre-filled template (this document)  
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• Do quick high-level architectural design and prototyping based on the require-
ments specification. Design is refined later when implementing the individual re-
quirements.  

Deliverables: 

• project plan  
• a draft of  the technical specification  

6.3 Iteration 1 & 2 

Goals: 

• Implement (design, code, test) as many requirements as possible  
• Execute system testing and fix bugs found  

Deliverables: 

• technical specification  
• software (in CVS)  
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Appendix E. Inquiry forms 

This appendix contains the inquiry forms filled by the participants before and after the 
project. 

Inquiry 1: Background information 

Please, answer the following questions. The data is used to form groups with equal 
programming experience. 

Name 

 

Student ID 

 

How much programming experience do you have? 
Sum up the periods of calendar time you have been actively programming (related to 
work, studies or hobbies). 

I have programmed about years, of which about years using Java. 

How much pair programming experience do you have? 
select  

Evaluate your skills as a programmer against other computer science students at 
HUT? 

select  

What is your average grade from programming intensive courses at HUT? 

about (e.g. 4.2) 
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Inquiry 2: Final Inquiry 

Please answer the following questions carefully. Answering the open questions (text 
areas) is not mandatory, but I would appreciate a lot all comments you have. 

Identification 

Student ID  

 

Development work in general 

Estimate how much work you did co-located with: 

0 other members % 

1 other members % 

2 other members % 

3 other members % 

Did you like the way your team did the development work in general? 
Select  

Why/why not? 

 

What do you think were the major factors that affected (positively or negatively) the 
productivity or quality of work in you team? 
E.g. were you team sessions successful (why/why not), were there some external factors 
that affected the project? 

 

Pair programming 

Did you enjoy doing pair programming? 
Select  

Why/why not? 
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 Which do you like more, pair programming or programming alone? 
Select  

Which do you consider better for the overall success of this kind of a project: pair 
programming or programming alone? 

Select  

Any comments on pair programming vs. programming alone? 

 

Use cases 

Evaluate the intellectual difficulty of the implementation work of the use cases? 
For example 

• if  a use cases required a very clever solution, but then the total effort was small, 
select "very difficult"  

• if  a use case required lots of  easy work, select "easy"  

I did not code it  0.3_logout  
I did not code it  1.1_start_new_game  
I did not code it  1.2_play_pokermachine  
I did not code it  1.3_transfer_money  
I did not code it  2.1_modify_personal_information  
I did not code it  2.2_play_roulette  
I did not code it  2.3_view_account  
I did not code it  3.1_send_message (to a single player) 
I did not code it  4.1_browse_account_history  
I did not code it  4.2_view_casinos_account_summary  
I did not code it  4.3_view_casinos_account_details  
I did not code it  4.4_view_players_account_report  
I did not code it  4.5_view_top_players  
I did not code it  5.1_create_group  
I did not code it  5.2_explore_groups  
I did not code it  5.3_send_message (to a group)  
I did not code it  5.4_invite_to_group  
I did not code it  5.5_join_group  
I did not code it  5.6_leave_group  
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I did not code it  5.7_modify_group  
I did not code it  5.8_request_to_join_group  
I did not code it  6.1_accept_request (table and group)  
I did not code it  6.2_send_message (to a table) 
I did not code it  6.3_invite_to_table  
I did not code it  6.4_join_table  
I did not code it  6.5_leave_table  
I did not code it  6.6_request_to_join_table  
I did not code it  7.1_remove_registered_player  
I did not code it  8.1_play_indian_poker  
I did not code it  9.1_play_draw_poker  

 

Modules 
Evaluate for each module (defined by subdirectories in the source code tree): 

• your involvement, i.e. how much did you participate in its development  

• understanding, i.e. how well do you understand its internal structure  

• quality of  code, i.e. quality of  internal structure and module design  

 

 Module Involvement Understanding Quality of Code 

account Select Select Select  
admin Select Select Select  
client Select Select Select  
game Select Select Select  
groups Select Select Select  
messaging Select Select Select  
servlet Select Select Select  
tag Select Select Select  
tools Select Select Select  
user Select Select Select  



 Appendix F. Detailed data  F-1 
 

 

Appendix F. Detailed data 

Table 1 Effort (hours) spent for each finished use case. 

# Use case name PP1 PP2 SP1 SP2 
1 UC_0.3_logout 8.1 15.6 2.0 6.8 
2 UC_1.1_start_new_game 42.1 42.0 15.5 26.1 
3 UC_1.2_play_pokermachine 40.1 56.6 14.3 23.5 
4 UC_1.3_transfer_money 26.1 12.0 15.0 14.2 
5 UC_2.1_modify_personal_information 7.1 7.0 12.1 3.4 
6 UC_2.2_play_roulette 21.1 30.0 16.8 19.0 
7 UC_2.3_view_account 8.1 2.0 3.5 1.1 
8 UC_3.1_send_message 1.1 2.0 9.1 7.3 
9 UC_4.1_browse_account_history 19.1 12.2 27.6 10.6 
10 UC_4.2_view_casinos_account_summary 10.1 20.2 26.2 11.4 
11 UC_4.3_view_casinos_account_details 6.1  6.1 3.3 
12 UC_4.4_view_players_account_report 11.1 4.7 9.3 
13 UC_4.5_view_top_players 12.1  3.1 14.7 
14 UC_5.1_create_group 5.1  9.0 15.9 
15 UC_5.2_explore_groups 8.1  4.6 5.5 
16 UC_5.3_send_message 12.1 16.5 6.3 
17 UC_5.4_invite_to_group 6.1 15.6 9.2 
18 UC_5.5_join_group 1.6 12.1 3.9 
19 UC_5.6_leave_group 0.6 3.1 2.4 
20 UC_5.8_request_to_join_group 2.1 2.1 2.9 
21 UC_6.1_accept_request 5.6 7.4 
22 UC_6.2_send_message   3.0 
23 UC_6.3_invite_to_table 10.3 7.0 
24 UC_6.4_join_table 3.9 6.8 
25 UC_6.5_leave_table 8.0 5.4 
26 UC_6.6_request_to_join_table 2.1 8.1 
27 UC_7.1_remove_registered_player  12.4 
28 UC_8.1_play_indian_poker   
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Table 2 The evaluations of  the involvement in and understanding of  the Java packages. 

Packages 
Developer 

Involvement Understanding 
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PP1 4 4 1 3 3 2 3 3 3 4 4 4 1 4 4 2 4 4 3 4
PP2 3 2 2 4 3 2 4 4 3 3 3 2 2 4 3 2 4 4 3 3
PP3 4 1 1 3 2 3 4 3 1 4 4 2 1 4 3 3 4 4 2 4
PP4 2 4 4 4 4 2 3 4 1 4 2 4 4 4 4 3 4 5 1 5
PP5 3 1 1 4 2 2 4 3 1 3 4 1 1 3 2 2 3 3 1 3
PP6 3 3 1 4 2 1 4 4 2 3 3 3 1 4 2 3 5 4 3 4
PP7 3 3 1 3 1 2 4 3 2 3 2 2 1 2 1 2 3 3 2 2
PP8 4 4 1 3 5 1 4 4 1 3 5 5 3 4 5 4 4 4 4 4
SP1 2 3 1 3 2 4 3 3 2 3 2 3 1 3 3 3 4 3 2 3
SP2 2 1 1 3 4 1 3 5 3 3 3 2 1 3 4 2 3 5 3 3
SP3 5 5 1 1 1 1 5 1 1 1 4 4 1 1 1 1 5 1 1 1
SP4 1 1 1 4 5 4 3 3 1 1 3 4 2 4 5 3 3 4 3 3
SP5 2 4 2 3 3 4 3 3 2 2 3 4 2 3 4 2 2 3 2 2
SP6 3 2 1 4 3 2 4 4 2 1 4 3 1 3 4 4 5 5 3 1
SP7 3 1 2 4 5 2 4 3 3 3 4 1 3 4 5 3 4 4 3 5
SP8 2 2 1 4 4 2 4 4 3 3 3 3 2 4 4 3 4 5 3 3

  

Scale for the answers: 

1 - None 

2 - Little 

3 - Some 

4 - Quite a lot 

5 - Very much 


