
Massively Parallel Computation
Theory and Practice

Jakub “Kuba” Łącki
Google Research

AMG workshop, 28.10.2022

https://commons.wikimedia.org/wiki/File:Fork_in_the_road_for_Brunslow_-_geograph.org.uk_-_873046.jpg

MPC model
Practical large-scale
computation

Plan of the talk

1. MPC model
a. Motivation: MapReduce and Pregel
b. MPC model & algorithmic results
c. Example: efficient algorithm for finding connected components

2. AMPC model
a. Definition
b. Algorithmic results
c. Empirical evaluation

Goal:

Solve large problems fast

Goal:

Solve large problems fast

using simple, fault-tolerant and

cost-effective algorithms

Example: 40% of resources in a production cell are not used

Natural idea: let’s try to use the “unused” resources

High priority jobs,
must execute reliably

Low priority jobs,
May be restarted

Unused capacity}

Image from Borg: the Next Generation, Tirmazi, Barker, Deng, Haque, Hand, Qin, Harchol-Balter, Wilkes. EuroSys'20

Working with low-priority resources

Low cost Job may be preempted at
any time

Need to ensure good
fault-tolerance capabilities

MapReduce
MapReduce: Simplified Data Processing on Large Clusters, Dean, Ghemawat, OSDI’04

MapReduce computation is a sequence of Map/Shuffle/Reduce steps (synchronous rounds)

Map Shuffle Reduce
(small) records

(key, val)
pairs

(key, (val1, val2, ...))
pairs

(key, result)
pairs

applied to each entity separately

MapReduce example: counting words
MapReduce: Simplified Data Processing on Large Clusters, Dean, Ghemawat, OSDI’04

Map Shuffle Reduce

my dog
my fox
dog dog
your cat

(my, 1)
(dog, 1)
(my, 1)
(fox, 1)
(dog, 2)
(your, 1)
(cat, 1)

(my, (1, 1))
(dog, (1, 2))
(fox, (1))
(your, (1))
(cat, (1))

(my, 2)
(dog, 3)
(your, 1)
(cat, 1)applied to each entity separately

Fault tolerance provided by the framework:
● All intermediate results replicated & saved to disk
● Each Map and Reduce runs independently; preemptions handled by restarting the computation

Pregel
Pregel: A System for Large-Scale Graph Processing, Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski, SIGMOD’10

There is a collection of vertices, each having:

● Its internal state
● A list of neighbors

The algorithm runs in supersteps. In each superstep each vertex:

● Receives messages sent in the previous superstep
● Updates its state/set of outgoing edges
● Sends messages to other vertices (to be delivered in the next step)

Goal:

Solve large problems fast

using simple, fault-tolerant and

cost-effective algorithms

Very easy to scale
horizontally

Simple API

Thanks to fault-tolerance we
can use low-priority resources

Provided for free

Is the problem solved?
Well, we also need algorithms

How do we know an algorithm is good?
● Low number of steps

● Low amount of data shuffled

● No reducer is overloaded with data

P 13

= machine = communication

INPUT

}

= synchronization

RO
UN

D

● Computation in synchronous rounds
● In each round, a machine:

1. Receives messages from the
previous round

2. Performs arbitrary computation
3. Sends messages to other

machines

MPC model (Massively parallel computation)
[KSV’10, GSZ’11, BKS’17]

● Input of size N

● P machines with space S

● N = Θ(P*S)

● S = Nε for some ε ∊ (0, 1)

● Each machine sends / receives

data of size S in a round

Goal: minimize #rounds
P 14

= machine = communication

INPUT

}

= synchronization

RO
UN

D
MPC model (Massively parallel computation)
[KSV’10, GSZ’11, BKS’17]

● Can you “cheat” by performing arbitrary computation?

○ Most algorithms use near-linear time

○ Still arbitrary computation is useful e.g. in derandomization

● Are machines stateful?

○ Stateful & stateless are equivalent

MPC model - discussion

MPC vs PRAM
● MPC can often simulate PRAM
● MPC can be more powerful than PRAM

○ Computing XOR requires Ω(log n) depth in PRAM but only O(1/ε)
MPC rounds

MPC lower bounds
● Computing OR requires Ω(1/ε) rounds
● Most commonly used: Ω(log n) conditional lower bound

How powerful is MPC?

MPC model - hardness (1-vs-2-cycle problem)

P 17

Distinguish between a
● cycle on 2n nodes and
● two cycles on n nodes

Conjecture: this requires Ω(log n) rounds in MPC model

MPC: three classes of graph algorithms

Only make sense
when m = n1+Ω(1)

S = O(n1+ε)
for some constant 0 < ε < 1

S = O(n) S = O(nε)
for some constant 0 < ε < 1

Very similar to
CONGESTED-CLIQUE Best scalability

Most challenging

Problem O(n1+ε) Õ(n) O(nε)

Connected components O(1) O(1) O(log D + log log n)

Minimum spanning tree O(1) O(1) O(log n)

Maximal matching O(1) O(log log n) Õ(sqrt(log n))

Maximal independent set O(1) O(log log n) Õ(sqrt(log n))

(Δ+1)-coloring O(1) O(1) O(log log log n)

PageRank ? ? O((log log n)2)

D = graph diameter

Graph algorithms in MPC - three different regimes

Can we now solve large problems fast?

MPC model
Practical large-scale
computation

We have good frameworks, model and algorithms, but:

● Are the algorithms easy to implement?
● What is the hidden constant? (50 log log n vs log n rounds)
● What is the amount of communication and local

computation?

Many MPC algorithms are impractical.
Still, MPC is a great model to develop practical algorithms

Example: connected components

Input: a graph G = (V, E)

Output: component(v) for each v ∊ V

Example: connected components

while |E(G)| > 0

for v ∊ V(G)
label(v) := U[0, 1]

best(v) := 2-hop neighbor of v minimizing label(w)

group nodes by best(v) and merge together

Claim
Let d := minimum degree in G2

Then, the number of nodes shrinks by a factor of Ω(d) in expectation~

Performance on random graphs

Theorem [Ł.MW’19]

Let H ~ ErdosRenyi(n, c log n / n). Assume that H ⊆ G. Then the (modified)
algorithm finds connected components in H in O(log log n) rounds.

[ASW, PODC’19] showed that O(log log n) rounds are possible if spectral
gap >= 1/polylog n

Number of edges decreases by ~10x in each iteration

Empirical Performance - relative running times

Graph
(#edges)

Orkut
(117M)

Friendster
(1.8B)

Clueweb
(37.3B)

videos
(626B)

webpages
(6.5T)

New 1.0 1.0 1.0 1.03 1.0

Cracker 1.38 1.16 2.65 1.0 ~3.0

Two-phase 5.77 1.73 1.77

Hash-to-min 5.84 20.27

Adaptive massively parallel computation

Massively Parallel Computation via Remote Memory Access, Soheil Behnezhad, Laxman Dhulipala, Hossein
Esfandiari, Jakub Łącki, Vahab Mirrokni, Warren Schudy, SPAA’19

Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice. Soheil Behnezhad, Laxman
Dhulipala, Hossein Esfandiari, Jakub Łącki, Vahab Mirrokni, Warren Schudy, VLDB’20.

AMPC model

https://arxiv.org/abs/1905.07533
https://arxiv.org/abs/2009.11552

AMPC = a combination of MPC and a
distributed hash table

Distributed hash table (DHT, a.k.a. Key-value store)

● Service storing (key, value) pairs

● Query provides a key and returns the corresponding value(s)

Lookup latency as low as 1-3 μs (~20x slower than RAM)

Previous applications of DHT

Affinity clustering [BBDHKLM, NeurIPS’17]

● Allows O(1)-round implementation

Connected components [KLMRV, SOCC’14]

● Used in a previous SOTA implementation

The applications rely on the input being “nice”

N, P, S defined as in MPC

Differences

● All messages saved to a distributed

hash table (DHT)

● In the following round each machine

can adaptively read S values from the

DHT

Same bounds on communication

Adaptive Massively Parallel Computation (AMPC) - definition

P 30

Distributed hash table

Distributed hash table

● Fault tolerance

○ Use a fault tolerant DHT

○ A failing machine can just restart

● Allowing writes?

○ Technically possible

○ Ensuring fault-tolerance becomes

much more challenging

AMPC - properties

P 31

Distributed hash table

Distributed hash table

AMPC - realism

P 32

Distributed hash table

Distributed hash table

● Slow “chains” of reads?
○ Very low read latency (1-3 μs)

● Read contention
○ No contention under natural assumptions:

■ P = O(N0.5)

■ Random sharding

■ Caching of lookup results

Algorithm idea

● Repeatedly shrink each cycle by a factor of nΩ(1) by

contracting edges

● After O(1) rounds, the graph fits on a single

machine

DHT

DHT

AMPC - 1-vs-2-cycle problem

How to shrink the cycle?

● Write node -> (neighbor1, neighbor2) entries to the

DHT

● Sample each node w.p. n-Ω(1)

DHT

DHT

AMPC - 1-vs-2-cycle problem

● Each sampled vertex can find its two nearest

sampled neighbors in 1 round

1-vs-2-cycle problem
solvable in O(1) rounds

AMPC is strictly stronger than (the model of) MapReduce, Hadoop,
Pregel, Giraph, …

(assuming 1-vs-2-cycles conjecture)

AMPC algorithms
Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice. Soheil Behnezhad, Laxman
Dhulipala, Hossein Esfandiari, Kuba Łącki, Vahab Mirrokni, Warren Schudy, VLDB’20.

AMPC - Graph Algorithm in constant rounds

Problem MPC AMPC

Maximal Independent Set Õ(sqrt(log n)) O(1)

Connected Components O(log D) O(1)

Minimum Spanning Tree (MST) O(log n) O(1)

Approximate matching Õ(sqrt(log n)) O(1)

1-vs-2-cycles O(log n) O(1)

D = graph diameter
Assumption: graph has at least n1+ε edges

AMPC - results for graphs with O(n) edges

Problem #rounds Total space

Connected components O(log log n) O(n)

Connected components O(1) O(n log n)

Minimum Spanning Tree (MST) O(log log n) O(n)

Forest connectivity O(1) O(n log log n)

Approximate matching O(1) O(n1+ε)

Theorem

The 1-vs-2-cycle problem requires Ω(1/ε) rounds in the AMPC model with nε

space per machine.

AMPC model - hardness
Unconditional Lower Bounds for Adaptive Massively Parallel Computation. Moses Charikar, Weiyun Ma, Li-Yang Tan, SPAA’20

https://dl.acm.org/doi/10.1145/3350755.3400230

AMPC model - new algorithms

Problem #rounds Reference

Maximum independent set,
maximum matching, isomorphism
testing on trees

O(1) [HKSS, ITCS’22]

(2+ε)-approximate min cut O(log log n) [HKOS, SPAA’22]

Maximal matching O(1), optimal total space [B, FOCS’21]

Implementing the AMPC model

● Starting point: Flume-C++ (MapReduce - like framework)
● Existing distributed hash table implementation

○ Uses RDMA
● Bulk of communication is using shuffles (“the regular way”)

○ DHT used when needed

Adaptive MPC - empirical results

Problem MPC
rounds

AMPC
rounds

AMPC
Speedup

Minimum spanning forest 33-84 5 2.6x - 7.2x

Maximal independent set 8-14 1 2.3x - 3x

Maximal matching 8-16 1 1.16x - 1.7x

5 graphs of up to 225B edges

AMPC - communication in the MIS implementation

Dataset (graph)

Summary

● MPC
○ theory model of modern large-scale computation
○ became one of widely accepted theory models
○ very helpful in designing practical algorithms

● AMPC
○ AMPC := MPC + a distributed hash table
○ Many graph problems are solvable in O(1) rounds using simple algorithms

