
On Coloring Embedded Graphs

Alexandre Nolin

CISPA Helmholtz Center for Information Security (for 81⁄2 hours)

AMG@DISC 2025 – Berlin, 31.10.2025

Primarily based on joint works [FHN24, FHN25] with

Maxime Flin MagnúsM. Halldórsson

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 1/38

Local and Congest

Local Congest

2

7

F

C
4

D

9

5

A

8

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

8
4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

8
4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8
4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8

5

4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8

F

5

4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38

∆+ 1-Coloring problem

Goal: starting from an initially
uncolored graph G = (V ,E), assign a
color to each node s.t. adjacent nodes
receive distinct colors.

Formally: compute an assignment φ
giving colors to the nodes

φ : V → [∆ + 1]

s.t. φ(u) ̸= φ(v) for each edge uv ∈ E .

∆: maximum degree of the graph, given to the nodes.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 3/38

∆+ 1-Coloring problem

Goal: starting from an initially
uncolored graph G = (V ,E), assign a
color to each node s.t. adjacent nodes
receive distinct colors.

Formally: compute an assignment φ
giving colors to the nodes

φ : V → [∆ + 1]

s.t. φ(u) ̸= φ(v) for each edge uv ∈ E .

∆: maximum degree of the graph, given to the nodes.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 3/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 4/38

Agenda for this talk

1. Explain state-of-the-art randomized coloring in LOCAL.

2. Wonder which parts break down in the embedded graph setting.

3. Talk about some nice ideas enabling almost-as-fast⋆ randomized coloring
algorithms for embedded graphs in Congest as in Local.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 5/38

Before we actually see some algorithms

Any questions at this point?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 6/38

Randomized ∆ + 1-coloring: some milestones and the state-of-the-art
Result Source

O(log n) Luby [Lub86]

3-coloring rings requires Ω(log∗ n) Naor [Nao91]

Arguably simpler O(log n) Johansson [Joh99]

O(log∆ +
√
log n)

Schneider and
Wattenhofer [SW10]

O(log∆ + log log n + Tdet,d1lc(poly log n,O(log n)))
Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(
√
log∆ + Trand,d1lc(n,O(log n) · 2O(

√
log ∆)))

Harris, Schneider, and
Su [HSS18]

Tdet,∆+1(n,∆) < Trand,∆+1(2
n2 ,∆)

Chang, Kopelowitz, and
Pettie [CKP19]

O(log∗ ∆+Tdet,d1lc(poly log n, poly log n))
Chang, Li, and
Pettie [CLP20]

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 7/38

Randomized ∆ + 1-coloring: some milestones and the state-of-the-art
Result Source

O(log n) Luby [Lub86]

3-coloring rings requires Ω(log∗ n) Naor [Nao91]

Arguably simpler O(log n) Johansson [Joh99]

O(log∆ +
√
log n)

Schneider and
Wattenhofer [SW10]

O(log∆ + poly log log n)
Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(
√
log∆ + poly log log n)

Harris, Schneider, and
Su [HSS18]

Tdet,∆+1(n,∆) < Trand,∆+1(2
n2 ,∆)

Chang, Kopelowitz, and
Pettie [CKP19]

poly log log n, O(log∗ n) if ∆ > logc n
(c a large enough universal constant)

Chang, Li, and
Pettie [CLP20]

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 7/38

Dealing with congestion

Some previously mentionned results work directly in Congest [Lub86, Joh99, BEPS16].

First poly log log n algorithm by Halldórsson, Kuhn, Maus, and Tonoyan [HKMT21]

First O(log∗ n) algorithm for ∆ > logc n by Halldórsson, N., and Tonoyan [HNT22]

Several works on distance-2 coloring [HKM20, HKMN20, FHN23], ultimately achieving
poly log log n complexity.

Congest with broadcast communication, complexity poly log log n by Flin, Ghaffari,
Halldórsson, Kuhn, and N. [FGH+23]

Deterministic O(∆4)-coloring distance-2 coloring in O(log∆ + log∗ n), and more, by
Barenboim and Goldenberg [BG24]

Main works for today: [FHN24, FHN25] achieving ∆ + 1-coloring of virtual graphs (notably
cluster graphs) in poly log log n rounds, O(log∗ n) when ∆ > logc n.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 8/38

Dealing with congestion

Some previously mentionned results work directly in Congest [Lub86, Joh99, BEPS16].

First poly log log n algorithm by Halldórsson, Kuhn, Maus, and Tonoyan [HKMT21]

First O(log∗ n) algorithm for ∆ > logc n by Halldórsson, N., and Tonoyan [HNT22]

Several works on distance-2 coloring [HKM20, HKMN20, FHN23], ultimately achieving
poly log log n complexity.

Congest with broadcast communication, complexity poly log log n by Flin, Ghaffari,
Halldórsson, Kuhn, and N. [FGH+23]

Deterministic O(∆4)-coloring distance-2 coloring in O(log∆ + log∗ n), and more, by
Barenboim and Goldenberg [BG24]

Main works for today: [FHN24, FHN25] achieving ∆ + 1-coloring of virtual graphs (notably
cluster graphs) in poly log log n rounds, O(log∗ n) when ∆ > logc n.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 8/38

A state-of-the-art Local algorithm

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 9/38

Step 1: Almost-clique decomposition
Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1− ε)∆ neighbors.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 10/38

Step 1: Almost-clique decomposition
Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1− ε)∆ neighbors.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 10/38

Step 1: Almost-clique decomposition
Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1− ε)∆ neighbors.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 10/38

Step 1: Almost-clique decomposition
Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1− ε)∆ neighbors.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 10/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

-4 uncolored neighbors

for -2 colors

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

-4 uncolored neighbors

for -2 colors

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 11/38

Step 3 continued: generating slack by colorful matching

Find missing edges inside almost-cliques, try to assign equal colors to both ends.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 12/38

Step 3 continued: generating slack by colorful matching

Find missing edges inside almost-cliques, try to assign equal colors to both ends.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 12/38

Step 3 continued: generating slack by colorful matching

Find missing edges inside almost-cliques, try to assign equal colors to both ends.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 12/38

Step 2: Put-aside sets

Used in almost-cliques with very few external edges and missing internal edges.

Nodes whose coloring is delayed until the very end. Provides flexibility when color
redundancies are not an option.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 13/38

Step 2: Put-aside sets

Used in almost-cliques with very few external edges and missing internal edges.

Nodes whose coloring is delayed until the very end. Provides flexibility when color
redundancies are not an option.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 13/38

Step 2: Put-aside sets

Used in almost-cliques with very few external edges and missing internal edges.

Nodes whose coloring is delayed until the very end. Provides flexibility when color
redundancies are not an option.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 13/38

Step 4: Synchronized Color Trials

Dense nodes are mostly in competition with nodes in their almost-cliques.

LEADER

Coordinating colors tried in almost-cliques leaves few nodes uncolored.

(putting a small thing under the rug here, feel free to ask about it later)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 14/38

Step 4: Synchronized Color Trials

Dense nodes are mostly in competition with nodes in their almost-cliques.

Coordinating colors tried in almost-cliques leaves few nodes uncolored.

(putting a small thing under the rug here, feel free to ask about it later)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 14/38

Step 4: Synchronized Color Trials

Dense nodes are mostly in competition with nodes in their almost-cliques.

Coordinating colors tried in almost-cliques leaves few nodes uncolored.

(putting a small thing under the rug here, feel free to ask about it later)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 14/38

Step 5: Coloring almost everything

Everything until now had one goal:

that uncolored nodes have ×(1 + Ω(1)) more available colors than (active)
uncolored neighbors.

Technique of Schneider and Wattenhofer [SW10] for coloring in O(log∗ n) rounds in
that situation: try increasing amounts of colors (up to Θ(log n)) as the degree of nodes
goes down.

Intuition: suppose every node has ≥ C available colors, and ≤ d neighbors. Let
x = C/(2d). If every node tries x colors at random, it is colored w.p. ≥ 1− 2−x .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 15/38

Step 6: Coloring put-aside sets

But we left a few nodes uncolored...

...but they are organized into low-diameter sets that can be colored independently from
one another. O(1) extra rounds to finish.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 16/38

Step 6: Coloring put-aside sets

But we left a few nodes uncolored...

...but they are organized into low-diameter sets that can be colored independently from
one another. O(1) extra rounds to finish.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 16/38

A state-of-the-art Local algorithm (restated)

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

Time for CONGEST and cluster graphs!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 17/38

A state-of-the-art Local algorithm (restated)

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

Time for CONGEST and cluster graphs!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 17/38

Before adding congestion

Questions on this LOCAL algorithm?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 18/38

Recalling our goal

Nodes are partitioned into constant-diameter clusters.
Adjacent clusters must receive distinct colors.
Edges can only carry O(log n) bit messages
The maximum degree of the cluster graph, ∆, is given. The degree is not with
multiplicity.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 19/38

Recalling our goal

Nodes are partitioned into constant-diameter clusters.
Adjacent clusters must receive distinct colors.
Edges can only carry O(log n) bit messages
The maximum degree of the cluster graph, ∆, is given. The degree is not with
multiplicity.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 19/38

Group exercise

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

What could go wrong in CONGEST, especially with cluster graphs?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 20/38

Issue 1: no access to neighbor’s colors

V (v)

e

“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 21/38

Issue 1: no access to neighbor’s colors

V (v)

e

“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 21/38

Issue 1: no access to neighbor’s colors

V (v)

e

“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 21/38

Issue 1: no access to neighbor’s colors

V (v)

e

“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 21/38

Issue 2: no access to degree

e

V (v)

Redeeming fact: we are given ∆, and will be able to estimate the degree using
randomness.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 22/38

Issue 2: no access to degree

e

V (v)

Redeeming fact: we are given ∆, and will be able to estimate the degree using
randomness.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 22/38

Issue 3: no access to neighborhood similarities

Describing a neighborhood is Θ(∆ log n) bits. Comparing neighborhoods might require
channeling this much information through few links.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 23/38

Issue 3: no access to neighborhood similarities

Describing a neighborhood is Θ(∆ log n) bits. Comparing neighborhoods might require
channeling this much information through few links.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 23/38

Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38

Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38

Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38

Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

end

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

end

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

start

end

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 25/38

Issue 6: can’t color put-aside sets at the end

Two reasons:

• no knowledge of the colors used by their neighbors,

• need to synchronize between themselves, and they can’t learn the edges
connecting them.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 26/38

Issue 6: can’t color put-aside sets at the end

Two reasons:

• no knowledge of the colors used by their neighbors,

• need to synchronize between themselves, and they can’t learn the edges
connecting them.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 26/38

Issue 6: can’t color put-aside sets at the end

Two reasons:

• no knowledge of the colors used by their neighbors,

• need to synchronize between themselves, and they can’t learn the edges
connecting them.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 26/38

Fingerprints

Important for: computing almost-cliques, estimating their density, colorful matching

High-level idea: each cluster v computes a Θ(log n)-bit vector fv , combining two
fingerprints fv and fw allows to estimate the size of N(v) ∪ N(w).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 27/38

Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 5 24 4 8 1 3

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 28/38

Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 24 4 8 1 3

5

6

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 28/38

Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 24 4 8 1 3 6

5

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 28/38

Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 24 4 8 1 3 6

5

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 28/38

Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 24 4 8 1 3 6

5

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 28/38

Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x] = 2−x . Let Y = maxi Xi .

Pr[Y < x] = (1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x] ≤
∑

i Pr[Xi ≥ x] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 29/38

Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x] = 2−x . Let Y = maxi Xi .

Pr[Y < x] =

(1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x] ≤

∑
i Pr[Xi ≥ x] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 29/38

Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x] = 2−x . Let Y = maxi Xi .

Pr[Y < x] = (1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x] ≤

∑
i Pr[Xi ≥ x] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 29/38

Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x] = 2−x . Let Y = maxi Xi .

Pr[Y < x] = (1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x] ≤
∑

i Pr[Xi ≥ x] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 29/38

Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x] = 2−x . Let Y = maxi Xi .

Pr[Y < x] = (1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x] ≤
∑

i Pr[Xi ≥ x] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 29/38

Fingerprints: construction

For each element e ∈ [m], use the randomness to build T ∈ Θ(log n/ε2) geometric
random variables Xe,1, . . . ,Xe,t .

Store in memory t values Y1, . . . ,Yt , where Yi = maxe∈S Xe,i is taking the maximum
of the i th geometric random variables of the elements seen so far in the stream.

With high probability, the Yi ’s are concentrated around log|S |. This gives an
estimation of |S |, and makes them easy to store.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 30/38

Fingerprints: construction

For each element e ∈ [m], use the randomness to build T ∈ Θ(log n/ε2) geometric
random variables Xe,1, . . . ,Xe,t .

Store in memory t values Y1, . . . ,Yt , where Yi = maxe∈S Xe,i is taking the maximum
of the i th geometric random variables of the elements seen so far in the stream.

With high probability, the Yi ’s are concentrated around log|S |. This gives an
estimation of |S |, and makes them easy to store.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 30/38

Fingerprints: construction

For each element e ∈ [m], use the randomness to build T ∈ Θ(log n/ε2) geometric
random variables Xe,1, . . . ,Xe,t .

Store in memory t values Y1, . . . ,Yt , where Yi = maxe∈S Xe,i is taking the maximum
of the i th geometric random variables of the elements seen so far in the stream.

With high probability, the Yi ’s are concentrated around log|S |. This gives an
estimation of |S |, and makes them easy to store.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 30/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!
Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!

Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!

[0, 1, 1, 2, 0]

[0, 0, 2, 3, 1]

[3, 1, 1, 0, 2]

[0, 0, 2, 0, 1]

[1, 0, 3, 0, 2]

[0, 0, 1, 0, 0]

[2, 0, 5, 1, 2]

Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 31/38

Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

BFS in an almost-clique: allows to count its
exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
Θ(∆/ log n) random groups, each able
to broadcast/aggregate Θ(log n) bits in
O(1) rounds.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 32/38

Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

BFS in an almost-clique: allows to count its
exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
Θ(∆/ log n) random groups, each able
to broadcast/aggregate Θ(log n) bits in
O(1) rounds.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 32/38

Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.

BFS in an almost-clique: allows to count its
exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
Θ(∆/ log n) random groups, each able
to broadcast/aggregate Θ(log n) bits in
O(1) rounds.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 32/38

Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.

BFS in an almost-clique: allows to count its
exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
Θ(∆/ log n) random groups, each able
to broadcast/aggregate Θ(log n) bits in
O(1) rounds.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 32/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

4

2

0

0

0

0

0
1

1

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

0,4,4

0,2,4

4,4,4

2,4,4

0,4,4

0,4,4

1,4,4 0,1,4

1,4,4

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Sampling anti-edges with fingerprints

0,4,4

0,2,4

4,4,4

2,4,4

0,4,4

0,4,4

1,4,4 0,1,4

1,4,4

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 33/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

438

252

195

619

740

213

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

4

3

1

5

6

2

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

4

3

1

5

6

2

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

4

3

1

5

6

2

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 34/38

What next...

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 35/38

Still unsolved or under the rug

Coloring put-aside sets:

Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges:

A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples:

Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 36/38

Still unsolved or under the rug

Coloring put-aside sets: Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges:

A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples:

Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 36/38

Still unsolved or under the rug

Coloring put-aside sets: Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges: A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples:

Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 36/38

Still unsolved or under the rug

Coloring put-aside sets: Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges: A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples:

Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 36/38

Still unsolved or under the rug

Coloring put-aside sets: Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges: A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples: Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 36/38

Concluding

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 37/38

Ending remarks

What have we learned?

1. Can perform distance-2 coloring in O(log∗ n) rounds when ∆ > logc n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?

1. Harder coloring problems remain open: list-coloring, ∆-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Ending remarks

What have we learned?

1. Can perform distance-2 coloring in O(log∗ n) rounds when ∆ > logc n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?

1. Harder coloring problems remain open: list-coloring, ∆-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Ending remarks

What have we learned?

1. Can perform distance-2 coloring in O(log∗ n) rounds when ∆ > logc n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?

1. Harder coloring problems remain open: list-coloring, ∆-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Ending remarks

What have we learned?

1. Can perform distance-2 coloring in O(log∗ n) rounds when ∆ > logc n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?

1. Harder coloring problems remain open: list-coloring, ∆-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider.
The locality of distributed symmetry breaking.
Journal of the ACM, 63(3):20:1–20:45, 2016.

Leonid Barenboim and Uri Goldenberg.
Speedup of distributed algorithms for power graphs in the CONGEST model.
In the Proceedings of the International Symposium on Distributed Computing
(DISC), volume 319 of LIPIcs, pages 6:1–6:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024.

Jaroslaw Blasiok.
Optimal streaming and tracking distinct elements with high probability.
ACM Trans. Algorithms, 16(1):3:1–3:28, 2020.

Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie.
An exponential separation between randomized and deterministic complexity in the
LOCAL model.
SIAM J. Comput., 48(1):122–143, 2019.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Yi-Jun Chang, Wenzheng Li, and Seth Pettie.
Distributed (∆ + 1)-coloring via ultrafast graph shattering.
SIAM Journal of Computing, 49(3):497–539, 2020.

Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and
Alexandre Nolin.
Coloring fast with broadcasts.
In the Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 455–465. ACM, 2023.

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Fast coloring despite congested relays.
In the Proceedings of the International Symposium on Distributed Computing
(DISC), 2023.

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

In the Proceedings of the International Symposium on Distributed Computing
(DISC), volume 319, pages 24:1–24:22, 2024.

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Decentralized distributed graph coloring: Cluster graphs.
In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 394–405. ACM, 2025.

Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus.
Distance-2 coloring in the CONGEST model.
In PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, August 3-7, 2020, pages 233–242, 2020.

Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin.
Coloring fast without learning your neighbors’ colors.
In 34th International Symposium on Distributed Computing, DISC 2020, October
12-16, 2020, Virtual Conference, pages 39:1–39:17, 2020.

Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Efficient randomized distributed coloring in CONGEST.
In the Proceedings of the ACM Symposium on Theory of Computing (STOC),
pages 1180–1193. ACM, 2021.
Full version at CoRR abs/2105.04700.

Magnús M. Halldórsson and Alexandre Nolin.
Superfast coloring in CONGEST via efficient color sampling.
Theor. Comput. Sci., 948:113711, 2023.

Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan.
Overcoming congestion in distributed coloring.
In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 26–36. ACM, 2022.

David G. Harris, Johannes Schneider, and Hsin-Hao Su.
Distributed (∆ + 1)-coloring in sublogarithmic rounds.
Journal of the ACM, 65:19:1–19:21, 2018.

Öjvind Johansson.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

Simple distributed ∆ + 1-coloring of graphs.
Inf. Process. Lett., 70(5):229–232, 1999.

M. Luby.
A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

Moni Naor.
A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM J. Discret. Math., 4(3):409–412, 1991.

Johannes Schneider and Roger Wattenhofer.
A new technique for distributed symmetry breaking.
In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 257–266. ACM, 2010.

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 38/38

	Appendix

