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Massively Parallel Computing
• Input: -node graph distributed across a set 

of machines.
n

• Each machine has local memory of 
 words.M = Õ(n)

• In each round each machine can:

• Receive at most  words.M

• Send at most  words. M

• Process input in  size chunks at a time.Õ(n)

3

Round tRound t − 1 Round t + 1

M M
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MIS in MPC

•  rounds randomized algorithm [GGK+18].O(log log Δ)

• No progress after this.

• Not sure if this is optimal…

• This talk: can we simplify MIS slightly and get optimal algorithms?

• 2-Ruling Sets: Cambus, Kuhn, P., and Uitto DISC 2023.

• Correlation Clustering: Cambus, Kuhn, Lindy, P., and Uitto SODA 2024.
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[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi´c, and Rubinfeld. PODC 2018



Streaming Model

5



Streaming Model
• Input graph is fixed before the algorithm begins.

5



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

5



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e3



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e4e3



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4e3



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e6e3



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3

• Measure of efficiency: space



Streaming Model
• Input graph is fixed before the algorithm begins.

• Edges are unknown to the algorithm.

• Revealed as a stream of edge insertions.

5

e1 e2 e5e4 e7e6e3

• Measure of efficiency: space

• Happy if we use at most  space.Õ(n)
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MIS in Streaming
• Can solve in  passes. [ACG+15]O(log log n)

• Typically interested in single pass or  pass algorithms.O(1)

• This algorithm is optimal! [AKNS24]

•  passes is required for  space.O(log log n) Õ(n)

• Also in this talk: 

• Can we get  space with fewer passes for the relaxed problems?Õ(n)

6[AKNS24] Assadi, Konrad, Naidu, Sundaresan, STOC 2024
[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015



Relaxation 1: Ruling Sets

7



Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

7



β = 1

Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

7



β = 1

Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

7



Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

7

β = 2



Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

• Easier to compute as  becomes larger.β

7

β = 2



Relaxation 1: Ruling Sets

• A -ruling set is an independent set  
such that every node is within  hops 
from some node in  ( for integer  ).

(2,β) I
β

I β ≥ 1

• : Maximal Independent Set (MIS).β = 1

• Easier to compute as  becomes larger.β

• 2-RS is the “hardest” relaxation.

7
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Why Care About Ruling Sets?

• Challenging to design fast distributed and parallel algorithms for ruling sets.

• Applications to clustering problems like metric facility location.

• Create a conflict graph on the set of facilities.

• Compute a -ruling set on the conflict graph.β

• Gives an -approximation.O(β)

8



Main Result for Ruling Sets

Can be implemented in:


• Linear-memory MPC:  rounds whp.


• Congested Clique:  rounds whp.


• Streaming:  passes whp, with  space ( insertion-only ).

O(1)

O(1)

O(1) O(n)

9

A randomized las-vegas algorithm that computes a 2-ruling set.
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High Level View
• Choose a set  of nodes such that 

 has  edges.
S

G[S] O(n)

• Send  to a single machine 
which computes an MIS.

G[S]

• The MIS is a 2-RS on .S ∪ N(S)

• Rinse and repeat until all nodes are 
covered.

• Repeatedly identify and process 
linear sized subgraphs.

10



Sampling a Sparse Hitting Set

11



Sampling a Sparse Hitting Set

11

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

11

u v
1

deg(u) ⋅ deg(v)

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

11

u v
1

deg(u) ⋅ deg(v)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

11

u v

≤
1

deg(u)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

11

 has at most  edges in expectation!G[S] n

u v

≤
1

deg(u)

 ifu → v
deg(u) ≤ deg(v)

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

12

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

12

 has at most  edges in expectation.G[S] n

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent. 

12

 has at most  edges in expectation.G[S] n

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent. 

• Cannot use standard Chernoff bounds.

12

 has at most  edges in expectation.G[S] n

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent. 

• Cannot use standard Chernoff bounds.

• We use the method of bounded differences to show concentration.

12

 has at most  edges in expectation.G[S] n

Add each vertex  to  with probability  u S
1

deg(u)



Sampling a Sparse Hitting Set

• Challenge: the random choices for all edges are not independent. 

• Cannot use standard Chernoff bounds.

• We use the method of bounded differences to show concentration.

• Technicality: need  ( can reduce max degree, no problem! )Δ < n1/9

12

 has at most  edges in expectation.G[S] n

Add each vertex  to  with probability  u S
1

deg(u)
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Method of Bounded Differences

14

Pr[ | f(X) − μ | ≥ t] ≤ 2 exp ( −t2

∑n
k=1 c2

k )
(1)   is the indicator random variable for event .Xu u ∈ S

(2)  number of edges in .f (X) = G[S]

(3)   and we can set .μ ≤ n t = n

(4)  Since , we have .Δ ≤ n1/9 ck ≤ n1/9

−n2

n1+2/9
= 2 exp (−n1−2/9) ≪

1
poly(n)

|G[S] | ≤ 2n
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Which Nodes are Hit?
• High degree nodes are less likely to be 

sampled themselves.

• Good: many low-degree neighbors.

• Bad: many high-degree neighbors.

15

Node  is good if  v ∑
u∈N(v)

1
deg(u)

> log deg(v)

Otherwise  is badv

2

2

2

3
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Ruling Set Summary

Can be implemented in:


• Linear-memory MPC:  rounds whp.


• Congested Clique:  rounds whp.


• Streaming:  passes whp, with  space ( insertion-only ).

O(1)

O(1)

O(1) O(n)

21

A randomized las-vegas algorithm that computes a 2-ruling set.
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Relaxation 2: Correlation Clustering

• Edges of input graph encode pairwise similarity.

• Non-edges encode pairwise dis-similarity.

• We need to cluster the nodes so that the total 
disagreement is minimized.

• Number of edges across different clusters.

• Number of non-edges in the same cluster.

• No constraint on number of clusters.

22
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Correlation Clustering
• Natural abstraction for problems such as


Community and duplicate detection, 
Link prediction, 
Image segmentation.

• APX-hard [CGW05].

• Best known approximation ratio is  [CCL+24].


• Rounding a linear programming relaxation.

1.43

• Can achieve  approximation in MPC [CLP+24].< 1.847

23

[CGW05] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl  STOC 2024
[CLP+24] Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, and Zhang. STOC 2024
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Random Permutation  :π u

• Expected cost is a 3-approximation [ACN08].

• The set of pivot nodes forms an MIS.

• How to decide ’s cluster?u

• Need to store all preceding neighbors.

• Can we ignore some nodes to save space?

u

[ACN08] Ailon, Charikar, Newman, JACM 2008 
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For  to be interesting:   u i ≤
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In other words:     deg(u) ≤
n log n
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Total number of edges stored =
n log n

ε
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∑
i=1

1
i

26

uRandom Permutation  :π
i

τu ≈
n log n

ε deg(u)

≈
n log2 n

ε

[CM23] improves this to .O(n/ε)

[CM23] Chakrabarty, Makarychev. NeurIPS 2023
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u

vw

 all of  are active and  
 one is chosen as pivot.

At : u, v, w

pt = Pr[At]

𝔼[Cpivot] ≤ ∑
t∈BT

pt
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• By weak-duality:

• .∑
t∈BT

yt ≤ LPOPT ≤ OPT

• Candidate DFS: .yt = pt /3

• . 𝔼[Cpivot] ≤ ∑
t∈BT

pt ≤ 3OPT

• Why does  satisfy all the 
dual constraints?

yt = pt /3

Dual LP:
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• We make a mistake for each singleton edge.

• Good edges accounted in the analysis of Pivot clusters.

• We charge the bad edges to the good edges by showing:

|Bad Edges| |Good Edges|≤ O(ε) ⋅
• This is not true for each node as all edges can be bad.

Singleton Edges = Good Edges + Bad Edges
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uRandom Permutation  :π
i

i >
n log n

ε deg(u)With high probability, degout(u) ≤ ε deg(u)

It’s unlikely that  is so far in the permutation and did not join a pivot cluster.u
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• We sum over all singleton nodes, and use degree-sum lemma.

     |Bad Edges|   ∑
singleton u

degout(u) =

       2 |Singleton Edges|∑
singleton u

deg(u) = ⋅

• Therefore, |Bad Edges| |Singleton Edges|≤ 2ε ⋅

degout(u) ≤ ε deg(u)
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|Good Edges|  |Singleton Edges|≥ (1 − 2ε) ⋅

• A better way to write it,

 |Singleton Edges| |Good Edges|≤
1

1 − 2ε
⋅

• Finally we get,

|Bad Edges| |Singleton Edges| |Good Edges|≤ 2ε ⋅ ≤
2ε

1 − 2ε
⋅

Counting Bad Edges

39
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Correlation Clustering Summary

Can be implemented in:


• Massively Parallel Computing:  rounds with  local space. 


• Dynamic Streaming: single pass with  space.

O(1) Õ(n/ε)

Õ(n/ε)

41

A -approximation algorithm using near-linear time and space.(3 + ε)
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• MIS: can we go below  rounds in MPC?log log Δ

• Sub-linear MPC?   MIS:  [GU19] and 2-RS:  [KPP20].log Δ log1/6 Δ

• Can we solve 2-RS in a single pass of streaming with  space?O(n)

• Possible for random-order [AA21]. How about adversarial streams?

• What is the best approximation we can get for correlation clustering in  
MPC rounds?

O(1)

Thank you!

[GU19] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA21] Assadi and Dudeja. DISC 2021


