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Local and Congest
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• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

8
4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

2

7

F

C
4

D

9

5

A

8

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

8
4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8
4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8

5

4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



Local and Congest

Local Congest

F

2

7

C

9

A

D

5

D

F

2

7

9

C

A

8

5

4

F

2

7

C

9

A

D

5

D

8

F

5

4

• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 2/38



∆+ 1-Coloring problem

Goal: starting from an initially
uncolored graph G = (V ,E ), assign a
color to each node s.t. adjacent nodes
receive distinct colors.

Formally: compute an assignment φ
giving colors to the nodes

φ : V → [∆ + 1]

s.t. φ(u) ̸= φ(v) for each edge uv ∈ E .

∆: maximum degree of the graph, given to the nodes.
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Embedded graphs

Power graphs Cluster graphs

The graph to color H is not the communication graph G , but

• for any node or edge of H, there is a machine in G “in charge” of that node or
edge,

• the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.
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Agenda for this talk

1. Explain state-of-the-art randomized coloring in LOCAL.

2. Wonder which parts break down in the embedded graph setting.

3. Talk about some nice ideas enabling almost-as-fast⋆ randomized coloring
algorithms for embedded graphs in Congest as in Local.
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Before we actually see some algorithms

Any questions at this point?
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Randomized ∆ + 1-coloring: some milestones and the state-of-the-art
Result Source

O(log n) Luby [Lub86]

3-coloring rings requires Ω(log∗ n) Naor [Nao91]

Arguably simpler O(log n) Johansson [Joh99]

O(log∆ +
√
log n)

Schneider and
Wattenhofer [SW10]

O(log∆ + log log n + Tdet,d1lc(poly log n,O(log n)))
Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(
√
log∆ + Trand,d1lc(n,O(log n) · 2O(

√
log ∆)))

Harris, Schneider, and
Su [HSS18]

Tdet,∆+1(n,∆) < Trand,∆+1(2
n2 ,∆)

Chang, Kopelowitz, and
Pettie [CKP19]

O(log∗ ∆+Tdet,d1lc(poly log n, poly log n))
Chang, Li, and
Pettie [CLP20]
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Arguably simpler O(log n) Johansson [Joh99]

O(log∆ +
√
log n)

Schneider and
Wattenhofer [SW10]

O(log∆ + poly log log n)
Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(
√
log∆ + poly log log n)

Harris, Schneider, and
Su [HSS18]

Tdet,∆+1(n,∆) < Trand,∆+1(2
n2 ,∆)

Chang, Kopelowitz, and
Pettie [CKP19]

poly log log n, O(log∗ n) if ∆ > logc n
(c a large enough universal constant)

Chang, Li, and
Pettie [CLP20]
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Dealing with congestion

Some previously mentionned results work directly in Congest [Lub86, Joh99, BEPS16].

First poly log log n algorithm by Halldórsson, Kuhn, Maus, and Tonoyan [HKMT21]

First O(log∗ n) algorithm for ∆ > logc n by Halldórsson, N., and Tonoyan [HNT22]

Several works on distance-2 coloring [HKM20, HKMN20, FHN23], ultimately achieving
poly log log n complexity.

Congest with broadcast communication, complexity poly log log n by Flin, Ghaffari,
Halldórsson, Kuhn, and N. [FGH+23]

Deterministic O(∆4)-coloring distance-2 coloring in O(log∆ + log∗ n), and more, by
Barenboim and Goldenberg [BG24]

Main works for today: [FHN24, FHN25] achieving ∆ + 1-coloring of virtual graphs (notably
cluster graphs) in poly log log n rounds, O(log∗ n) when ∆ > logc n.
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A state-of-the-art Local algorithm

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets
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Step 1: Almost-clique decomposition
Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1− ε)∆ neighbors.
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Step 3: Generate slack

Having nodes try a color at random results in redundancies (slack) in sparse parts.

Also works for dense nodes with some neighbors outside their almost-clique.
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-4 uncolored neighbors

for -2 colors

Also works for dense nodes with some neighbors outside their almost-clique.
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Step 3 continued: generating slack by colorful matching

Find missing edges inside almost-cliques, try to assign equal colors to both ends.
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Step 2: Put-aside sets

Used in almost-cliques with very few external edges and missing internal edges.

Nodes whose coloring is delayed until the very end. Provides flexibility when color
redundancies are not an option.
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Step 4: Synchronized Color Trials

Dense nodes are mostly in competition with nodes in their almost-cliques.

LEADER

Coordinating colors tried in almost-cliques leaves few nodes uncolored.

(putting a small thing under the rug here, feel free to ask about it later)
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Step 5: Coloring almost everything

Everything until now had one goal:

that uncolored nodes have ×(1 + Ω(1)) more available colors than (active)
uncolored neighbors.

Technique of Schneider and Wattenhofer [SW10] for coloring in O(log∗ n) rounds in
that situation: try increasing amounts of colors (up to Θ(log n)) as the degree of nodes
goes down.

Intuition: suppose every node has ≥ C available colors, and ≤ d neighbors. Let
x = C/(2d). If every node tries x colors at random, it is colored w.p. ≥ 1− 2−x .
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Step 6: Coloring put-aside sets

But we left a few nodes uncolored...

...but they are organized into low-diameter sets that can be colored independently from
one another. O(1) extra rounds to finish.
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A state-of-the-art Local algorithm (restated)

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

Time for CONGEST and cluster graphs!
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Before adding congestion

Questions on this LOCAL algorithm?
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Recalling our goal

Nodes are partitioned into constant-diameter clusters.
Adjacent clusters must receive distinct colors.
Edges can only carry O(log n) bit messages
The maximum degree of the cluster graph, ∆, is given. The degree is not with
multiplicity.
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Group exercise

1. Compute an Almost-Clique Decomposition

2. Compute Put-Aside Sets in the densest almost-cliques

3. Generate some Slack

4. Color most nodes in almost-cliques by Synchronized Color Trials

5. Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials

6. Extend the coloring to the Put-Aside Sets

What could go wrong in CONGEST, especially with cluster graphs?
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Issue 1: no access to neighbor’s colors

V (v)

e

“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.
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Issue 2: no access to degree

e

V (v)

Redeeming fact: we are given ∆, and will be able to estimate the degree using
randomness.
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Issue 3: no access to neighborhood similarities

Describing a neighborhood is Θ(∆ log n) bits. Comparing neighborhoods might require
channeling this much information through few links.
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Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38



Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38



Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38



Issue 4: can’t centralize decisions at a leader (SCT)

Up to Θ(∆ log∆) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?

On Coloring Embedded Graphs – A. Nolin – AMG@DISC 2025 – Berlin, 31.10.2025 24/38



Issue 5: can’t send multiple colors

A set of Θ(log n) colors between 1 and ∆ + 1 takes Θ(log n · log∆) bits to represent.

Fix known from earlier work: pseudorandom samples [HN23, HNT22]

∆+ 1

⌈log(∆ + 1)⌉
(initial node)

+Θ(log n)
(Θ(log n)-step random walk)

+Θ(log n)
(taking a subset)
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Issue 6: can’t color put-aside sets at the end

Two reasons:

• no knowledge of the colors used by their neighbors,

• need to synchronize between themselves, and they can’t learn the edges
connecting them.
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Fingerprints

Important for: computing almost-cliques, estimating their density, colorful matching

High-level idea: each cluster v computes a Θ(log n)-bit vector fv , combining two
fingerprints fv and fw allows to estimate the size of N(v) ∪ N(w).
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Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate F0,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

5 5 24 4 8 1 3

Trivial, exact solutions: log
(m
F0

)
≤ min(n logm,m).

Claim: given access to a large source of randomness, can estimate (1± ε)F0 using
O(ε−2 log n) bits w.p. 1− 1/ poly(n).
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Fingerprints: building block

Consider k independent geometric random variables X1, . . . ,Xk : for each
i ∈ [k], x ∈ N, Pr[Xi ≥ x ] = 2−x . Let Y = maxi Xi .

Pr[Y < x ] = (1− 2−x)k ≤ exp(−k · 2−x) .

Pr[Y ≥ x ] ≤
∑

i Pr[Xi ≥ x ] ≤ k · 2−x .

Conclusion: Pr[|Y − log k | > 4] < 1/10 .
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Fingerprints: construction

For each element e ∈ [m], use the randomness to build T ∈ Θ(log n/ε2) geometric
random variables Xe,1, . . . ,Xe,t .

Store in memory t values Y1, . . . ,Yt , where Yi = maxe∈S Xe,i is taking the maximum
of the i th geometric random variables of the elements seen so far in the stream.

With high probability, the Yi ’s are concentrated around log|S |. This gives an
estimation of |S |, and makes them easy to store.
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Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done!
Taking the point-wise max of two finger-
prints gives a fingerprint of the union.

|N(u)∪N(v)| ≫ min(|N(u)|, |N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v .

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...
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Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.

[3, 1, 2, 3, 2]

[3, 1, 2, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 3, 2]

[3, 1, 5, 1, 2]

[2, 0, 5, 1, 2]

[2, 0, 5, 1, 2]

BFS in an almost-clique: allows to count its
exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
Θ(∆/ log n) random groups, each able
to broadcast/aggregate Θ(log n) bits in
O(1) rounds.
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Sampling anti-edges with fingerprints

Idea: max in neighborhood ̸= max in almost-clique ⇒ anti-edge found!

With t ∈ Θ(log n) geometric random variables, find Θ(t) anti-edges w.h.p.
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Sampling anti-edges with fingerprints
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Synchronizing color trials, distributedly

1 2 3 4 5 6 7 8 9free:

Look at set of colors unused in the almost-
clique (the clique palette). [FGH+23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i .

+ bunch of routing, etc...
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What next...
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Still unsolved or under the rug

Coloring put-aside sets:

Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges:

A lot is done by sampling
random “relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ≈ ∆ neighbors in the almost-clique. If
every node picks one of Θ(∆/ log n) random groups, every node has Θ(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples:

Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.
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Concluding
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Ending remarks

What have we learned?

1. Can perform distance-2 coloring in O(log∗ n) rounds when ∆ > logc n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?

1. Harder coloring problems remain open: list-coloring, ∆-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!
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