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A + 1-Coloring problem

Goal: starting from an initially
uncolored graph G = (V, E), assign a
color to each node s.t. adjacent nodes
receive distinct colors.

Formally: compute an assignment ¢
giving colors to the nodes

p: V= [A+1]

s.t. ¢(u) # (v) for each edge uv € E.

A: maximum degree of the graph, given to the nodes.
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® the machines in charge of a node and its edges have a small depth spanning tree
connecting them.
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The graph to color H is not the communication graph G, but

® for any node or edge of H, there is a machine in G "in charge” of that node or
edge,

® the machines in charge of a node and its edges have a small depth spanning tree
connecting them.

For the rest of the talk, keep cluster graphs as the working example.



Agenda for this talk

1. Explain state-of-the-art randomized coloring in LOCAL.
2. Wonder which parts break down in the embedded graph setting.

3. Talk about some nice ideas enabling almost-as-fast* randomized coloring
algorithms for embedded graphs in CONGEST as in LOCAL.



Before we actually see some algorithms
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Randomized A + 1-coloring: some milestones and the state-of-the-art

Result Source
O(log n) Luby [Lub86]
3-coloring rings requires Q(log* n) Naor [Nao91]
Arguably simpler O(log n) Johansson [Joh99]
O(log A + +/Tog 1) Schneider and

Wattenhofer [SW10]

Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(log A + log log n + Taet,a11c(poly log n, O(log n)))

O(Vlog A + Trana,at1c(n, O(log n) - 20( |°gA))) Harrlséus[cﬂggfg]ry o

Chang, Kopelowitz, and
Pettie [CKP19]

] Chang, Li, and
O(log® A + Taet at1c(poly log n, poly log n)) Pettieg [CLP20]

Taer.a41(m A) < Tranaat1(27,4)
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Result Source
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Arguably simpler O(log n) Johansson [Joh99]
O(log A + +/Tog 1) Schneider and

Wattenhofer [SW10]

Barenboim, Elkin, Pettie,
and Schneider [BEPS16]

O(log A + poly log log n)

Harris, Schneider, and
O(y/log A + poly log log n) ISu [HSSIlS]

Chang, Kopelowitz, and

’72
Taet,041(1 A) < Trana,a11(27, A) Pettie [CKP19]

poly loglog n, O(log™ n) if A > log®n Chang, Li, and
c a large enough universal constant ettie
I h uni I Pettie [CLP20




Dealing with congestion

Some previously mentionned results work directly in CONGEST [Lub86, Joh99, BEPS16].
First poly log log n algorithm by Halldérsson, Kuhn, Maus, and Tonoyan [HKMT21]
First O(log™ n) algorithm for A > log® n by Halldérsson, N., and Tonoyan [HNT22]

Several works on distance-2 coloring [HKM20, HKMN20, FHN23], ultimately achieving
poly log log n complexity.

CONGEST with broadcast communication, complexity poly log log n by Flin, Ghaffari,
Halldérsson, Kuhn, and N. [FGHT23]

Deterministic O(A%*)-coloring distance-2 coloring in O(log A + log™* n), and more, by
Barenboim and Goldenberg [BG24]
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First poly log log n algorithm by Halldérsson, Kuhn, Maus, and Tonoyan [HKMT21]
First O(log™ n) algorithm for A > log® n by Halldérsson, N., and Tonoyan [HNT22]

Several works on distance-2 coloring [HKM20, HKMN20, FHN23], ultimately achieving
poly log log n complexity.

CONGEST with broadcast communication, complexity poly log log n by Flin, Ghaffari,
Halldérsson, Kuhn, and N. [FGHT23]

Deterministic O(A%*)-coloring distance-2 coloring in O(log A + log™* n), and more, by
Barenboim and Goldenberg [BG24]

Main works for today: [FHN24, FHN25] achieving A + 1-coloring of virtual graphs (notably
cluster graphs) in poly log log n rounds, O(log* n) when A > log® n.



ok W=

A state-of-the-art LOCAL algorithm

Compute an Almost-Clique Decomposition

Compute Put-Aside Sets in the densest almost-cliques

Generate some Slack

Color most nodes in almost-cliques by Synchronized Color Trials

Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials
Extend the coloring to the Put-Aside Sets
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Step 1: Almost-clique decomposition

Partition nodes as dense or sparse according to the number of edges in their
neighborhood.

Dense nodes form low-diameter subgraphs called, almost-cliques, where members
pairwise share > (1 — &)A neighbors.
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Having nodes try a color at random results in redundancies (slack) in sparse parts.
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Step 3 continued: generating slack by colorful matching

Find missing edges inside almost-cliques, try to assign equal colors to both ends.
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Step 2: Put-aside sets

Used in almost-cliques with very few external edges and missing internal edges.

Nodes whose coloring is delayed until the very end. Provides flexibility when color
redundancies are not an option.
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Step 4: Synchronized Color Trials

Dense nodes are mostly in competition with nodes in their almost-cliques.

Coordinating colors tried in almost-cliques leaves few nodes uncolored.

(putting a small thing under the rug here, feel free to ask about it later)



Step 5: Coloring almost everything

Everything until now had one goal:

that uncolored nodes have x(1 + Q(1)) more available colors than (active)
uncolored neighbors.

Technique of Schneider and Wattenhofer [SW10] for coloring in O(log* n) rounds in
that situation: try increasing amounts of colors (up to ©(log n)) as the degree of nodes
goes down.

Intuition: suppose every node has > C available colors, and < d neighbors. Let
x = C/(2d). If every node tries x colors at random, it is colored w.p. > 1 — 27,



Step 6: Coloring put-aside sets

But we left a few nodes uncolored...



Step 6: Coloring put-aside sets

But we left a few nodes uncolored...

...but they are organized into low-diameter sets that can be colored independently from
one another. O(1) extra rounds to finish.
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A state-of-the-art LOCAL algorithm (restated)

Compute an Almost-Clique Decomposition

Compute Put-Aside Sets in the densest almost-cliques

Generate some Slack

Color most nodes in almost-cliques by Synchronized Color Trials

Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials
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A state-of-the-art LOCAL algorithm (restated)

Compute an Almost-Clique Decomposition
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Generate some Slack

Color most nodes in almost-cliques by Synchronized Color Trials
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ok wwh =

Time for CONGEST and cluster graphs!



Before adding congestion
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Recalling our goal

Nodes are partitioned into constant-diameter clusters.

Adjacent clusters must receive distinct colors.

Edges can only carry O(log n) bit messages

The maximum degree of the cluster graph, A, is given. The degree is not with

multiplicity.
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Group exercise

Compute an Almost-Clique Decomposition

Compute Put-Aside Sets in the densest almost-cliques

Generate some Slack

Color most nodes in almost-cliques by Synchronized Color Trials

Extend the coloring to all nodes except the Put-Aside Sets with multi-color trials
Extend the coloring to the Put-Aside Sets

ok wwh =

What could go wrong in CONGEST, especially with cluster graphs?



Issue 1: no access to neighbor’s colors
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EIEd " EINES|

[X]

£
“Trying a random available color” can be costly.

Redeeming fact: “trying” a color is still fine.

BT [X[X] ]




Issue 2: no access to degree




Issue 2: no access to degree

Redeeming fact: we are given A, and will be able to estimate the degree using
randomness.



Issue 3: no access to neighborhood similarities




Issue 3: no access to neighborhood similarities

Describing a neighborhood is ©(A log n) bits. Comparing neighborhoods might require
channeling this much information through few links.
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Up to ©(Alog A) bits to send, which might need to go through very few links.

Routing issue: giving color to the right recipient?
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Issue 6: can't color put-aside sets at the end

Two reasons:
® no knowledge of the colors used by their neighbors,

® need to synchronize between themselves, and they can't learn the edges
connecting them.
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Two reasons:
® no knowledge of the colors used by their neighbors,

® need to synchronize between themselves, and they can't learn the edges
connecting them.



Fingerprints

Important for: computing almost-cliques, estimating their density, colorful matching

High-level idea: each cluster v computes a ©(log n)-bit vector f,, combining two
fingerprints f, and f,, allows to estimate the size of N(v)U N(w).



Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate Fgp,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)
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Fingerprints: a detour through streaming

Consider a stream of n numbers between 1 and m.
Goal: estimate Fgp,the number of seen distinct elements, using as little memory as
possible. (0-th frequency moment)

\

DHEOEEEED
OO EOEE

W@* .

Trivial, exact solutions: log () < min(nlogm, m).
Claim: given access to a large source of randomness, can estimate (1 £ ¢)Fy using
O(¢72log n) bits w.p. 1 — 1/ poly(n).




Fingerprints: building block

Consider k independent geometric random variables Xi, ..., Xk: for each
i €[k],x € N, Pr[X;i > x] =27%. Let Y = max; X;.
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Fingerprints: building block

Consider k independent geometric random variables Xi, ..., Xk: for each
i €[k],x € N, Pr[X;i > x] =27%. Let Y = max; X;.

PriY < x] = (1 —27)k < exp(—k-27%) .
PrlY > x] < > .PriX;i > x] < k-27*.

Conclusion: Pr[|Y —logk| > 4] <1/10.
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For each element e € [m], use the randomness to build T € O(log n/c?) geometric
random variables X¢ 1,..., Xe ;.



Fingerprints: construction

For each element e € [m], use the randomness to build T € O(log n/c?) geometric
random variables X¢ 1,..., Xe ;.

Store in memory t values Y7,..., Y, where Y; = maxecs Xe ;i is taking the maximum
of the ith geometric random variables of the elements seen so far in the stream.



Fingerprints: construction

For each element e € [m], use the randomness to build T € O(log n/c?) geometric
random variables X¢ 1,..., Xe ;.

Store in memory t values Y7,..., Y, where Y; = maxecs Xe ;i is taking the maximum
of the ith geometric random variables of the elements seen so far in the stream.

With high probability, the Y;'s are concentrated around log|S|. This gives an
estimation of |S|, and makes them easy to store.



Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].
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Fingerprints: distributedly

In streaming, this is not enough: still need to replace the large randomness by a hash
function [Bla20].

But in distributed, we are done! '
Taking the point-wise max of two finger-

prints gives a fingerprint of the union.

[2.0.5‘1.2]\‘

IN(u)UN(v)| > min(|N(u)|, [N(v)|) will be
detected using fingerprints at links connect-
ing the clusters u and v.

Unlocks almost-clique decomposition, esti-
mating number of missing edges in almost-
cliques, number of external neighbors...




Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.
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Communicating in almost-cliques

Once we know which links connect cluster in the same almost-cliques, many things
open up.
BFS in an almost-clique: allows to count its

exact size, number of colored nodes, sum
values...

Can partition almost-cliques into
©(A/logn) random groups, each able
to broadcast/aggregate ©(logn) bits in
O(1) rounds.
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Sampling anti-edges with fingerprints
4,4,4

Idea: max in neighborhood # max in almost-clique = anti-edge found!

With t € ©(log n) geometric random variables, find ©(t) anti-edges w.h.p.



Sampling anti-edges with fingerprints

4,4,4
0,4,4 O 2,4,4
o O
0,2,4 :
o 0,4,4
O
O :"
0,4,4 : O 1,4,4
O O

1,4,4 0,1,4
Idea: max in neighborhood # max in almost-clique = anti-edge found!

With t € ©(log n) geometric random variables, find ©(t) anti-edges w.h.p.
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Synchronizing color trials, distributedly

Look at set of colors unused in the almost-
clique (the clique palette). [FGH™23,
FHN23]

Uncolored nodes randomly permute them-
selves, node number i tries free color num-
ber i.

+ bunch of routing, etc...



What next...

————— ’\<"f

We're going to need a iger rug !
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Still unsolved or under the rug

Coloring put-aside sets: Instead of a trivial solution based on “learning everything”,
we use color swaps inside almost-cliques.

Routing colors to neighbors, finding anti-edges: A lot is done by sampling
random ‘relay clusters”, tasked with forwarding part of the information.

Intuition: every node in an almost-clique has ~ A neighbors in the almost-clique. If
every node picks one of ©(A/ log n) random groups, every node has ©(log n)
neighbors in each group w.h.p. Divide the work between the groups.

Pseudorandom color samples: Pseudorandom samples are much simpler when
everyone agrees on the overall sampling space. We enforce this by reserving some
colors for late in the algorithm.
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Ending remarks

What have we learned?
1. Can perform distance-2 coloring in O(log™ n) rounds when A > log® n.

2. In general, we can perform distributed coloring as a series of
“broadcast/aggregate” operations.

What should be done next?
1. Harder coloring problems remain open: list-coloring, A-coloring...

2. Forget about coloring with congestion for a while, take the techniques elsewhere.

Thank you for attending!
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