THE UNIVERSITY QOF

e WARWICK

. COMPUTER SCIENCE

Understanding the Structure of
Massive Graphs
through the Lens of Property Testing

Artur Czumaj

Department of Computer Science
Centre for Discrete Mathematics and its Applications (DIMAP)

University of Warwick

Workshop on Algorithms for Massive Graphs (AMG 2024)
Madrid, Spain, November 1, 2024

Lens of Property Testing

Leading theme in Distributed Computing:
fight between LOCAL and GLOBAL

Property testing is a viewpoint trying to formalize some aspects of this
trade-off: what can we learn if we see only a small sample of the input

Lens of Property Testing

This talk:

e Introduction to the area of Property Testing
e Focus on Graphs

e If there will be enough time:

— some connections between property testing and other settings

Property Testing

Fe EiEth

e Distinguish inputs that have specific property

from those that are far from having the property (Rubinfeld-Sudan’96)

Benefits:
e May be a natural question to ask
e May be just as good when data constantly changing

e (Gives fast sanity check to rule out very “bad” inputs (i.e., restaurant bills)
or to decide when expensive processing is worth it

Property Testing

Classical decision problem:
e Given a property P and input instance I
e Does I has property P?

[Often it’s hard (NP-complete or even undecidable)

What we want to study [relaxation]:
e Is [close to satisfying property P?

[Can work fast even for NP-hard or undecidable properties

Property Testing definition

e Given input X
e If x has the property P = tester passes
e If xis e-far from any string that has the property P = tester fails

error probability < 1/3

~
Notion of e-far depends on the problem.

Typically: one needs to change an g-fraction of
Kthe input to obtain object satisfying the property)

Often we think about € as on a small constant, say, € = 0.1

Graph properties

e Measure of being far/close from a property
e [s graph connected or is far from being connected?

’rhese two graphs are
close to be connected

Graph properties

e Measure of being far/close from a property
e [s graph connected or is far from being connected?

far from being
connected

Testing of Graph Properties

e Does this graph have a clique of
size 117

e Doesithaveagiven H as its
subgraph?

e Is this graph planar?

e I[sitbipartite?

e Isitk-colorable?

e Does it have good expansion?

e Does it have good clustering?

from Fan Chung’s web page

Testing of Graph Properties

-~

In general — requires at least linear time (often
NP-hard)

Joes this graph have a clique of
ize 117

_ . oes it have a given H as its
or even constant-time) possible .j;horaph?

With a relaxation:
-time (

Sublinear

e Is this graph planar?

e I[sitbipartite?

e Isitk-colorable?

e Does it have good expansion?
e Does it have good clustering?

from Fan Chung’s web page

Testing of Graph Properties

e How can we relax the problem of satisfying a property?

e Optimization problem:
- For a given graph G, what is its maximum clique size?
known NP-hard problem
- We can try to approximate the size

e Decision problem:
— For a given graph G, is G 3-colorable?
known NP-complete problem
- How to relax it?

Testing of Graph Properties

e How can we relax the problem of satisfying a property?

e We want to distinguish
- between a graph satisfying the property, and
— a graph that is far from the property

Graph Property Testing definition

Given input G

If G has the property = tester passes

If G is e-far from any graph that has the property © tester fails
error probability <1/3

Notion of &-far : DISTANCE to the Property
One needs to change an ¢ fraction of the input to obtain
an object satisfying the property

Typically we think about &
as on a small constant, say, € = 0.01

Graph Property Testing definition

Given input G

If G has the property = tester passes

If G is e-far from any graph that has the property © tester fails
error probability <1/3

* This is two-sided error tester
* one-sided error: errs only for G being e-far

One sided-error tester often can give a certificate
that G doesn’t have the property

Framework

e Goal:
Distinguish between the case when
— graph G has property P and
- (G is far from having property P

e one has to change G in an e-fraction of its representation to obtain a graph
with property P

e What does it mean “an &-fraction of its representation”?

Testing properties of graphs

Input:

e graph property P

e proximity parameter &

e Input graph G = (V, E) (possibly, from some class of graphs)
Output:

o if (¢ satisfies property P then ACCEPT

e if G is e-far from having property P then REJECT

Testing properties of graphs

Input:

| O|]O || O
R|lRr |, |O|R
| O|]O || O

e graph property P

(=2 Nell Noll o =)

o|lo|lr|r]|k

e proximity parameter &
e inputgraph ¢ = (V, E) represented by adjacency matrix

Output:
o if (¢ satisfies property P then ACCEPT
e if G is e-far from having property P then REJECT

Testing properties of graphs

Input:

| O|]O || O
R|lRr |, |O|R
| O|]O || O
oO|loOo|O |+]|]O
o|lo|lr|r]|k

e graph property P

e proximity parameter &
e inputgraph ¢ = (V, E) represented by adjacency matrix

Output:
e if G satisfies property P then ACCEPT
e if G is e-far from having property P then REJECT

G is e-far from P if one has to modify > £|V|% edges of
(to obtain a graph satisfying P

Testing properties of graphs

Input:

e graph property P

e proximity parameter &

e inputgraph ¢ = (V, E) of maximum degree d
Output:

o if (¢ satisfies property P then ACCEPT

e if G is e-far from having property P then REJECT

Testing properties of graphs

Input:

e graph property P

e proximity parameter &

e inputgraph ¢ = (V, E) of maximum degree d
Output:

e if G satisfies property P then ACCEPT

e if G is e-far from having property P then REJECT

G is e-far from P if one has to modify = &d|V| edges of
(to obtain a graph satisfying P

Testing of Graph Properties

e Started with Rubinfeld-Sudan (1996), Goldreich-Goldwasser-Ron (1998),
Goldreich-Ron (2002)

e Now we know quite a lot

— If G is dense, given as an oracle to adjacency matrix, then every hereditary
property can be tested in constant time

- If G is sparse (bounded degree), given as an oracle to adjacency list, then many
properties can be tested in constant time, many can be tested in sublinear time

— If G is an arbitrary graph represented by an oracle to adjacency list, then much
less is known

— If G is directed then very little is known
e unless there is a trivial reduction to undirected graphs

Testing of Graph Properties

e Started with Rubinfeld-Sudan (1996), Goldreich-Goldwasser-Ron (1998),
Goldreich-Ron (2002)
e Now we know quiteal L Ll 1L o
- If G is dense, :iven as PRQPER 1trix, th
TESTING

property can be tested Amab Bhattacharyya

Yuichi Yoshida
icle to a

’ can be Property
cletoa Testlng

Problems and Techniques

— If G is sparse (boundec
properties can be teste

- If G is an arbitrary gray
less is known

— If G is directed then ve
e unless there is a triv

ted graj

Framework

e Goal:
Distinguish between the case when
— graph G has property P and
- (G is far from having property P

e one has to change G in an e-fraction of its representation to obtain a graph
with property P

e What does it mean “an &-fraction of its representation”?

First model:
Adjacency Matrix

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of entries in adjacency matrix
to obtain a graph satisfying P

Access to ¢ via oracle:
is i connected by edge to j?
(A[i,j] = 17?)

—~ OO~ |0

L 1 OIO0O|— 0O
—_ == O -
OO O|—~|0O
OO ||

First model:
Adjacency Matrix

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of entries in adjacency matrix
to obtain a graph satisfying P

en? edges have to be added/deleted

Suitable for dense graphs

Adjacency matrix model

R | O|]O || O
R|lRr |, |O|R
| O|]O || O
oO|loOo|]Oo |+]|]O
o|lo|lr|r]|r

Accept every graph that satisfies property P

Reject every graph that is e-far from property P

- e-far from P: one has to modify at least en® entries of the adjacency matrix to
obtain a graph with property P

Arbitrary answer if the graph doesn’t satisfy P nor is e-far from P
Complexity: number of queries to the matrix entries

Can err with probability < 1/3

— Sometimes errs only for “rejects”: one-sided-error

Adjacency matrix model

Very easy example (assume n - large, £ - small constant):
e Testif a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:
e Testifagraph is triangle-free

« Can be done in f(¢) = 0(1) time
* Proof: nontrivial combinatorics

| O |O |~ | O

R|lRr |, |O|R

| O |O || O

(=2 Nell Noll o =)

o|lo|lr|r]|r

Adjacency matrix model

R | O|]O || O
R|lRr |, |O|R
| O|]O || O
oO|loOo|]Oo |+]|]O
o|lo|lr|r]|r

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Any other algorithm will have not more
than a quadratic speed-up

Randomly sample set S of vertices
Consider subgraph of G induced by S
If the subgraph satisfies a property = accept
otherwise = reject

Adjacency matrix model

R | O|]O || O
R|lRr |, |]O|R
| O|]O || O
oO|loOo|]Oo |+]|]O
o|lo|lr|r]|r

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Any other algorithm will have not more
than a quadratic speed-up

Randomly sample set S of vertices
Consider subgraph of G induced by S
If the subgraph satisfies a property = accept
otherwise = reject

Adjacency matrix model

R | O|]O || O
R, |k, |O|R
R | O|]O |, | O
oO|loOo|]Oo |+]|]O
o|lo|lr|r|r

[Goldreich, Trevisan’03]
Wlog we can consider only algorithms of the following form:

Any other algorithm will have not more
than a quadratic speed-up

Randomly sample set S of vertices
Consider subgraph of G induced by S
If the subgraph satisfies a property = accept
otherwise = reject

Adjacency matrix model

There are very fast property testers
They're very simple
Property tester for bipartiteness:

Select a random set of vertices U
Test if the subgraph induced by U is bipartite

Key question: What should be the size of |U|?

*Goldreich, Goldwasser, Ron: |U| = poly(1/¢)
*Alon, Krivelevich: |U| = 0(1/¢) = complexity 0(1/&?)

General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Property is hereditary if
— It holds if we remove vertices
e bipartiteness

planarity

being perfect

being chordal

having no induced subgraph H

Main Lemma

Main Lemma:

If G is e-far from satisfying a hereditary property P, then with high
probability random subgraph of size W (&) doesn’t satisfy P

Proof: by a strengthened version of Szemeredi regularity lemma

Can be extended to hypergraphs

- via a strengthened version of Szemeredi regularity lemma for hypergraphs

General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Being hereditary is essentially necessary and sufficient for one-sided error

Complete characterization of graph properties

testable in constant-time with one-sided error

General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Similar characterization for two-sided error testing
Informally:

A graph property is testable in constant-time iff
testing can be reduced to testing finitely many
Szemeredi partitions

[Alon, Fischer, Newman, Shapira’09]

Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics
— Typical running time: (via Szemeredi regularity lemma)

Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics
— Typical running time: (via Szemeredi regularity lemma)

Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

«Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics
— Typical running time: (via Szemeredi regularity lemma)

Tower(Tower(Tower(1/¢)))

For € = 0.5 we have Tower(Tower(Tower(1/¢)))=Tower(65536)

Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics

Still: sometimes the runtime is better
0(1/¢),0(1/€%),0(1/2Y/%)

Adjacency matrix model

o | ©
o | ©

o |O | O
o

Very easy example:
e Testif a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:
e Testif a graph is triangle-free

« Can be done in f(g) = 0.(1) time

 Currently best bound for f(¢) is
Tower(0O(log(1/¢)))

Adjacency matrix model

There are very fast property testers
They're very simple
Property tester for bipartiteness:

Select a random set of vertices U
Test if the subgraph induced by U is bipartite

Key question: What should be the size of |U|?

*Goldreich, Goldwasser, Ron: |U| = poly(1/¢)
*Alon, Krivelevich: |U| = 0(1/¢) = complexity 0(1/&?)

Adjacency matrix model

h Great still-open question: what is the complexity of testing bipartiteness?
We know it’s Q(¢73/?) and 0 (¢7?)

They e very simple

Property tester for bipartiteness:

«Select a random set of vertices U
Test if the subgraph induced by U is bipartite

Key question: What should be the size of |U|?

*Goldreich, Goldwasser, Ron: |U| = poly(1/¢)
*Alon, Krivelevich: |U| = 0(1/¢) = complexity 0(1/&?)

Problems of adjacency matrix model

e Even if many properties are testable in “constant-time”, dependency on
1/¢ if often very high

e Being e-far from property requires distance en? from any graph satisfying
the property = distance is big

— We could reduce the distance by using small ¢, but then the dependency on ¢
would make the complexity very high

?

Other model

Graph access model

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of entries in adjacency lists to
obtain a graph satisfying P

¢|E| edges have to be added/deleted

Access to G via oracle:

17157772 Return the ith neighbor of v
217411573

31572

42

51111372

First: Bounded-degree model

e We consider bounded-degree model
— graph has maximum degree d [constant]
- ¢-far means = edn edges to be deleted/added

e Main techniques:
- random sampling
- local search (exploring the neighborhood/ball of a vertex)

- random walks (a random neighbor of a random neighbor of a random neighbor...)

Bounded-degree adjacency list model

Testing connectivity

Bounded-degree adjacency list model

Testing connectivity

What does it mean that a graph ¢ with maximum degree
at most d is e-far from connected?

=>» (has at least edn connected components

e notenough...we need many small connected components

Bounded-degree adjacency list model

What does it mean that a graph ¢ with maximum degree

at most d is e-far from connected?

G has = edn/2 connected components of size < 2/ed

/Repeat 0(s~1d) times:
choose a random vertex v
run BFS from v until either 1 + 2 /&d vertices have been

if v is contained in a connected component of size < 2/ed
then reject

Qccept

N

visited or the entire connected component has been visited

/

Testing connectivity can be done in O(g™%d) time

Bounded-degree adjacency list model

Testing connectivity was easy ...

Similarly easy: testing H-freeness (e.g., triangle-freeness)
e G is e-far from triangle-free =

G has Q(n/¢) disjoint triangles =

random sampling of O(1/¢) nodes will detect a triangle

What properties can be tested in constant-time?
We want a characterization!

Bounded-degree adjacency list model

e Testing bipartiteness

Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in 0 (yn/£?™) time (Goldreich & Ron)

Algorithm:
*Select O(1/¢) starting vertices

*If any of the starting vertices lies on an odd-length cycle then reject
*Otherwise accept

*For each vertex run poly(s~! logn)+/n random walks of length poly(¢ ! logn)

/Idea: A
* if Gis e-far from bipartite then G has many odd-length
cycles of length O(s¢~1logn)
* run many short random walks to find one
N /

Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in 0 (yn/£?™) time (Goldreich & Ron)

Algorithm:
*Select O(1/¢) starting vertices
*For each vertex run poly(s~! logn)+/n random walks of length poly(¢ ! logn)
*If any of the starting vertices lies on an odd-length cycle then reject
*Otherwise accept

~

Analysis: elaborate

* Relatively easy for rapidly mixing case

* For general case: no rapid mixing = small cut
N use small cut to decompose the graph and the problem/

Bounded-degree adjacency list model

e Testing bipartiteness

— Can be done in ©(y/1n/£°™) time (Goldreich & Ron)
- Cannot be done faster (Goldreich & Ron)

/Q(\/ﬁ) time is needed to distinguish between random graphs \
from the following two classes

* a Hamiltonian cycle H + a perfect matching M
* a Hamiltonian cycle H + a perfect matching M such that each
\ edge from M creates an even-length cycle when added to H /

Bounded-degree adjacency list model

e Testing bipartiteness

— Can be done in ©(y/1n/£°™) time (Goldreich & Ron)
- Cannot be done faster (Goldreich & Ron)

So: no constant-time algorithms

Bounded-degree adjacency list model

e Testing 3-colorability (or k-colorability, k = 3)

... requires checking (almost) all vertices and edges!
|[Bogdanov, Obata, Trevisan’02]

Testing planarity

Testing planarity

Bounded-degree expanders}
with w(1) girth

e There are graphs G such that
— any connected subgraph of G of constant size is planar
- G is e-far from planar

e This should mean that we cannot do anything in constant-time ...

Testing planarity

Testing planar graphs can be done with 0(1) queries
(with two-sided error) [Benjamini, Schramm, Shapira’08]

Testing planarity

Testing planar graphs can be done with O(1) queries
(with two-sided error) |[Benjamini, Schramm, Shapira’08]

Runtime 222p01y(1/8)
. :

e Hassidim-Kelner-Nguyen-Onak’09 improved the runtime to 2P°¥t/¢)
- with somewhat simpler analysis and simpler algorithm

If G is e-far from planar then
-either G has lots of constant-size non-planar subgraphs
-or G has lots of small subgraphs without good separator

Testing planarity

Testing planar graphs can be done with O(1) queries
(with two-sided error) |[Benjamini, Schramm, Shapira’08]

Runtime 222p01y(1/8)
. :

e Hassidim-Kelner-Nguyen-Onak’09 improved the runtime to 2P°¥t/¢)

- with somewhat simpler analysis and simpler algorithm

e Levi and Ron’13 improved the runtime to 20(08°(1/2)

e Kumar-Seshadhri-Stolman’19 improved it further to poly(d - 8_1)

Testing planarity

Testing planar graphs can be done with O(1) queries
(with two-sided error) |[Benjamini, Schramm, Shapira’08]

Runt Consequences (of some follow-up papers):
 poly(d - e~1)-time tester for any property of minor-closed
families (e.g., bipartite planar graphs))
 poly(d - e~1)-time algorithms for additive en-approximations
for problems such as maximum matching, minimum vertex
cover, maximum independent set, and minimum dominating set
e Levi. forthese graph families

e Hass

- Wi

e Kumar-Seshadhri-Stolman’19 improved it further to poly(d - 8_1)

Testing planarity

Testing planar graphs can be done with O(1) queries
(with two-sided error) [Benjamini, Schramm, Shapira’08]
|[Hassidim, Kelner, Nguyen, Onak’09]
[Levi, Ron"13]
|[Kumar-Seshadhri-Stolman’19]

e Runtime: pOlY(d y 8_1) (constant for d, e = 0(1))

e The resultis with two-sided error:
— can accept non-planar graphs & can reject planar graphs

e There is no o(y/n)-time one-sided-error tester for planarity

e Kumar-Seshadhri-Stolman’18: 0(n!/?2*°(1))-time one-sided-error
planarity tester

Extension: all minor-closed properties

Every minor-closed property can be tested in a similar way

Minor-closed properties include:
— Planar,

— QOuter-planar,

— Series-parallel,

- Bounded-genus,

— bounded tree-width,

Minor = obtained by edge/vertex removal + edge contractions
P is minor-closed if every minor of a graph in P is also in P

Testing expansion

e In the adjacency list model, rapidly mixing properties play key role:
— If G doesn’t “mix” fast then ... testing is fast

e Planar graphs don’t mix fast (have large cuts)
— Testing properties in planar graphs might be easy

e Expanders mix fast:
— Testing properties might be hard

Expander G = (V,E):
each vertex set U € V has large neighborhood (proportion to |U|)

Testing expansion

Testing expansion

e For graphs of bounded degree, we can distinguish expanders from graphs
that are “far” even from poor expanders in 0*(y/n) time

|C, Sohler ’07, Kale, Seshadhri’07, Nachmias, Shapira’08]

e (O(y/n) time is needed
|Goldreich, Ron’02]

Testing expansion

\

/Choose O(1/¢) nodes at random
For each chosen node run O (y/n) random walks of length O (log n)
Count the number of collisions at the end-nodes
If the number of collisions is too large then Reject

@ccept /
Idea:
e [f G is an expander then end-nodes are random nodes

= we can estimate number of collisions well

e If G is far from expander then we will have many more
collisions (requires non-trivial arguments)

Testing expansion and clustering

In a similar time we can:

e Correct an almost expander-graph to become a good expander, even in
distributed way

e Determine graph clustering into expanders

Testing in planar graphs

e All previous results assumed the input graph is
arbitrary

Testing in planar graphs is easier!

e Testing bipartiteness in planar graphs of bounded
degree can be done in constant time

|C, Sohler, Shapira’09]

Pick random sample of 0*(d /<) vertices
For each vertex explore its neighborhood (of size (d/£)?(V)
If the input graph is e-far from bipartite:

the induced subgraph should NOT be bipartite!

Complexity/runtime
(d/£)0@/=°"

Testing in hyperfinite graphs

e One can go beyond planar graphs:
— It's enough to have some separator properties

Testing in hyperfinite graphs

Complete characterization for non-uniform algorithms:

Newman & Sohler’'2011:

e Testing any property in hyperfinite (“non-expanding”) families of graphs
of bounded-degree can be done in 0(1) time (two-sided-error)

Arbitrary graphs (no bound for max-degree)

Adjacency Lists in arbitrary graphs

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of entries in adjacency lists to
obtain a graph satisfying P

More general model & more challenging model:
graphs of arbitrary max-degree

¢|E| edges have to be added/deleted

Adjacency Lists in arbitrary graphs

Oracle access:
— Sample a random vertex
- Sample a random neighbour of a given vertex

(could be replaced by two queries: degree query + i neighbour)

Graph ¢ = (V,E) is e-far from property P if one has to modify = ¢|E| edges
in G to obtain a graph satisfying P

These techniques don’t work for arbitrary-degree graphs

Previous techniques don’t work for arbitrary-degree graphs:

Testing planarity (or H-freeness) in arbitrary degree graphs requires Q(y/n)
time, even in two-sided error model

Two instances:
- empty graph on n nodes
- clique on v/n nodes + isolated n — \/n nodes

Testing in arbitrary graphs

e Testing neighborhood may cost even O(n) time!

=» Graph exploration is expensive

Testing in arbitrary graphs

e Almost nothing is known

e Triangle-freeness
— Alon et al’2008
e Bipartiteness
- Ben-Eliezer et al’2008

- If G has average degree d then Q(min{y/n,n/d}) queries are needed

Testing in arbitrary planar graphs

e C, Monemizadeh, Onak, Sohler'11

e Testing bipartiteness in planar graphs can be done in constant time

e Challenge:
how to explore neighbourhood of a node quickly?

» Run many short random walks

» For a planar graph that is e-far from bipartite, prove that
one of the random walks will find an odd-length cycle

Testing in arbitrary planar graphs

e (C, Monemizadeh, Onak, Sohler'11

Challenge: analyze random walks of constant length

first step: reduce to testing Cj-freeness for odd k, all k = 0(1/¢)

» Run many short random walks

» For a planar graph that is e-far from bipartite, prove that
one of the random walks will find an odd-length cycle

Testing in arbitrary planar graphs: it’s all about H-freeness

e Broader class of graphs than planar
— Graphs defined by arbitrary fixed forbidden minors

C. & Sohler’19:

e Testing H-freeness in general planar graphs can be done in constant time
with one-sided error (for arbitrary finite H)

e Pistestable in constant-time with one-sided error in planar graphs iff P
“can be reduced” to test H-freeness

Characterization of properties testable in constant-time (for planar graphs)

Testing in arbitrary planar graphs

C. & Sohler’19:

e Testing H-freeness in general planar graphs can be done in constant time
with one-sided error (for arbitrary finite H)

e Pistestable in constant-time with one-sided error in planar graphs iff P
“can be reduced” to test H-freeness

Characterization of properties testable in constant-time (for planar graphs)

Esperet & Norin’22: for any proper minor-closed class G, any monotone
property is testable for graphs from ¢

(e.g., for any k and t, k-colorability of K;-minor free graphs is testable;
monotone properties of graphs from minor-closed classes that are closed
under disjoint union can be tested in constant time)

Testing of Digraph Properties

Models introduced by Bender-Ron (2002):

e Digraphs with bounded maximum in- and out-degrees
e QOracle with access to adjacency list

e Two main models:

- Bidirectional: outgoing and incoming edges
e shares properties of undirected graphs; [Sometimes very fast J

e not suitable in many scenarios/applications

- One-directional: access to outgoing edges only
e major difference wrt undirected graphs [More challenging J

e more natural in many scenarios/applications

Big networks

[s it weakly connected?
(or close to it)
[s it planar?

(or close to it)

from Fan Chung’s web page

If we have access to both directional edges then this reduces to
a problem in undirected graphs (which we understand well)

Big networks

e [sitstrongly connected?
(or close to it)

e Isitacyclic?
(or close to it)

e [sit C35-free?

(or close to it)

from Fan Chung’s web page

Highly non-trivial if we have no access to incoming edges
For example: we cannot easily check if a node has in-degree 0

Relation between the models
C, Peng, Sohler’16 + Peng, Wang’23

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
ni=Qea(l) query time (in two-sided error model)

Relation between the models
C, Peng, Sohler’16

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
ni=Qea(l) query time (in two-sided error model)

a .)
Application:

Every hyperfinite (e.g., planar) property can be tested
. with sublinear complexity in one-directional model y

Relation between the models
C, Peng, Sohler’16

There is a tester for property P with constant query time
in bidirectional model

We can test P in one-directional model with sublinear
ni=Qea(l) query time (in two-sided error model)

4)
This cannot be improved much:

* two-sided error is required (cf. strong connectivity)

| S Q(n'~1/%) “simulation” slowdown is required (cf. 3-star-freeness) y

Summary

e Many graph properties can be tested efficiently (in the property testing framework)
— Sometimes in constant-time
— More often in sublinear-time

e But our understanding of testing graph properties
- in arbitrary graphs or in directed graphs is still patchy ...

e Tools:
— Combination of algorithm design, combinatorics, analysis of random walks ...

Further topics (not discussed here): Tolerant Testing

e Setting so far: with probability at least 2/3, determine whether
— G has property P, or
- G is e-far from any graph having property P.

e Feature: freedom to answer if G is close to having P but does not exactly
have this property.

e Tolerant testing: separate inputs that are e-far from having property P
from those that are &'-close to having property P, where £ > 0.

— We call this a (&', €)-tolerant tester
— Introduced by Parnas, Ron, Rubinfeld’ 06
— Related to distance approximation

Further topics (not discussed here): Distributed Property Testing

Some examples, include:
DISC 2016:

e Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev, “Fast distributed
algorithms for testing graph properties”

e Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and loan Todinca, “Distributed testing of excluded
subgraphs”

DISC 2017

e Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre,
Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and loan Todinca, “Three notes on distributed
property testing”

PODC 2018
e Reut Levi, Moti Medina, Dana Ron, “Property testing of planarity in the CONGEST model”

Local Computation Algorithms (LCAS)

Further topics (not discussed here): Optimization algorithms

e Property testing tools lead to fast optimization algorithms

e Estimating the weight of the minimum spanning tree:
— Chazelle, Rubinfeld, Trevisan (2001): (1 + ¢)-approximation algorithm in
O(DW /£3) time, D-max-degree; W-max-weight
- C, Sohler (2004): (1 + ¢)-approximation algorithm in O(n - log?® n /M) time
for arbitrary metric graphs

e In agraph of constant degree, in constant time:

— we can estimate the cost of the minimum vertex cover to within factor of 2 and
additive error term en

- we can estimate the size of the maximum matching with additive error term en

THANK YOU!

	Understanding the Structure of Massive Graphs �through the Lens of Property Testing
	Lens of Property Testing
	Lens of Property Testing
	Property Testing
	Property Testing
	Property Testing definition
	Graph properties
	Graph properties
	Testing of Graph Properties
	Testing of Graph Properties
	Testing of Graph Properties
	Testing of Graph Properties
	Graph Property Testing definition
	Graph Property Testing definition
	Framework
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing properties of graphs
	Testing of Graph Properties
	Testing of Graph Properties
	Framework
	First model:�Adjacency Matrix
	First model:�Adjacency Matrix
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	General result
	Main Lemma
	General result
	General result
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Adjacency matrix model
	Problems of adjacency matrix model
	Other model ?
	Graph access model
	First: Bounded-degree model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Bounded-degree adjacency list model
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Testing planarity
	Extension: all minor-closed properties
	Testing expansion
	Testing expansion
	Testing expansion
	Testing expansion
	Testing expansion and clustering
	Testing in planar graphs
	Dia numero 71
	Testing in hyperfinite graphs
	Testing in hyperfinite graphs
	Arbitrary graphs (no bound for max-degree)
	Adjacency Lists in arbitrary graphs
	Adjacency Lists in arbitrary graphs
	These techniques don’t work for arbitrary-degree graphs
	Testing in arbitrary graphs
	Testing in arbitrary graphs
	Testing in arbitrary planar graphs
	Testing in arbitrary planar graphs
	Testing in arbitrary planar graphs: it’s all about H-freeness
	Testing in arbitrary planar graphs
	Testing of Digraph Properties
	Big networks
	Big networks
	Relation between the models�C, Peng, Sohler’16 + Peng, Wang’23
	Relation between the models�C, Peng, Sohler’16
	Relation between the models�C, Peng, Sohler’16
	Summary
	Further topics (not discussed here): Tolerant Testing
	Further topics (not discussed here): Distributed Property Testing
	Further topics (not discussed here): Optimization algorithms
	Dia numero 94

