Distributed Graph Algorithms in the Vertex-Partition Model

Peter Robinson

Augusta University
perobinson@augusta.edu

Joint work with:

The Vertex Partition Message Passing Model

- k players (or machines) P_{1}, \ldots, P_{k}
- Synchronous clique
- Input:
- graph G
- n-nodes, m-edges
- Vertex partitioning
- random or adversarial (but balanced)
- KT_{1}
k-machine model
- Bandwidth or p log n Diss perlink
- No memory restriction

Why Vertex Partition Model?

Motivation 1: Iterative Graph Processing Systems

- Google Pregel, Apache Giraph
- vertex centric: "think like a vertex"
- synchronous message passing

Motivation 2: Generalization of the Congested Clique

- Understanding the impact of vertex partitioning on communication

Roadmap

1. Algorithms for Maximal Independent Set
2. Lower Bounds for MIS and other Problems
3. Algorithm for t-Ruling Set
4. Open Problems

Simple MIS Algorithm

 (assuming balanced vertex partitioning)- Players proceed in sequence:
- P_{1} computes MIS on $G\left[V\left(P_{1}\right)\right]$ and tells everyone about it:
- Group messages into batches of size $\beta(k-1)$
- Send 1st batch in 1 round to other $k-1$ players: β msgs to each player
- Proceed with $2^{\text {nd }}$ batch, etc.
- Every player broadcasts received messages in sequence.
- Other players update their vertex sets by deactivating nodes accordingly.
- Then proceed with player P_{2}, and so forth.

How long does one iteration take?

- "Telling everyone" requires $O\left(\frac{n}{k} \log n\right)$ messages \rightarrow takes $O\left(\frac{n}{\beta k^{2}} \log n\right)$ rounds.
- Each player gets $O\left(\frac{n}{k^{2}} \log n\right)$ messages. "Broadcasting" takes $O\left(\frac{n}{\beta k^{2}} \log n\right)$ rounds

Overall time: $O\left(\frac{n}{\beta k} \log n+k\right)=\boldsymbol{O}\left(\frac{n}{\boldsymbol{\beta k}} \log \boldsymbol{n}\right)$ rounds If $k=O(\sqrt{n / \beta})$

Simulating a Beeping Algorithm

(assuming random vertex partitioning)

Beeping Model:

- synchronous network
- nodes can broadcast a "beep"
- node u can only distinguish between:

1. none of its neighbors beeped

2. ≥ 1 beep among neighbors

Simulation in \boldsymbol{k}-Player Model:

- Each player P simulates beeping algorithm for all hosted nodes.
- Aggregate beeps from common source
- Aggregate beeps to common destination

$$
\begin{gathered}
\text { send beep } \\
\text { to } u
\end{gathered} \text { eep" }
$$

Beeping Simulation

A beeping algorithm with message complexity M and time complexity T can be simulated in $O\left(\frac{M}{k^{2}} \log ^{2} n+T \log ^{3} n\right)$ rounds, assuming random vertex partitioning.

Consider round t :

- Partition beeping nodes into $\log \Delta$ degree classes.
- $a_{t}=$ number of messages sent in round t
- Look at any class C_{d} :

$[\Delta / 2, \Delta)$
$[\Delta, 2 \Delta)$

Claim

Each player can send all messages for C_{d} in $O\left(\frac{a_{t}}{\beta k^{2}}+\log n\right)$ rounds.

Claim

Each player can send all messages for C_{d} in $O\left(\frac{a_{t}}{\beta k^{2}}+\log n\right)$ rounds.

Assume $\left|C_{d}\right|=\Omega(k \log n)$:

- $\left|C_{d}\right| \leq \frac{a_{t}}{d}$

$[d, 2 d)$
- for every player P_{i} :

$$
\mathbf{E}\left[C_{d} \cap V\left(P_{i}\right)\right] \leq \frac{a_{t}}{d k}
$$

- P_{i} needs to send $O\left(\frac{a_{t}}{d k} \cdot 2 d\right)=O\left(\frac{a_{t}}{k}\right)$ messages in expectation (and w.h.p.)
- Use random hash function $h: I D s \rightarrow[k]$
- Send message intended for v to random player $\mathrm{P}_{h(v)}$, who forwards msg to destination
$\rightarrow O\left(\frac{a_{t}}{k}\right)$ messages uniformly distributed over $k-1$ links.
$\rightarrow O\left(\frac{a_{t}}{\beta k^{2}}\right)$ rounds.
aggregate messages to same vertex

Claim

Each player can send all messages for C_{d} in $O\left(\frac{a_{t}}{\beta k^{2}}+\log n\right)$ rounds.

- We have $\log \Delta$ degree classes:

$$
O\left(\frac{a_{t}}{\beta k^{2}} \log n+\log ^{2} n\right)
$$

- Overall:

$$
\begin{gathered}
\sum_{t=1}^{T} O\left(\frac{a_{t}}{\beta k^{2}} \log n+\log ^{2} n\right)=O\left(\frac{M}{\beta k^{2}} \log n+T \log ^{2} n\right) \\
\sum_{i=t}^{T} a_{t}=M
\end{gathered}
$$

Beeping Simulation

A beeping algorithm with message complexity M and time complexity T can be simulated in $O\left(\frac{M}{\beta k^{2}} \log n+T \log ^{2} n\right)$ rounds, assuming random vertex partitioning.
[Jeavons, Scott, Xu 2016]: MIS in $O(\log n)$ rounds in beeping model.

$$
\rightarrow \text { MIS in } O\left(\frac{m \log n}{\beta k^{2}} \log n+\log ^{3} n\right)=O\left(\frac{m}{\beta k^{2}} \log ^{3} n\right) \text { rounds. }
$$

Theorem

MIS can be solved in $\boldsymbol{O}\left(\boldsymbol{\operatorname { m i n }}\left\{\frac{\boldsymbol{m}}{\boldsymbol{\beta \boldsymbol { k } ^ { 2 }}} \log ^{3} \boldsymbol{n}, \frac{\boldsymbol{n}}{\boldsymbol{\beta} \boldsymbol{k}} \log \boldsymbol{n}\right\}\right)$ rounds w.h.p., assuming random vertex partitioning

A Lower Bound for MIS

1. Show lower bound on information complexity for computing an MIS on constant-size graph "gadget" in 2-party model.
2. Simulate k-player algorithm in 2-party model for solving $\Theta(n)$ gadgets.

The Lower Bound Gadget

Gadget \boldsymbol{H} :

- 14 vertices: $U \cup V$
- fixed perfect matching between U, V.
- 2 random edges $e_{\text {Alice }}, e_{B o b}$ on $H[U]$ and $H[V]$

2-party model:

- Alice's input $A: U, V, e_{\text {Alice }}$
- Bob's input $B: U, V, e_{B o b}$
- Shared randomness
- Goal: Compute MIS S on H

Alice outputs $\mathrm{S}_{\text {Alice }}=S \cap U$ Bob outputs $S_{\text {Bob }}=S \cap V$

Claim

Let S be any MIS on H. Then $\mathbf{I}\left[S_{\text {Alice }}: B \mid A\right]+\mathbf{I}\left[S_{B o b}: A \mid B\right]=\Omega(1)$.

- Assume $e_{\text {Alice }}=\left\{u_{1}, u_{2}\right\}$

1. S contains ≤ 3 nodes from $\left\{u_{3}, \ldots, u_{7}\right\}$:

- Suppose $u_{3}, u_{4} \notin S$
- Not possible that $e_{B o b}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$

2. S contains ≥ 4 nodes from $\left\{u_{3}, \ldots, u_{7}\right\}$:

- Suppose $u_{4}, \ldots, u_{7} \in S$
- At least 2 nodes in $\left\{v_{4}, \ldots, v_{7}\right\}$ are not incident to $e_{\text {Bob }}$
- wlog: v_{4}, v_{5}
- Not possible that $e_{\text {Alice }}=\left\{u_{4}, u_{5}\right\}$

Either case rules out one possible input!

Claim

Let S be any MIS on H. Then $\mathbf{I}\left[S_{\text {Alice }}: B \mid A\right]+\mathbf{I}\left[S_{B o b}: A \mid B\right]=\Omega(1)$.
In first case:

- Initially: $\binom{7}{2}=21$ possibilities each for $e_{\text {Bob }}$ and $e_{\text {Alice }}$
- After computing MIS: $\binom{7}{2}=20$ possibilities left
- $\mathbf{I}\left[S_{\text {Alice }}: B \mid A\right]=\mathbf{H}[B \mid A]-\mathbf{H}\left[B \mid S_{B o b}, A\right]$
$=\log _{2} 21-\log _{2} 20$
$=\Omega(1)$
Similar for $2^{\text {nd }}$ case.

A Lower Bound for MIS

1. Show lower bound on information complexity for computing an MIS on constant-size graph "gadget" in 2-party model.
2. Simulate k-player algorithm in 2-party model for solving $\Theta(n)$ gadgets.

Simulating k-Players in the 2-Party Model

- Suppose G consists of $\boldsymbol{m}=\boldsymbol{n} / \mathbf{1 4}$ randomly sampled gadgets $H_{1}, \ldots, H_{n / 14}$
- Alice's input $A^{m}=$ "left" side of all gadgets.
- Bob's input $B^{m}=$ "right" side of all gadgets.
- Let Q be k-player MIS algorithm.
- Alice and Bob simulate $k / 2$ players each.
- Alice assigns n / k vertices to each of her players using some fixed rule.
- Same for Bob.
\rightarrow balanced vertex partitioning
- Compute MIS on G using Q.

Claim

Let S^{m} be any MIS on \boldsymbol{G}. Then $\mathbf{I}\left[S_{A l i c e}^{m}: B^{m} \mid A^{m}\right]+\mathbf{I}\left[S_{B o b}^{m}: A^{m} \mid B^{m}\right]=\boldsymbol{\Omega}(\boldsymbol{n})$.

- Gadgets are sampled independently:

$$
\mathbf{I}\left[S_{\text {Alice }}^{m}: B^{m} \mid A^{m}\right] \geq \sum_{i=1}^{n / 14} \mathbf{I}\left[S_{\text {Alice }}: B \mid A\right]
$$

and

$$
\mathbf{I}\left[S_{B o b}^{m}: A^{m} \mid B^{m}\right] \geq \sum_{i=1}^{n / 14} \mathbf{I}\left[S_{B o b}: A \mid B\right]
$$

\rightarrow Either Alice's or Bob's placlaim
$\Omega(n)$ bits in simulation.

$$
\text { Let } S \text { be any MIS on } H \text {. Then } \mathbf{I}\left[S_{\text {Alice }}: B \mid A\right]+\mathbf{I}\left[S_{B o b}: A \mid B\right]=\Omega(1) \text {. }
$$

Claim

Let S^{m} be any MIS on \boldsymbol{G}. Then $\mathbf{I}\left[S_{\text {Alice }}^{m}: B^{m} \mid A^{m}\right]+\mathbf{I}\left[S_{B o b}^{m}: A^{m} \mid B^{m}\right]=\boldsymbol{\Omega}(\boldsymbol{n})$.

- Either Alice or Bob learns $\Omega(n)$ bits.
- Simulation sends $\Omega(n)$ bits from Alice's $\frac{k}{2}$ simulated players to Bob's or vice versa.
- $O\left(k^{2}\right)$ links between Alice and Bob's players.
\rightarrow Simulation takes $\Omega\left(\frac{n}{\beta k^{2} \log n}\right)$ rounds.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^{2} \log n}\right)$ rounds, assuming balanced vertex partitioning.

Extension to Random Vertex Partitioning

- Consider random-input 2-party model
- Each vertex assigned to Alice or Bob w.p. $\frac{1}{2}$
- Gadget is good if Alice gets entire left side

$$
\operatorname{Pr}[\text { Gadget is good }]=\Omega(1)
$$

- Constant fraction of gadgets will be good in expectation.
- Previous argument applies to good gadgets.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^{2} \log n}\right)$ rounds, assuming random vertex partitioning.

Lower Bound

Computing an MIS with constant error takes $\Omega\left(\frac{n}{\beta k^{2} \log n}\right)$ rounds, assuming random vertex partitioning.

Upper Bound

MIS can be solved in $O\left(\min \left\{\frac{m}{\beta k^{2}} \log ^{3} n, \frac{n}{\beta k} \log n\right\}\right)$ rounds w.h.p., assuming random vertex partitioning

- Can we improve upper bound?
- Faster algorithm would require lower message complexity.
- Related open problem: Computing MIS in CONGEST $\left(\mathrm{KT}_{1}\right)$ with $o(m)$ messages:
- Any $o(m)$-algorithm must use node IDs / graph sketching in non-trivial way.
- Can we improve lower bound?
- multi-party approach seems promising.
$\Omega(m)$ lower bound for comparison-based algorithms
- Currently known techniques may not suffice...

Lower Bounds for other Problems: Ruling sets?

- S is t-ruling set of G if:
- S is independent set of G
- Every node in G is $\leq t$ hops from some node in S.
- Consider any graph in 2-party model
- Partition vertices in adversarial way
- Alice:
- Computes MIS on her subgraph
- Bob:
- Let B_{2} contain vertices that have distance ≥ 2 from Alice
- Compute MIS on B_{2}

\rightarrow 2-ruling set without communication!

Lower Bounds for other Problems: Maximal Matching?

- Consider any graph in 2-party model.
- Again, adversarial vertex partition.
- Alice \& Bob know all cut edges C.
- Locally compute maximal matching on $G[C]$.
- Both deactivate matched nodes.
- Both compute maximal matching on their residual graph.
- Maximal matching on gadget is union of these matchings.

\rightarrow maximal matching without communication!

Multiparty Approach for t-ruling set

- $k=t+2$ players
- Input: Graph H sampled from all k-vertex graphs
- "congested clique"-like model: each player gets 1 vertex
- Limitation: only works for "component stable" algorithms

Claim

For every t-ruling set algorithm \mathcal{A} there is a $(t+2)$-node graph H where, for some vertex v_{i} with neighborhood N_{i} :

$$
\mathbf{I}\left[\mathcal{A}\left(v_{i}\right): \overline{N_{i}} \mid N_{i}, R\right]=\Omega(1)
$$

Claim

For every t-ruling set algorithm \mathcal{A} there is a $(t+2)$-node graph H where, for some vertex v_{i} with neighborhood N_{i} :

$$
\mathbf{I}\left[\mathcal{A}\left(v_{i}\right): \overline{N_{i}} \mid N_{i}, R\right]=\Omega(1)
$$

- Look at deterministic algorithm D.

$$
\begin{aligned}
& =0 \text {, because } D \text { is } \\
& \text { "component stable" }
\end{aligned}
$$

- Sufficient to show that there is some v_{i} with N_{i} :

$$
\left|\operatorname{Pr}\left(D\left(v_{i}\right)=1 \mid N_{i}=n_{i}\right)-\operatorname{Pr}\left(D\left(v_{i}\right)=1 \mid H\right)\right|=\Omega(1)
$$

- Suppose D is silent on every $(t+2)$-node graph H.
- Let S be computed ruling set.
- Vertex u dominates v " $v<_{D} u$ " if, for every $H:\{u, v\} \in H$ implies $u \notin S$.

Claim

For every t-ruling set algorithm \mathcal{A} there is a $(t+2)$-node graph H where, for some vertex v_{i} with neighborhood N_{i} :

$$
\mathbf{I}\left[\mathcal{A}\left(v_{i}\right): \overline{N_{i}} \mid N_{i}, R\right]=\Omega(1)
$$

- Vertex u dominates v " $v<_{D} u$ " if, for every $H:\{u, v\} \in H$ implies $u \notin S$.
- Can prove that $\left(<_{D}\right)$ is strict total order over v_{1}, \ldots, v_{k}.
- W.l.og: $v_{1}<_{D} v_{2}<_{D} \cdots<_{D} v_{k}$
- Run algorithm on path $v_{1}-v_{2}-\cdots-v_{k}$
- Only v_{k} can enter S
- Invalid since $k \geq t+2$.

Use direct sum argument to show $\Omega\left(\frac{n}{\beta k^{2} t}\right)$ rounds for t-ruling set in k-player model (for component stable algorithms).

t-Ruling Set Algorithm

Lemma 1: max. deg. of nodes in R_{i} is $\leq \Delta^{1-(i-1) / t}$

1. $\quad R_{1} \leftarrow V(G)$

Lemma 2: max. deg. in $G\left[M_{i}\right]$ is $\leq O\left(\Delta^{1 / t} \log \mathrm{n}\right)$ (w.h.p.)
2. for iteration $i \leftarrow 2, \ldots, t$ do:

- Because max. deg. in $R_{i-2} \leq \Delta^{1-(i-2) / t}$

3. Every node in R_{i-1} marks itself w.p. $\Theta\left(\frac{\log n}{\Delta^{1-(i-1) / t}}\right)$
4. $\quad M_{i} \leftarrow$ marked nodes

Lemma 3: Informing neighbors takes $\tilde{O}\left(n \Delta^{1 / t} / \beta k^{2}\right)$ rnds
5. Inform all neighbors of M_{i}

- By random partitioning: $\tilde{O}\left(\frac{n}{k}\right)$ nodes per player

7. $\quad D_{i} \leftarrow$ nodes that (a) have a neighbor in M_{i},
(b) or degree $>\Delta^{1-(i-1) / t}$
8. Deactivate all nodes in D_{i}
9. $\quad R_{i} \leftarrow R_{i-1} \backslash\left(M_{i} \cup D_{i}\right)$

- Thus: $\tilde{O}\left(\frac{n}{k \Delta^{1-(i-1) / t}}\right)$ marked nodes per player.
- By Lem 1: max.deg. is $\leq \Delta^{1-(i-2) / t}$
- Need to send/rcv $\tilde{O}\left(\frac{n}{k \Delta^{1 / t}}\right)$ messages per player.
- Takes $\tilde{O}\left(\frac{n}{\beta k^{2} \Delta^{1 / t}}\right)$ rounds using random routing.

10. Inform all neighbors of nodes in R_{t}
11. $S \leftarrow \operatorname{MIS}\left(G\left[R_{t}\right]\right)$

Lemma 4: $\operatorname{MIS}\left(G\left[M_{i}\right]\right)$ takes $\tilde{O}\left(n \Delta^{1 / t} / \beta k^{2}\right)$ rounds
12. Return $\left(S \cup S_{1} \cup \cdots \cup S_{t}\right)$

Lemma 5: Algorithm takes $\tilde{O}\left(n t \Delta^{1 / t} / \beta k^{2}\right)$ rounds

Theorem

There is a t-ruling set algorithm that takes $\tilde{O}\left(t n \Delta^{\frac{1}{t}} / \beta k^{2}\right)$ rounds w.h.p.
3. Every node in R_{i-1} marks itself w.p. $\Theta\left(\frac{\log n}{\Delta^{1-(i-1) / t}}\right)$
4. $\quad M_{i} \leftarrow$ marked nodes
5. Inform all neighbors of M_{i}

Lemma 4: Output is a t-Ruling Set.

- All marked nodes have a neighbor in X
- All nodes in R_{t} have a neighbor in X
- Consider $u \in D_{i}$, for some iteration i
- Show u has dist. $\leq i$ to some node in X

1. Case (a):

- u is 2 hops away from some node in X

2. Case (b):

- u has large degree
- No marked neighbor \rightarrow some neighbor w was deactivated in iteration $j<i$.
- By induction: w has dist. $\leq j$ to X.

Main Open Problems

- MIS: $\widetilde{O}\left(\min \left\{\frac{n}{\beta k}, \frac{m}{\beta k^{2}}\right\}\right)$ or $\widetilde{\Omega}\left(\frac{n}{\beta k^{2}}\right)$?
- Maximal Matching: Can we go below $\tilde{O}\left(\frac{n}{\beta k}\right)$?
- Lower bounds for component-unstable algorithms?
- Does every "interesting" problem have an $\widetilde{\Omega}\left(\frac{n}{\beta k^{2}}\right)$ lower bound?
- Lower bound of $\Omega\left(\frac{m}{\beta k^{2}}\right)$ possible for some problems?

