
Connectivity and Spanning
Forest Problems in MPC

Sam Coy
University of Warwick, UK

AMG
28th October 2022

In This Talk

• Recent developments in connectivity in sublinear MPC
• Techniques and challenges
• Lower bounds
• What about MST?
• Open problems

1

MPC: How the Model Works

• M machines
• Each has S local storage
• Input initially distributed arbitrarily
• Synchronous rounds:

• Each machine does arbitrary local computation
• Machines send messages to each other

• A machine may only send and receive S words
per round

S

S

S

………

S
S

2

MPC: Local Space

Superlinear
S = O(n1+δ)

Linear
S = O(n)

Sublinear
S = O(nδ)

3

MPC: Local Space

Superlinear
S = O(n1+δ)

Linear
S = O(n)

Sublinear
S = O(nδ)

3

MPC: Sublinear Local Space

Let N be the total input size1. In O(1) rounds on MPC with
sublinear local space we can:

• Sort N values
• Prefix sum of N values
• “Colored summation” (given N values, each with an

associated color, sum the values of each color)
• Broadcast values to all machines
• Simulate O(1) rounds of PRAM

1When considering graphs, N = m + n.

4

MPC: Global Space

Total space available to the MPC, T = S ×M

Often assumed that T = O(poly(m + n))

Must have that T = Ω(m + n)

Ideally want to get T = Θ(m + n), but this is challenging

5

Connectivity

Connectivity

• Compute labelling ℓ : V → V such that:
• If u and v are in the same connected component then

ℓ(u) = ℓ(v)
• Otherwise, ℓ(u) ̸= ℓ(v)

• Same as “picking a representative” for each component
• Fundamental subroutine in graph algorithms

6

Connectivity

2

2

2
2

2
9

9

9
4

4

• Compute labelling ℓ : V → V such that:
• If u and v are in the same connected component then

ℓ(u) = ℓ(v)
• Otherwise, ℓ(u) ̸= ℓ(v)

• Same as “picking a representative” for each component
• Fundamental subroutine in graph algorithms

6

Connectivity in MPC

S Connectivity Source
Superlinear: O(n1+δ) O(1) [LMSV ’11]

Linear: O(n) O(1) rand. [JN ’18]
O(1) det. [Now ’21]

Sublinear: O(nδ) O(log n) PRAM algorithm

The problem seems to be hard when S = O(nδ)…

7

1-vs-2-Cycles Conjecture

n

n
2

n
2

1-vs-2-Cycles Conjecture
Distinguishing one cycle from two cycles requires Ω(log n) rounds
in MPC with S = O(nδ).

This conjecture is widely believed!

8

Sublinear MPC: Lower Bounds

Difficulty of MPC Lower Bounds [RVW ’16] (informal)
Any non-trivial lower bound in sublinear MPC implies NC1 ⊊ P

9

Conditionally Faster Connectivity

• Maybe long cycles are just difficult?
• Can we do better than Ω(log n) conditionally?

• Trivial O(D) algorithm where D is diameter. Each phase:

• Broadcast highest ID you know to all neighbors
• Check if any edge has different “highest ID”s at endpoints

• Stop when no edge has different IDs at endpoints

10

Conditionally Faster Connectivity

1

10

2
3

7
6

9

5
4

8

• Maybe long cycles are just difficult?
• Can we do better than Ω(log n) conditionally?
• Trivial O(D) algorithm where D is diameter. Each phase:

• Broadcast highest ID you know to all neighbors
• Check if any edge has different “highest ID”s at endpoints

• Stop when no edge has different IDs at endpoints

10

Conditionally Faster Connectivity

10

10

10
3

7
6

10

6
8

8

• Maybe long cycles are just difficult?
• Can we do better than Ω(log n) conditionally?
• Trivial O(D) algorithm where D is diameter. Each phase:

• Broadcast highest ID you know to all neighbors
• Check if any edge has different “highest ID”s at endpoints

• Stop when no edge has different IDs at endpoints

10

Conditionally Faster Connectivity

10

10

10
10

10
10

10

6
8

10

• Maybe long cycles are just difficult?
• Can we do better than Ω(log n) conditionally?
• Trivial O(D) algorithm where D is diameter. Each phase:

• Broadcast highest ID you know to all neighbors
• Check if any edge has different “highest ID”s at endpoints

• Stop when no edge has different IDs at endpoints

10

Conditionally Faster Connectivity

10

10

10
10

10
10

10

10
10

10

• Maybe long cycles are just difficult?
• Can we do better than Ω(log n) conditionally?
• Trivial O(D) algorithm where D is diameter. Each phase:

• Broadcast highest ID you know to all neighbors
• Check if any edge has different “highest ID”s at endpoints

• Stop when no edge has different IDs at endpoints

10

Conditionally Faster Connectivity

u v
r

r

• What about graph exponentiation?
• Create edges to nodes at distance 2, repeatedly
• Halves diameter in O(1) rounds; takes O(logD) rounds in total
• ...but needs T = Ω(nω)

• Can we solve connectivity in O(logD) rounds when
T = Θ(m + n)?

11

Connectivity: First Breakthrough

u v
r

r

• Idea: graph exponentiation, but stop before we exceed T
[ASSWZ ’18]

• Increase the degree of all nodes to
[√m

n ,
m
n
]

• (we stop if we find the whole component)
• Takes O(logD) rounds

12

Connectivity: First Breakthrough

• A graph with min-degree d has a dominating set of size Õ(n
d)

• Can easily find it using sampling in O(1) rounds
• Idea: find such a set (of “leaders”) and contract non-leaders

to them

• Insight: we have much more space now!

13

Connectivity: First Breakthrough

• A graph with min-degree d has a dominating set of size Õ(n
d)

• Can easily find it using sampling in O(1) rounds
• Idea: find such a set (of “leaders”) and contract non-leaders

to them
• Insight: we have much more space now!

13

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b =
√m

n

• Find “leaders”, contract non-leaders into leaders
• Now have vertices, space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b =
√m

n

• Find O(n
b) “leaders”, contract non-leaders into leaders

• Now have vertices, space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b =
√m

n

• Find O(n
b) “leaders”, contract non-leaders into leaders

• Now have O(n
b) vertices, Ω(b2) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b2

• Find O(n
b) “leaders”, contract non-leaders into leaders

• Now have O(n
b) vertices, Ω(b2) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b2

• Find O(n
b3) “leaders”, contract non-leaders into leaders

• Now have O(n
b) vertices, Ω(b2) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b2

• Find O(n
b3) “leaders”, contract non-leaders into leaders

• Now have O(n
b3) vertices, Ω(b4) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b4

• Find O(n
b3) “leaders”, contract non-leaders into leaders

• Now have O(n
b3) vertices, Ω(b4) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b4

• Find O(n
b7) “leaders”, contract non-leaders into leaders

• Now have O(n
b3) vertices, Ω(b4) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b4

• Find O(n
b7) “leaders”, contract non-leaders into leaders

• Now have O(n
b7) vertices, Ω(b8) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Their algorithm is as follows:

• Increase minimum degree to b4

• Find O(n
b7) “leaders”, contract non-leaders into leaders

• Now have vertices, Ω(b8) space per vertex

etc…

Start with b =
√m

n , make double-exponential progress on b…

O(log logm/n n) phases overall!

14

Connectivity: First Breakthrough

Conditionally Sublogarithmic Connectivity [ASSWZ ’18]
Solves connectivity on MPC with S = O(nδ) and T = Θ(m + n)
in O(logD · log logm/n n) rounds, with good probability.

They obtain O(logD) rounds and high success probability if, for
some arbitrary constant ϵ > 0, either:

• T = Ω((m + n)1+ϵ); or
• m = Ω(n1+ϵ)

15

Spanning Forest in ASSWZ ’18

• Authors of [ASSWZ ’18] extended the idea to spanning forest
• Not too difficult, because of the “phase” structure:
• Idea is to (while doing expansion at node v) maintain a “local

shortest path” tree rooted at v of all the nodes which v
knows. Need to take care:

• When performing expansion, need to “merge” the local
shortest path trees

• When performing contraction, need to show that the nodes
contracted into some leader are a subtree of the local shortest
path tree of that leader

• Preserve information about edges post-contraction

16

Other Results from [ASSWZ ’18]

Using connectivity and spanning forest as black boxes:

• Diameter estimate
• Gives estimate D′ s.t. D ≤ D′ ≤ DO(log logm/n n)

• MST (we’ll talk about this later!)
• Approximate MST
• Bottleneck Spanning Tree (BST)

17

Connectivity: Second Breakthrough

• Previous result has low success probability
• Average degree (b2) can initially be constant
• For concentration bounds, need m

n = Ω(polylog n)

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

• Previous result has low success probability
• Average degree (b2) can initially be constant
• For concentration bounds, need m

n = Ω(polylog n)

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

Each vertex selects an outgoing edge to its highest ID neighbor.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

Remove outgoing edges of nodes with in-degree ≥ 2.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

Contract all in-edges of nodes with in-degree ≥ 2.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

We’re left with a series of directed paths; we need to contract a
constant fraction of edges on those paths.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

We’re left with a series of directed paths; we need to contract a
constant fraction of edges on those paths.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

We use coin-tossing to find a linear-size matching on this path,
and contract these edges.

• Idea 1: Perform random contractions to reduce vertices by a
constant factor in O(1) rounds [BDEŁM ’19]

• If repeated O(log log n) times, reduces n → n
polylog(n)

• Requires a subroutine to find a linear matching on a line

18

Connectivity: Second Breakthrough

• Idea 2: Can improve the running time by interleaving
expansion/contraction per-vertex [BDEŁM ’19]

• Each vertex has a level which controls its space budget
• Guarantee that after O(1) rounds, each node either:

• Learns its 2-hop neighborhood (expansion), or;
• Participates in leader selection with other nodes (contraction),

the leaders’ levels are increased by 1

• Since maximum level is O(log logm/n n), this gives a
O(logD + log logm/n)-round algorithm

19

Connectivity: Second Breakthrough

Faster Connectivity [BDEŁM ’19]
Connectivity can be solved on MPC with S = O(nδ) and
T = Θ(m + n) in O(logD + log logm/n n) rounds, with high
probability.

Again, significant graph density or significantly superlinear global
space give an O(logD)-round algorithm.

Extension to spanning forest seems much harder here, because of
the decoupling of the expansion/contraction process …

20

Connectivity: Second Breakthrough

Faster Connectivity [BDEŁM ’19]
Connectivity can be solved on MPC with S = O(nδ) and
T = Θ(m + n) in O(logD + log logm/n n) rounds, with high
probability.

Again, significant graph density or significantly superlinear global
space give an O(logD)-round algorithm.

Extension to spanning forest seems much harder here, because of
the decoupling of the expansion/contraction process …

20

Deterministic Connectivity

Randomization

Two randomized subroutines:

(a) Finding a constant-fraction sized
matching on a path

(b) Finding a dominating set of size
O(n/b) in a graph with min. degree b

Can we derandomise them?

[CMT ’21] showed that the randomness can be reduced slightly:
(log n)O(logD+log logm/n n) bits suffice if D is not too large.

21

Randomization

Two randomized subroutines:

(a) Finding a constant-fraction sized
matching on a path

(b) Finding a dominating set of size
O(n/b) in a graph with min. degree b

Can we derandomise them?

[CMT ’21] showed that the randomness can be reduced slightly:
(log n)O(logD+log logm/n n) bits suffice if D is not too large.

21

Method of Conditional Expectations

• Method for derandomizing algorithms
• Idea: “fix the seed” of randomized algorithms
• If a set of seeds meet an objective in expectation when you

pick one uniformly, at least one seed meets the objective

22

k-wise Independence

k-wise Independence
Let k, n, ℓ ∈ N with k ≤ n. A family of hash functions
H = {h : {1, . . . , n} → {0, 1}ℓ} is called k-wise independent if for
all I ⊆ {1, . . . , n} with |I| ≤ k, the random variables h(i) with
i ∈ I are independent and uniformly distributed in {0, 1}ℓ when h
is chosen randomly from H.

Small Families of k-wise independent Hash Functions
For every n, ℓ ∈ N, one can construct a family of pairwise
independent hash functions H = {h : {1, . . . , n} → {0, 1}ℓ} such
that choosing a uniformly random function h from H takes
O(ℓ+ log n) random bits.

23

Method of Conditional Expectations

• Given an algorithm which solves the target problem using
k-wise independent random variables:

• Construct a family of k-wise approximate hash functions
• Each function can be specified with O(log n) bits

• Define some objective function h and argue that in
expectation its value is sufficient to solve the problem

• Fix the seed log n bits at a time
• Iteratively set prefix until entire seed is specified
• O(log n) length seeds, fix log n bits at a time: O(1) stages

24

Method of Conditional Expectations

• Given an algorithm which solves the target problem using
k-wise independent random variables:

• Construct a family of k-wise approximate hash functions
• Each function can be specified with O(log n) bits

• Define some objective function h and argue that in
expectation its value is sufficient to solve the problem

• Fix the seed log n bits at a time
• Iteratively set prefix until entire seed is specified
• O(log n) length seeds, fix log n bits at a time: O(1) stages

24

Method of Conditional Expectations in MPC

b1, b2 . . . bkbk+1 . . . bk+log n︸ ︷︷ ︸
β

. . . bO(log n)

• We’ve fixed the first k bits, b1 . . . bk

• Consider a possible setting β of the next log n bits
(bk+1 . . . bk+log n)

• Machines compute the expected value of h at the hash
functions prefixed by b1 . . . bk · β

• Aggregate using colored summation
• Pick the best possible β; broadcast result to all machines

25

k-wise, ϵ-approximate Hash Functions

• For finding a large matching on a line, pairwise (2-wise)
independence is enough

26

k-wise, ϵ-approximate Hash Functions

• For the dominating set problem, wanted O(log n)-wise
independence

• …but this family of hash functions is too large!
• Solution: k-wise, ϵ-approximately independence
• Weaker tail bounds, but hash functions can be specified by

O(log n) bits again!

26

Deterministic Connectivity

Deterministic Connectivity [CC ’21]
Connectivity can be solved on MPC with S = O(nδ) and
T = Θ(m + n) in O(logD + log logm/n n) rounds,
deterministically.

As before, superlinear global space or some polynomial density
gives an O(logD)-round algorithm.

27

Improved Deterministic Connectivity

• Method of conditional expectations requires locally evaluating
poly(n) seeds

• We often don’t care about “local work” in MPC
• But local work bounded by poly(n), when n could be billions…

• Algorithm of [FGG ’22] reduces total work by reducing the
number of seeds which need to be searched through.

• Number of seeds so low that they can be brute-forced.
• Idea: color the graph first!

• Nodes of the same color make the same choice
• Reduce domain of hash functions from |V| to |C|

• Also analysis of dominating set using only pairwise
independence

28

Improved Deterministic Connectivity

• Method of conditional expectations requires locally evaluating
poly(n) seeds

• We often don’t care about “local work” in MPC
• But local work bounded by poly(n), when n could be billions…

• Algorithm of [FGG ’22] reduces total work by reducing the
number of seeds which need to be searched through.

• Number of seeds so low that they can be brute-forced.
• Idea: color the graph first!

• Nodes of the same color make the same choice
• Reduce domain of hash functions from |V| to |C|

• Also analysis of dominating set using only pairwise
independence

28

Improved Deterministic Connectivity

Deterministic Connectivity [FGG ’22]
Connectivity can be solved on MPC with S = O(nδ) and
T = Θ(m + n) in O(logD + log logm/n n) rounds,
deterministically, with Õ(m) local computation in total.

29

Connectivity in Forests

Brand new result! (Will appear at SODA ’23)

Connectivity in Forests [BLMOU ’23]
Connectivity can be solved on MPC with S = O(nδ) and
T = Θ(m + n) in O(logD) rounds, deterministically, when the
input graph is a forest.

• Achieve this by rooting the tree
• “Balanced exponentiation” approach
• Can perform O(logD) rounds of vertex contraction “for free”

to get O(poly(D)) factor extra space.

30

Connectivity: State of the Art

D = Ω(polylog(n)) =⇒ O(logD)

T = Ω((m + n)1+c) =⇒ O(logD)

m = Ω(n1+c) =⇒ O(logD)

G is a forest =⇒ O(logD)

otherwise =⇒ O(D)

31

Connectivity: Lower Bounds

Connectivity: Lower Bounds

Conditional Lower Bound [BDEŁM ’19]
Connectivity on MPC with S = O(nδ) requires Ω(logD) rounds,
where D ≥ log1+ρ n is the diameter of the graph, unless the
1-vs-2-cycles conjecture is false.

32

Connectivity: Lower Bounds

Start with an instance of 1-v-2 cycles

33

Connectivity: Lower Bounds

Temporarily remove edges with probability O(log n/D′), breaking
cycle into paths

33

Connectivity: Lower Bounds

Use fast algorithm to find connected components in o(logD′)

rounds

33

Connectivity: Lower Bounds

Contract components and re-add edges; repeat

33

Connectivity: Lower Bounds

Takes o(log n) rounds overall, which contradicts 1-v-2 cycle

33

Connectivity: Lower Bounds

Conditional Lower Bound [CC ’22]
Connectivity on MPC with S = O(nδ) requires Ω(logD) rounds,
where D is the diameter of the graph, unless the 1-vs-2-cycles
conjecture is false.

The bound holds for any value of D.

• Similar argument to [BDEŁM ’19]
• Remove dependence on n in the sampling probability
• No longer need to worry so much about bounding the

diameter of all components: just ignore high-diameter
components!

34

MST

MST

3
5 3

12

7

12

9 4

8

6

• Given a weighted graph as input, compute a minimum
spanning forest

• Clearly no easier than connectivity; a minimum spanning
forest is a spanning forest

• But is it harder than connectivity?

35

MST

3
5 3

12

7

12

9 4

8

6

• Given a weighted graph as input, compute a minimum
spanning forest

• Clearly no easier than connectivity; a minimum spanning
forest is a spanning forest

• But is it harder than connectivity?

35

MST in MPC

S MST Source
Superlinear: O(n1+δ) O(1) [LMSV ’11]

Linear: O(n) O(1) rand. [JN ’18]
O(1) det. [Now ’21]

Sublinear: O(nδ) O(log n) PRAM algorithm

36

MST in MPC

S MST Source
Superlinear: O(n1+δ) O(1) [LMSV ’11]

Linear: O(n) O(1) rand. [JN ’18]
O(1) det. [Now ’21]

Sublinear: O(nδ) O(log n) PRAM algorithm

This is the same table as before!

36

MST in Sublinear MPC

Algorithm for MST given in [ASSWZ ’18]; runs in2:

O
(
min

{(
logDMST + log

(
log n

2 + γ log n

))
· log n

2 + γ log n , log n
})

with T = O((m + n)1+γ).

Simplifying a bit:

γ = 0 =⇒ O(log n) rounds
γ > c =⇒ O(logDMST) rounds

This result was derandomized by [CC ’22]

2This is better than the bound in [ASSWZ ’18]: it incorporates the improved
connectivity algorithm of [BDEŁM ’19]

37

MST in Sublinear MPC

Algorithm for MST given in [ASSWZ ’18]; runs in2:

O
(
min

{(
logDMST + log

(
log n

2 + γ log n

))
· log n

2 + γ log n , log n
})

with T = O((m + n)1+γ). Simplifying a bit:

γ = 0 =⇒ O(log n) rounds
γ > c =⇒ O(logDMST) rounds

This result was derandomized by [CC ’22]

2This is better than the bound in [ASSWZ ’18]: it incorporates the improved
connectivity algorithm of [BDEŁM ’19]

37

MST in Sublinear MPC

Algorithm for MST given in [ASSWZ ’18]; runs in2:

O
(
min

{(
logDMST + log

(
log n

2 + γ log n

))
· log n

2 + γ log n , log n
})

with T = O((m + n)1+γ). Simplifying a bit:

γ = 0 =⇒ O(log n) rounds
γ > c =⇒ O(logDMST) rounds

This result was derandomized by [CC ’22]

2This is better than the bound in [ASSWZ ’18]: it incorporates the improved
connectivity algorithm of [BDEŁM ’19]

37

MST in Sublinear MPC

• Algorithm of [ASSWZ ’18] use repeated applications of
connectivity

• Given an instance of MST with m edges, n vertices, and a
factor of k extra space, create sub-instances. For instance
i ∈ [1, k]:

• Contract lightest (i − 1) · m/k edges using a connectivity
algorithm

• Discard edges heavier than the (im/k)th lightest
• Solve MSF on the remaining graph (recursively)

• If γ = 0, the recursion depth is dominant;
If γ > c, the connectivity complexity dominates

• Dependence on DMST rather than D because we contract
edges in size order

38

MST in Sublinear MPC

• Algorithm of [ASSWZ ’18] use repeated applications of
connectivity

• Given an instance of MST with m edges, n vertices, and a
factor of k extra space, create sub-instances. For instance
i ∈ [1, k]:

• Contract lightest (i − 1) · m/k edges using a connectivity
algorithm

• Discard edges heavier than the (im/k)th lightest
• Solve MSF on the remaining graph (recursively)

• If γ = 0, the recursion depth is dominant;
If γ > c, the connectivity complexity dominates

• Dependence on DMST rather than D because we contract
edges in size order

38

MST in O(logD) rounds?

39

MST in O(logD) rounds?

No.

39

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

n

n
2

n
2

All edges weight 1

We start with an instance of either 1 cycle or two cycles: all edges
have weight 1 40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

We start with an instance of either 1 cycle or two cycles: all edges
have weight 1 40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

We add a universal vertex with edges to all existing nodes; these
edges have weight 2. 40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

We then run our MST algorithm.
40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

If one weight-2 edge is used, then we have one cycle…
40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

If two are used, we have 2 cycles!
40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

Note that D = 2 but DMST = O(n).
40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

Even approximating an MST is difficult!
40

MST: Lower Bound

MST can’t be calculated in o(log n) rounds, parameterized on D, n
[CC ’22]:

?

? ? ?

?
? ?

?
?

?

1 cycle or 2 cycles (edges of weight 1)

2 2 2 2 2

Even approximately calculating the weight of an MST is difficult!
40

Conclusion

Open Problems

• Can connectivity be solved in sublinear MPC with
optimal global space in O(logD) rounds?

• …deterministically?
• …using Θ(m + n) local computation?
• …while maintaining a spanning forest?

• If not, what about a lower bound? Impossibility result only
holds for polynomial memory…

• Can we compute an MST in sublinear MPC with optimal
global space in o(log n) rounds (conditionally)?

• Computation-efficient derandomization in MPC—what more
can be done?

41

Thank you for listening!

41

	Connectivity
	Deterministic Connectivity
	Connectivity: Lower Bounds
	MST
	Conclusion

