
Massively Parallel Algorithms
for Relaxations of MIS

Shreyas Pai
IIT Madras

1

Algorithms for Massive Graphs 2024

Maximal Independent Set

2

Maximal Independent Set

2

• An independent set such that
every node is within hop from
some node in .

I
1

I

Maximal Independent Set

2

• An independent set such that
every node is within hop from
some node in .

I
1

I

Massively Parallel Computing

3

Massively Parallel Computing

3

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

3

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

• Each machine has local memory of
 words.M = Õ(n)

3

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

• Each machine has local memory of
 words.M = Õ(n)

• In each round each machine can:

3

Round t

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

• Each machine has local memory of
 words.M = Õ(n)

• In each round each machine can:

• Receive at most words.M

3

Round tRound t − 1

M

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

• Each machine has local memory of
 words.M = Õ(n)

• In each round each machine can:

• Receive at most words.M

• Send at most words. M

3

Round tRound t − 1 Round t + 1

M M

Massively Parallel Computing
• Input: -node graph distributed across a set

of machines.
n

• Each machine has local memory of
 words.M = Õ(n)

• In each round each machine can:

• Receive at most words.M

• Send at most words. M

• Process input in size chunks at a time.Õ(n)

3

Round tRound t − 1 Round t + 1

M M

MIS in MPC

4

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

• Not sure if this is optimal…

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

• Not sure if this is optimal…

• This talk: can we simplify MIS slightly and get optimal algorithms?

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

• Not sure if this is optimal…

• This talk: can we simplify MIS slightly and get optimal algorithms?

• 2-Ruling Sets: Cambus, Kuhn, P., and Uitto DISC 2023.

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

MIS in MPC

• rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

• Not sure if this is optimal…

• This talk: can we simplify MIS slightly and get optimal algorithms?

• 2-Ruling Sets: Cambus, Kuhn, P., and Uitto DISC 2023.

• Correlation Clustering: Cambus, Kuhn, Lindy, P., and Uitto SODA 2024.

4

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018

Streaming Model

5

Streaming Model
• Input graph is fixed before the algorithm begins.

5

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

5

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e3

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e4e3

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4e3

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e6e3

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3

• Measure of efficiency: space

Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3

• Measure of efficiency: space

• Happy if we use at most space.Õ(n)

MIS in Streaming

6

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

6

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

• Typically interested in single pass or pass algorithms.O(1)

6

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

• Typically interested in single pass or pass algorithms.O(1)

• This algorithm is optimal! [AKNS24]

6

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

• Typically interested in single pass or pass algorithms.O(1)

• This algorithm is optimal! [AKNS24]

• passes is required for space.O(log log n) Õ(n)

6

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

• Typically interested in single pass or pass algorithms.O(1)

• This algorithm is optimal! [AKNS24]

• passes is required for space.O(log log n) Õ(n)

• Also in this talk:

6

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming
• Can solve in passes. [ACG+15]O(log log n)

• Typically interested in single pass or pass algorithms.O(1)

• This algorithm is optimal! [AKNS24]

• passes is required for space.O(log log n) Õ(n)

• Also in this talk:

• Can we get space with fewer passes for the relaxed problems?Õ(n)

6[AKNS24] Assadi, Konrad, Naidu, Sundaresan, STOC 2024
[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

Relaxation 1: Ruling Sets

7

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

7

β = 1

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

7

β = 1

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

7

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

7

β = 2

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

• Easier to compute as becomes larger.β

7

β = 2

Relaxation 1: Ruling Sets

• A -ruling set is an independent set
such that every node is within hops
from some node in (for integer).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

• Easier to compute as becomes larger.β

• 2-RS is the “hardest” relaxation.

7

β = 2

Why Care About Ruling Sets?

8

Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

8

Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

• Applications to clustering problems like metric facility location.

8

Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

• Applications to clustering problems like metric facility location.

• Create a conflict graph on the set of facilities.

8

Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

• Applications to clustering problems like metric facility location.

• Create a conflict graph on the set of facilities.

• Compute a -ruling set on the conflict graph.β

8

Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

• Applications to clustering problems like metric facility location.

• Create a conflict graph on the set of facilities.

• Compute a -ruling set on the conflict graph.β

• Gives an -approximation.O(β)

8

Main Result for Ruling Sets

Can be implemented in:

• Linear-memory MPC: rounds whp.

• Congested Clique: rounds whp.

• Streaming: passes whp, with space (insertion-only).

O(1)

O(1)

O(1) O(n)

9

A randomized las-vegas algorithm that computes a 2-ruling set.

High Level View

10

G

High Level View

10

G

S

High Level View
• Choose a set of nodes such that

 has edges.
S

G[S] O(n)

10

G

S

High Level View
• Choose a set of nodes such that

 has edges.
S

G[S] O(n)

• Send to a single machine
which computes an MIS.

G[S]

10

G

S

High Level View
• Choose a set of nodes such that

 has edges.
S

G[S] O(n)

• Send to a single machine
which computes an MIS.

G[S]

• The MIS is a 2-RS on .S ∪ N(S)

10

G

S

High Level View
• Choose a set of nodes such that

 has edges.
S

G[S] O(n)

• Send to a single machine
which computes an MIS.

G[S]

• The MIS is a 2-RS on .S ∪ N(S)

• Rinse and repeat until all nodes are
covered.

• Repeatedly identify and process
linear sized subgraphs.

10

Sampling a Sparse Hitting Set

11

Sampling a Sparse Hitting Set

11

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

11

u v
1

deg(u) ⋅ deg(v)

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

11

u v
1

deg(u) ⋅ deg(v)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

11

u v

≤
1

deg(u)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

11

 has at most edges in expectation!G[S] n

u v

≤
1

deg(u)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

12

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

12

 has at most edges in expectation.G[S] n

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent.

12

 has at most edges in expectation.G[S] n

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent.

• Cannot use standard Chernoff bounds.

12

 has at most edges in expectation.G[S] n

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent.

• Cannot use standard Chernoff bounds.

• We use the method of bounded differences to show concentration.

12

 has at most edges in expectation.G[S] n

Add each vertex to with probability u S
1

deg(u)

Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent.

• Cannot use standard Chernoff bounds.

• We use the method of bounded differences to show concentration.

• Technicality: need (can reduce max degree, no problem!)Δ < n1/9

12

 has at most edges in expectation.G[S] n

Add each vertex to with probability u S
1

deg(u)

Method of Bounded Differences

13

Method of Bounded Differences

• An variable function has Bounded Differences Property if changing the
coordinate only changes by at most .

n f kth

f (X) ck

13

Method of Bounded Differences

• An variable function has Bounded Differences Property if changing the
coordinate only changes by at most .

n f kth

f (X) ck

• Consider independent random variables . Then for any :X1, X2, …, Xn t > 0

13

Method of Bounded Differences

• An variable function has Bounded Differences Property if changing the
coordinate only changes by at most .

n f kth

f (X) ck

• Consider independent random variables . Then for any :X1, X2, …, Xn t > 0

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)

13

Method of Bounded Differences

14

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

|G[S] | ≤ 2n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

−n2
|G[S] | ≤ 2n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

(4) Since , we have .Δ ≤ n1/9 ck ≤ n1/9

−n2
|G[S] | ≤ 2n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

(4) Since , we have .Δ ≤ n1/9 ck ≤ n1/9

−n2

n1+2/9
|G[S] | ≤ 2n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

(4) Since , we have .Δ ≤ n1/9 ck ≤ n1/9

−n2

n1+2/9
= 2 exp (−n1−2/9)|G[S] | ≤ 2n

Method of Bounded Differences

14

Pr[| f(X) − μ | ≥ t] ≤ 2 exp (−t2

∑n
k=1 c2

k)
(1) is the indicator random variable for event .Xu u ∈ S

(2) number of edges in .f (X) = G[S]

(3) and we can set .μ ≤ n t = n

(4) Since , we have .Δ ≤ n1/9 ck ≤ n1/9

−n2

n1+2/9
= 2 exp (−n1−2/9) ≪

1
poly(n)

|G[S] | ≤ 2n

Which Nodes are Hit?

15

Which Nodes are Hit?
• High degree nodes are less likely to be

sampled themselves.

15

Which Nodes are Hit?
• High degree nodes are less likely to be

sampled themselves.

• Good: many low-degree neighbors.

15

2

2

2

3

Which Nodes are Hit?
• High degree nodes are less likely to be

sampled themselves.

• Good: many low-degree neighbors.

• Bad: many high-degree neighbors.

15

2

2

2

3

11

20

10

15

Which Nodes are Hit?
• High degree nodes are less likely to be

sampled themselves.

• Good: many low-degree neighbors.

• Bad: many high-degree neighbors.

15

Node is good if v ∑
u∈N(v)

1
deg(u)

> log deg(v)

2

2

2

3

11

20

10

15

Which Nodes are Hit?
• High degree nodes are less likely to be

sampled themselves.

• Good: many low-degree neighbors.

• Bad: many high-degree neighbors.

15

Node is good if v ∑
u∈N(v)

1
deg(u)

> log deg(v)

Otherwise is badv

2

2

2

3

11

20

10

15

Classification So Far

16

Classification So Far

16

Classification So Far

16

Good Bad

Classification So Far

16

Good Bad

Classification So Far

17

∈ S ∪ N(S)

Set Aside

Classification So Far

18

∈ S ∪ N(S)

Set Aside

Recurse

Set Aside

Classification So Far

18

∈ S ∪ N(S)

Set Aside

Recurse

Set Aside

Classification So Far

18

∈ S ∪ N(S)

Set Aside

Recurse

Set Aside

O(n) O(n)

Classification So Far

19

∈ S ∪ N(S)

Set Aside
Set Aside

Classification So Far

19

∈ S ∪ N(S)

Set Aside
Set Aside

O(n)

Classification So Far

19

∈ S ∪ N(S)

Set Aside
Set Aside

O(n)

Final Classification

20

∈ S ∪ N(S)

Set Aside
Set Aside

Final Classification

20

∈ S ∪ N(S)

Set Aside
Set Aside

Ruling Set Summary

Can be implemented in:

• Linear-memory MPC: rounds whp.

• Congested Clique: rounds whp.

• Streaming: passes whp, with space (insertion-only).

O(1)

O(1)

O(1) O(n)

21

A randomized las-vegas algorithm that computes a 2-ruling set.

Relaxation 2: Correlation Clustering

22

Relaxation 2: Correlation Clustering

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

• Number of edges across different clusters.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

• Number of edges across different clusters.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

• Number of edges across different clusters.

• Number of non-edges in the same cluster.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

• Number of edges across different clusters.

• Number of non-edges in the same cluster.

22

Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total
disagreement is minimized.

• Number of edges across different clusters.

• Number of non-edges in the same cluster.

• No constraint on number of clusters.

22

Correlation Clustering

23

Correlation Clustering
• Natural abstraction for problems such as

Community and duplicate detection, 
Link prediction, 
Image segmentation.

23

Correlation Clustering
• Natural abstraction for problems such as

Community and duplicate detection, 
Link prediction, 
Image segmentation.

• APX-hard [CGW05].

23

[CGW05] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005

Correlation Clustering
• Natural abstraction for problems such as

Community and duplicate detection, 
Link prediction, 
Image segmentation.

• APX-hard [CGW05].

• Best known approximation ratio is [CCL+24].

• Rounding a linear programming relaxation.

1.43

23

[CGW05] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl STOC 2024

Correlation Clustering
• Natural abstraction for problems such as

Community and duplicate detection, 
Link prediction, 
Image segmentation.

• APX-hard [CGW05].

• Best known approximation ratio is [CCL+24].

• Rounding a linear programming relaxation.

1.43

• Can achieve approximation in MPC [CLP+24].< 1.847

23

[CGW05] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl STOC 2024
[CLP+24] Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, and Zhang. STOC 2024

Pivot Algorithm

24

Pivot Algorithm

24

Random Permutation :π

Pivot Algorithm

24

Random Permutation :π u

Pivot Algorithm

24

Random Permutation :π uu

Pivot Algorithm

24

Random Permutation :π uu

Pivot Algorithm

24

Random Permutation :π u

• Expected cost is a 3-approximation [ACN08].

u

[ACN08] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm

24

Random Permutation :π u

• Expected cost is a 3-approximation [ACN08].

• The set of pivot nodes forms an MIS.

u

[ACN08] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm

24

Random Permutation :π u

• Expected cost is a 3-approximation [ACN08].

• The set of pivot nodes forms an MIS.

• How to decide ’s cluster?u

u

[ACN08] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm

24

Random Permutation :π u

• Expected cost is a 3-approximation [ACN08].

• The set of pivot nodes forms an MIS.

• How to decide ’s cluster?u

• Need to store all preceding neighbors.

u

[ACN08] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm

24

Random Permutation :π u

• Expected cost is a 3-approximation [ACN08].

• The set of pivot nodes forms an MIS.

• How to decide ’s cluster?u

• Need to store all preceding neighbors.

• Can we ignore some nodes to save space?

u

[ACN08] Ailon, Charikar, Newman, JACM 2008

Truncated-Pivot Algorithm

25

Truncated-Pivot Algorithm

25

Random Permutation :π u

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

• How do we cluster an uninteresting node ?u

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

• How do we cluster an uninteresting node ?u

• It either joins a pivot cluster or becomes a singleton.

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

• How do we cluster an uninteresting node ?u

• It either joins a pivot cluster or becomes a singleton.

v

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

• How do we cluster an uninteresting node ?u

• It either joins a pivot cluster or becomes a singleton.

v u

Truncated-Pivot Algorithm

25

Random Permutation :π u

τu ≈
n log n

ε deg(u)

• Node is interesting if its rank is at most .u τu

• Run Pivot only on interesting nodes.

• Only need to store incident edges of interesting
nodes.

• How do we cluster an uninteresting node ?u

• It either joins a pivot cluster or becomes a singleton.

uu

Space Analysis

26

uRandom Permutation :π

τu ≈
n log n

ε deg(u)

Space Analysis

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

Space Analysis

For to be interesting: u i ≤
n log n

ε deg(u)

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

Space Analysis

For to be interesting: u i ≤
n log n

ε deg(u)

In other words: deg(u) ≤
n log n

ε ⋅ i

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

Space Analysis

For to be interesting: u i ≤
n log n

ε deg(u)

In other words: deg(u) ≤
n log n

ε ⋅ i

Total number of edges stored =
n log n

ε

n

∑
i=1

1
i

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

Space Analysis

For to be interesting: u i ≤
n log n

ε deg(u)

In other words: deg(u) ≤
n log n

ε ⋅ i

Total number of edges stored =
n log n

ε

n

∑
i=1

1
i

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

≈
n log2 n

ε

Space Analysis

For to be interesting: u i ≤
n log n

ε deg(u)

In other words: deg(u) ≤
n log n

ε ⋅ i

Total number of edges stored =
n log n

ε

n

∑
i=1

1
i

26

uRandom Permutation :π
i

τu ≈
n log n

ε deg(u)

≈
n log2 n

ε

[CM23] improves this to .O(n/ε)

[CM23] Chakrabarty, Makarychev. NeurIPS 2023

Approximation Analysis

27

Approximation Analysis

27

Pivot Clusters

Approximation Analysis

27

Pivot Clusters Singleton Clusters

Approximation Analysis

27

Pivot Clusters Singleton Clusters

-approximation3

Approximation Analysis

27

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Approximation Analysis

27

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Cost of Pivot Clusters

28

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

• The analysis of [ACN08] shows that expected
cost of the pivot clusters is a -approximation.3

[ACN08] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

• The analysis of [ACN08] shows that expected
cost of the pivot clusters is a -approximation.3

• Charging mistakes to bad triangles.

[ACN08] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

• The analysis of [ACN08] shows that expected
cost of the pivot clusters is a -approximation.3

• Charging mistakes to bad triangles.

[ACN08] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

• The analysis of [ACN08] shows that expected
cost of the pivot clusters is a -approximation.3

• Charging mistakes to bad triangles.

[ACN08] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

28

• The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

• We don’t allow uninteresting nodes to
become pivots.

• Their neighbors may create new pivot
clusters.

• The analysis of [ACN08] shows that expected
cost of the pivot clusters is a -approximation.3

• Charging mistakes to bad triangles.

[ACN08] Ailon, Charikar, Newman, JACM 2008

Bad Triangles

29

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

• Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

• Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

• Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

• Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

Bad Triangles

29

• A bad triangle is a triple containing two edges and
one non-edge.

• No matter how you cluster a bad triangle, you
will make at least one mistake.

• If the graph has edge-disjoint bad triangles, we
will make at least mistakes.

t
t

• Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

Charging Bad Triangles

30

Charging Bad Triangles

30

u

vw

Charging Bad Triangles

30

u

vw

 all of are active and  
 one is chosen as pivot.

At : u, v, w

Charging Bad Triangles

30

u

vw

 all of are active and  
 one is chosen as pivot.

At : u, v, w

pt = Pr[At]

Charging Bad Triangles

30

u

vw

 all of are active and  
 one is chosen as pivot.

At : u, v, w

pt = Pr[At]

𝔼[Cpivot] ≤ ∑
t∈BT

pt

Charging Bad Triangles

How do we relate the values to ?pt OPT

30

u

vw

 all of are active and  
 one is chosen as pivot.

At : u, v, w

pt = Pr[At]

𝔼[Cpivot] ≤ ∑
t∈BT

pt

Linear Program Relaxation

31

Linear Program Relaxation

31

Primal LP:

Linear Program Relaxation

31

Primal LP:

min ∑
e∈E−∪E+

xe

Linear Program Relaxation

31

Primal LP:

min ∑
e∈E−∪E+

xe

s.t. ∑
e∈t

xe ≥ 1, ∀t ∈ BT

Linear Program Relaxation

31

Primal LP:

min ∑
e∈E−∪E+

xe

s.t. ∑
e∈t

xe ≥ 1, ∀t ∈ BT

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

• By weak-duality:

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

• By weak-duality:

• .∑
t∈BT

yt ≤ LPOPT ≤ OPT
Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

• By weak-duality:

• .∑
t∈BT

yt ≤ LPOPT ≤ OPT

• Candidate DFS: .yt = pt /3

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

• By weak-duality:

• .∑
t∈BT

yt ≤ LPOPT ≤ OPT

• Candidate DFS: .yt = pt /3

• . 𝔼[Cpivot] ≤ ∑
t∈BT

pt ≤ 3OPT

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

32

• By weak-duality:

• .∑
t∈BT

yt ≤ LPOPT ≤ OPT

• Candidate DFS: .yt = pt /3

• . 𝔼[Cpivot] ≤ ∑
t∈BT

pt ≤ 3OPT

• Why does satisfy all the
dual constraints?

yt = pt /3

Dual LP:

max ∑
t∈BT

yt

s.t. ∑
t∋e

yt ≤ 1, ∀e ∈ E− ∪ E+

Dual Feasible Solution

33

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

ee

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

ee

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At]

e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At] =
pt

3

e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At] =
pt

3

∑
t∋e

pt

3
= ∑

t∋e

Pr[De ∩ At] e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At] =
pt

3

∑
t∋e

pt

3
= ∑

t∋e

Pr[De ∩ At]

De ∩ At′￼
De ∩ At

e

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At] =
pt

3

∑
t∋e

pt

3
= ∑

t∋e

Pr[De ∩ At]

De ∩ At′￼
De ∩ At

ee

Dual Feasible Solution

33

Want:∑
t∋e

pt

3
≤ 1

: we make a mistake on . De e

.Pr[De ∣ At] = 1/3

e

 Pr[De ∩ At] = Pr[De ∣ At] ⋅ Pr[At] =
pt

3

∑
t∋e

pt

3
= ∑

t∋e

Pr[De ∩ At]

De ∩ At′￼
De ∩ At

Pr [∪t∋e (De ∩ At)] ee

Approximation Analysis

34

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Approximation Analysis

34

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Approximation Analysis

34

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Cost of Singleton Clusters

35

u

Cost of Singleton Clusters

35

u

Pivot Neighbors

Cost of Singleton Clusters

35

u

Pivot Neighbors Singleton Neighbors

Cost of Singleton Clusters

35

uu

Pivot Neighbors Singleton Neighbors

Cost of Singleton Clusters

35

uu

Pivot Neighbors Singleton Neighbors

Bad EdgesGood Edges

Cost of Singleton Clusters

36

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

36

• We make a mistake for each singleton edge.

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

36

• We make a mistake for each singleton edge.

• Good edges accounted in the analysis of Pivot clusters.

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

36

• We make a mistake for each singleton edge.

• Good edges accounted in the analysis of Pivot clusters.

• We charge the bad edges to the good edges by showing:

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

36

• We make a mistake for each singleton edge.

• Good edges accounted in the analysis of Pivot clusters.

• We charge the bad edges to the good edges by showing:

|Bad Edges| |Good Edges|≤ O(ε) ⋅

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

36

• We make a mistake for each singleton edge.

• Good edges accounted in the analysis of Pivot clusters.

• We charge the bad edges to the good edges by showing:

|Bad Edges| |Good Edges|≤ O(ε) ⋅
• This is not true for each node as all edges can be bad.

Singleton Edges = Good Edges + Bad Edges

Counting Bad Edges

37

uRandom Permutation :π

Counting Bad Edges

37

uRandom Permutation :π

Counting Bad Edges

37

uRandom Permutation :π

Counting Bad Edges

37

uRandom Permutation :π

With high probability, degout(u) ≤ ε deg(u)

Counting Bad Edges

37

uRandom Permutation :π
i

i >
n log n

ε deg(u)With high probability, degout(u) ≤ ε deg(u)

Counting Bad Edges

37

uRandom Permutation :π
i

i >
n log n

ε deg(u)With high probability, degout(u) ≤ ε deg(u)

It’s unlikely that is so far in the permutation and did not join a pivot cluster.u

Counting Bad Edges

38

Counting Bad Edges

38

• We sum over all singleton nodes, and use degree-sum lemma.

Counting Bad Edges

38

• We sum over all singleton nodes, and use degree-sum lemma.

 |Bad Edges| ∑
singleton u

degout(u) =

Counting Bad Edges

38

• We sum over all singleton nodes, and use degree-sum lemma.

 |Bad Edges| ∑
singleton u

degout(u) =

 2 |Singleton Edges|∑
singleton u

deg(u) = ⋅

Counting Bad Edges

38

• We sum over all singleton nodes, and use degree-sum lemma.

 |Bad Edges| ∑
singleton u

degout(u) =

 2 |Singleton Edges|∑
singleton u

deg(u) = ⋅
degout(u) ≤ ε deg(u)

Counting Bad Edges

38

• We sum over all singleton nodes, and use degree-sum lemma.

 |Bad Edges| ∑
singleton u

degout(u) =

 2 |Singleton Edges|∑
singleton u

deg(u) = ⋅

• Therefore, |Bad Edges| |Singleton Edges|≤ 2ε ⋅

degout(u) ≤ ε deg(u)

Counting Bad Edges

39

• The rest of the edges must be good…

Counting Bad Edges

39

• The rest of the edges must be good…

|Good Edges| |Singleton Edges|≥ (1 − 2ε) ⋅

Counting Bad Edges

39

• The rest of the edges must be good…

|Good Edges| |Singleton Edges|≥ (1 − 2ε) ⋅

• A better way to write it,

Counting Bad Edges

39

• The rest of the edges must be good…

|Good Edges| |Singleton Edges|≥ (1 − 2ε) ⋅

• A better way to write it,

 |Singleton Edges| |Good Edges|≤
1

1 − 2ε
⋅

Counting Bad Edges

39

• The rest of the edges must be good…

|Good Edges| |Singleton Edges|≥ (1 − 2ε) ⋅

• A better way to write it,

 |Singleton Edges| |Good Edges|≤
1

1 − 2ε
⋅

• Finally we get,

Counting Bad Edges

39

• The rest of the edges must be good…

|Good Edges| |Singleton Edges|≥ (1 − 2ε) ⋅

• A better way to write it,

 |Singleton Edges| |Good Edges|≤
1

1 − 2ε
⋅

• Finally we get,

|Bad Edges| |Singleton Edges| |Good Edges|≤ 2ε ⋅ ≤
2ε

1 − 2ε
⋅

Counting Bad Edges

39

Approximation Analysis

40

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Approximation Analysis

40

Pivot Clusters Singleton Clusters

-approximation3 “ ”-approximation+ε

Correlation Clustering Summary

Can be implemented in:

• Massively Parallel Computing: rounds with local space.

• Dynamic Streaming: single pass with space.

O(1) Õ(n/ε)

Õ(n/ε)

41

A -approximation algorithm using near-linear time and space.(3 + ε)

Open Problems

42

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

• Sub-linear MPC? MIS: [GU19] and 2-RS: [KPP20].log Δ log1/6 Δ

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

• Sub-linear MPC? MIS: [GU19] and 2-RS: [KPP20].log Δ log1/6 Δ

• Can we solve 2-RS in a single pass of streaming with space?O(n)

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

• Sub-linear MPC? MIS: [GU19] and 2-RS: [KPP20].log Δ log1/6 Δ

• Can we solve 2-RS in a single pass of streaming with space?O(n)

• Possible for random-order [AA21]. How about adversarial streams?

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA21] Assadi and Dudeja. DISC 2021

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

• Sub-linear MPC? MIS: [GU19] and 2-RS: [KPP20].log Δ log1/6 Δ

• Can we solve 2-RS in a single pass of streaming with space?O(n)

• Possible for random-order [AA21]. How about adversarial streams?

• What is the best approximation we can get for correlation clustering in
MPC rounds?

O(1)

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA21] Assadi and Dudeja. DISC 2021

Open Problems

42

• MIS: can we go below rounds in MPC?log log Δ

• Sub-linear MPC? MIS: [GU19] and 2-RS: [KPP20].log Δ log1/6 Δ

• Can we solve 2-RS in a single pass of streaming with space?O(n)

• Possible for random-order [AA21]. How about adversarial streams?

• What is the best approximation we can get for correlation clustering in
MPC rounds?

O(1)

Thank you!

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA21] Assadi and Dudeja. DISC 2021

