
Artur Czumaj
Department of Computer Science

Centre for Discrete Mathematics and its Applications (DIMAP)

University of Warwick

Understanding the Structure of
Massive Graphs

through the Lens of Property Testing

Workshop on Algorithms for Massive Graphs (AMG 2024)
Madrid, Spain, November 1, 2024

Lens of Property Testing

Leading theme in Distributed Computing:
 fight between LOCAL and GLOBAL

Property testing is a viewpoint trying to formalize some aspects of this
trade-off: what can we learn if we see only a small sample of the input

Lens of Property Testing

This talk:
• Introduction to the area of Property Testing
• Focus on Graphs
• If there will be enough time:

– some connections between property testing and other settings

Property Testing

• Distinguish inputs that have specific property
 from those that are far from having the property (Rubinfeld-Sudan’96)

Benefits:
• May be a natural question to ask
• May be just as good when data constantly changing
• Gives fast sanity check to rule out very “bad” inputs (i.e., restaurant bills)

or to decide when expensive processing is worth it

Property Testing

Classical decision problem:
• Given a property 𝑃𝑃 and input instance 𝐼𝐼
• Does 𝐼𝐼 has property 𝑃𝑃?

What we want to study [relaxation]:
• Is 𝐼𝐼 close to satisfying property 𝑃𝑃?

Often it’s hard (NP-complete or even undecidable)

Can work fast even for NP-hard or undecidable properties

Property Testing definition

Often we think about ε as on a small constant, say, ε = 0.1

• Given input x
• If x has the property P  tester passes
• If x is ε-far from any string that has the property P  tester fails

 error probability < 1/3

Notion of ε-far depends on the problem.
Typically: one needs to change an ε-fraction of
the input to obtain object satisfying the property

Graph properties

• Measure of being far/close from a property
• Is graph connected or is far from being connected?

these two graphs are
close to be connected

Graph properties

• Measure of being far/close from a property
• Is graph connected or is far from being connected?

far from being
connected

Testing of Graph Properties

• Does this graph have a clique of
size 11?

• Does it have a given 𝐻𝐻 as its
subgraph?

• Is this graph planar?
• Is it bipartite?
• Is it 𝑘𝑘-colorable?
• Does it have good expansion?
• Does it have good clustering?

from Fan Chung’s web page

Testing of Graph Properties

• Does this graph have a clique of
size 11?

• Does it have a given 𝐻𝐻 as its
subgraph?

• Is this graph planar?
• Is it bipartite?
• Is it 𝑘𝑘-colorable?
• Does it have good expansion?
• Does it have good clustering?

from Fan Chung’s web page

In general – requires at least linear time (often
NP-hard)

With a relaxation:
Sublinear-time (or even constant-time) possible

Testing of Graph Properties

• How can we relax the problem of satisfying a property?

• Optimization problem:
– For a given graph 𝐺𝐺, what is its maximum clique size?
 known NP-hard problem
– We can try to approximate the size

• Decision problem:
– For a given graph 𝐺𝐺, is 𝐺𝐺 3-colorable?
 known NP-complete problem
– How to relax it?

Testing of Graph Properties

• How can we relax the problem of satisfying a property?

• We want to distinguish
– between a graph satisfying the property, and
– a graph that is far from the property

Graph Property Testing definition

• Given input 𝐺𝐺

• If 𝐺𝐺 has the property  tester passes

• If 𝐺𝐺 is 𝜀𝜀-far from any graph that has the property  tester fails

• error probability < 1/3

Notion of 𝜺𝜺-far : DISTANCE to the Property
One needs to change an 𝜀𝜀 fraction of the input to obtain

an object satisfying the property

Typically we think about 𝜺𝜺
as on a small constant, say, 𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎

Graph Property Testing definition

• This is two-sided error tester
• one-sided error: errs only for 𝐺𝐺 being 𝜀𝜀-far

One sided-error tester often can give a certificate
 that 𝐺𝐺 doesn’t have the property

• Given input 𝐺𝐺

• If 𝐺𝐺 has the property  tester passes

• If 𝐺𝐺 is 𝜀𝜀-far from any graph that has the property  tester fails

• error probability < 1/3

Framework

• Goal:
Distinguish between the case when
– graph 𝐺𝐺 has property 𝑃𝑃 and
– 𝐺𝐺 is far from having property 𝑃𝑃

• one has to change G in an 𝜀𝜀-fraction of its representation to obtain a graph
with property P

• What does it mean “an 𝜀𝜀-fraction of its representation”?

Testing properties of graphs

Input:
• graph property 𝑃𝑃
• proximity parameter 𝜀𝜀
• input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) (possibly, from some class of graphs)

Output:
• if 𝐺𝐺 satisfies property 𝑃𝑃 then ACCEPT
• if 𝐺𝐺 is 𝜀𝜀-far from having property 𝑃𝑃 then REJECT

Testing properties of graphs

Input:
• graph property 𝑃𝑃
• proximity parameter 𝜀𝜀
• input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) represented by adjacency matrix
Output:
• if 𝐺𝐺 satisfies property 𝑃𝑃 then ACCEPT
• if 𝐺𝐺 is 𝜀𝜀-far from having property 𝑃𝑃 then REJECT

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Testing properties of graphs

Input:
• graph property 𝑃𝑃
• proximity parameter 𝜀𝜀
• input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) represented by adjacency matrix
Output:
• if 𝐺𝐺 satisfies property 𝑃𝑃 then ACCEPT
• if 𝐺𝐺 is 𝜀𝜀-far from having property 𝑃𝑃 then REJECT

𝐺𝐺 is 𝜀𝜀-far from 𝑃𝑃 if one has to modify ≥ 𝜀𝜀 𝑉𝑉 2 edges of
𝐺𝐺 to obtain a graph satisfying 𝑃𝑃

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Testing properties of graphs

Input:
• graph property 𝑃𝑃
• proximity parameter 𝜀𝜀
• input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) of maximum degree d
Output:
• if 𝐺𝐺 satisfies property 𝑃𝑃 then ACCEPT
• if 𝐺𝐺 is 𝜀𝜀-far from having property 𝑃𝑃 then REJECT

Testing properties of graphs

Input:
• graph property 𝑃𝑃
• proximity parameter 𝜀𝜀
• input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) of maximum degree d
Output:
• if 𝐺𝐺 satisfies property 𝑃𝑃 then ACCEPT
• if 𝐺𝐺 is 𝜀𝜀-far from having property 𝑃𝑃 then REJECT

𝐺𝐺 is 𝜀𝜀-far from 𝑃𝑃 if one has to modify ≥ 𝜀𝜀𝑑𝑑|𝑉𝑉| edges of
𝐺𝐺 to obtain a graph satisfying 𝑃𝑃

Testing of Graph Properties

• Started with Rubinfeld-Sudan (1996), Goldreich-Goldwasser-Ron (1998),
Goldreich-Ron (2002)

• Now we know quite a lot
– If 𝐺𝐺 is dense, given as an oracle to adjacency matrix, then every hereditary

property can be tested in constant time
– If 𝐺𝐺 is sparse (bounded degree), given as an oracle to adjacency list, then many

properties can be tested in constant time, many can be tested in sublinear time
– If G is an arbitrary graph represented by an oracle to adjacency list, then much

less is known
– If 𝐺𝐺 is directed then very little is known

• unless there is a trivial reduction to undirected graphs

Testing of Graph Properties

• Started with Rubinfeld-Sudan (1996), Goldreich-Goldwasser-Ron (1998),
Goldreich-Ron (2002)

• Now we know quite a lot
– If 𝐺𝐺 is dense, given as an oracle to adjacency matrix, then every hereditary

property can be tested in constant time
– If 𝐺𝐺 is sparse (bounded degree), given as an oracle to adjacency list, then many

properties can be tested in constant time, many can be tested in sublinear time
– If G is an arbitrary graph represented by an oracle to adjacency list, then much

less is known
– If 𝐺𝐺 is directed then very little is known

• unless there is a trivial reduction to undirected graphs

Framework

• Goal:
Distinguish between the case when
– graph 𝐺𝐺 has property 𝑃𝑃 and
– 𝐺𝐺 is far from having property 𝑃𝑃

• one has to change G in an 𝜀𝜀-fraction of its representation to obtain a graph
with property P

• What does it mean “an 𝜀𝜀-fraction of its representation”?

First model:
Adjacency Matrix

Graph 𝐺𝐺 is 𝜀𝜀-far from satisfying property P
 If one needs to modify more than 𝜀𝜀-fraction of entries in adjacency matrix

to obtain a graph satisfying P

0 1 0 0 1
1 0 1 1 1
0 1 0 0 1
0 1 0 0 0
1 1 1 0 0

Access to 𝐺𝐺 via oracle:
is 𝒊𝒊 connected by edge to 𝒋𝒋?

(𝑨𝑨[𝒊𝒊, 𝒋𝒋] = 𝟏𝟏?)

First model:
Adjacency Matrix

Graph 𝐺𝐺 is 𝜀𝜀-far from satisfying property P
 If one needs to modify more than 𝜀𝜀-fraction of entries in adjacency matrix

to obtain a graph satisfying P

𝜀𝜀𝑛𝑛2 edges have to be added/deleted

Suitable for dense graphs

Adjacency matrix model

• Accept every graph that satisfies property P

• Reject every graph that is 𝜀𝜀-far from property P
– 𝜀𝜀-far from P: one has to modify at least 𝜀𝜀𝑛𝑛2 entries of the adjacency matrix to

obtain a graph with property P

• Arbitrary answer if the graph doesn’t satisfy P nor is ε-far from P

• Complexity: number of queries to the matrix entries

• Can err with probability < 1/3
– Sometimes errs only for “rejects”: one-sided-error

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Adjacency matrix model

Very easy example (assume 𝑛𝑛 – large, 𝜀𝜀 – small constant):
• Test if a graph contains a triangle (cycle of length 3)

Highly nontrivial example:
• Test if a graph is triangle-free

Return YES (always)

• Can be done in 𝑓𝑓 𝜀𝜀 = 𝑂𝑂(1) time
• Proof: nontrivial combinatorics

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Adjacency matrix model

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Randomly sample set 𝑆𝑆 of vertices
 Consider subgraph of 𝐺𝐺 induced by 𝑆𝑆

 If the subgraph satisfies a property  accept
 otherwise  reject

Any other algorithm will have not more
than a quadratic speed-up

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Adjacency matrix model

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Randomly sample set 𝑆𝑆 of vertices
 Consider subgraph of 𝐺𝐺 induced by 𝑆𝑆

 If the subgraph satisfies a property  accept
 otherwise  reject

Any other algorithm will have not more
than a quadratic speed-up

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Adjacency matrix model

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Randomly sample set 𝑆𝑆 of vertices
 Consider subgraph of 𝐺𝐺 induced by 𝑆𝑆

 If the subgraph satisfies a property  accept
 otherwise  reject

Any other algorithm will have not more
than a quadratic speed-up

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

Adjacency matrix model

• There are very fast property testers
• They’re very simple
• Property tester for bipartiteness:

• Key question: What should be the size of |𝑈𝑈|?

•Select a random set of vertices 𝑈𝑈
•Test if the subgraph induced by 𝑈𝑈 is bipartite

•Goldreich, Goldwasser, Ron: 𝑈𝑈 = poly(1/𝜀𝜀)

•Alon, Krivelevich: 𝑈𝑈 = �𝑂𝑂 1/𝜀𝜀 ⇒ complexity �𝑂𝑂(1/𝜀𝜀2)

General result

• Every hereditary property can be tested in constant-time!
 (even with one-sided error)

[Alon & Shapira, 2003-2005]

• Property is hereditary if
– It holds if we remove vertices

• bipartiteness
• planarity
• being perfect
• being chordal
• having no induced subgraph 𝐻𝐻
• …

Main Lemma

Main Lemma:
If 𝐺𝐺 is 𝜀𝜀-far from satisfying a hereditary property 𝑃𝑃, then with high

probability random subgraph of size 𝑊𝑊𝑃𝑃(𝜀𝜀) doesn’t satisfy 𝑃𝑃

Proof: by a strengthened version of Szemeredi regularity lemma

Can be extended to hypergraphs
– via a strengthened version of Szemeredi regularity lemma for hypergraphs

General result

• Every hereditary property can be tested in constant-time!
 (even with one-sided error)

[Alon & Shapira, 2003-2005]

• Being hereditary is essentially necessary and sufficient for one-sided error

 Complete characterization of graph properties
 testable in constant-time with one-sided error

General result

• Every hereditary property can be tested in constant-time!
 (even with one-sided error)

[Alon & Shapira, 2003-2005]

• Similar characterization for two-sided error testing
 Informally:

A graph property is testable in constant-time iff
testing can be reduced to testing finitely many

Szemeredi partitions

[Alon, Fischer, Newman, Shapira’09]

Adjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to combinatorics
– Typical running time: (via Szemeredi regularity lemma)

•Select a random set of vertices U
•Test the property on the subgraph induced by U

Adjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to combinatorics
– Typical running time: (via Szemeredi regularity lemma)

•Select a random set of vertices U
•Test the property on the subgraph induced by U

Adjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to combinatorics
– Typical running time: (via Szemeredi regularity lemma)

•Select a random set of vertices U
•Test the property on the subgraph induced by U

Tower(Tower(Tower(1/𝜀𝜀)))

For 𝜀𝜀 = 0.5 we have Tower(Tower(Tower(1/𝜀𝜀)))=Tower(65536)

Adjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to combinatorics

• Still: sometimes the runtime is better
 𝑂𝑂(1/𝜀𝜀), 𝑂𝑂 1/𝜀𝜀2 , 𝑂𝑂(1/21/𝜀𝜀)

•Select a random set of vertices U
•Test the property on the subgraph induced by U

Adjacency matrix model

Very easy example:
• Test if a graph contains a triangle (cycle of length 3)

Highly nontrivial example:
• Test if a graph is triangle-free

Return YES (always)

• Can be done in 𝑓𝑓 𝜀𝜀 = 𝑂𝑂𝜀𝜀(1) time

0 1 0 0 1

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

1 1 1 0 0

• Currently best bound for 𝑓𝑓(𝜀𝜀) is
Tower(O(log(1/ε)))

Adjacency matrix model

• There are very fast property testers
• They’re very simple
• Property tester for bipartiteness:

• Key question: What should be the size of |𝑈𝑈|?

•Select a random set of vertices 𝑈𝑈
•Test if the subgraph induced by 𝑈𝑈 is bipartite

•Goldreich, Goldwasser, Ron: 𝑈𝑈 = poly(1/𝜀𝜀)

•Alon, Krivelevich: 𝑈𝑈 = �𝑂𝑂 1/𝜀𝜀 ⇒ complexity �𝑂𝑂(1/𝜀𝜀2)

Adjacency matrix model

• There are very fast property testers
• They’re very simple
• Property tester for bipartiteness:

• Key question: What should be the size of |𝑈𝑈|?

•Select a random set of vertices 𝑈𝑈
•Test if the subgraph induced by 𝑈𝑈 is bipartite

•Goldreich, Goldwasser, Ron: 𝑈𝑈 = poly(1/𝜀𝜀)

•Alon, Krivelevich: 𝑈𝑈 = �𝑂𝑂 1/𝜀𝜀 ⇒ complexity �𝑂𝑂(1/𝜀𝜀2)

Great still-open question: what is the complexity of testing bipartiteness?
We know it’s �Ω(𝜀𝜀−3/2) and �𝑂𝑂(𝜀𝜀−2)

Problems of adjacency matrix model

• Even if many properties are testable in “constant-time”, dependency on
1/𝜀𝜀 if often very high

• Being 𝜀𝜀-far from property requires distance 𝜀𝜀𝑛𝑛2 from any graph satisfying
the property  distance is big

– We could reduce the distance by using small 𝜀𝜀, but then the dependency on 𝜀𝜀
would make the complexity very high

Other model ?

Graph access model

Graph 𝐺𝐺 is 𝜀𝜀-far from satisfying property P
 If one needs to modify more than 𝜀𝜀-fraction of entries in adjacency lists to

obtain a graph satisfying P

1

5

2
3
4

5 2

1

1 4 5 3
5
2

2

2

3

Access to 𝐺𝐺 via oracle:
Return the 𝒊𝒊th neighbor of 𝒗𝒗

𝜀𝜀|𝐸𝐸| edges have to be added/deleted

First: Bounded-degree model

• We consider bounded-degree model
– graph has maximum degree 𝒅𝒅 [constant]
– 𝜀𝜀-far means ≥ 𝜀𝜀𝜀𝜀𝜀𝜀 edges to be deleted/added

• Main techniques:
– random sampling
– local search (exploring the neighborhood/ball of a vertex)
– random walks (a random neighbor of a random neighbor of a random neighbor…)

Bounded-degree adjacency list model

Testing connectivity

Bounded-degree adjacency list model

Testing connectivity

What does it mean that a graph 𝐺𝐺 with maximum degree
at most 𝑑𝑑 is 𝜀𝜀-far from connected?

 𝐺𝐺 has at least 𝜀𝜀𝑑𝑑𝑑𝑑 connected components

• not enough…we need many small connected components

Bounded-degree adjacency list model

What does it mean that a graph 𝐺𝐺 with maximum degree
at most 𝑑𝑑 is 𝜀𝜀-far from connected?

𝐺𝐺 has ≥ 𝜀𝜀𝑑𝑑𝑑𝑑/2 connected components of size ≤ 2/𝜀𝜀𝜀𝜀

Repeat 𝑂𝑂(𝜀𝜀−1𝑑𝑑) times:
 choose a random vertex 𝑣𝑣
 run BFS from 𝑣𝑣 until either 1 + 2/𝜀𝜀𝜀𝜀 vertices have been
 visited or the entire connected component has been visited
 if 𝑣𝑣 is contained in a connected component of size ≤ 2/𝜀𝜀𝜀𝜀
 then reject
accept

Testing connectivity can be done in 𝑶𝑶(𝜺𝜺−𝟐𝟐𝒅𝒅) time

Testing connectivity was easy ...

Similarly easy: testing 𝐻𝐻-freeness (e.g., triangle-freeness)
• 𝐺𝐺 is 𝜀𝜀-far from triangle-free 
 𝐺𝐺 has Ω(𝑛𝑛/𝜀𝜀) disjoint triangles 
 random sampling of O(1/𝜀𝜀) nodes will detect a triangle

Bounded-degree adjacency list model

What properties can be tested in constant-time?
We want a characterization!

Bounded-degree adjacency list model

• Testing bipartiteness

Bounded-degree adjacency list model

• Testing bipartiteness
– Can be done in �𝑂𝑂(𝒏𝒏/𝜺𝜺𝑶𝑶(𝟏𝟏)) time (Goldreich & Ron)

Algorithm:
•Select 𝑂𝑂(1/𝜀𝜀) starting vertices
•For each vertex run poly 𝜀𝜀−1 log𝑛𝑛 𝑛𝑛 random walks of length poly(𝜀𝜀−1 log𝑛𝑛)
•If any of the starting vertices lies on an odd-length cycle then reject
•Otherwise accept

Idea:
• if G is 𝜀𝜀-far from bipartite then G has many odd-length
 cycles of length 𝑂𝑂(𝜀𝜀−1 log𝑛𝑛)
• run many short random walks to find one

Bounded-degree adjacency list model

• Testing bipartiteness
– Can be done in �𝑂𝑂(𝒏𝒏/𝜺𝜺𝑶𝑶(𝟏𝟏)) time (Goldreich & Ron)

Algorithm:
•Select 𝑂𝑂(1/𝜀𝜀) starting vertices
•For each vertex run poly 𝜀𝜀−1 log𝑛𝑛 𝑛𝑛 random walks of length poly(𝜀𝜀−1 log𝑛𝑛)
•If any of the starting vertices lies on an odd-length cycle then reject
•Otherwise accept

Analysis: elaborate
• Relatively easy for rapidly mixing case
• For general case: no rapid mixing ⇒ small cut
 use small cut to decompose the graph and the problem

Bounded-degree adjacency list model

• Testing bipartiteness
– Can be done in �Θ(𝒏𝒏/𝜺𝜺𝑶𝑶(𝟏𝟏)) time (Goldreich & Ron)
– Cannot be done faster (Goldreich & Ron)

Ω(𝑛𝑛) time is needed to distinguish between random graphs
from the following two classes
• a Hamiltonian cycle 𝐻𝐻 + a perfect matching 𝑀𝑀
• a Hamiltonian cycle 𝐻𝐻 + a perfect matching 𝑀𝑀 such that each

edge from 𝑀𝑀 creates an even-length cycle when added to 𝐻𝐻

Bounded-degree adjacency list model

• Testing bipartiteness
– Can be done in �Θ(𝒏𝒏/𝜺𝜺𝑶𝑶(𝟏𝟏)) time (Goldreich & Ron)
– Cannot be done faster (Goldreich & Ron)

So: no constant-time algorithms

Bounded-degree adjacency list model

• Testing 3-colorability (or 𝑘𝑘-colorability, 𝑘𝑘 ≥ 3)

… requires checking (almost) all vertices and edges!
[Bogdanov, Obata, Trevisan’02]

Testing planarity

Testing planarity

• There are graphs 𝐺𝐺 such that
– any connected subgraph of 𝐺𝐺 of constant size is planar
– 𝐺𝐺 is 𝜀𝜀-far from planar

• This should mean that we cannot do anything in constant-time …

Bounded-degree expanders
with 𝜔𝜔(1) girth

Testing planarity

Testing planar graphs can be done with 𝑂𝑂(1) queries
[Benjamini, Schramm, Shapira’08]

For each subgraph of constant size,
• check the number of its occurrences in 𝐺𝐺
• No all frequencies are possible in planar graphs!
• Some subgraphs cannot appear too often
 wrt some other subgraphs.

(with two-sided error)

Testing planarity

Testing planar graphs can be done with 𝑂𝑂(1) queries
[Benjamini, Schramm, Shapira’08]

• Runtime: 222
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(1/𝜀𝜀)

• Hassidim-Kelner-Nguyen-Onak’09 improved the runtime to 2poly(1/ε)

– with somewhat simpler analysis and simpler algorithm

If 𝐺𝐺 is 𝜀𝜀-far from planar then
-either 𝐺𝐺 has lots of constant-size non-planar subgraphs
-or 𝐺𝐺 has lots of small subgraphs without good separator

(with two-sided error)

Testing planarity

Testing planar graphs can be done with 𝑂𝑂(1) queries
[Benjamini, Schramm, Shapira’08]

• Runtime: 222
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(1/𝜀𝜀)

• Hassidim-Kelner-Nguyen-Onak’09 improved the runtime to 2poly(1/ε)

– with somewhat simpler analysis and simpler algorithm

• Levi and Ron’13 improved the runtime to 2𝑂𝑂(log2(1/𝜀𝜀))

• Kumar-Seshadhri-Stolman’19 improved it further to poly(𝑑𝑑 ⋅ 𝜀𝜀−1)

(with two-sided error)

Testing planarity

Testing planar graphs can be done with 𝑂𝑂(1) queries
[Benjamini, Schramm, Shapira’08]

• Runtime: 222
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(1/𝜀𝜀)

• Hassidim-Kelner-Nguyen-Onak’09 improved the runtime to 2poly(1/ε)

– with somewhat simpler analysis and simpler algorithm

• Levi and Ron’13 improved the runtime to 2𝑂𝑂(log2(1/𝜀𝜀))

• Kumar-Seshadhri-Stolman’19 improved it further to poly(𝑑𝑑 ⋅ 𝜀𝜀−1)

(with two-sided error)

Consequences (of some follow-up papers):
• poly(𝑑𝑑 ⋅ 𝜀𝜀−1)-time tester for any property of minor-closed

families (e.g., bipartite planar graphs)
• poly(𝑑𝑑 ⋅ 𝜀𝜀−1)-time algorithms for additive 𝜀𝜀𝜀𝜀-approximations

for problems such as maximum matching, minimum vertex
cover, maximum independent set, and minimum dominating set
for these graph families

Testing planarity

Testing planar graphs can be done with 𝑂𝑂(1) queries
[Benjamini, Schramm, Shapira’08]

[Hassidim, Kelner, Nguyen, Onak’09]
[Levi, Ron’13]

[Kumar-Seshadhri-Stolman’19]

• Runtime: poly(𝑑𝑑 ⋅ 𝜀𝜀−1) (constant for 𝑑𝑑, 𝜀𝜀 = 𝑂𝑂(1))

• The result is with two-sided error:
– can accept non-planar graphs & can reject planar graphs

• There is no 𝑜𝑜(𝑛𝑛)-time one-sided-error tester for planarity
• Kumar-Seshadhri-Stolman’18: 𝑂𝑂(𝑛𝑛1/2+𝑜𝑜(1))-time one-sided-error

planarity tester

(with two-sided error)

Extension: all minor-closed properties

• Every minor-closed property can be tested in a similar way
• Minor-closed properties include:

– Planar,
– Outer-planar,
– Series-parallel,
– Bounded-genus,
– bounded tree-width,
– …

• Minor = obtained by edge/vertex removal + edge contractions
• P is minor-closed if every minor of a graph in P is also in P

Testing expansion

• In the adjacency list model, rapidly mixing properties play key role:
– If G doesn’t “mix” fast then … testing is fast

• Planar graphs don’t mix fast (have large cuts)
– Testing properties in planar graphs might be easy

• Expanders mix fast:
– Testing properties might be hard

Expander 𝐺𝐺 = (𝑉𝑉,𝐸𝐸):
each vertex set U ⊆ 𝑉𝑉 has large neighborhood (proportion to |𝑈𝑈|)

Testing expansion

Testing expansion

• For graphs of bounded degree, we can distinguish expanders from graphs
that are “far” even from poor expanders in 𝑂𝑂∗(𝑛𝑛) time

[C, Sohler ’07, Kale, Seshadhri’07, Nachmias, Shapira’08]
• Ω(𝑛𝑛) time is needed

[Goldreich, Ron’02]

Testing expansion

Idea:
• If 𝐺𝐺 is an expander then end-nodes are random nodes
  we can estimate number of collisions well
• If 𝐺𝐺 is far from expander then we will have many more

collisions (requires non-trivial arguments)

Choose 𝑂𝑂(1/𝜀𝜀) nodes at random
For each chosen node run 𝑂𝑂(𝑛𝑛) random walks of length 𝑂𝑂(log𝑛𝑛)

Count the number of collisions at the end-nodes
If the number of collisions is too large then Reject

Accept

Testing expansion and clustering

In a similar time we can:
• Correct an almost expander-graph to become a good expander, even in

distributed way
• Determine graph clustering into expanders
• …

Testing in planar graphs

• All previous results assumed the input graph is
arbitrary

Testing in planar graphs is easier!

• Testing bipartiteness in planar graphs of bounded
degree can be done in constant time

[assuming ε is a constant]
 [C, Sohler, Shapira’09]

Complexity/runtime
𝒅𝒅/𝜺𝜺 𝑶𝑶 𝒅𝒅/𝜺𝜺 𝑶𝑶(𝟏𝟏)

 Pick random sample of 𝑂𝑂∗(𝑑𝑑/𝜀𝜀) vertices
 For each vertex explore its neighborhood (of size 𝑑𝑑/𝜀𝜀 𝑂𝑂(1))
 If the input graph is 𝜀𝜀-far from bipartite:
 the induced subgraph should NOT be bipartite!

Testing in hyperfinite graphs

• One can go beyond planar graphs:
– It’s enough to have some separator properties

Testing in hyperfinite graphs

Complete characterization for non-uniform algorithms:

Newman & Sohler’2011:
• Testing any property in hyperfinite (“non-expanding”) families of graphs

of bounded-degree can be done in 𝑂𝑂(1) time (two-sided-error)

Arbitrary graphs (no bound for max-degree)

Adjacency Lists in arbitrary graphs

Graph 𝐺𝐺 is 𝜀𝜀-far from satisfying property P
 If one needs to modify more than 𝜀𝜀-fraction of entries in adjacency lists to

obtain a graph satisfying P

𝜀𝜀|𝐸𝐸| edges have to be added/deleted

More general model & more challenging model:
graphs of arbitrary max-degree

Adjacency Lists in arbitrary graphs

Oracle access:
– Sample a random vertex
– Sample a random neighbour of a given vertex
 (could be replaced by two queries: degree query + 𝑖𝑖th neighbour)

Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is 𝜀𝜀–far from property 𝑃𝑃 if one has to modify ≥ 𝜀𝜀|𝐸𝐸| edges
in 𝐺𝐺 to obtain a graph satisfying 𝑃𝑃

These techniques don’t work for arbitrary-degree graphs

Previous techniques don’t work for arbitrary-degree graphs:

Testing planarity (or 𝐻𝐻-freeness) in arbitrary degree graphs requires Ω(𝑛𝑛)
time, even in two-sided error model

Two instances:
– empty graph on 𝑛𝑛 nodes
– clique on 𝑛𝑛 nodes + isolated 𝑛𝑛 − 𝑛𝑛 nodes

Testing in arbitrary graphs

• Testing neighborhood may cost even 𝑂𝑂(𝑛𝑛) time!

 Graph exploration is expensive

Testing in arbitrary graphs

• Almost nothing is known

• Triangle-freeness
– Alon et al’2008

• Bipartiteness
– Ben-Eliezer et al’2008
– If 𝐺𝐺 has average degree 𝑑𝑑 then Ω(min{ 𝑛𝑛, ⁄𝑛𝑛 𝑑𝑑}) queries are needed

Testing in arbitrary planar graphs

• C, Monemizadeh, Onak, Sohler’11

• Testing bipartiteness in planar graphs can be done in constant time

• Challenge:
 how to explore neighbourhood of a node quickly?

 Run many short random walks
 For a planar graph that is 𝜀𝜀-far from bipartite, prove that

one of the random walks will find an odd-length cycle

Testing in arbitrary planar graphs

• C, Monemizadeh, Onak, Sohler’11

Challenge: analyze random walks of constant length

 first step: reduce to testing 𝐶𝐶𝑘𝑘-freeness for odd 𝑘𝑘, all 𝑘𝑘 = 𝑂𝑂(1/𝜀𝜀)

 Run many short random walks
 For a planar graph that is 𝜀𝜀-far from bipartite, prove that

one of the random walks will find an odd-length cycle

Testing in arbitrary planar graphs: it’s all about H-freeness

• Broader class of graphs than planar
– Graphs defined by arbitrary fixed forbidden minors

C. & Sohler’19:
• Testing 𝑯𝑯-freeness in general planar graphs can be done in constant time

with one-sided error (for arbitrary finite 𝐻𝐻)
• P is testable in constant-time with one-sided error in planar graphs iff P

“can be reduced” to test 𝐻𝐻-freeness
Characterization of properties testable in constant-time (for planar graphs)

Testing in arbitrary planar graphs

C. & Sohler’19:
• Testing 𝑯𝑯-freeness in general planar graphs can be done in constant time

with one-sided error (for arbitrary finite 𝐻𝐻)
• P is testable in constant-time with one-sided error in planar graphs iff P

“can be reduced” to test 𝐻𝐻-freeness
Characterization of properties testable in constant-time (for planar graphs)

Esperet & Norin’22: for any proper minor-closed class 𝒢𝒢, any monotone
property is testable for graphs from 𝒢𝒢
(e.g., for any 𝑘𝑘 and 𝑡𝑡, 𝑘𝑘-colorability of 𝐾𝐾𝑡𝑡-minor free graphs is testable;
monotone properties of graphs from minor-closed classes that are closed
under disjoint union can be tested in constant time)

Testing of Digraph Properties

Models introduced by Bender-Ron (2002):
• Digraphs with bounded maximum in- and out-degrees
• Oracle with access to adjacency list
• Two main models:

– Bidirectional: outgoing and incoming edges
• shares properties of undirected graphs;
• not suitable in many scenarios/applications

– One-directional: access to outgoing edges only
• major difference wrt undirected graphs
• more natural in many scenarios/applications

Sometimes very fast

More challenging

Big networks

• Is it weakly connected?
 (or close to it)

• Is it planar?
 (or close to it)

from Fan Chung’s web page

If we have access to both directional edges then this reduces to
a problem in undirected graphs (which we understand well)

Big networks

• Is it strongly connected?
 (or close to it)

• Is it acyclic?
 (or close to it)

• Is it 𝐶𝐶33-free?
 (or close to it)

from Fan Chung’s web page

Highly non-trivial if we have no access to incoming edges
For example: we cannot easily check if a node has in-degree 0

Relation between the models
C, Peng, Sohler’16 + Peng, Wang’23

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
𝑛𝑛1−Ω𝜀𝜀,𝑑𝑑(1) query time (in two-sided error model)

Relation between the models
C, Peng, Sohler’16

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
𝑛𝑛1−Ω𝜀𝜀,𝑑𝑑(1) query time (in two-sided error model)

Application:
Every hyperfinite (e.g., planar) property can be tested
with sublinear complexity in one-directional model

Relation between the models
C, Peng, Sohler’16

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
𝑛𝑛1−Ω𝜀𝜀,𝑑𝑑(1) query time (in two-sided error model)

This cannot be improved much:
• two-sided error is required (cf. strong connectivity)
• Ω(𝑛𝑛1−1/𝑘𝑘) “simulation” slowdown is required (cf. 3-star-freeness)

Summary

• Many graph properties can be tested efficiently (in the property testing framework)

– Sometimes in constant-time
– More often in sublinear-time

• But our understanding of testing graph properties
– in arbitrary graphs or in directed graphs is still patchy …

• Tools:
– Combination of algorithm design, combinatorics, analysis of random walks …

Further topics (not discussed here): Tolerant Testing

• Setting so far: with probability at least 2/3, determine whether
– 𝐺𝐺 has property 𝑃𝑃, or
– 𝐺𝐺 is 𝜀𝜀-far from any graph having property 𝑃𝑃.

• Feature: freedom to answer if 𝐺𝐺 is close to having 𝑃𝑃 but does not exactly
have this property.

• Tolerant testing: separate inputs that are 𝜀𝜀-far from having property 𝑃𝑃
from those that are 𝜀𝜀𝜀-close to having property 𝑃𝑃, where 𝜀𝜀′ > 0.
– We call this a (𝜀𝜀𝜀, 𝜀𝜀)-tolerant tester
– Introduced by Parnas, Ron, Rubinfeld’06
– Related to distance approximation

Further topics (not discussed here): Distributed Property Testing

Some examples, include:
DISC 2016:
• Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev, “Fast distributed

algorithms for testing graph properties”
• Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca, “Distributed testing of excluded

subgraphs”
DISC 2017
• Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre,

Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca, “Three notes on distributed
property testing”

PODC 2018
• Reut Levi, Moti Medina, Dana Ron, “Property testing of planarity in the CONGEST model”

Local Computation Algorithms (LCAs)

Further topics (not discussed here): Optimization algorithms

• Property testing tools lead to fast optimization algorithms
• Estimating the weight of the minimum spanning tree:

– Chazelle, Rubinfeld, Trevisan (2001): (1 + 𝜀𝜀)-approximation algorithm in
O(𝐷𝐷𝐷𝐷/𝜀𝜀3) time, 𝐷𝐷-max-degree; 𝑊𝑊-max-weight

– C, Sohler (2004): (1 + 𝜀𝜀)-approximation algorithm in 𝑂𝑂(𝑛𝑛 ⋅ log𝑂𝑂(1) 𝑛𝑛/𝜀𝜀𝑂𝑂(1)) time
for arbitrary metric graphs

• In a graph of constant degree, in constant time:
– we can estimate the cost of the minimum vertex cover to within factor of 2 and

additive error term 𝜀𝜀𝜀𝜀
– we can estimate the size of the maximum matching with additive error term 𝜀𝜀𝜀𝜀

THANK YOU!

	Understanding the Structure of Massive Graphs �through the Lens of Property Testing
	Lens of Property Testing
	Lens of Property Testing
	Property Testing
	Property Testing
	Property Testing definition
	Graph properties
	Graph properties
	Testing of Graph Properties
	Testing of Graph Properties
	Testing of Graph Properties
	Testing of Graph Properties
	Graph Property Testing definition
	Graph Property Testing definition
	Framework
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing of Graph Properties
	Testing of Graph Properties
	Framework
	First model:�Adjacency Matrix
	First model:�Adjacency Matrix
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	General result
	Main Lemma
	General result
	General result
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Problems of adjacency matrix model
	Other model ?
	Graph access model
	First: Bounded-degree model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Extension: all minor-closed properties
	Testing expansion
	Testing expansion
	Testing expansion
	Testing expansion
	Testing expansion and clustering
	Testing in planar graphs
	Dia numero 71
	Testing in hyperfinite graphs
	Testing in hyperfinite graphs
	Arbitrary graphs (no bound for max-degree)
	Adjacency Lists in arbitrary graphs
	Adjacency Lists in arbitrary graphs
	These techniques don’t work for arbitrary-degree graphs
	Testing in arbitrary graphs
	Testing in arbitrary graphs
	Testing in arbitrary planar graphs
	Testing in arbitrary planar graphs
	Testing in arbitrary planar graphs: it’s all about H-freeness
	Testing in arbitrary planar graphs
	Testing of Digraph Properties
	Big networks
	Big networks
	Relation between the models�C, Peng, Sohler’16 + Peng, Wang’23
	Relation between the models�C, Peng, Sohler’16
	Relation between the models�C, Peng, Sohler’16
	Summary
	Further topics (not discussed here): Tolerant Testing
	Further topics (not discussed here): Distributed Property Testing
	Further topics (not discussed here): Optimization algorithms
	Dia numero 94

