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The Vertex Partition Message Passing Model
• 𝑘	players (or machines) 𝑃!, … , 𝑃" 
• Synchronous clique
• Input:  
• graph 𝐺
• 𝑛-nodes, 𝑚-edges

• Vertex partitioning
• random or adversarial (but balanced)
• KT1 

• Bandwidth of 𝛽 log 𝑛	bits per link
• No memory restriction

𝑃!

𝑃"

𝑃#

𝑂 !
"
log 𝑛  vertices 

per player (w.h.p.)

𝑘-machine model

can send 𝛽 messages of size 
𝑂(log 𝑛) over each link each round



Why Vertex Partition Model?
Motivation 1: Iterative Graph Processing Systems
• Google Pregel, Apache Giraph 
• vertex centric: “think like a vertex”
• synchronous message passing

Motivation 2: Generalization of the Congested Clique
• Understanding the impact of vertex partitioning on communication



Roadmap
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4.  Open Problems

3. Algorithm for t-Ruling Set



Simple MIS Algorithm 
 (assuming balanced vertex partitioning)
• Players proceed in sequence:
• 𝑃# computes MIS on 𝐺[𝑉 𝑃# ] and tells everyone about it:

• Group messages into batches of size 𝛽(𝑘 − 1)
• Send 1st batch in 1 round to other 𝑘 − 1 players: 𝛽 msgs to each player
• Proceed with 2nd batch, etc.
• Every player broadcasts received messages in sequence. 

• Other players update their vertex sets by deactivating nodes accordingly.
• Then proceed with player 𝑃$, and so forth.
How long does one iteration take?

• “Telling everyone” requires 𝑂 !
"
log 𝑛  messages à takes 𝑂 !

%"$
log 𝑛  rounds.

• Each player gets 𝑂 !
"$
log 𝑛  messages. ”Broadcasting” takes 𝑂 !

%"$
log 𝑛  rounds

Overall time: 𝑂 !
%"
log 𝑛 + 𝑘  

𝑂 !
"
log 𝑛  vertices per player; 

adversarially assigned

If 𝑘 = 𝑂( 𝑛/𝛽)= 𝑶 𝒏
𝜷𝒌 𝐥𝐨𝐠𝒏  rounds



Beeping Model:
• synchronous network
• nodes can broadcast a “beep”
• node 𝑢 can only distinguish between:

1. none of its neighbors beeped
2. ≥ 1 beep among neighbors

Simulation in 𝒌-Player Model:
• Each player 𝑃	simulates beeping algorithm for 

all hosted nodes.
• Aggregate beeps from common source
• Aggregate beeps to common destination

Simulating a Beeping Algorithm
 (assuming random vertex partitioning)

𝑃!

𝑢

”beep”

𝑢 beeped

𝑃!

𝑢

”beep”
send beep 

to 𝑢

𝑣!
𝑣"
𝑣#

”beep”

”beep”



Consider round 𝑡:
• Partition beeping nodes into log Δ degree classes.
• 𝑎( = number of messages sent in round 𝑡
• Look at any class 𝐶):

A beeping algorithm with message complexity 𝑀 and time complexity 𝑇	can be 

simulated in 𝑂 (
"! log

) 𝑛 + 𝑇 log* 𝑛  rounds, assuming random vertex partitioning.

[1,2) [2,4) [Δ, 2Δ)[Δ/2, Δ)

…𝐶! 𝐶" 𝐶%/" 𝐶%

number of edges over which a beep is sent

Each player can send all messages for 𝐶4 in 𝑂 5"
6"! + log 𝑛  rounds. 



Assume 𝐶4 = Ω(𝑘 log 𝑛):
• |𝐶4| ≤

5"
4

 
• for every player 𝑃7:     

  𝐄 𝐶4 ∩ 𝑉(𝑃7) ≤ 5"
4	"

    

• 𝑃7 needs to send 𝑂 5"
4	"

⋅ 2𝑑 = 𝑂 5"
"

 messages in expectation (and w.h.p.)
• Use random hash function ℎ ∶ 𝐼𝐷𝑠	 → 𝑘  
• Send message intended for 𝑣 to random player P9 : , who forwards msg to destination

  à 𝑂 5"
"

 messages uniformly distributed over 𝑘 − 1 links.

  à 𝑂 5"
6"!  rounds. 

[𝑑, 2𝑑)

𝐶'

aggregate messages to 
same vertex

Each player can send all messages for 𝐶4 in 𝑂 5"
6"!

+ log 𝑛  rounds. 



• We have log Δ	 degree classes:
𝑂

𝑎<
𝛽𝑘)

log 𝑛 + log) 𝑛

• Overall:

F
<=!

>

𝑂
𝑎<
𝛽𝑘)

log 𝑛 + log) 𝑛 	

Each player can send all messages for 𝐶4 in 𝑂 5"
6"!

+ log 𝑛  rounds. 

;
*+(

,

𝑎( = 𝑀

= 𝑂
𝑀
𝛽𝑘)

log	𝑛 +𝑇 log) 𝑛



[Jeavons, Scott, Xu 2016]:  MIS in 𝑂(log 𝑛) rounds in beeping model.

à MIS in 𝑂 ? @AB C
6"!

log	𝑛	+ log* 𝑛 = 𝑂 ?
6"!

log*𝑛  rounds.

MIS can be solved in 𝑶 𝐦𝐢𝐧 𝒎
𝜷𝒌𝟐 𝐥𝐨𝐠

𝟑 𝒏 , 𝒏𝜷𝒌 𝐥𝐨𝐠𝒏  rounds w.h.p., assuming random 

vertex partitioning

A beeping algorithm with message complexity 𝑀 and time complexity 𝑇	can be 

simulated in 𝑂 (
6"! log

	 𝑛 + 𝑇 log) 𝑛  rounds, assuming random vertex partitioning.



A Lower Bound for MIS

1. Show lower bound on information complexity for computing an 

MIS on constant-size graph “gadget” in 2-party model.

2. Simulate 𝑘-player algorithm in 2-party model for solving Θ(𝑛) 

gadgets.



The Lower Bound Gadget
Gadget 𝑯:
• 14 vertices: 𝑈 ∪ 𝑉
• fixed perfect matching between 𝑈, 𝑉. 
• 2 random edges 𝑒FG7HI, 𝑒JKL on 𝐻[𝑈] and 
𝐻 𝑉

2-party model: 
• Alice’s input 𝐴: 	𝑈, 𝑉, 𝑒FG7HI
• Bob’s input 𝐵: 	 𝑈, 𝑉, 𝑒JKL	
• Shared randomness
• Goal: Compute MIS 𝑆 on 𝐻

 Alice outputs SM@NOP = 𝑆 ∩ 𝑈
 Bob outputs 𝑆JKL = 	𝑆 ∩ 𝑉	

𝑢!

⋮

𝑢"

𝑣!

𝑣"

⋮

𝑈 𝑉



• Assume 𝑒%&'() = 𝑢*, 𝑢+  
1. 𝑆 contains ≤ 3 nodes from 𝑢,, … , 𝑢- 	:
• Suppose 𝑢,, 𝑢. ∉ 𝑆
• Not possible that 𝑒/01 = v,, v.

2. 𝑆 contains ≥ 4 nodes from 𝑢,, … , 𝑢- :
• Suppose 𝑢., … , 𝑢- ∈ 𝑆
• At least 2 nodes in 𝑣., … , 𝑣-  

are not incident to 𝑒/01   
• wlog: 𝑣., 𝑣2
• Not possible that 𝑒%&'() = 𝑢., 𝑢2

𝑢!

𝑢#

𝑣!

𝑣"

𝑈 𝑉

Let 𝑆 be any MIS on 𝐻.  Then 𝐈 	𝑆%&'() ∶ 𝐵	 𝐴	] + 𝐈 	𝑆/01 ∶ 𝐴	 𝐵	] = Ω 1 .

𝑢"

𝑢$

𝑢%

Either case rules out one 
possible input!



In first case:
• Initially: =

> = 21 possibilities each for 𝑒?@A and 𝑒BCDEF
• After computing MIS: =

> = 20 possibilities left
• 𝐈 	𝑆!"#$% ∶ 𝐵	 𝐴	] = 𝐇 𝐵	 𝐴] − 𝐇 𝐵	 𝑆&'( , 𝐴]

       = log) 21	 − log) 20	
      = Ω(1) 
Similar for 2nd case. 

Let 𝑆 be any MIS on 𝐻.  Then 𝐈 	𝑆%&'() ∶ 𝐵	 𝐴	] + 𝐈 	𝑆/01 ∶ 𝐴	 𝐵	] = Ω 1 .



A Lower Bound for MIS

1. Show lower bound on information complexity for computing an 

MIS on constant-size graph “gadget” in 2-party model.

2. Simulate 𝑘-player algorithm in 2-party model for solving Θ(𝑛) 

gadgets.



• Suppose 𝐺 consists of 𝒎 = 𝒏/𝟏𝟒 randomly sampled gadgets 
𝐻*, … , 𝐻3/*. 
• Alice’s input 𝐴! = “left” side of all gadgets.
• Bob’s input 𝐵! = ”right” side of all gadgets.

• Let 𝑄 be 𝑘-player MIS algorithm.
• Alice and Bob simulate 𝑘/2 players each. 
• Alice assigns 𝑛/𝑘 vertices to each of her

players using some fixed rule.
• Same for Bob.
à balanced vertex partitioning
• Compute MIS on 𝐺 using 𝑄.

Simulating 𝑘-Players in the 2-Party Model

⋮



• Gadgets are sampled independently:

𝐈 	𝑆%&'()5 ∶ 𝐵5 	 𝐴5 	] ≥ H
'6*

3/*.

𝐈 	𝑆%&'(): 𝐵	 𝐴]

and

𝐈 𝑆/015 ∶ 𝐴5 	 𝐵5 	] ≥ H
'6*

3/*.

𝐈 	𝑆/01: 𝐴	 𝐵]

à Either Alice’s or Bob’s players receive 
      Ω 𝑛  bits in simulation. 

⋮

Let 𝑆5  be any MIS on 𝑮. Then 𝐈 	𝑆%&'()5 ∶ 𝐵5 	 𝐴5] + 𝐈 	𝑆/015 ∶ 𝐴5 	 𝐵5] = 𝛀 𝒏 .

Let 𝑆 be any MIS on 𝐻.  Then 𝐈 	𝑆!"#$% ∶ 𝐵	 𝐴	] + 𝐈 	𝑆&'( ∶ 𝐴	 𝐵	] = Ω 1 .



• Either Alice or Bob learns Ω(𝑛) bits.

• Simulation sends Ω(𝑛) bits from Alice’s C
+
 simulated players to Bob’s or vice 

versa.
•  𝑂(𝑘+) links between Alice and Bob’s players.

à Simulation takes Ω 3
DC! EFG 3

 rounds.

Simulating the 𝑘-Player Model
Let 𝑆5  be any MIS on 𝑮. Then 𝐈 	𝑆%&'()5 ∶ 𝐵5 	 𝐴5] + 𝐈 	𝑆/015 ∶ 𝐴5 	 𝐵5] = 𝛀 𝒏 .

Computing an MIS with constant error takes Ω C
6"! @AB C  rounds, assuming balanced 

vertex partitioning.



• Consider random-input 2-party model

• Each vertex assigned to Alice or Bob w.p. *
+

• Gadget is good if Alice gets entire left side
   Pr 	Gadget	is	good	 = Ω 1

• Constant fraction of gadgets will be good in expectation. 
• Previous argument applies to good gadgets.

Extension to Random Vertex Partitioning

Computing an MIS with constant error takes Ω C
6"! @AB C  rounds, assuming random vertex 

partitioning.



• Can we improve upper bound?
• Faster algorithm would require lower message complexity.
• Related open problem: Computing MIS in CONGEST (KT1) with 𝑜(𝑚) messages:

• Any 𝑜 𝑚 -algorithm must use node IDs / graph sketching in non-trivial way.

• Can we improve lower bound?  
• multi-party approach seems promising.
• Currently known techniques may not suffice… 

Computing an MIS with constant error takes Ω C
6"! @AB C  rounds, assuming random vertex 

partitioning.

MIS can be solved in 𝑂 min ?
6"! log

* 𝑛 , C6" log 𝑛  rounds w.h.p., assuming random vertex 

partitioning

Ω(𝑚) lower bound for 
comparison-based algorithms



• 𝑆 is 𝒕-ruling set of 𝐺	if: 
• S is independent set of 𝐺
• Every node in 𝐺	is ≤ 𝑡 hops from some node in 𝑆.

• Consider any graph in 2-party model 
• Partition vertices in adversarial way
• Alice:
• Computes MIS on her subgraph

• Bob:
• Let 𝐵+ contain vertices that have 

distance ≥ 2 from Alice
• Compute MIS on 𝐵+

Lower Bounds for other Problems: Ruling sets?

𝐵)

à 2-ruling set without communication!



𝐶

Lower Bounds for other Problems: Maximal Matching?

• Consider any graph in 2-party model.
• Again, adversarial vertex partition.
• Alice & Bob know all cut edges 𝐶.
• Locally compute maximal matching 

on 𝐺 𝐶 .
• Both deactivate matched nodes.
• Both compute maximal matching

on their residual graph.
• Maximal matching on gadget is union of 

these matchings. 

à maximal matching without communication!  



Multiparty Approach for 𝑡-ruling set
• 𝑘 = 𝑡 + 2 players
• Input: Graph 𝐻 sampled from all 𝑘-vertex graphs
• “congested clique”-like model: each player gets 1 vertex
• Limitation: only works for “component stable” algorithms

For every 𝑡-ruling set algorithm 𝒜 there is a (𝑡 + 2)-node graph 𝐻 where, 
for some vertex 𝑣'  with neighborhood 𝑁': 

𝐈 𝒜 𝑣' ∶ 𝑁' 𝑁' , 𝑅 = Ω(1)
shared randomness𝐻 ∖ 𝑁*



• Look at deterministic algorithm 𝐷.

• Sufficient to show that there is some 𝑣7 with 𝑁7:

	Pr 𝐷 𝑣7 = 1 𝑁7 = 	𝑛7 − Pr 	𝐷(𝑣7 = 1 ∣ 𝐻)	 = Ω(1)

•  Suppose 𝐷 is silent on every (𝑡 + 2)-node graph 𝐻. 

• Let 𝑆 be computed ruling set.
• Vertex 𝑢 dominates 𝑣  “𝑣 <Q 𝑢” if, for every 𝐻: 𝑢, 𝑣 ∈ 𝐻 implies 𝑢 ∉ 𝑆.

For every 𝑡-ruling set algorithm 𝒜 there is a (𝑡 + 2)-node graph 𝐻 where, 
for some vertex 𝑣'  with neighborhood 𝑁': 

𝐈 𝒜 𝑣' ∶ 𝑁' 𝑁' , 𝑅 = Ω(1)
= 0,	because 𝐷 is 
“component stable”



• Vertex 𝑢 dominates 𝑣  “𝑣 <Q 𝑢” if, for every 𝐻: 𝑢, 𝑣 ∈ 𝐻 implies 𝑢 ∉ 𝑆.
• Can prove that (<Q) is strict total order over 𝑣!, … , 𝑣".
• W.l.og:    𝑣! <Q 	 𝑣) <Q ⋯ <Q 𝑣"
• Run algorithm on path 𝑣! − 𝑣) −⋯− 𝑣"
• Only 𝑣" can enter 𝑆
• Invalid since 𝑘 ≥ 𝑡 + 2.

Use direct sum argument to show Ω C
6"!	<  rounds for 𝑡-ruling set in 𝑘-player model

(for component stable algorithms).

For every 𝑡-ruling set algorithm 𝒜 there is a (𝑡 + 2)-node graph 𝐻 where, 
for some vertex 𝑣'  with neighborhood 𝑁': 

𝐈 𝒜 𝑣' ∶ 𝑁' 𝑁' , 𝑅 = Ω(1)



𝑡-Ruling Set Algorithm
1.  𝑅* ← 𝑉 𝐺 	
2.  for iteration 𝑖 ← 2,… , 𝑡 do:

3.  Every node in 𝑅#+* marks itself w.p. Θ ,-. /	
1$%('%$)/*

4.  𝑀# ← marked nodes

5.  Inform all neighbors of 𝑀#

6.  𝑆# ← MIS(𝐺[𝑀#])
7.  𝐷# ← nodes that (a) have a neighbor in 𝑀#, 

                 (b) or degree > Δ*+(#+*)/5

8.  Deactivate all nodes in 𝐷#
9.  𝑅# ← 𝑅#+* ∖ 𝑀# ∪ 𝐷#

10.  Inform all neighbors of nodes in 𝑅5
11.  𝑆 ← MIS(𝐺[𝑅5]) 
12.  Return (𝑆 ∪ 𝑆* ∪⋯∪ 𝑆5)

Lemma 1: max. deg. of nodes in 𝑅* is ≤ Δ#-(*-#)/(

Lemma  2: max. deg. in 𝐺 𝑀*  is ≤ 𝑂(Δ#/(log n) (w.h.p.)

Lemma 4: MIS(𝐺[𝑀*]) takes R𝑂(𝑛	Δ#/(/𝛽𝑘$) rounds

• Because max. deg. in 𝑅*-$ ≤	Δ#-(*-𝟐)/( 

• By random partitioning: R𝑂 !
"

 nodes per player

• Thus: R𝑂 !
"2!"($"!)/'

 marked nodes per player.
• By Lem 1: max.deg. is ≤ Δ#-(*-$)/(

• Need to send/rcv R𝑂 !
"2!/'

 messages per player. 

• Takes R𝑂 !
%"(2!/'

 rounds using random routing.

Lemma 3: Informing neighbors takes R𝑂(𝑛Δ#/(/𝛽𝑘$) rnds

Lemma 5: Algorithm takes R𝑂(𝑛	𝑡	Δ#/(/𝛽𝑘$) rounds



𝑡-Ruling Set Algorithm
1.  𝑅* ← 𝑉 𝐺 	
2.  for iteration 𝑖 ← 2,… , 𝑡 do:

3.  Every node in 𝑅#+* marks itself w.p. Θ ,-. /	
1$%('%$)/*

4.  𝑀# ← marked nodes

5.  Inform all neighbors of 𝑀#

6.  𝑆# ← MIS(𝐺[𝑀#])
7.  𝐷# ← nodes that (a) have a neighbor in 𝑀#, 

                 (b) or degree > Δ*+(#+*)/5

8.  Deactivate all nodes in 𝐷#
9.  𝑅# ← 𝑅#+* ∖ 𝑀# ∪ 𝐷#

10.  Inform all neighbors of nodes in 𝑅5
11.  𝑆 ← MIS(𝐺[𝑅5]) 
12.  Return 𝑋 = (𝑆 ∪ 𝑆* ∪⋯∪ 𝑆5)

• All marked nodes have a neighbor in 𝑋
• All nodes in 𝑅( have a neighbor in 𝑋
• Consider 𝑢 ∈ 𝐷*, for some iteration	𝑖
• Show 𝑢 has dist. ≤ 𝑖 to some node in 𝑋
1. Case (a):

• 𝑢 is 2 hops away from some node in 𝑋
2. Case (b):

• 𝑢 has large degree
• No marked neighbor à some neighbor 𝑤

was deactivated in iteration 𝑗 < 𝑖. 
• By induction: 𝑤 has dist. ≤ 𝑗 to 𝑋.

Lemma 4: Output is a 𝑡-Ruling Set. 

There is a  𝑡-ruling set algorithm that takes "𝑂 𝑡	𝑛	Δ
"
#/𝛽𝑘+  rounds w.h.p.



Main Open Problems

• MIS: "𝑂(min{ 3
DC
, 5
DC!

})  or  2Ω 3
DC!

 ?

• Maximal Matching: Can we go below "𝑂 3
DC

 ?

• Lower bounds for component-unstable algorithms? 
• Does every “interesting” problem have an 2Ω 3

DC!
 lower bound? 

• Lower bound of Ω 𝒎
DC!

 possible for some problems? 

Thanks!


