Massively Parallel Algorithms
for Relaxations of MIS

Shreyas Pai
IIT Madras

Algorithms for Massive Graphs 2024

Maximal Independent Set

Maximal Independent Set

e An independent set / such that
every node is within 1 hop from
some node in /.

Maximal Independent Set

g

e Anindependent set / such that
every node is within 1 hop from
some node in /.

Massively Parallel Computing

Massively Parallel Computing

Massively Parallel Computing

e |nput: n-node graph distributed across a set
of machines.

Massively Parallel Computing

e |nput: n-node graph distributed across a set
of machines.

* Each machine has local memory of
M = O(n) words.

Massively Parallel Computing

e |nput: n-node graph distributed across a set
of machines.

* Each machine has local memory of
M = O(n) words.

e |n each round each machine can:

Round ¢

sgac G

Massively Parallel Computing

e Input: n-node graph distributed across a set (| gy ——y
of machines. | ‘
 Each machine has local memory of NS
M = O(n) words. r »‘
e In each round each machine can: ___
e Receive at most M words. - - J
Roundr — 1 Round ¢

APACHE& G
K 7

par

™

Massively Parallel Computing

 Input: n-node graph distributed across a set (| gy

of machines.

* Each machine has local memory of
M = O(n) words.

e |n each round each machine can:

Round 7 — 1 Round ¢ Round 7 + 1

e Receive at most M words.

e Send at most M words.

Massively Parallel Computing

e Input: n-node graph distributed across a set (gey e \ M
of machines. - ‘
e Each machine has local memory of e j " L
~ ‘ _— 0

AN

M = O(n) words. — —
) e XC ,

e |n each round each machine can:

/\

Round r — 1 Round ¢ Round 7 + 1

e Receive at most M words.

e Send at most M words.

e Process input in O(n) size chunks at a time. SﬁAarKg

MIS in MPC

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi'c, and Rubinfeld. PODC 2018

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].

* No progress after this.

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi'c, and Rubinfeld. PODC 2018

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].

* No progress after this.

* Not sure if this is optimal...

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi'c, and Rubinfeld. PODC 2018

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].

* No progress after this.
* Not sure if this is optimal...

* This talk: can we simplify MIS slightly and get optimal algorithms?

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi'c, and Rubinfeld. PODC 2018

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].
* No progress after this.
* Not sure if this is optimal...

* This talk: can we simplify MIS slightly and get optimal algorithms?
* 2-Ruling Sets: Cambus, Kuhn, P.,, and Uitto DISC 2023.

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovi'c, and Rubinfeld. PODC 2018

MIS in MPC

» O(loglog A) rounds randomized algorithm [GGK+18].
* No progress after this.
* Not sure if this is optimal...
* This talk: can we simplify MIS slightly and get optimal algorithms?
» 2-Ruling Sets: Cambus, Kuhn, P., and Uitto DISC 20283.
* Correlation Clustering: Cambus, Kuhn, Lindy, P., and Uitto SODA 2024.

[GGK+18] Ghaffari, Gouleakis, Konrad, Mitrovic, and Rubinfeld. PODC 2018

Streaming Model

Streaming Model

* |nput graph is fixed before the algorithm begins.

Streaming Model

* |nput graph is fixed before the algorithm begins.

 Edges are unknown to the algorithm.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins. c

 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions. O

o

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

 Measure of efficiency: space

Streaming Model

* |nput graph is fixed before the algorithm begins.
 Edges are unknown to the algorithm.

 Revealed as a stream of edge insertions.

 Measure of efficiency: space

. Happy if we use at most O(n) space.

MIS in Streaming

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

* This algorithm is optimal! [AKNS24]

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

* This algorithm is optimal! [AKNS24]

» O(loglogn) passes is required for O(n) space.

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

* This algorithm is optimal! |[AKNS24]
» O(loglogn) passes is required for O(n) space.

e Also in this talk:

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015

MIS in Streaming

» Can solve in O(log log n) passes. [ACG+15]

 Typically interested in single pass or O(1) pass algorithms.

* This algorithm is optimal! [AKNS24]
» O(loglogn) passes is required for O(n) space.
e Also In this talk:

e Can we get é(n) space with fewer passes for the relaxed problems?

[ACG+15] Ahn, Cormode, Guha, McGregor, and Wirth., ICML 2015
[AKNS24] Assadl, Konrad, Naidu, Sundaresan, STOC 2024

Relaxation 1: Ruling Sets

Relaxation 1: Ruling Sets

e A (2,0/)-ruling setis an independent set /
such that every node is within // hops
from some node in I (for integer f > 1).

Relaxation 1: Ruling Sets

e A(2,0)-ruling setis an independent set / B=1

such that every node is within // hops
from some node in I (for integer / > 1). ’

Relaxation 1: Ruling Sets

e A(2,0)-ruling setis an independent set / B=1

such that every node is within // hops
from some node in I (for integer / > 1). ’

e [/ = 1: Maximal Independent Set (MIS).

Relaxation 1: Ruling Sets

o A (2,0)-ruling setis an independent set / 5

such that every node is within // hops
from some node in I (for integer / > 1). ’

e [/ = 1: Maximal Independent Set (MIS).

2

Relaxation 1: Ruling Sets

o A (2,0)-ruling setis an independent set / 5

such that every node is within // hops
from some node in I (for integer / > 1). ’

e [/ = 1: Maximal Independent Set (MIS).

2

e Easier to compute as ff becomes larger.

Relaxation 1: Ruling Sets

o A (2,0)-ruling setis an independent set / 5

such that every node is within // hops
from some node in I (for integer / > 1). ’

e [/ = 1: Maximal Independent Set (MIS).

2

e Easier to compute as ff becomes larger.

o 2-RS is the “hardest” relaxation.

Why Care About Ruling Sets?

Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.

Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.

* Applications to clustering problems like metric facility location.

Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.

Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.

» Compute a f-ruling set on the conflict graph.

Why Care About Ruling Sets?

* Challenging to design fast distributed and parallel algorithms for ruling sets.
* Applications to clustering problems like metric facility location.

* Create a conflict graph on the set of facilities.
» Compute a f-ruling set on the conflict graph.

 Gives an O(fF)-approximation.

Main Result for Ruling Sets

A randomized las-vegas algorithm that computes a 2-ruling set.

Can be implemented in:
 Linear-memory MPC: O(1) rounds whp.
» Congested Clique: O(1) rounds whp.

« Streaming: O(1) passes whp, with O(n) space (insertion-only).

High Level View

High Level View

High Level View

e Choose a set S of nodes such that

G|S] has O(n) edges.

High Level View

e Choose a set S of nodes such that

G|S] has O(n) edges.

» Send G|J§] to a single machine
which computes an MIS.

e Choose a set S of nodes such that

G|S] has O(n) edges.

« Send G|S] to a single machine
which computes an MIS.

» The MIS is a 2-RS on S U N(9).

10

e Choose a set S of nodes such that

G|S]| has O(n) edges.

« Send G|S] to a single machine
which computes an MIS.

» The MIS is a 2-RS on S U N(9).

 Rinse and repeat until all nodes are
covered.

 Repeatedly identify and process
linear sized subgraphs.

10

Sampling a Sparse Hitting Set

Sampling a Sparse Hitting Set

|]
Add each vertex u to S with probability :
\/ deg(u)

Sampling a Sparse Hitting Set

1 ,

Add each vertex u to S with probability

Me—a e ro aT) ST e e Ac ¢ pomae oo g a s A e
- 5 = BN - R i =

SCRVETE L G e i Aoe B Lo poda g ecp it) cibr e o Aoh A B VR TR B a.ye
- 5 - _T . - 3 ~_- N A 3 - s
I

i
y
1A
‘.
Q
&
S ot TR e A e e Ay B¢ B VR EIHO D e oo g vors ey Y, posne
r A R ——— R e R S

1

| v deg(u) - deg(v)

Sampling a Sparse Hitting Set

Add each vertex u to S with probability '

A R ——— I e e ——— S

u — viff l C C
deg(u) < deg(v) |
| \V deg(u) deg(v)

Sampling a Sparse Hitting Set

Add each vertex u to S with probability '

A R ——— I e e ——— S

u — v iff (‘ C C
deg(u) < deg(v) | deg o

Sampling a Sparse Hitting Set

1 ,

Add each vertex u to S with probability

¢ B VR TR B .y ee PR T L RO TS
. R o T- . - _ =

u — v iff | C C
| |

deg(u) < deg(v) <

| deg(u)

G|S] has at most 1 edges in expectation!

e g o O I S I P Y O P T Y T O S S P Gy gy pma oy e
_T .) - y - _ - _T _ - _ ~_- N _ . - ety

Sampling a Sparse Hitting Set

|]
Add each vertex u to S with probability :
\/ deg(u)

Sampling a Sparse Hitting Set

|
Add each vertex u to S with probability :
\/ deg(u)

G|S] has at most n edges in expectation.

Sampling a Sparse Hitting Set

|
Add each vertex u to S with probability :
\/ deg(u)

G|S] has at most n edges in expectation.

* Challenge: the random choices for all edges are not independent.

Sampling a Sparse Hitting Set

|
Add each vertex u to § with probability ——— |
\/ deg(u)

G|S] has at most n edges in expectation.

* Challenge: the random choices for all edges are not independent.

e Cannot use standard Chernoff bounds.

Sampling a Sparse Hitting Set

|
Add each vertex u to § with probability ——— |
\/deg(u)

G|S] has at most n edges in expectation.

* Challenge: the random choices for all edges are not independent.
* Cannot use standard Chernoff bounds.

e We use the method of bounded differences to show concentration.

12

Sampling a Sparse Hitting Set

| -

Add each vertex u to § with probability ——— |

\/deg(u)
G|S] has at most n edges in expectation.

* Challenge: the random choices for all edges are not independent.
* Cannot use standard Chernoff bounds.

e We use the method of bounded differences to show concentration.

1/9 (

» Technicality: need A < n can reduce max degree, no problem!)

12

Method of Bounded Differences

Method of Bounded Differences

 An n variable function f has Bounded Differences Property if changing the k"
coordinate only changes f (X) by at most ¢;.

Method of Bounded Differences

 An n variable function f has Bounded Differences Property if changing the k"
coordinate only changes f (X) by at most ¢;.

 Consider independent random variables X, X,, ..., X,. Then for any > 0:

Method of Bounded Differences

 An n variable function f has Bounded Differences Property if changing the k"
coordinate only changes f (X) by at most ¢;.

 Consider independent random variables X, X,, ..., X,. Then for any > 0:

2
Pr[| AX) — pu| > 1] SZeXp(Znt C%)

k=1

Method of Bounded Differences

M
e
th
O
d
O
f
B
O
u
nded
D
Iff
e
re
n
C
e
S

P —
r| | (X U eX
‘f(

. |

)
‘ Z
t]
<
2
(
p
t2)

2
i CF

Method of Bounded Differences

v
Pr[| AX) —ul| > 1] SZeXP(t)

2 G

(1) X, is the indicator random variable for event u € S.

Method of Bounded Differences

)
Pr[| AX) —ul| > 1] SZeXP(t)

2 G

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].

Method of Bounded Differences

>
=1 Ck

0
Pr[|fX) —pu| > 1] SZeXP(Znt)

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].

(3) # < mandwecansetf’ = n.

Method of Bounded Differences

v,
Pr[| G[S]] SZn]SZexp(znt)

>
=1 Ck

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].

(3) # < mandwecansetf’ = n.

Method of Bounded Differences

.
Pr| \G[S]\SZn]SZexp(znn)

>
=1 Ck

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].

(3) # < mandwecansetf’ = n.

Method of Bounded Differences

2
Pr|[\G[S]\SZn]SZexp(znn)

>
=1 Ck

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].
(3) # < mandwecansetf’ = n.

(4) Since A < n'”, wehave ¢, < n'”.

Method of Bounded Differences

—n?
Pr[\G[S]\SZn]SZexp()

" 1+2/9

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].
(3) # < mandwecansetf’ = n.

(4) Since A < n'”, wehave ¢, < n'”.

Method of Bounded Differences

—n?

G[S]| <2n1< — =20
Pr[| G[S]]| < n]_Zexp(n1+2/9) Zexp(7)

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].
(3) # < mandwecansetf’ = n.

(4) Since A < n'”, wehave ¢, < n'”.

Method of Bounded Differences

—n?

]
poly(n)

Pr[|G[S]| £2n]< Zexp() = 2 exp (—n1‘2/9) <

" 14+2/9

(1) X, is the indicator random variable for event u € S.

(2) f(X) = number of edges in G[S].
(3) # < mandwecansetf’ = n.

(4) Since A < n'”, wehave ¢, < n'”.

Which Nodes are Hit?

Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

 Good: many low-degree neighbors.

Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

 Good: many low-degree neighbors.

 Bad: many high-degree neighbors.

Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

 Good: many low-degree neighbors.

 Bad: many high-degree neighbors.

Node v is good if Z —
N V deg)

> log deg(v)

Which Nodes are Hit?

 High degree nodes are less likely to be
sampled themselves.

 Good: many low-degree neighbors.

 Bad: many high-degree neighbors.

Node v is good if Z —
N V deg)

> log deg(v)

Otherwise v Is bad

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Classification So Far

Final Classification

Final Classification

A randomized las-vegas algorithm that computes a 2-ruling set.

Can be implemented in:
 Linear-memory MPC: O(1) rounds whp.
» Congested Clique: O(1) rounds whp.

« Streaming: O(1) passes whp, with O(n) space (insertion-only).

21

Relaxation 2: Correlation Clustering

Relaxation 2: Correlation Clustering

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.

 Non-edges encode pairwise dis-similarity.

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

 Number of nhon-edges in the same cluster.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

 Number of nhon-edges in the same cluster.

22

Relaxation 2: Correlation Clustering

 Edges of input graph encode pairwise similarity.
 Non-edges encode pairwise dis-similarity.

e We need to cluster the nodes so that the total
disagreement is minimized.

 Number of edges across different clusters.

 Number of nhon-edges in the same cluster.

e No constraint on number of clusters.

22

Correlation Clustering

Correlation Clustering

* Natural abstraction for problems such as

Community and duplicate detection,
Link prediction,
Image segmentation.

Correlation Clustering

* Natural abstraction for problems such as

Community and duplicate detection,
Link prediction,
Image segmentation.

 APX-hard [CGWO05].

[CGWO5] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005

Correlation Clustering

* Natural abstraction for problems such as
Community and duplicate detection,

Link prediction,
Image segmentation.

 APX-hard [CGWOS5].

» Best known approximation ratio is 1.43 [CCL+24].

 Rounding a linear programming relaxation.

[CGWO5] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl STOC 2024

23

Correlation Clustering

* Natural abstraction for problems such as
Community and duplicate detection,

Link prediction,
Image segmentation.

 APX-hard [CGWOS5].

» Best known approximation ratio is 1.43 [CCL+24].

 Rounding a linear programming relaxation.

» Can achieve < 1.847 approximation in MPC [CLLP+24].

[CGWO5] Charikar, Guruswami, Wirth Journal of Computer and System Sciences 2005
[CCL+24] Cao, Cohen-Addad, Lee, Li, Newman, Vogl STOC 2024

[CLP+24] Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, and Zhang. STOC 2024

23

Pivot Algorithm

Pivot Algorithm

Pivot Algorithm

Pivot Algorithm
Random Permutation 7 : _—

Pivot Algorithm
Random Permutation 7 : _—

Pivot Algorithm
Random Permutation 7 : _—

 Expected cost is a 3-approximation [ACNOS].

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm
Random Permutation 7 : _—

 Expected cost is a 3-approximation [ACNOS].

 The set of pivot nodes forms an MIS.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

Pivot Algorithm
Random Permutation 7 : _—

 Expected cost is a 3-approximation [ACNOS].

 The set of pivot nodes forms an MIS.

 How to decide u’s cluster?

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

24

Pivot Algorithm
Random Permutation 7 : _—

 Expected cost is a 3-approximation [ACNOS].

 The set of pivot nodes forms an MIS.

 How to decide u’s cluster?

* Need to store all preceding neighbors.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

24

Random Permutation: | fu)

 Expected cost is a 3-approximation [ACNOS].

* The set of pivot nodes forms an MIS.

 How to decide u’s cluster?
* Need to store all preceding neighbors.

 Can we ignore some nodes to save space”?

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

24

Truncated-Pivot Algorithm

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

nlogn

| edeg(u)

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

* Node u is interesting if its rank is at most 7,,. s
nlogn |

'@ ~J

i e deg(u)

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

* Node u is interesting if its rank is at most 7,,. s
nlogn |

» Run Pivot only on interesting nodes. | T,

Y edeg(w)

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

* Node u is interesting if its rank is at most 7,,. s
nlogn |

» Run Pivot only on interesting nodes. | T,

| edeg(w)

* Only need to store incident edges of interesting
nodes.

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

* Node u is interesting if its rank is at most 7,,. TN
nlogn |

* Run Pivot only on interesting nodes. | Ty~

| edeg(w)

* Only need to store incident edges of interesting
nodes.

« How do we cluster an uninteresting node u?

25

Truncated-Pivot Algorithm
Random Permutation 7 : |:.:|

* Node u is interesting if its rank is at most 7,,. TN
nlogn |

* Run Pivot only on interesting nodes. | Ty~

L edeg(u)

* Only need to store incident edges of interesting
nodes.

« How do we cluster an uninteresting node u?

|t either joins a pivot cluster or becomes a singleton.

25

Truncated-Pivot Algorithm

Random Permutationz: | fw| fuw) 0

* Node u is interesting if its rank is at most 7,,.

nlogn |
 Run Pivot only on interesting nodes. | Ty~

_ e deg(u)

* Only need to store incident edges of interesting
nodes.

« How do we cluster an uninteresting node u?

|t either joins a pivot cluster or becomes a singleton.

25

Truncated-Pivot Algorithm

N
Random Permutationz: | fw| — Ju| ~

* Node u is interesting if its rank is at most 7,,. TN
nlogn |

* Run Pivot only on interesting nodes. | Ty~

_ e deg(u)

* Only need to store incident edges of interesting
nodes.

« How do we cluster an uninteresting node u?

|t either joins a pivot cluster or becomes a singleton.

25

Truncated-Pivot Algorithm
Random Permutation 7 : _—

* Node u is interesting if its rank is at most 7,,. TN
nlogn |

* Run Pivot only on interesting nodes. | Ty~

_ e deg(u)

* Only need to store incident edges of interesting
nodes.

« How do we cluster an uninteresting node u?

|t either joins a pivot cluster or becomes a singleton.

25

Space Analysis
Random Permutationz: []]

nlogn

.'~ -
i T,

e deg(u)

Space Analysis

nlogn

.'~ -
i T,

e deg(u)

Space Analysis

nlogn

For u to be interesting: 1 < nlogn

~ edeg(u) T, R

e deg(u)

Space Analysis

nlogn

For u to be interesting: 1 < nlogn

- edeg(u) 7, ~

edeg(u)

nlogn

In other words: deg(u) < .
€I

Space Analysis

For u to be interesting: 1| < ——— g nlogn |
edeg(u) | T~ ‘

Uu

‘ edeg(u) |
nlogn —— o)

In other words: deg(u) <

E 1

nlogn s« 1
Total number of edges stored = 5 Z —
€ o0

Space Analysis

For u to be interesting: 1| < ——— g nlogn |
edeg(u) | T~ ‘

Uu

‘ edeg(u) |
nlogn — o

In other words: deg(u) <

E 1

nlogn i I nlog”n
i e

Total number of edges stored =

E
=1

l

Random Permutation: | fuw)

[CM23] improves this to O(n/e€).

nlogn <= 1
Total number of edges stored = noen Z — X
l

E
=1

[CM23] Chakrabarty, Makarychev. NeurlPS 2023

26

Approximation Analysis

Approximation Analysis

Approximation Analysis

27

Approximation Analysis

3-approximation

Approximation Analysis

3-approximation “4-&”-approximation

Approximation Analysis

y g

27

Cost of Pivot Clusters

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

28

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

28

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

28

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

* Charging mistakes to bad triangles.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

28

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

* Charging mistakes to bad triangles.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

* Charging mistakes to bad triangles.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

Cost of Pivot Clusters

* The Pivot Clusters created by Truncated-Pivot
are different from the clusters created by Pivot.

 We don’t allow uninteresting nodes to
become pivots.

* Their neighbors may create new pivot
clusters.

\/

 The analysis of [ACNO8| shows that expected
cost of the pivot clusters is a 3-approximation.

* Charging mistakes to bad triangles.

[ACNOS8] Ailon, Charikar, Newman, JACM 2008

Bad Triangles

Bad Triangles

* A bad triangle is a triple containing two edges and
one non-edge.

Bad Triangles

* A bad triangle is a triple containing two edges and o
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

29

Bad Triangles

* A bad triangle is a triple containing two edges and o
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

29

* A bad triangle is a triple containing two edges and
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

 Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

29

* A bad triangle is a triple containing two edges and
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

 Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

29

* A bad triangle is a triple containing two edges and
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

 Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

29

* A bad triangle is a triple containing two edges and
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

 Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

29

* A bad triangle is a triple containing two edges and
one non-edge.

 No matter how you cluster a bad triangle, you
will make at least one mistake.

 |f the graph has 7 edge-disjoint bad triangles, we
will make at least mistakes.

 Each mistake made by creating a pivot cluster can be
charged to a unique bad triangle.

29

Charging Bad Triangles

Charging Bad Triangles

Charging Bad Triangles

A, : all of u, v, w are active and
one is chosen as pivot.

Charging Bad Triangles

A, : all of u, v, w are active and
one is chosen as pivot.

P: = PI‘[At]

Charging Bad Triangles

[CP <) py |
----- teBT :

A, : all of u, v, w are active and
one is chosen as pivot.

P: = PI‘[At]

Charging Bad Triangles

_[Cpivot] < Z p,

teBT

A, : all of u, v, w are active and
one is chosen as pivot.

How do we relate the p, values to OPT?
p, = Pr[A/] t

Linear Program Relaxation

Linear Program Relaxation

Primal LP:

Linear Program Relaxation

Primal LP:

min Z X,

eecE~UE™

Linear Program Relaxation

Primal LP:
min Z X,
eecE " UE™

st.) x,>1, VteBT

ect

Linear Program Relaxation

Primal LP: : Dual LP:
min Z X, | | max Z W
e€E"UEY i t€BT

s.t. er > 1, Vie BT s.t. ny <1, Vee ETUE™

e€t P De

Dual Feasible Solution

Dual LP:

max 2 y,

_ t€BT
| st)y <1, Ve€E UE?

[oe

Dual Feasible Solution

By weak-duality:

Dual LP:

max Z y,

_ t€BT
| st)y <1, Ve€E UE?

[oe

Dual Feasible Solution

By weak-duality:

.)y <LPYT <OPT,

— Dual LP:

max 2 y,

_ t€BT
| st)y <1, Ve€E UE?

[oe

Dual Feasible Solution

By weak-duality:
.)y <LPYT <OPT,

BT Dual LP:
» Candidate DFS: y, = p,/3. /1 max Z V;
: t€BT

| st)y <1, Ve€E UE?

[oe

Dual Feasible Solution

By weak-duality:
o 2 y, < LPY" < OPT.

BT Dual LP:
» Candidate DFS: y, = p,/3. 1, max Z V;
?5 t€BT

+ E[CP™] <) p, < 30PT.
rteBT

st. Yy <1, Vee ETUE?

[oe

Dual Feasible Solution

By weak-duality:
.) ¥ <LPT < OPT.

teBT : Dual LP:
» Candidate DFS: y, = p,/3. }' max 2 v
i t€BT |
. E[CP*] <) p, < 30PT. s |
teBT S.1. 2 Vs < 1, Vee ETUET

=,
. Why does y, = p,/3 satisfy all the e

dual constraints?

Dual Feasible Solution

Dual Feasible Solution

Want: Z Pt <]
Se 3

Dual Feasible Solution

Want: Z Pt <]
Se 3

D,: we make a mistake on e.

Dual Feasible Solution

Want: Z Pt <]
Se 3

D,: we make a mistake on e.

Dual Feasible Solution

Want: Z Pt <]
Se 3

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Dual Feasible Solution

Want: Z Pt <]
Se 3

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Dual Feasible Solution

Want: Z Pt <]
Se 3

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Dual Feasible Solution

/
v U
» [
, Want: E — < 1 |
‘ \
[}

’.

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Pr{D,NA]=Pr[D,|A]-Pr[A]

Dual Feasible Solution

/
v U
» [
, Want: E — < 1 |
‘ \
[}

’.

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Pr[D,NA] = Pr[D, |A]-Pr{A] = =

Dual Feasible Solution

pr ZPr[D NA] '

[oe [oe

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Pr[D,NA] = Pr[D, |A]-Pr{A] = =

Dual Feasible Solution

pr ZPr[D NA] '

[oe [oe

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Pr{D,NA)=Pr[D,|A]-Pr[A] =

Dual Feasible Solution

pr ZPr[D NA] '

[oe [oe

D,: we make a mistake on e.
Pr[D, | A] = 1/3.
Pt
3

Pr[D,NA]=Pr[D,|A]-Pr[A] = —

Dual Feasible Solution

P
2 ?t = Pr [Utae (De M At)] "

[oe

D,: we make a mistake on e.

Pr(D, | A] = 1/3.

Pr[D.NA] =PrD, |A]-PrA] = =

Approximation Analysis

3-approximation “4-&”-approximation

Approximation Analysis

3-approximation “4-&”-approximation

Approximation Analysis

3-approximation '

34

Cost of Singleton Clusters

Cost of Singleton Clusters

. < aaa e ome
.
A
[

Cost of Singleton Clusters

2

N o
|
,
/

|

Cost of Singleton Clusters

Cost of Singleton Clusters

Good Edges Bad Edges

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 WWe make a mistake for each singleton edge.

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 We make a mistake for each singleton edge.

 (Good edges accounted in the analysis of Pivot clusters.

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 We make a mistake for each singleton edge.
 (Good edges accounted in the analysis of Pivot clusters.

 We charge the bad edges to the good edges by showing:

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 We make a mistake for each singleton edge.
 (Good edges accounted in the analysis of Pivot clusters.

 We charge the bad edges to the good edges by showing:
IBad Edges| < O(¢) - |Good Edges|

Cost of Singleton Clusters

Singleton Edges = Good Edges + Bad Edges

 We make a mistake for each singleton edge.
 (Good edges accounted in the analysis of Pivot clusters.

 We charge the bad edges to the good edges by showing:
IBad Edges| < O(¢) - |Good Edges|

* This is not true for each node as all edges can be bad.

36

Counting Bad Edges
Random Permutation 7 : _—

Counting Bad Edges

Random Permutationz: | Ju]

Counting Bad Edges

Random Permutationz: |} Jul f] ||

I:>

Counting Bad Edges

Random Permutationz: |} Jul f]]

) —— ’ - ; S Ol g -] ” < S aeen o op— ” - e o
> o o g MBIy W PR R OR PR e T TR B R T O P O R B S e R e o AR e el s e e e
?
\
ol
3

With high probability, deg (1) < e deg(u)

l
Random Permutation 7 : _I- I-I-

\ | . nlogn |
L L .. |) > |
With high probability, deg (1) < e deg(u) : edeg(u) |

37

l
Random Permutationz: | |} Ju 101

\ | . nlogn |
L e {1 > |
With high probability, deg (1) < e deg(u) : edeg(u) |

It’s unlikely that u is so far in the permutation and did not join a pivot cluster.

37

Counting Bad Edges

Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Z deg,, (u) = |Bad Edges|

singleton u

Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Z deg,, (u) = |Bad Edges|

singleton u

Z deg(u) = 2-Singleton Edges|

singleton u

Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Z deg,, (u) = |Bad Edges|

singleton u

degout(u) <€ deg(u) "
) deg(u) = 2-[Singleton Edges| |

singleton u

Counting Bad Edges

 We sum over all singleton nodes, and use degree-sum lemma.

Z deg,, (u) = |Bad Edges|

singleton u

degout(u) S € deg(u) "
Y deg(u) = 2-[Singleton Edges| |

singleton u

» Therefore, [Bad Edges| < 2¢ - [Singleton Edges|

38

Counting Bad Edges

Counting Bad Edges

* The rest of the edges must be good...

Counting Bad Edges

* The rest of the edges must be good...

|Good Edges| > (1 — 2¢) - |Singleton Edges|

Counting Bad Edges

* The rest of the edges must be good...
|Good Edges| > (1 — 2¢) - |Singleton Edges|

* A better way to write it,

Counting Bad Edges

* The rest of the edges must be good...
|Good Edges| > (1 — 2¢) - |Singleton Edges|

* A better way to write it,

1
I —2¢

ISingleton Edges| < - |Good Edges|

Counting Bad Edges

* The rest of the edges must be good...
|Good Edges| > (1 — 2¢) - |Singleton Edges|

* A better way to write it,

1
I —2¢

ISingleton Edges| < - |Good Edges|

* Finally we get,

Counting Bad Edges

* The rest of the edges must be good...
|Good Edges| > (1 — 2¢) - |Singleton Edges|

* A better way to write it,

1
I —2¢

ISingleton Edges| < - |Good Edges|

* Finally we get,
2€

|Bad Edges| < 2¢ - |Singleton Edges| < —
— 2¢e

- |Good Edges|

39

Approximation Analysis

3-approximation “4-&”-approximation

Approximation Analysis

3-approximation “4-&”-approximation

Correlation Clustering Summary

" A (3 + €)-approximation algorithm using near-linear time and space.

Can be implemented in:
. Massively Parallel Computing: O(1) rounds with O(n/¢) local space.

. Dynamic Streaming: single pass with O(n/€) space.

Open Problems

Open Problems

» MIS: can we go below log log A rounds in MPC?

Open Problems

» MIS: can we go below log log A rounds in MPC?

. Sub-linear MPC? MIS: y/log A [GU19] and 2-RS: log!’® A [KPP20)].

[GUT9] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020

42

Open Problems

» MIS: can we go below log log A rounds in MPC?

. Sub-linear MPC? MIS: y/log A [GU19] and 2-RS: log!’® A [KPP20)].

« Can we solve 2-RS in a single pass of streaming with O(n) space?

[GUT9] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020

42

Open Problems

» MIS: can we go below log log A rounds in MPC?

. Sub-linear MPC? MIS: y/log A [GU19] and 2-RS: log!’® A [KPP20)].

« Can we solve 2-RS in a single pass of streaming with O(n) space?

* Possible for random-order |[AA21]. How about adversarial streams?

[GUT9] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA2T] Assadi and Dudeja. DISC 2021

42

Open Problems

» MIS: can we go below log log A rounds in MPC?

. Sub-linear MPC? MIS: y/log A [GU19] and 2-RS: log!’® A [KPP20)].

« Can we solve 2-RS in a single pass of streaming with O(n) space?

* Possible for random-order |[AA21]. How about adversarial streams?

» What is the best approximation we can get for correlation clustering in O(1)
MPC rounds?

[GUT9] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA2T] Assadi and Dudeja. DISC 2021

42

Open Problems Thank you!

» MIS: can we go below log log A rounds in MPC?

. Sub-linear MPC? MIS: y/log A [GU19] and 2-RS: log!’® A [KPP20)].

« Can we solve 2-RS in a single pass of streaming with O(n) space?

* Possible for random-order |[AA21]. How about adversarial streams?

» What is the best approximation we can get for correlation clustering in O(1)
MPC rounds?

[GUT9] Ghaffari, and Uitto. SODA 2019
[KPP20] Kothapalli, Pai, and Pemmaraju. FSTTCS 2020
[AA2T] Assadi and Dudeja. DISC 2021

42

