Distributed Graph Algorithms in the Vertex-Partition Model

Peter Robinson

Augusta University

perobinson@augusta.edu

Joint work with:

Christian Konrad, Gopal Pandurangan, Sriram Pemmaraju, Talal Riaz, Michele Scquizzato, Viktor Zamaraev,

The Vertex Partition Message Passing Model

- k players (or machines) P_1, \ldots, P_k
- Synchronous clique
- Input:
 - graph G
 - *n*-nodes, *m*-edges
- Vertex partitioning
 - random or adversarial (but balanced)
 - KT₁ *k*-machine model
- Bandwidth or p log n bits per fink
- No memory restriction

can send β messages of size $O(\log n)$ over each link each round

Why Vertex Partition Model?

Motivation 1: Iterative Graph Processing Systems

- Google Pregel, Apache Giraph
- vertex centric: "think like a vertex"
- synchronous message passing

Motivation 2: Generalization of the Congested Clique

• Understanding the impact of vertex partitioning on communication

Roadmap

- 1. Algorithms for Maximal Independent Set
- 2. Lower Bounds for MIS and other Problems
- 3. Algorithm for *t*-Ruling Set
- 4. Open Problems

Simple MIS Algorithm

- Players proceed in sequence:
- P_1 computes MIS on $G[V(P_1)]$ and tells everyone about it:
 - Group messages into batches of size $\beta(k-1)$
 - Send 1st batch in 1 round to other k-1 players: β msgs to each player
 - Proceed with 2nd batch, etc.
 - Every player broadcasts received messages in sequence.
- Other players update their vertex sets by deactivating nodes accordingly.
- Then proceed with player P_2 , and so forth.

How long does one iteration take?

- "Telling everyone" requires $O\left(\frac{n}{k}\log n\right)$ messages \rightarrow takes $O\left(\frac{n}{\beta k^2}\log n\right)$ rounds.
- Each player gets $O\left(\frac{n}{k^2}\log n\right)$ messages. "Broadcasting" takes $O\left(\frac{n}{\beta k^2}\log n\right)$ rounds **Overall time**: $O\left(\frac{n}{\beta k}\log n + k\right) = O\left(\frac{n}{\beta k}\log n\right)$ rounds If $k = O(\sqrt{n/\beta})$

Simulating a Beeping Algorithm (assuming random vertex partitioning)

Beeping Model:

- synchronous network
- nodes can broadcast a "beep"
- node *u* can only distinguish between:
 - 1. none of its neighbors beeped
 - 2. \geq 1 beep among neighbors

Simulation in *k*-Player Model:

- Each player *P* simulates beeping algorithm for all hosted nodes.
- Aggregate beeps from common source
- Aggregate beeps to common destination

Beeping Simulation

number of edges over which a beep is sent

. . .

A beeping algorithm with message complexity M and time complexity T can be

simulated in $O\left(\frac{M}{k^2}\log^2 n + T\log^3 n\right)$ rounds, assuming **random vertex partitioning**.

Consider round *t*:

- Partition beeping nodes into $\log \Delta$ degree classes.
- $a_t =$ number of messages sent in round t
- Look at any class C_d :

Claim

Each player can send all messages for C_d in $O\left(\frac{a_t}{\beta k^2} + \log n\right)$ rounds.

c_{Δ}

 $[\Delta, 2\Delta)$

[1,2] [2,4]

 $\left[\Delta/2,\Delta\right)$

Claim

Each player can send all messages for
$$C_d$$
 in $O\left(\frac{a_t}{\beta k^2} + \log n\right)$ rounds.

Assume $|C_d| = \Omega(k \log n)$:

- $|C_d| \leq \frac{a_t}{d}$
- for every player P_i :

$$\mathbf{E}[C_d \cap V(P_i)] \le \frac{a_t}{d k}$$

•
$$P_i$$
 needs to send $O\left(\frac{a_t}{d k} \cdot 2d\right) = O\left(\frac{a_t}{k}\right)$ messages in expectation (and w.h.p.)

- Use random hash function $h : IDs \rightarrow [k]$
- Send message intended for v to random player $P_{h(v)}$, who forwards msg to destination

→
$$O\left(\frac{a_t}{k}\right)$$
 messages uniformly distributed over $k - 1$ links.
→ $O\left(\frac{a_t}{\beta k^2}\right)$ rounds.
aggregate messages to
same vertex

Each player can send all messages for
$$C_d$$
 in $O\left(\frac{a_t}{\beta k^2} + \log n\right)$ rounds.

• We have $\log \Delta$ degree classes:

$$O\left(\frac{a_t}{\beta k^2}\log n + \log^2 n\right)$$

• Overall:

$$\sum_{t=1}^{T} O\left(\frac{a_t}{\beta k^2} \log n + \log^2 n\right) = O\left(\frac{M}{\beta k^2} \log n + T \log^2 n\right)$$
$$\sum_{i=t}^{T} a_t = M$$

Beeping Simulation

A beeping algorithm with message complexity *M* and time complexity *T* can be

simulated in $O\left(\frac{M}{\beta k^2}\log n + T\log^2 n\right)$ rounds, assuming random vertex partitioning.

[Jeavons, Scott, Xu 2016]: MIS in $O(\log n)$ rounds in beeping model.

→ MIS in
$$O\left(\frac{m\log n}{\beta k^2}\log n + \log^3 n\right) = O\left(\frac{m}{\beta k^2}\log^3 n\right)$$
 rounds.

Theorem

MIS can be solved in
$$O\left(\min\left\{\frac{m}{\beta k^2}\log^3 n, \frac{n}{\beta k}\log n\right\}\right)$$
 rounds w.h.p., assuming random vertex partitioning

A Lower Bound for MIS

- Show lower bound on information complexity for computing an MIS on constant-size graph "gadget" in 2-party model.
- 2. Simulate k-player algorithm in 2-party model for solving $\Theta(n)$ gadgets.

The Lower Bound Gadget

Gadget *H*:

- 14 vertices: $U \cup V$
- fixed perfect matching between *U*, *V*.
- 2 random edges e_{Alice}, e_{Bob} on H[U] and H[V]

2-party model:

- Alice's input A: U, V, e_{Alice}
- Bob's input *B*: *U*, *V*, *e*_{*Bob*}
- Shared randomness Question
- Goal: Compute MIS S on H

Alice outputs $S_{Alice} = S \cap U$ Bob outputs $S_{Bob} = S \cap V$

Claim

Let S be any MIS on H. Then I[$S_{Alice} : B | A] + I[S_{Bob} : A | B] = \Omega(1)$.

- Assume $e_{Alice} = \{u_1, u_2\}$
- **1.** S contains \leq 3 nodes from $\{u_3, \dots, u_7\}$:
 - Suppose $u_3, u_4 \notin S$
 - Not possible that $e_{Bob} = \{v_3, v_4\}$
- **2.** S contains \geq 4 nodes from { u_3, \ldots, u_7 }:
 - Suppose $u_4, \ldots, u_7 \in S$
 - At least 2 nodes in $\{v_4, \dots, v_7\}$ are not incident to e_{Bob}
 - wlog: v_4 , v_5
 - Not possible that $e_{Alice} = \{u_4, u_5\}$

V

 v_1

Π

 u_1

 u_2

 u_3

 u_4

Let S be any MIS on H. Then $\mathbf{I}[S_{Alice} : B | A] + \mathbf{I}[S_{Bob} : A | B] = \Omega(1)$.

In first case:

- Initially: $\binom{7}{2} = 21$ possibilities each for e_{Bob} and e_{Alice}
- After computing MIS: $\binom{7}{2} = 20$ possibilities left

•
$$I[S_{Alice} : B | A] = H[B | A] - H[B | S_{Bob}, A]$$

= $\log_2 21 - \log_2 20$
= $\Omega(1)$

Similar for 2nd case.

A Lower Bound for MIS

- ✓ 1. Show lower bound on information complexity for computing an MIS on constant-size graph "gadget" in 2-party model.
 - 2. Simulate k-player algorithm in 2-party model for solving $\Theta(n)$ gadgets.

Simulating k-Players in the 2-Party Model

- Suppose G consists of m = n/14 randomly sampled gadgets $H_1, \ldots, H_{n/14}$
 - Alice's input A^m = "left" side of all gadgets.
 - Bob's input B^m = "right" side of all gadgets.
- Let Q be k-player MIS algorithm.
- Alice and Bob simulate k/2 players each.
- Alice assigns n/k vertices to each of her players using some fixed rule.
- Same for Bob.
- \rightarrow balanced vertex partitioning
- Compute MIS on G using Q.

Claim

Let S^m be any MIS on \boldsymbol{G} . Then $\mathbf{I}[S^m_{Alice}:B^m \mid A^m] + \mathbf{I}[S^m_{Bob}:A^m \mid B^m] = \mathbf{\Omega}(\boldsymbol{n})$.

• Gadgets are sampled independently: n/14 $\mathbf{I}[S_{Alice}^{m}:B^{m} \mid A^{m}] \geq \sum_{i=1}^{r} \mathbf{I}[S_{Alice}:B \mid A]$ and n/14 $\mathbf{I}[S_{Bob}^{m}:A^{m} \mid B^{m}] \geq \sum_{i=1}^{m} \mathbf{I}[S_{Bob}:A \mid B]$ \rightarrow Either Alice's or Bob's placetonic Claim $\Omega(n)$ bits in simulation. Let S be any MIS on H. Then I[$S_{Alice} : B \mid A$] + I[$S_{Bob} : A \mid B$] = $\Omega(1)$.

Let S^m be any MIS on \boldsymbol{G} . Then $\mathbf{I}[S^m_{Alice}:B^m \mid A^m] + \mathbf{I}[S^m_{Bob}:A^m \mid B^m] = \mathbf{\Omega}(\boldsymbol{n})$.

- Either Alice or Bob learns $\Omega(n)$ bits.
- Simulation sends $\Omega(n)$ bits from Alice's $\frac{k}{2}$ simulated players to Bob's or vice versa.
- $O(k^2)$ links between Alice and Bob's players.
- → Simulation takes $\Omega\left(\frac{n}{\beta k^2 \log n}\right)$ rounds.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^2 \log n}\right)$ rounds, assuming **balanced vertex partitioning**.

Extension to Random Vertex Partitioning

- Consider random-input 2-party model
- Each vertex assigned to Alice or Bob w.p. $\frac{1}{2}$
- Gadget is *good* if Alice gets entire left side $\Pr[\text{ Gadget is good }] = \Omega(1)$
- Constant fraction of gadgets will be good in expectation.
- Previous argument applies to good gadgets.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^2 \log n}\right)$ rounds, assuming random vertex partitioning.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^2 \log n}\right)$ rounds, assuming random vertex partitioning.

Upper Bound

MIS can be solved in
$$O\left(\min\left\{\frac{m}{\beta k^2}\log^3 n, \frac{n}{\beta k}\log n\right\}\right)$$
 rounds w.h.p., assuming random vertex partitioning

- Can we improve upper bound?
 - Faster algorithm would require lower message complexity.
 - Related open problem: Computing MIS in CONGEST (KT_1) with o(m) messages:
 - Any o(m)-algorithm must use node IDs / graph sketching in non-trivial way.
- Can we improve lower bound?
 - multi-party approach seems promising.
 - Currently known techniques may not suffice...

Lower Bounds for other Problems: Ruling sets?

- *S* is *t*-ruling set of *G* if:
 - S is independent set of G
 - Every node in G is $\leq t$ hops from some node in S.
- Consider any graph in 2-party model
- Partition vertices in adversarial way
- Alice:
 - Computes MIS on her subgraph
- Bob:
 - Let B_2 contain vertices that have distance ≥ 2 from Alice
 - Compute MIS on B_2

 \rightarrow 2-ruling set *without* communication!

Lower Bounds for other Problems: Maximal Matching?

- Consider any graph in 2-party model.
- Again, adversarial vertex partition.
- Alice & Bob know all cut edges C.
- Locally compute maximal matching on G[C].
- Both deactivate matched nodes.
- Both compute maximal matching on their residual graph.
- Maximal matching on gadget is union of these matchings.

→ maximal matching *without* communication!

Multiparty Approach for *t*-ruling set

- k = t + 2 players
- **Input:** Graph *H* sampled from all *k*-vertex graphs
- "congested clique"-like model: each player gets 1 vertex
- Limitation: only works for "component stable" algorithms

 $H \setminus N_i$

Claim

For every *t*-ruling set algorithm \mathcal{A} there is a (t + 2)-node graph *H* where, for some vertex v_i with neighborhood N_i :

$$\mathbf{I}[\mathcal{A}(v_i):\overline{N_i} \mid N_i, R] = \Omega(1)$$

shared randomness

Claim

For every *t*-ruling set algorithm \mathcal{A} there is a (t + 2)-node graph *H* where, for some vertex v_i with neighborhood N_i :

 $\mathbf{I}[\mathcal{A}(v_i):\overline{N_i}\mid N_i, R] = \Omega(1)$

= 0, because D is

"component stable"

- Look at deterministic algorithm *D*.
- Sufficient to show that there is some v_i with N_i : $|\Pr(D(v_i) = 1 | N_i = n_i) - \Pr(D(v_i) = 1 | H)| = \Omega(1)$
- Suppose D is silent on every (t + 2)-node graph H.
- Let S be computed ruling set.
- Vertex u dominates v " $v <_D u$ " if, for every H: $\{u, v\} \in H$ implies $u \notin S$.

Claim

For every *t*-ruling set algorithm \mathcal{A} there is a (t + 2)-node graph *H* where, for some vertex v_i with neighborhood N_i :

 $\mathbf{I}[\mathcal{A}(v_i):\overline{N_i} \mid N_i, R] = \Omega(1)$

- Vertex u dominates v " $v <_D u$ " if, for every H: $\{u, v\} \in H$ implies $u \notin S$.
- Can prove that $(<_D)$ is **strict total order** over $v_1, ..., v_k$.
- W.l.og: $v_1 <_D v_2 <_D \dots <_D v_k$
- Run algorithm on path $v_1 v_2 \dots v_k$
- Only v_k can enter S
- Invalid since $k \ge t + 2$.

Use direct sum argument to show $\Omega\left(\frac{n}{\beta k^2 t}\right)$ rounds for *t*-ruling set in *k*-player model (for component stable algorithms).

t-Ruling Set Algorithm

- 1. $R_1 \leftarrow V(G)$
- **2.** for iteration $i \leftarrow 2, ..., t$ do:
- 3. Every node in R_{i-1} marks itself w.p. $\Theta\left(\frac{\log n}{\Delta^{1-(i-1)/t}}\right)$
- 4. $M_i \leftarrow \text{marked nodes}$
- 5. Inform all neighbors of M_i
- 6. $S_i \leftarrow \mathsf{MIS}(G[M_i])$
- 7. $D_i \leftarrow \text{nodes that (a) have a neighbor in } M_i$, (b) or degree > $\Delta^{1-(i-1)/t}$
- 8. Deactivate all nodes in D_i
- 9. $R_i \leftarrow R_{i-1} \setminus (M_i \cup D_i)$
- 10. Inform all neighbors of nodes in R_t
- 11. $S \leftarrow MIS(G[R_t])$
- 12. Return $(S \cup S_1 \cup \cdots \cup S_t)$

Lemma 1: max. deg. of nodes in R_i is $\leq \Delta^{1-(i-1)/t}$

Lemma 2: max. deg. in $G[M_i]$ is $\leq O(\Delta^{1/t} \log n)$ (w.h.p.)

• Because max. deg. in $R_{i-2} \leq \Delta^{1-(i-2)/t}$

Lemma 3: Informing neighbors takes $\tilde{O}(n\Delta^{1/t}/\beta k^2)$ rnds

- By random partitioning: $\tilde{O}\left(\frac{n}{k}\right)$ nodes per player
- Thus: $\tilde{O}\left(\frac{n}{k\Delta^{1-(i-1)/t}}\right)$ marked nodes per player.

• By Lem 1: max.deg. is
$$\leq \Delta^{1-(i-2)/t}$$

- Need to send/rcv $\tilde{O}\left(\frac{n}{k\Delta^{1/t}}\right)$ messages per player.
- Takes $\tilde{O}\left(\frac{n}{\beta k^2 \Delta^{1/t}}\right)$ rounds using random routing.

Lemma 4: MIS($G[M_i]$) takes $\tilde{O}(n \Delta^{1/t} / \beta k^2)$ rounds

Lemma 5: Algorithm takes $\tilde{O}(n t \Delta^{1/t} / \beta k^2)$ rounds

Theorem

There is a *t*-ruling set algorithm that takes $\tilde{O}\left(t n \Delta^{\frac{1}{t}} / \beta k^2\right)$ rounds w.h.p.

- **3.** Every node in R_{i-1} marks itself w.p. $\Theta\left(\frac{\log n}{\Delta^{1-(i-1)/t}}\right)$
- 4. $M_i \leftarrow \text{marked nodes}$
- 5. Inform all neighbors of M_i
- 6. $S_i \leftarrow \mathsf{MIS}(G[M_i])$
- 7. $D_i \leftarrow \text{nodes that (a) have a neighbor in } M_i$, (b) or degree > $\Delta^{1-(i-1)/t}$
- 8. Deactivate all nodes in D_i
- 9. $R_i \leftarrow R_{i-1} \setminus (M_i \cup D_i)$
- 10. Inform all neighbors of nodes in R_t
- 11. $S \leftarrow MIS(G[R_t])$
- 12. Return $X = (S \cup S_1 \cup \cdots \cup S_t)$

Lemma 4: Output is a *t*-Ruling Set.

- All marked nodes have a neighbor in X
- All nodes in R_t have a neighbor in X
- Consider $u \in D_i$, for some iteration i
- Show u has dist. $\leq i$ to some node in X
- 1. Case (a):
 - *u* is 2 hops away from some node in *X*
- 2. Case (b):
 - *u* has large degree
 - No marked neighbor \rightarrow some neighbor w was deactivated in iteration j < i.
 - By induction: w has dist. $\leq j$ to X.

Main Open Problems

• MIS:
$$\widetilde{O}(\min\{\frac{n}{\beta k}, \frac{m}{\beta k^2}\})$$
 or $\widetilde{\Omega}\left(\frac{n}{\beta k^2}\right)$?

- Maximal Matching: Can we go below $\tilde{O}\left(\frac{n}{\beta k}\right)$?
- Lower bounds for component-unstable algorithms?
 - Does every "interesting" problem have an $\widetilde{\Omega}\left(\frac{n}{\beta k^2}\right)$ lower bound?
- Lower bound of $\Omega\left(\frac{m}{\beta k^2}\right)$ possible for some problems?

