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e |n each round each machine can:
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Round r — 1 Round ¢ Round 7 + 1

e Receive at most M words.

e Send at most M words.

e Process input in O(n) size chunks at a time. SﬁAarKg
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MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].
* No progress after this.
* Not sure if this is optimal...
* This talk: can we simplify MIS slightly and get optimal algorithms?
» 2-Ruling Sets: Cambus, Kuhn, P., and Uitto DISC 20283.
* Correlation Clustering: Cambus, Kuhn, Lindy, P., and Uitto SODA 2024.

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovic, and Rubinfeld. PODC 2018
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Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

 Measure of efficiency: space

. Happy if we use at most O(n) space.
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MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

* This algorithm is optimal! [AKNS24]
» O(loglogn) passes is required for O(n) space.
e Also In this talk:

e Can we get é(n) space with fewer passes for the relaxed problems?

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015
[AKNS24] Assadl, Konrad, Naidu, Sundaresan, STOC 2024
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Relaxation 1: Ruling Sets

o A (2,0)-ruling setis an independent set / 5

such that every node is within // hops
from some node in I (for integer / > 1). ’

e [/ = 1: Maximal Independent Set (MIS).

2

e Easier to compute as ff becomes larger.

o 2-RS is the “hardest” relaxation.




Why Care About Ruling Sets?



Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.



Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.

* Applications to clustering problems like metric facility location.



Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.



Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.

» Compute a f-ruling set on the conflict graph.



Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.
» Compute a f-ruling set on the conflict graph.

 Gives an O(fF)-approximation.



Main Result for Ruling Sets

A randomized las-vegas algorithm that computes a 2-ruling set.

Can be implemented in:
 Linear-memory MPC: O(1) rounds whp.
» Congested Clique: O(1) rounds whp.

« Streaming: O(1) passes whp, with O(n) space ( insertion-only ).
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e Choose a set S of nodes such that

G|S]| has O(n) edges.

« Send G|S] to a single machine
which computes an MIS.

» The MIS is a 2-RS on S U N(9).

 Rinse and repeat until all nodes are
covered.

 Repeatedly identify and process
linear sized subgraphs.

10
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Sampling a Sparse Hitting Set

| -

Add each vertex u to § with probability ——— |

\/deg(u)
G|S] has at most n edges in expectation.

* Challenge: the random choices for all edges are not independent.
* Cannot use standard Chernoff bounds.

e We use the method of bounded differences to show concentration.

1/9 (

» Technicality: need A < n can reduce max degree, no problem!)
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Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

 Good: many low-degree neighbors.

 Bad: many high-degree neighbors.

Node v is good if Z —
N V deg)

> log deg(v)

Otherwise v Is bad
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A randomized las-vegas algorithm that computes a 2-ruling set.

Can be implemented in:
 Linear-memory MPC: O(1) rounds whp.
» Congested Clique: O(1) rounds whp.

« Streaming: O(1) passes whp, with O(n) space ( insertion-only ).
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Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

 Number of nhon-edges in the same cluster.

e No constraint on number of clusters.
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Correlation Clustering

* Natural abstraction for problems such as
Community and duplicate detection,

Link prediction,
Image segmentation.

 APX-hard [CGWOS5].

» Best known approximation ratio is 1.43 [CCL+24].

 Rounding a linear programming relaxation.

» Can achieve < 1.847 approximation in MPC [CLLP+24].

[CGWO5] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl STOC 2024

[CLP+24] Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, and Zhang. STOC 2024
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Random Permutation: | fu)

 Expected cost is a 3-approximation [ACNOS].

* The set of pivot nodes forms an MIS.

 How to decide u’s cluster?
* Need to store all preceding neighbors.

 Can we ignore some nodes to save space”?

[ACNOS8] Ailon, Charikar, Newman, JACM 2008
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In other words:  deg(u) <
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Random Permutation: | fuw)

[CM23] improves this to O(n/e€).

nlogn <= 1
Total number of edges stored = noen Z — X
l

E
=1

[CM23] Chakrabarty, Makarychev. NeurlPS 2023
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* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

\/

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

* Charging mistakes to bad triangles.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008
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Charging Bad Triangles

_[Cpivot] < Z p,

teBT

A, : all of u, v, w are active and
one is chosen as pivot.

How do we relate the p, values to OPT?
p, = Pr[A/] t
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Primal LP: : Dual LP:
min Z X, | | max Z W
e€E"UEY i t€BT

s.t. er > 1, Vie BT s.t. ny <1, Vee ETUE™
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Dual Feasible Solution

By weak-duality:
. ) ¥ <LPT < OPT.

teBT : Dual LP:
» Candidate DFS: y, = p,/3. }' max 2 v
i t€BT |
. E[CP*] < ) p, < 30PT. s |
teBT S.1. 2 Vs < 1, Vee ETUET

=,
. Why does y, = p,/3 satisfy all the e

dual constraints?
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D,: we make a mistake on e.
Pr[D, | A] = 1/3.
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Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 We make a mistake for each singleton edge.
 (Good edges accounted in the analysis of Pivot clusters.

 We charge the bad edges to the good edges by showing:
IBad Edges| < O(¢) - |Good Edges|

* This is not true for each node as all edges can be bad.
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Random Permutationz: |} Jul f] ]
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Random Permutation 7 : _I- I-I-

\ | . nlogn |
L L .. | ) > |
With high probability, deg (1) < e deg(u) : edeg(u) |
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l
Random Permutationz: | |} Ju 101

\ | . nlogn |
L e {1 > |
With high probability, deg (1) < e deg(u) : edeg(u) |

It’s unlikely that u is so far in the permutation and did not join a pivot cluster.
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Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Z deg,, (u) = |Bad Edges|

singleton u

degout(u) S € deg(u) "
Y deg(u) = 2-[Singleton Edges| |

singleton u

» Therefore, [Bad Edges| < 2¢ - [Singleton Edges|
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Counting Bad Edges

* The rest of the edges must be good...
|Good Edges| > (1 — 2¢) - |Singleton Edges|

* A better way to write it,

1
I —2¢

ISingleton Edges| < - |Good Edges|

* Finally we get,
2€

|Bad Edges| < 2¢ - |Singleton Edges| < —
— 2¢e

- |Good Edges|
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Correlation Clustering Summary

" A (3 + €)-approximation algorithm using near-linear time and space.

Can be implemented in:
. Massively Parallel Computing: O(1) rounds with O(n/¢) local space.

. Dynamic Streaming: single pass with O(n/€) space.
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