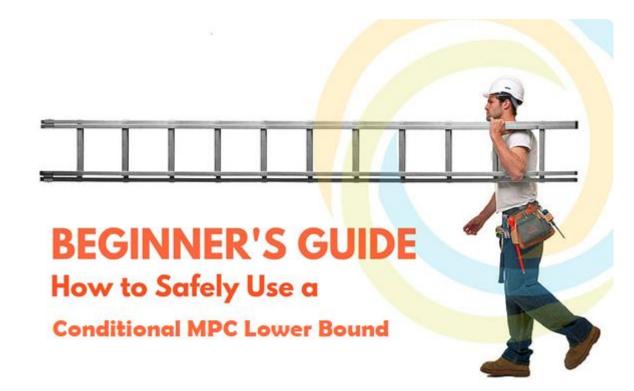
Lower Bounds in Massively Parallel Computation

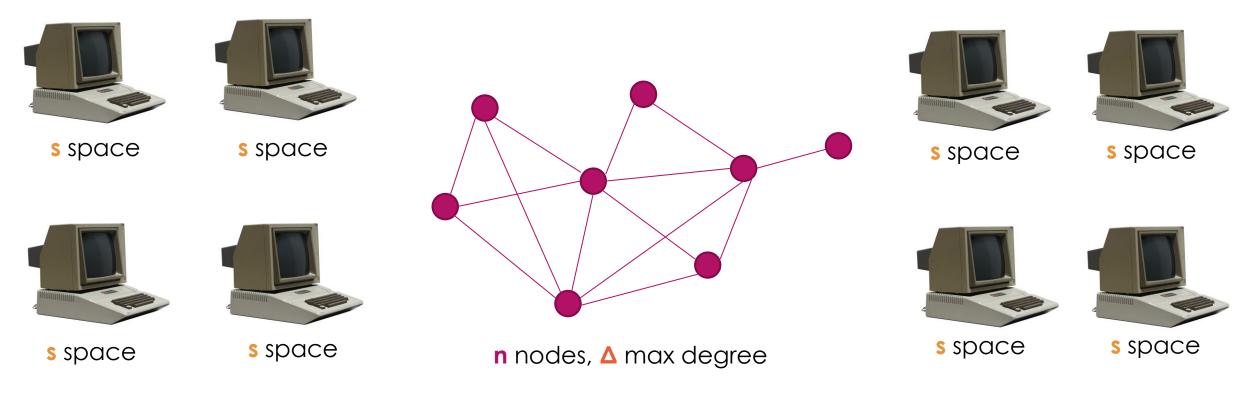
Peter Davies AMG workshop, 28/10/22

Main Aim of this Talk



Low-Space MPC Model

(Massively Parallel Computation)



Low space regime: $s = n^{\epsilon}$, $0 < \epsilon < 1$

Low-Space MPC Model

(Massively Parallel Computation)

s space

s space

Number of machines:

Lower bounds are against any poly(n) number of machines / total space

s space

s space

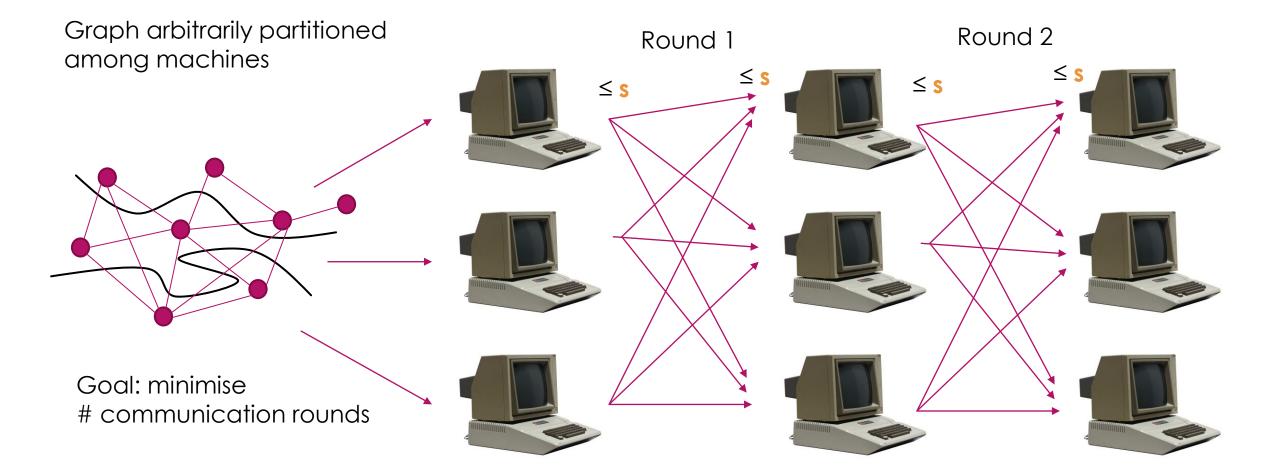
s space

s space

n nodes, △ max degree

Low space regime: $s = n^{\epsilon}$, $0 < \epsilon < 1$

MPC Communication



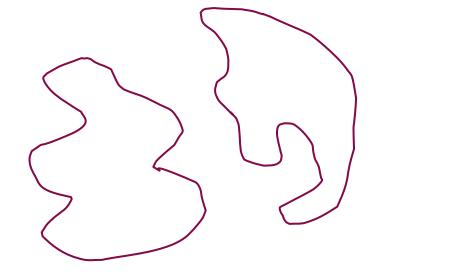
Known Lower Bounds

Unconditional Lower Bounds

If some problem in P cannot be solved in $O(\log_s n) = O(1)$ MPC rounds, then $NC^1 \neq P$.

Roughgarden, Vassilivistki, Wang, JACM 2018

1 vs 2 Cycle Conjecture



Two n/2-node cycles

One **n**-node cycle

1 vs 2 cycle conjecture: $\Omega(\log n)$ rounds required when $s \le n^{0.99}$ even with any $n^{O(1)}$ machines

VS

Direct Conditional Lower Bounds

Some connectivity-based problems can be reduced to 1 vs 2 cycles

Example:

Finding connected components takes $\Omega(\log D)$ rounds*.

Behnezhad, Dhulipala, Esfandiari, Łącki & Mirrokni FOCS '19, Coy & Czumaj STOC '22

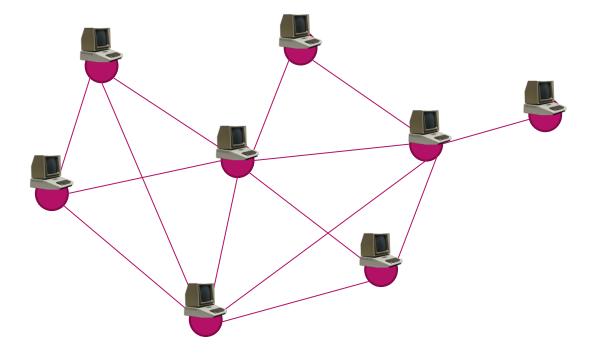
*conditional on the 1 vs 2 cycle conjecture

Conditional Lower Bounds From LOCAL

LOCAL Model

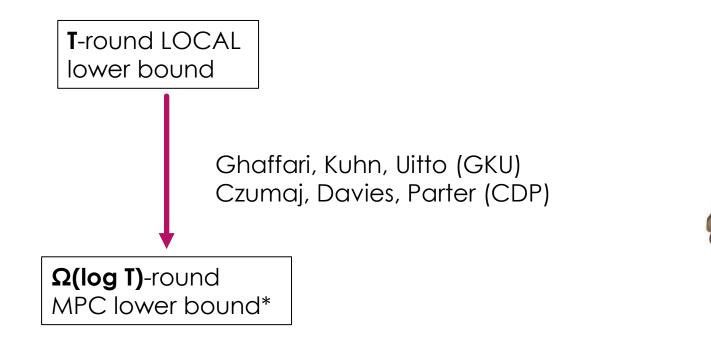
- Nodes of input graph are the processors
- Synchronous rounds of communication
- Can send arbitrary messages to neighbours each round
- Goal: minimise #communication rounds

Many (unconditional) lower bounds are known



n nodes, m edges, △ max degree

Conditional Lower Bounds from LOCAL



*conditional on the 1 vs 2 cycle conjecture, holds against component-stable algorithms

Component-Stability

Informally: algorithm treats connected components separately

GKU: a node's output depends only on its connected component (topology and IDs) and randomness...

...and the value of **n** and \triangle (CDP)

Are MPC Algorithms Component-Stable?

CDP:

Many deterministic component-unstable algorithms surpass deterministic lower bounds (MIS, maximal matching, Lovász Local Lemma, ...)

One deterministic component-unstable algorithm surpasses randomized lower bound $(\Omega(n/\Delta)$ -size independent set)

All of these exploit the component-unstable method of conditional expectations

No randomized lower bound for locally-checkable problem has been broken

Checklist For Using Conditional MPC Lower Bounds

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Theorem (**/**DP '21)

Let P be ch O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input stimate N and more imum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round correspondent to onent-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, and more important from G, conditioned on 1 vs 2 cycle conjecture.

Replicability

O(1)-replicable graph problem:

An invalid solution on a graph G must also be invalid on multiple disjoint copies of G

plus a few isolated nodes

CDP'21

- Any locally-checkable problem is O(1)-replicable graph problem
- Some natural approximation problems are too

Checklist

• Problem is O(1)-replicable

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Theorem (CDP '21)

Let P be an O(1)-replicable growth problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness with input estimate N and max num degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, contract on 1 vs 2 cycle conjecture.

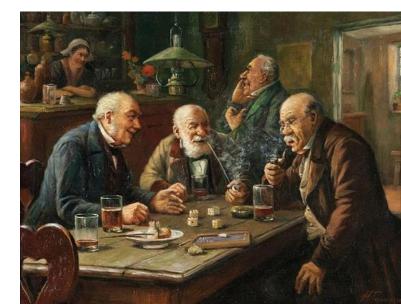
Shared Randomness

LOCAL lower bounds are generally against only local randomness

Ghaffari, Kuhn, and Uitto re-proved some against global randomness

Any other randomized bounds also need to be re-proven against global randomness to transport to MPC

So far this has not caused major problems



Checklist

- Problem is O(1)-replicable
- LOCAL lower bound holds under shared randomness

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T N, Δ)-round lower be und in the randomized LOCAL model with shared randomness, for **constrained function**, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle *g* (n) entities of the space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle *g* (n) entities of the space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle *g* (n) entities of the space MPC algorithm solving P w.h.p. on the space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle *g* (n) entities of the space P PC algorithm solving PC algorithm solvi

Constrained Functions

Framework gives MPC lower bounds of at most $\Omega(\log \log n)$

Checklist

- Problem is O(1)-replicable
- LOCAL lower bound holds under shared randomness
- Target MPC bound is at most $\Omega(\log \log n)$

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

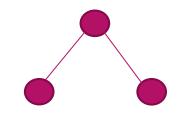
Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some **normal family G**. Then there is no o(log T(n, Δ))- round component-stable low-space MI C algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Normal Graph Families

Graph family G is normal if it is

• hereditary (closed under induced subgraph), and



Example: family of trees is not normal, family of forests is.

Checklist

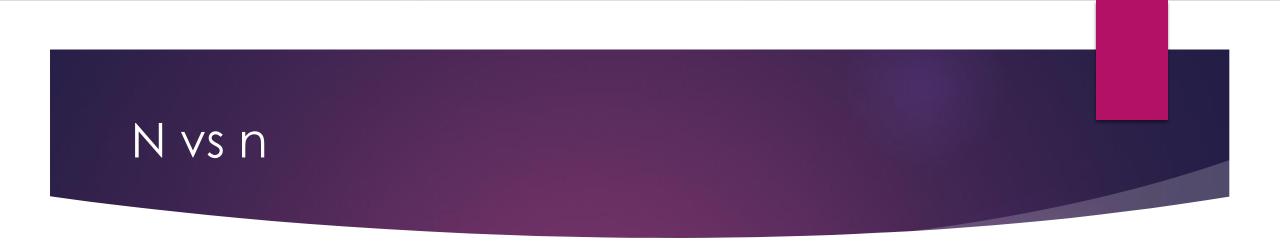
- Problem is O(1)-replicable
- LOCAL lower bound holds under shared randomness
- Target MPC bound is at most $\Omega(\log \log n)$
- Graph class is normal (hereditary)

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Theor

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with **input estimate N** and maximum degree Δ , from some normal family G. Then there is o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on let al **n**-node, Δ -max-d, gree graphs from G, conditioned on 1 vs 2 cycle conjecture.



In LOCAL, only polynomial estimate N of number of nodes assumed

In MPC, exact value **n** can be easily calculated

This is one of the reasons we must allow knowledge of **n** in component-stability

MPC lower bounds from the theorem are **stronger** in this sense

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs with input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on legal **n**-node, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Theorem (CDP '21)

Let P be an O(1)-replicable graph problem that has a T(N, Δ)-round lower bound in the randomized LOCAL model with shared randomness, for constrained function T, on graphs input estimate N and maximum degree Δ , from some normal family G. Then there is no o(log T(n, Δ))- round component-stable low-space MPC algorithm solving P w.h.p. on **legal n**-r ode, Δ -max-degree graphs from G, conditioned on 1 vs 2 cycle conjecture.

Legal Graphs

Checklist

- Problem is O(1)-replicable
- LOCAL lower bound holds under shared randomness
- Target MPC bound is at most $\Omega(\log \log n)$
- Graph class is normal (hereditary)

Can We Remove The Technicalities?

- Problem is O(1)-replicable
- LOCAL lower bound holds under shared randomness
- Target MPC bound is at most $\Omega(\log \log n)$
- Graph class is normal (hereditary)

+ Component stability

Maybe (or weaken)	
Unlikely	
Maybe (or weaken)	
Unlikely	

Maybe (but seems difficult)