On the existence of constant-space non-constant-time distributed algorithms

Tuomo Lempiäinen

(joint work with Jukka Suomela)

Helsinki Algorithms Seminar, Aalto University
1st December 2016
We study distributed algorithms in bounded-degree graphs, with constant-size local input.

Constant running time implies constant number of states.

What about the other direction?

Does there exist a graph problem that can be solved in constant-space but requires more than constant time?

If yes, in which class of graphs? (E.g. the class of path graphs would be trivial.)
Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
 1. broadcast a message to neighbours,
 2. receive a set of messages,
 3. set a new state based on previous state and received messages.
- Each node eventually halts and produces an output.
Model of computation

- A simple finite connected undirected graph, with constant-size local inputs.
- An identical deterministic state machine on each node.
- Computation proceeds in synchronous rounds:
 1. broadcast a message to neighbours,
 2. receive a set of messages,
 3. set a new state based on previous state and received messages.
- Each node eventually halts and produces an output.
Given an algorithm (a state machine),
- its running time or time complexity is the number of communication rounds until all nodes have halted,
- its space complexity is the number of states that are visited at least once, as a function of n, over all graphs of n nodes and of maximum degree at most Δ.
Warm-up: count distance mod 2

- No local input; local outputs from \(\{0, 1, \perp\}\).
- If the graph is a binary tree where each edge is directed towards the leaves, output the distance modulo 2 to the closest leaf node. Otherwise, output \(\perp\).
- Edge directions can be encoded in the structure of the graph.
Warm-up: count distance mod 2

- No local input; local outputs from \(\{0, 1, \bot\}\).
- If the graph is a binary tree where each edge is directed towards the leaves, output the distance modulo 2 to the closest leaf node. Otherwise, output \(\bot\).
- Edge directions can be encoded in the structure of the graph.

- If the graph is not of the desired type, at least one node can detect it locally and inform other nodes.
- The root node needs \(\Theta(\log n)\) communication rounds until it knows its parity.
The following was already known:

Theorem (Kuusisto 2014)

There exist a distributed algorithm that always halts but has a non-constant running time in the class of finite graphs of maximum degree 2.

However, this algorithm has a non-constant space complexity.
The main result

Theorem

There exists a graph decision problem P and a constant-space distributed algorithm A such that

- algorithm A solves problem P,
- P requires at least a linear running time.
Preliminaries

The *Thue–Morse sequence* is a sequence over \(\{0, 1\} \) obtained by
- starting with 0,
- appending the Boolean complement of the sequence obtained so far.

First steps:

0
01
0110
01101001
0110100110010110...

...
Preliminaries

- The Thue–Morse sequence is a sequence over \{0, 1\} obtained by
 - starting with 0,
 - appending the Boolean complement of the sequence obtained so far.

- First steps:
 0
 01
 0110
 01101001
 0110100110010110...

- Interesting property: does not contain any cubes, i.e. subwords xxx for
 any $x \in \{0, 1\}^*$
An equivalent definition by a Lindenmayer system:

- variables: 0, 1
- constants: none
- start: 0
- production rules: (0 \rightarrow 01), (1 \rightarrow 10)
The decision problem

- Local inputs from $\{A, B, C\} \times \{0, 1, _\}$.
- Local outputs from $\{\text{yes, no}\}$.

An instance is a yes-instance if and only if
- the graph is a path,
- first parts of the local inputs define a consistent orientation: $ABCABCABC\ldots$,
- second parts of the local inputs define a valid word over $\{0, 1, _\}$.
The decision problem

- Local inputs from \{A, B, C\} \times \{0, 1, _\}.
- Local outputs from \{yes, no\}.

An instance is a yes-instance if and only if
- the graph is a path,
- first parts of the local inputs define a consistent orientation: ABCABCABC\ldots ,
- second parts of the local inputs define a valid word over \{0, 1, _\}.

Valid words are defined recursively as follows:
- _0_ is valid,
- if \(x\) is valid and \(y\) is obtained from \(x\) by applying substitutions (0 \(\mapsto\) 0_1_1_0) and (1 \(\mapsto\) 1_0_0_1) to each occurrence of 0 and 1, then \(y\) is valid.
The algorithm

- Denote the end of the path by $|$.
- Denote one or more x’s by $x+$.

Each node v does the following:

1. Verify the orientation: 3 different symbols from \{A, B, C, $|$\} can be found within the radius-1 neighbourhood of v; otherwise abort.
2. Verify the word locally: radius-1 neighbourhood is in \{$|_0, 0_0, 1_1, 0_1, _0, _1$\}; otherwise abort.

Aborting means that the node sends message “abort” to its neighbours, halts and outputs no. Whenever the node receives such a message, it passes it on, halts and outputs “no”.
The algorithm

- Each node v does the following:
 - Set current symbol $c(v)$ to be the local input from $\{0, 1, _\}$. Repeat the following steps:
 - Gather two buffers, L and R. Initially, broadcast $_$ if $c(v) = _$, otherwise $c(v)_+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v)) = L$ if $L = Ac(v)_+$ for some A, otherwise $r(L, c(v)) = L_-$ if $c(v) = _$, otherwise $r(L, c(v)) = Lc(v)_+$. Handle R similarly. Continue until both L and R contain eight _’s (or an end-of-the-path marker |). This can be done in constant space.

- If $Lc(v)R$ matches |0 + | or |0 + 1 + 0 + |, halt and output yes.

- Apply the following substitution to the word $Lc(v)R$: $0+1+1+0+1+0+\mapsto 0+0+0+0+1+1+1+1+$. If the pattern matches in several positions, and they result in different new symbols for node v, abort. If the pattern does not match, abort. Otherwise, update $c(v)$ according to the substitution. This constitutes one phase in the execution.
The algorithm

Each node v does the following:

1. Set current symbol $c(v)$ to be the local input from $\{0, 1, _\}$. Repeat the following steps:

 2. Gather two buffers, L and R. Initially, broadcast $_$ if $c(v) = _$, otherwise $c(v)+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v)) = L$ if $L = Ac(v)+$ for some A, otherwise $r(L, c(v)) = L_$. Gather $r(L, c(v)) = Lc(v)+$. Handle R similarly. Continue until both L and R contain eight $___$’s (or an end-of-the-path marker $|$).

 3. This can be done in constant space.
The algorithm

Each node v does the following:

3. Set current symbol $c(v)$ to be the local input from $\{0, 1, _\}$. Repeat the following steps:

1. Gather two buffers, L and R. Initially, broadcast $___$ if $c(v) = _$, otherwise $c(v)+$. If you receive L from the left, send $r(L, c(v))$ to the right, where $r(L, c(v)) = L$ if $L = Ac(v)+$ for some A, otherwise $r(L, c(v)) = L___$ if $c(v) = _$, otherwise $r(L, c(v)) = Lc(v)+$. Handle R similarly. Continue until both L and R contain eight $_$’s (or an end-of-the-path marker $|$). This can be done in constant space.

2. If $Lc(v)R$ matches $|0+| \text{ or } |0+_1+_1+_0+_|$, halt and output yes.

3. Apply the following substitution to the word $Lc(v)R$:

\[0+_1+_0+_0+_1+_0+_0+_1+_ \rightarrow 00+00+00+_1+11+11+11+_ \]

If the pattern matches in several positions, and they result in different new symbols for node v, abort. If the pattern does not match, abort. Otherwise, update $c(v)$ according to the substitution.

This constitutes one phase in the execution.
The algorithm

We call the sequence of all the current symbols $c(v)$ a *configuration*.

Lemma

Assume that in the current configuration, each maximal subword of 0's or 1's is of length ℓ. If the algorithm is executed for one phase and no node aborts, in the resulting configuration the length is $4\ell + 3$.

This guarantees that

- each phase completes in a finite amount of time,
- nodes agree on when to start a new phase.

It also follows that the algorithm always halts in finite graphs.
Accepting a yes-instance

We call a word $x_1^i x_2^i \ldots x_p^i$ a padded Thue–Morse word of length p if $x_1 x_2 \ldots x_p$ is a prefix of the Thue–Morse sequence.

Lemma

*If the current configuration is a padded Thue–Morse word of length 4^k and the algorithm is executed for one phase without aborting, the resulting configuration is a padded Thue–Morse word of length 4^{k-1}.***

From this we can derive that in a yes-instance, each node eventually outputs “yes”.
Rejecting a no-instance

Lemma

In a no-instance, each node eventually outputs “no”.

Proof idea:

- Assume for a contradiction that a no-instance gets accepted.
- If there is a yes-instance of the same size, it also gets accepted.
- Consider the first phase after which the configurations are identical in both cases.
- In the previous configurations, there were two different subwords that were replaced by _0+_1++. This can be shown to be a contradiction.
- Cycle graphs and paths of wrong length can also be shown to be rejected.
Running time

- Let ℓ be the length of maximal subwords of 0’s or 1’s. Gathering the buffers takes $8\ell + 8 = 8(\ell + 1)$ rounds.
- Recall the lemma: the length of the maximal subwords increases from ℓ to $4\ell + 3$ in one phase.
- There are roughly $\frac{1}{2} \log n$ phases before halting.
- The running time is thus
 \[8(1 + 1) + 8(7 + 1) + 8(31 + 1) + \cdots + 8(2^{2(\log n/2) - 1}) \leq 8n \text{ rounds.}\]
Let ℓ be the length of maximal subwords of 0's or 1's. Gathering the buffers takes $8\ell + 8 = 8(\ell + 1)$ rounds.

Recall the lemma: the length of the maximal subwords increases from ℓ to $4\ell + 3$ in one phase.

There are roughly $\frac{1}{2} \log n$ phases before halting.

The running time is thus

$$8(1 + 1) + 8(7 + 1) + 8(31 + 1) + \cdots + 8(2^{2((\log n)/2)−1}) \leq 8n \text{ rounds}.$$

This is asymptotically tight.
Conclusion

- We presented graph problems with
 - logarithmic (maximum degree 3) and
 - linear (maximum degree 2)
 time complexity, when restricted to constant space.

- Possible future direction: other time complexity classes under the constant-space assumption?
We presented graph problems with logarithmic (maximum degree 3) and linear (maximum degree 2) time complexity, when restricted to constant space.

Possible future direction: other time complexity classes under the constant-space assumption?

Thanks!