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(∆ + 1)-coloring (∆1C)
n = # of nodes ∆ = maximum degree

}∆ + 1

Each node has the same palette of ∆ + 1 colors, i.e.,
{1, . . . ,∆+ 1}.



Generalizing (∆ + 1)-coloring

(∆ + 1)-list coloring (∆1LC)

Each node has an arbitrary palette of (∆ + 1) colors.



D1LC

D1LC: (deg+1)-list coloring

Each node v has a palette ψ(v) of colors of size (d(v) + 1); the
goal is to find a valid coloring. a

ad(v) denotes the degree of v .
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Note: (∆ + 1)-coloring is a special case of D1LC!



Abbreviations

∆1C : (∆ + 1)-coloring.

∆1LC : (∆ + 1)-list coloring.

D1LC : (deg+1)-list coloring.



Slack

Slack: number of “spare” colors a node has

s(v) = |ψ(v)| − d(v)

In D1LC each node may start with exactly 1 slack.



Distributed and parallel coloring

Greedy algorithms in the centralized setting are in general
hard to parallelize;

Coloring is harder in distributed and parallel settings.



Complexity of ∆1C Coloring
C-Clique : Congested Clique, S-MPC : Sublinear-MPC, R : Randomized, and D : Deterministic.

Model R/D ∆1C Reference D1LC Reference

Local R Õ(log2 log n) [CLP20]

Local D Õ(log2 n) [GG23]

Congest R Õ(log3 log n) [HKMT21]

Congest D Õ(log3 n) [GK21]

C-Clique R O(1) [CFGUZ19]

C-Clique D O(1) [CDP21]

S-MPC R O(log log log n) [CFGUZ19]

S-MPC D O(log log log n) [CDP21]



Complexity of ∆1C vs. D1LC
C-Clique : Congested Clique, S-MPC : Sublinear-MPC, R : Randomized, and D : Deterministic.

Model R/D ∆1C Reference D1LC Reference

Local R Õ(log2 log n) [CLP20] Õ(log2 log n) [HKNT22]

Local D Õ(log2 n) [GG23] Õ(log2 n) [GG23]

Congest R Õ(log3 log n) [HKMT21] Õ(log3 log n) [HNT22]

Congest D Õ(log3 n) [GK21] Õ(log3 n) [GK21]

C-Clique R O(1) [CFGUZ19]

C-Clique D O(1) [CDP21]

S-MPC R O(log log log n) [CFGUZ19]

S-MPC D O(log log log n) [CDP21]



Complexity of ∆1C vs D1LC
C-Clique : Congested Clique, S-MPC : Sublinear-MPC, R : Randomized, and D : Deterministic.

Model R/D ∆1C Reference D1LC Reference

Local R Õ(log2 log n) [CLP20] Õ(log2 log n) [HKNT22]

Local D Õ(log2 n) [GG23] Õ(log2 n) [GG23]

Congest R Õ(log3 log n) [HKMT21] Õ(log3 log n) [HNT22]

Congest D Õ(log3 n) [GK21] Õ(log3 n) [GK21]

C-Clique R O(1) [CFGUZ19] O(1) [CCDM23b]

C-Clique D O(1) [CDP21] O(1) [CCDM23b]

S-MPC R O(log log log n) [CFGUZ19] O(log log log n) [CCDM23a]

S-MPC D O(log log log n) [CDP21] O(log log log n) [CCDM23a]



Rest of the talk

D1LC in Congested Clique;

D1LC in Sublinear MPC.
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Congested Clique Model [LPP05]

Input is a graph

Each node is a computer

Nodes have unique O(log n) bit IDs

Nodes start with a list of neighbors

Want to compute something about
the input graph



Congested Clique Model [LPP05]

Computation in rounds:

Nodes do local computation
Nodes exchange messages

Aim to minimize #rounds

Each round, each node can send an
O(1) word message to each other
node

Node/color IDs are 1 word



Congested Clique Model [LPP05]

Lenzen’s Routing [Len13]

If each node wants to send and receive O(n) messages in total,
these messages can all be routed in O(1) rounds.

If we have a coloring instance of size O(n). . .
. . . we can send it to a single node and color it locally!
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O(1) round algorithm for ∆1C in Congested Clique

Randomized algorithm by Chang et al. [CFGUZ19];

Deterministic algorithm by Czumaj et al. [CDP20].



O(1) round algorithm for ∆1C in C-Clique [CDP20]

Nodes are partitioned into buckets randomly.

V1 Vk
k = ∆0.1

Colors are partitioned into buckets randomly.

C1 Ck−1



O(1) round algorithm for ∆1C in C-Clique [CDP20]

Nodes are partitioned into buckets randomly.

V1 Vk
k = ∆0.1

Colors are partitioned into buckets randomly.

C1 Ck−1



O(1) round algorithm for ∆1C in C-Clique by [CDP20]

Gi : subgraph induced by Vi ,
i ∈ [k − 1];

Consider coloring Gi restricting
palettes to Ci , i ∈ [k − 1];

L ⊂ ∪k−1
i=1 Vi : leftover vertices

that possibly can’t be colored;

Color Gi , i ∈ [k−1], in parallel;

Color H = (Vk ,Ek) recursively;

Color the vertices in L.

V1 Vk
k = ∆0.1

C1 Ck−1

L

Leftover



O(1) round algorithm for ∆1C in C-Clique by [CDP20]

The main crux of the analysis

The size of the subgraphs induced by each Gi , i ∈ [k − 1] and
L is O(n);

After O(1) recursive calls, we have an O(n) size instance.

Recall Lenzen’s routing!



Difficulty in D1LC

In ∆1C/∆1LC, the low degree vertices are easy case;

In D1LC, it is difficult as random partitioning based on ∆
won’t work;

Using too few buckets, the size of the induced subgraphs will
be too large;

Using too many buckets, we can’t guarantee on the
colorability of the reduced instances.
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An O(log log∆) algorithm

Observation

The O(1) ∆1C algorithm by [CDP20] can be adapted to D1LC
when the degree of each vertex lies in [∆ε,∆].

O(log log∆) algorithm

Color the graph in O(log log∆) phases each of O(1) rounds:

Phase 1: consider coloring vertices with degree range [∆ε,∆].

Phase 2: consider coloring with degree range [∆ε2 ,∆ε].

So on...
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Our approach [CCDM23b]

Note that we have just one slack for each vertex in D1LC.

We give an O(1) algorithm BucketColor when each vertex
v has relatively more colors than its high order neighbors, i.e.,

d+(v) ≤ p(v)− 1
4d(v)

0.9. 1

// In the worst case, d+(v) = p(v)− 1.

Then extend it to D1LC by generating slack in O(1) rounds to
satisfy the need of BucketColor.

1d(v) = degree of v ,
d+(v) = the number of higher order neighbors of v ,
p(v)= palette size of v .
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Algorithm BucketColor

Hierarchical bucketing

A tree of buckets:

O(log log∆) levels;

Determined by random
strings;

The length of the string
is a function of the level
of the bucket;

Ancestor relationship
based on substring.



Algorithm BucketColor

Hierarchical bucketing

Vertices of degree
[∆ε,∆] put into one of
the leaf bucket randomly;

Vertices of degree
[∆ε2 ,∆ε] put into one of
buckets above the leaves
randomly;

So on..

[∆ε,∆]

[
∆ε2,∆ε

]
So on...



Algorithm BucketColor

Assign colors randomly
to leaves of bucket tree.



Algorithm BucketColor

Color present in a leaf
bucket can be considered
to be present in any
bucket in the leaf to the
root path.



Algorithm BucketColor

We have an instance where
palettes of the vertices are
sparsified:

each vertex would like to
use colors in descendant
buckets only.

1

3

4

2

5



Algorithm BucketColor

We have a sparsified instance

where edges between
unrelated nodes don’t
matter.

1

3

4

2



Algorithm BucketColor

Would like to use colors
in descendant buckets
only;

Should have more
descendant colors than
descendant neighbors;

1

3

4

2

5



Colorability guarantee

This is possible when each node v has relatively more color than
the number of high order neighbors :
assumption of BucketColor.

Claim

If d+(v) ≤ p(v)− 1
4d(v)

0.9, then with probability 1− 1/d(v)2, v
has relatively more colors in its descendant buckets than that of
the number of neighbors.
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After putting nodes and colors into buckets

Informally,

Algorithm BucketColor removes some bad nodes, such that

The size of the relevant information corresponding to each
bucket is O(n) — can be gathered onto a network node;

The subgraph induced by the bad node is of O(n) size — can
be colored later in O(1) rounds;

Every node has more colors in the descendant buckets than
that of its neighbors.
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Informally,

Algorithm BucketColor removes some bad nodes, such that

The size of the relevant information corresponding to each
bucket is O(n) — can be gathered onto a network node;
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Relevant information of a bucket

It refers to a valid coloring
instance:

Graph with the set of
edges with one node in
the bucket and the other
in some descendant
bucket;

Color palette of a node is
the set of colors present
in the descendant
buckets;

1

3

4

2



Dependency between buckets

The valid coloring
instances w.r.t two
buckets are not
necessarily independent;

Particularly, consider
buckets with
ancestor-descendant
relationship.

1

3

4

2



Find good child buckets in parallel

However,

Each node can find a
good child bucket . . .

. . . such that all nodes
have more descendant
colors than descendant
neighbors.

1

3

4

2



Find good child buckets in parallel

All nodes can find good
child buckets in parallel.

1 3

4

2



Repeated moving nodes to good child buckets

O(1) steps, in parallel:

Move all nodes to a child
bucket

. . . such that all nodes
have more descendant
colors than descendant
neighbors.

1 3

4

2



Repeated moving nodes to good child buckets

After O(1) steps:

All nodes have exactly 1
descendant color;

All nodes have zero
descendant neighbors.

1 3

4

2



Coloring nodes after O(1) steps

Assign all nodes their
remaining color!

2 1 3

4



Why O(1) rounds are enough?

Claim

W.p. 1− 1/d(v)2, none of the v ’s descendants buckets of level
ℓ(v) + O(1) has more than one v ′s palette color.

v

Level `(v) +O(1)

Level `(v)



Algorithm BucketColor

BucketColor

It can color the graph in O(1) rounds if each v has relatively more
color than the number of higher order neighbors, i.e.,

d+(v) ≤ p(v)− 1

4
d(v)0.9.

How to generate the required slack for BucketColor?



Algorithm BucketColor

BucketColor

It can color the graph in O(1) rounds if each v has relatively more
color than the number of higher order neighbors, i.e.,

d+(v) ≤ p(v)− 1

4
d(v)0.9.

How to generate the required slack for BucketColor?



How to generate the required slack for BucketColor?

By using ColorTrial.

Nodes nominate themselves with probability 1/4
Nominated nodes pick a random color from their palettes
. . . and permanently color themselves if no neighbor
picked the same color

Delaying coloring of node v w.p. d(v)−0.1.
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Algorithm

Overall structure of Color(G ):

Generate some slack with ColorTrial;

S ← Nodes delay themselves w.p. d(v)−0.1;

Run BucketColor to color G \ S ;
Call Color(G [S ]) recusrsively.



Algorithm

Overall structure of Color(G ):

Generate some slack with ColorTrial;

S ← Nodes delay themselves w.p. d(v)−0.1;

Run BucketColor to color G \ S ;
Call Color(G [S ]) recusrsively.



Algorithm

Overall structure of Color(G ):

Generate some slack with ColorTrial;

S ← Nodes delay themselves w.p. d(v)−0.1;

Run BucketColor to color G \ S ;
Call Color(G [S ]) recusrsively.

These steps gives us
“slack relative to high-degree neighbors” for BucketColor.



Algorithm [CCDM23b]

Overall structure of Color(G ):

Generate some slack with ColorTrial;

S ← Nodes delay themselves w.p. d(v)−0.1;

Run BucketColor to color G \ S ;
Call Color(G [S ]) recursively.

Note

The size of the remaining graph in O(n) after O(1) level of
recursion.

Some nodes may fail. But that can be handled suitably.
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Derandomization

Several randomized subroutines in our algorithm;

We can derandomize them all with the method of conditional
expectations.



Contents

Introduction

D1LC in Congested Clique

The model
Overview of O(1) round algorithm for (∆ + 1)-coloring
O(1) round algorithm for (deg+1)-list coloring

D1LC in Sublinear MPC

The model
The main crux of the (∆ + 1)-coloring algorithm
Our approach for (deg+1)-list coloring

Open Questions



Contents

Introduction

D1LC in Congested Clique

The model
Overview of O(1) round algorithm for (∆ + 1)-coloring
O(1) round algorithm for (deg+1)-list coloring

D1LC in Sublinear MPC

The model
The main crux of the (∆ + 1)-coloring algorithm
Our approach for (deg+1)-list coloring

Open Questions



Massively Parallel Computation (MPC) [KSV10]

Edges of the graph is divided
among machines a

Each machine has local space S

aUnlike, the distributed models, the machines
does not necessarily correspond to nodes in the
input graph.



Massively Parallel Computation (MPC)

Communication is done via
all-to-all mode over rounds

In each round,

Machines can do some local
computation
Send/receive at most S words

Optimization parameters:

Primary: # rounds
Secondary: total space used by
all machines (ideally O(m + n))



Different MPC based on local space

Superlinear MPC: S = Ω(n1+δ), where δ ∈ (0, 1)

Linear MPC: S = Θ(n)

Sub-linear MPC: S = O(nδ), where δ ∈ (0, 1)



Local model [Lin92]

Input is a graph

Each node is a computer

Nodes have unique O(log n) bit IDs

Nodes start with a list of neighbors

Want to compute something about
the input graph



Local model [Lin92]

Computation in rounds:

Nodes do local computation
Nodes exchange messages

Aim to minimize #rounds

In each round, each node can send
message of any size to its
neighbors only
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O(log log log n) algorithm for ∆1LC coloring in
Sublinear-MPC

Randomized algorithm first given by Chang et al. [CFGUZ19];

Deterministic algorithm by Czumaj et al. [CDP21]

The main idea

Consider the local algorithm for ∆1LC by Chang et al.
[CLP20];

Simulate and/or derandomize the local procedures in [CLP20]
one by one in sublinear MPC.



O(log log log n) algorithm for ∆1LC coloring in
Sublinear-MPC

Randomized algorithm first given by Chang et al. [CFGUZ19];

Deterministic algorithm by Czumaj et al. [CDP21]

The main idea

Consider the local algorithm for ∆1LC by Chang et al.
[CLP20];

Simulate and/or derandomize the local procedures in [CLP20]
one by one in sublinear MPC.



O(log log log n) deterministic algorithm for D1LC in
Sublinear MPC

A possible approach:

Consider the randomized algorithm for D1LC in local model by
Halldórsson et al. [HKMT22]

Simulation and derandomization of each local procedure of
[HKMT22].
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Our main contribution [CCDM23a]

We define a generic local procedure (for coloring kind of
problems);

We show that those can be simulated deterministically in
sublinear MPC;

All the local procedures in the local algorithm by Halldórsson
et al. [HKNT22] fits this framework.
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Our main contribution [CCDM23a]

We define a generic local procedure (for coloring kind of
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All the local procedures in the local algorithm by Halldórsson
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(τ,∆)-normal distributed procedure

τ rounds of Local;

Each node has

O
(
∆O(τ)

)
words of input information;

produces O
(
∆O(τ)

)
words of output information;

uses input from its τ -hop neighborhood and ∆O(τ) random
bits;
performs O(∆O(τ)) computation.

Strong success property: can be decided for each node based
on the output information from its τ -hop neighborhood. Each
node succeeds with probability 1− 1/2n.

Weak success property: some vertices can be deferred. It
doesn’t cause the property to fail.



Implication in D1LC in sublinear MPC

Main theorem

If ∆ ≤ nδ/c , then a series of k number of (τ,∆)-normalized
distributed procedure can be implemented in O(kτ + log∗ n)
rounds of MPC.

Informally

Each randomized procedure in [HKNT22] is a series of O(log∗ n)
number of (O(1),∆)-normal distributed procedure, i.e., O(log∗ n)
rounds of MPC is enough.

Final result

Combining the above with degree reduction and efficient algorithm
for low degee graphs, we get O(log log log n) algorithm.
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Summary: complexity of ∆1C and D1LC
C-Clique : Congested Clique, S-MPC : Sublinear-MPC, R : Randomized, and D : Deterministic.

Model R/D ∆1C Reference D1LC Reference

Local R Õ(log2 log n) [CLP20] Õ(log2 log n) [HKNT22]

Local D Õ(log2 n) [GG23] Õ(log2 n) [GG23]

Congest R Õ(log3 log n) [HKMT21] Õ(log3 log n) [HNT22]

Congest D Õ(log3 n) [GK21] Õ(log3 n) [GK21]

C-Clique R O(1) [CFGUZ19] O(1) [CCDM23b]

C-Clique D O(1) [CDP21] O(1) [CCDM23b]

S-MPC R O(log log log n) [CFGUZ19] O(log log log n) [CCDM23a]

S-MPC D O(log log log n) [CDP21] O(log log log n) [CCDM23a]



Open questions

What about more constrained coloring than D1LC?

Recently ∆-coloring has been considered [FMH23];

What about going beyond ∆-coloring like (∆− 1)-coloring,
(∆− 2)-coloring,..., (∆− Ω(

√
∆))-coloring?

Thanks!
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