
Performance Metrics and Ontologies for Grid

Workflows

Hong-Linh Truong a,∗ Schahram Dustdar b Thomas Fahringer a

aDistributed and Parallel Systems Group, Institute of Computer Science,
University of Innsbruck

Technikerstrasse 21A, A-6020 Innsbruck, Austria
{truong,tf}@dps.uibk.ac.at

bDistributed Systems Group, Information Systems Institute, Vienna University of
Technology

Argentinierstrasse 8/184-1, A-1040 Wien, Austria
dustdar@infosys.tuwien.ac.at

Abstract

Many Grid workflow middleware services require knowledge about the performance
behavior of Grid applications/services in order to effectively select, compose, and
execute workflows in dynamic and complex Grid systems. To provide performance
information for building such knowledge, Grid workflow performance tools have
to select, measure, and analyze various performance metrics of workflows. How-
ever, there is a lack of a comprehensive study of performance metrics which can
be used to evaluate the performance of a workflow executed in the Grid. Moreover,
given the complexity of both Grid systems and workflows, semantics of essential
performance-related concepts and relationships, and associated performance data
in Grid workflows should be well described. In this paper, we analyze performance
metrics that performance monitoring and analysis tools should provide during the
evaluation of the performance of Grid workflows. Performance metrics are associ-
ated with multiple levels of abstraction. We introduce an ontology for describing
performance data of Grid workflows and illustrate how the ontology can be utilized
for monitoring and analyzing the performance of Grid workflows.

Key words: Grid workflows, Grid computing, performance monitoring and
analysis, performance metrics and ontology

∗ Corresponding author. Email: truong@dps.uibk.ac.at

Preprint submitted to Elsevier Science 2 January 2007



1 Introduction

Recently, Grid workflows have been increasingly exploited as the main pro-
gramming model for addressing large-scale e-science problems, as demon-
strated by a large number of Grid workflow systems [1] and applications [2–4].
As the Grid is diverse, dynamic, and inter-organizational, the execution of
Grid workflows is very flexible and complex. Therefore, knowledge about the
performance behavior of Grid workflows is required by many Grid middle-
ware services in order to effectively select, compose, and execute workflows in
dynamic and complex Grid systems and to tune the workflow performance.
Consequently, performance monitoring and analysis tools have to collect, mea-
sure, and analyze metrics that characterize the performance of workflows at
multiple levels of detail to detect components that contribute to performance
problems, and correlations between them.

To understand the performance of Grid workflows, performance metrics of
the workflows have to be studied and defined. However, there is a lack of a
comprehensive study of useful performance metrics which can be used to eval-
uate the performance of workflows executed in the Grid. Only few metrics are
supported in most existing tools, and most of them being limited at activ-
ity (task) level. Moreover, performance data of workflows needs to be shared
among various other tools, such as workflow composition, scheduling, and op-
timization tools. To support a wider dissemination and use of performance
knowledge about Grid workflows, essential performance-related concepts and
their properties in Grid workflows, together with associated performance data,
must be well described. Therefore, an ontology describing performance data
of workflows is important because the ontology, like a treaty [5], will facilitate
the performance data sharing and can be used to explicitly describe concepts
associated with the workflow performance. However, until now, to our best
knowledge, such an ontology has not been defined.

In this paper, we present our study on performance metrics of Grid workflows
and on the description of performance data of Grid workflows. This paper
significantly extends our previous paper [6] by clarifying the hierarchical view
of workflows, extending, and refining performance metrics associated with Grid
workflows, as well as providing a newly updated version of the ontology used to
describe workflow performance information. Our contributions are as follows:

• we introduce a common, hierarchical multiple levels of abstraction model
for the performance analysis of Grid workflows.

• we present a large set of performance metrics that associates with relevant
concepts within Grid workflows.

• we develop a novel ontology, named WfPerfOnto, for describing perfor-
mance data associated with Grid workflows.

2



Moreover, we discuss potential applications of the workflow performance met-
rics and ontologies by illustrating some early work implemented in our tools.

The rest of this paper is organized as follows: Section 2 discusses the work-
flow and workflow execution model. Section 3 presents performance metrics
for workflows. The ontology for describing performance data of workflows is
presented in Section 4. We discuss the use of the ontology for performance
analysis of Grid workflows in Section 5. Related work is outlined in Section 6.
We summarize the paper and give an outlook to the future work in Section 7.

2 Structure and Execution Model of Grid Workflows

A Grid workflow includes a set of dependent activities executed in a Grid en-
vironment [7] whose resources are not limited within a single organization. We
assume that the real work of activities is performed by operations of services
based on WSRF (Web Services Resource Framework) [8], Web services [9], or
by executables (e.g., a Java stand-alone program or a C/Fortran application).

2.1 Hierarchical Structure View of a Workflow from a Performance Analysis

Perspective

Fig. 1. Hierarchical structure view of a workflow.

From our performance analysis perspective, a Grid workflow (WF) implies a
hierarchical model, as presented in Figure 1. At the highest level, we consider
the WF as a whole. A WF is considered to consist of WF regions. Our concept
of a workflow region is simple: a workflow region consists of a set of workflow

3



activities that constitutes a single-entry-single-exit region. In this sense, a
workflow region can be a sequence of workflow activities, a fork-join, or a do-
loop pattern. Workflow regions are analogous to workflow patterns presented
in [10,11]. Supporting performance analysis of workflow regions is important
as it can provide high level performance information about patterns frequently
used in workflows.

An activity [12] represents a task of the workflow. Each activity is associated
with one or multiple invoked application(s). However, an activity can also be
associated with no invoked application, e.g., an empty or a delay activity (e.g.,
in BPEL [13]). Furthermore, an activity may process other preparation tasks
which are necessary for the execution of the invoked application. For example,
in case the invoked application is a WSRF/Web service operation, the activity
may deploy the service if the service has not been available at the time the
activity starts (e.g., on-demand service deployment [14]) or the activity may
find a factory service and ask the factory service to create new service/resource
instance. Typically, an activity is associated with one invoked application. Two
activities can depend on each other. The dependency between two activities
can be data dependency or control dependency.

An invoked application [12] which performs the real work of an activity can
be an executable program or a service operation (e.g., of Web services). An
executable program is running only when the invoked application starts. If
invoked application is a service operation, the service has to be deployed and
active before the invoked application can be executed. Invoked applications
can be executed in a sequential or parallel manner.

An invoked application is considered as a set of code regions; a code region
ranges from a single statement to an entire program unit. A code region can be
a local function call, a remote service call, a do-loop construct, an if-then-else
construct. Note that the concept of code regions can describe service inter-
actions (e.g., Web Services interaction) as well. For example, if inside service
operation operation1 of ServiceA, operation1 invokes operation operation2
of service ServiceB as follows

...

ServiceB.operation2();

...

then the call ServiceB.operation2() is a code region. To distinguish between
different types of code regions, a predefined value can be used to indicate a
type of code regions.

Many WF specification languages explicitly provide constructs for specifying
workflow regions, such as AGWL [15] and BPEL [13], while others do not
have, for example, languages that are based on Petri net [16], and XScufl [17].

4



However, the hierarchical view of WFs does not prevent us to represent a work-
flow into the proposed hierarchical structure. For example, we can consider the
whole WF as a special WF region or use workflow mining techniques [18–21]
to detect workflow patterns and mark these patterns as workflow regions.

2.2 Grid Workflow Execution

A Grid workflow and its components are executed in a Grid infrastructure
which includes a set of Grid sites. A Grid site is comprised of a set of Grid
services within a single organization. A Grid service here should be under-
stood as a computational resource, a middleware service, or a Grid application,
based on the OGSA (Open Grid Services Architecture) in which everything
in the Grid can be modeled as a Grid service [22]. With respect to compu-
tational resources, a Grid site consists of a number of computational nodes

(or hosts) which are controlled by a single resource management service 1 . A
computational node can be any computing platform, e.g, a single-processor
workstation, a multi-core computer, an SMP (Symmetric Multi-Processor).

Fig. 2. Simplified execution model of a Grid workflow.

Figure 2 presents the simplified execution sequence of a Grid WF. The user
submits a WF to the workflow management system (WfMS). The WfMS in-
stantiates activities. When executing an activity instance, the WfMS locates
a Grid site and submits the invoked application of the activity instance to the
scheduler of the Grid site. The Grid site scheduler locates computational nodes
and executes processes of the invoked application on corresponding nodes.

The execution model presented above is generic enough to cover execution
models currently implemented in existing WfMSs. In the Grid, one must as-
sume that there is no central scheduler for the whole Grid which may comprises

1 Grid site is similar to IntraGrid [23,24], InfraGrid [24] or Cluster Grid [25].

5



multiple autonomous Grid sites. Moreover, a WfMS has to serve requests from
multiple users. Therefore, two layers of scheduling systems, one at the WfMS
and the other at Grid sites, exist. In practice, WfMS can schedule activities
of workflows and no scheduling is made at Grid sites. For example, in many
cases in which invoked applications are Web service operations, whenever an
activity is executed, its associated invoked application can be executed with-
out scheduling through an invocation of the Web service operation of a remote
Web service on the corresponding computational node. Another situation is
that scheduling is conducted at both places. WfMS can schedule an activity in
case of a lack of resources or in a multi-user environment. When the invoked
application of an activity is submitted to a Grid site, the Grid site scheduler
will schedule and locate computational nodes for executing the invoked appli-
cation. This situation is a typical model for Grid scientific workflows whose
invoked applications are executable programs and Grid site schedulers are
batch-job ones.

2.3 Activities Execution Model

An invocation of an activity is called an activity instance [12]. An activity
instance normally results in an invocation of an invoked application. However,
that invocation may fail. In this case, the execution of the activity can be
rerun, resulting in another invocation. We, however, consider failed invocations
and the successful invocation of the activity under the same activity instance.
Each invoked application of an activity instance may be executed on multiple
resources, for example, when an invoked application is a parallel program, e.g.,
an MPI (Message Passing Interface) application.

The execution of workflows/activities is normally modeled by a transition
diagram which describes the relationship between workflow/activity events
and states, and how the states change [12]. We describe the tracing execution
of a workflow/activity using the discrete process model [26]. Let P (ai) be a
discrete process capturing the execution of activity instance ai (hence, we call
P (ai) the execution status graph of an activity instance). A P (ai) is a directed,
acyclic graph (N, A), in which N is a set of nodes and A is a set of arcs. A
node is either an activity execution phase or an activity event; an execution
phase basically represents information about a state (transition), e.g., time
and name. Let N = {E, S} where E is a set of activity events and S is a set
of activity execution phases. An arc represents an ordered relation between
an exection phase and an event. For every arc (ni, nj) ∈ A, then (ni ∈ E and
nj ∈ S) or (ni ∈ S and nj ∈ E). With this graph, we can observe, in detail,
how the execution of activities changes during runtime. Figure 3 presents an
example of a discrete process modeling the execution of an activity instance.

6



initializing submitted queuing active processing suspended suspending resumed active processingqueuing completed

Fig. 3. Discrete process model of the tracing execution of an activity. 2 represents
an execution phase, © represents an event.

Each execution phase s of an activity instance ai is determined by two events:
initial event ei, and terminal event ej such that ei, ej ∈ E, s ∈ S, and
(ei, s), (s, ej) ∈ A of P (ai). To denote an event name of P (ai) we use ename(ai);
Table 1 presents a few event names which can be used to describe activity
events (for possible activity events, see [12]). We use first(e), next(e), last(e)
to denote the first occurrence, the consecutive event, and the last occurrence,
respectively, of event e in P (ai). We use t(e) to refer to the timestamp of an
event e and tnow to denote the timestamp at which the analysis is conducted.
Because the monitoring and analysis is conducted at runtime, it is possible
that an activity instance ai has entered into phase s but there is no such
(s, e) ∈ A of P (ai). When analyzing such a phase s, tnow is used as a times-
tamp to determine the time spent in execution phase s. Note that when using
tnow in computing performance metrics, the metrics may not be exact values.
The correct values are determined based on timestamps of real measurements.

Event Name Description

active indicate the activity instance has been started to process its work.

completed indicate the execution of the activity instance has completed.

suspended indicate the execution of the activity instance is suspended.

failed indicate the execution of the activity instance has been stopped before its normal
completion.

submitted indicate the activity has been submitted to the scheduling system.

Table 1
Example of event names.

The execution of a Grid workflow involves with multiple Grid sites of differ-
ent organizations. Thus, time clocks associated with Grid sites may not be
synchronized. However, we assume that time clocks of multiple Grid sites are
synchronized. Techniques for synchronizing time clocks at different sites are
well addressed in literature previously. 2

3 Performance Metrics of Grid Workflows

Interesting performance metrics of WFs might be associated with many lev-
els of abstraction. We classify performance metrics according to five levels of
abstraction, including, from lower to higher level, code region, invoked appli-

cation, activity, workflow region and workflow.

2 see, for example, the bibliography on computer network time synchronization at
http://www.eecis.udel.edu/∼mills/biblio.html

7



In principle, from performance metrics of a lower level, similar metrics can
be constructed for the immediate higher level by using appropriate aggre-
gate operators such as sum or average. For example, the communication time
spent in one invoked application may be defined as the sum of communication
time spent in its code regions. Moreover, there is a question whether met-
rics should be determined for a specific instance or summarized from multiple
instances. When defining metrics, we support both cases. However, exact ag-
gregate methods are dependent on runtime callgraphs, specific metrics and
their associated levels. In the following sections we present performance met-
rics with their associated levels. For a higher level, we will not show metrics

that can be aggregated from that of the lower level. Instead, we just discuss new
metrics which appear at the higher level or an existing metric but it requires a
different computing method at different levels of abstraction. We note that the
list of metrics is not completed and not all the metrics are useful for analyzing
a particular WF. Given a particular WF, only a subset of presented metrics
may be of interest.

3.1 Metrics at Code Region Level

Table 2 presents performance metrics of code regions. Performance metrics are
categorized into: execution time, counter, data movement, synchronization,

ratio and temporal overhead.

Execution time metrics include total elapsed time (wall-clock time, response
time) 3 , user CPU time, system CPU time, CPU time. Counter metrics include
performance hardware counters (e.g., L2 cache misses (L2 TCM), number of
floating point instructions, etc.) and other counters such as number of calls
and of received messages. Performance hardware counters, provided by most
contemporary CPU chips, are recently widely used in performance analysis
and monitoring, especially for scientific applications [27–29]. Data movement
metrics characterize the data transfer such as communication time and ex-
changed message size. Synchronization metrics describe time spent in the syn-
chronization of executions, such as critical section, condition synchronization,
etc. Various ratio metrics can be defined based on execution time and counter
metrics such as MFLOPS and cache miss ratio.

If the invoked application is a parallel application (e.g., MPI applications), we
can compute temporal overhead metrics for code regions. Overhead metrics are
based on a classification of temporal overhead for parallel programs [30,31].

3 Elapsed time, wall-clock time, and response time indicate the latency to complete
a task (including IO, waiting time, computation, etc.). These terms are used inter-
changeably. In this paper, the term ElapsedTime refers to elapsed time or response
time or wall-clock time.

8



Category Metric Name Description

Execution time ElapsedTime Elapsed time of a code region.

UserCPUTime CPU time spent in user mode

SystemCPUTime CPU time spent in system mode

CPUTime Total CPU consumption time

SerialTime Time spent in serializing and deserializing data.

EncodingTime Time spent in encoding and decoding data.

Counter L2 TCM, etc. Hardware counters. The exact number of hardware coun-
ters is dependent on specific platforms.

NumberOfCalls Number of executions of a code region.

NumberOfSubs Number of executions of sub regions within a code region.

NumberOfSendMsg Number of messages sent by a code region.

NumberOfRecvMsg Number of messages received by a code region.

Data movement TotalCommTime Total communication time.

TotalTransferSize Size of total data transfered (send and receive).

Synchronization ExclSynTime Single-address space exclusive synchronization.

CondSynTime Condition synchronization.

Ratio MeanElapsedTime Mean elapsed time per execution of a code region.

CommPerCompTime Ratio of communication to computation time.

MeanTransferRate Mean data transfer rate.

MeanTransferSize Mean transfered data size.

MFLOPS, etc. Ratio metrics computed based on hardware counters.

Temporal overhead OCTRP, etc. This type of metrics is defined only for parallel code re-
gions.

Table 2
Performance metrics at code region level.

Examples of overhead metrics are control of parallelism (denoted by OCTRP),
loss of parallelism, etc.

3.2 Metrics at Invoked Application Level

Most performance metrics at code region level can be provided at the invoked
application level by using aggregate operators. Table 3 presents extra perfor-
mance metrics associated with invoked applications.

An invocation of an application can fail due to the failure of underlying sys-
tems or applications. Determining whether the failure is due to systems or
applications is important, nevertheless, not an easy task. It normally depends
on specific errors and the ability of performance monitoring tools.

Computational nodes in the Grid are diverse. An invoked application can be
submitted to different nodes and consecutive/parallel invocations of an appli-
cation are not executed on fixed nodes. Therefore, it is normally difficult, if not
impossible, to determine the standard speedup, as in parallel computing or in

9



Category Metric Name Description

Execution time ElapsedTime Elapsed time of the invoked application.

QueuingTime Time that the local Grid scheduler spends in instantiat-
ing application processes.

Counter NumberOfCalls Number of executions of the invoked application.

NumberOfSysFailedCalls Number of failed invocations due to system problems

NumberOfAppFailedCalls Number of failed invocations due to application prob-
lems

NumberOfFailedCalls Number of failed invocations.

Ratio FailedCallsRate Ratio of failure invocations to the total invocations.

Scalability PerfScaleFactor Scale factor of the performance between two invocations
of the same application.

Table 3
Performance metrics at invoked application level.

homogeneous systems, of an invoked application in various Grid computational
nodes. However, based on the performance comparison of historical invocations
of the same application, the scheduler, for example, can make a better decision
on where to submit the application without knowing the detailed information
of computational nodes. For example, during the execution of the workflow,
the scheduler can remember the computational nodes which provide better
performance and reuse the nodes next time. The PerfScaleFactor(iag, iah),
used to indicate the performance scale factor between two invocations g and
h of the same application ia, is defined by

PerfScaleFactor(iag, iah) =
ElapsedT ime(iag)

ElapsedT ime(iah)
(1)

where ElapsedT ime(ia) is the elapsed time of invoked application ia.

3.3 Metrics at Activity Level

Table 4 presents metrics measured at activity level. Performance metrics can
be associated with activities and activity instances. Execution time includes
end-to-end response time, processing time, queuing time, suspending time,
etc. The processing time of an activity instance ai, ProcessingT ime(ai), is
defined by

ProcessingT ime(ai) =
∑

all

(t(next(eactive(ai))) − t(eactive(ai))) (2)

where next(eactive(ai)) is not an event indicating a failure or cancellation 4 .
If next(eactive(ai)) has not occurred, it means the execution of ai is currently

4 Note that the execution time from an active event to a suspended event is con-
sidered useful because after a suspended event the activity can resume its work.

10



Category Metric Name Description

Execution time ElapsedTime End-to-end response time of an activity instance.

ProcessingTime Time an activity instance spends in processing.

QueuingTime Time an activity instance spends on queuing system.

SuspendingTime Time an activity instance spends on suspending.

FailureTime Time an activity takes to do the work but finishes un-
successful.

ResSharingTime Time on which an activity has to share the resource
with other activities.

Counter NumberOfCalls Number of invocations of an activity.

NumberOfSysFailedCalls Number of failed invocations due to the system failure.

NumberOfAppFailedCalls Number of failed invocations due to the application fail-
ure.

NumberOfDDFailedCalls Number of failed invocations due to the data depen-
dency failure.

Data Movement TotalTransferTime Total time spent on data transfers.

InTransferSize Size of total data transfered to an activity.

OutTransferSize Size of total data transfered from an activity to another.

Ratio ActivityThroughput Number of successful activity instances over time.

MeanTimePerInstance Mean time an activity spent on an instance.

MeanTransferRate Data transfer rate between a pair of activities.

Synchronization SynDelay Synchronization delay.

ExecDelay Execution delay.

Table 4
Performance metrics at activity level.

active, next(eactive(ai) can be replaced by tnow.

Synchronization metrics for an activity involve with the execution of other
activities on which the activity depends. Let pred(ai) be the set of activity
instances that must be finished before ai; there is a data dependency or control
dependency between ai and any aik ∈ pred(ai). ∀aik ∈ pred(ai); k = 1, · · · , n;
synchronization delay and execution delay from aik to ai, SynDelay(aik, ai)
and ExecDelay(aik, ai), respectively, are defined by:

SynDelay(aik, ai) = t(first(esubmitted(ai))) − t(ecompleted(aik)) (3)

ExecDelay(aik, ai) = t(first(eactive(ai))) − t(ecompleted(aik)) (4)

The execution delay comprises of synchronization delay, queuing time, and
failure time during queuing phase. If first(esubmitted(ai)) or first(eactive(ai))
has not occurred, synchronization or execution delay can be computed based
on tnow.

Metrics associated with an activity are determined from metrics of activity
instances of the activity by using aggregate operators. Aggregated metrics of
an activity give summarized information about the performance of the activity
that can be used to examine the overall performance of the activity.

11



3.4 Metrics at Workflow Region Level

a1(1)

a2

a1(2)

a0

... a1(n)

Fig. 4. A fork-join workflow region.

Category Metric Name Description

Execution time ElapsedTime, ... Similar to those of activities but for workflow re-
gions.

Counter NumberOfRedundantActivity Number of activity instances whose processing re-
sults are not utilized. This happens in a discrimina-

tor construct [11].

Ratio MeanElapsedTime Mean elapsed time per invocation of a workflow re-
gion.

PathSelectionRatio Percent of the selection of a path at a choice region.

Load balancing ProcessingLoadIm Load imbalance between activity instances of a fork-
join region.

Scalability PerfScaleFactor Performance scale factor.

SlowdownFactor Slowdown factor for fork-join regions.

Resource RedundantProcessing Time spent to process some work but finally the
work is not utilized.

Table 5
Performance metrics at workflow region level.

Table 5 presents performance metrics at WF region level. Let SG be a graph
of workflow region wr. Let CPi =< aii1, aii2, · · · , aiin > be a critical path from
the initial node to the terminal node of SG. The elapsed time, ElapsedT ime(wr),
and the processing time, ProcessingT ime(wr), of wr are defined as

ElapsedT ime(wr) =

n∑

k=1

ElapsedT ime(aiik) (5)

ProcessingT ime(wr) =

n∑

k=1

ProcessingT ime(aiik) (6)

Let wrg and wrh be WF regions of a workflow; wrg and wrh may be identical
region but be executed on different resources at different times. Performance
scale factor of wrg over wrh, PerfScaleFactor(wrg, wrh), is defined by

PerfScaleFactor(wrg, wrh) =
ProcessingT ime(wrg)

ProcessingT ime(wrh)
(7)

12



The load imbalance is associated with fork-join WF regions. A simple form of
fork-join regions is shown in Figure 4. Load imbalance is defined by

ProcessingLoadIm(aii) = ProcessingT ime(aii) −

∑n
k=1(ProcessingT ime(aik))

n
(8)

SlowdownFactor of a fork-join region is a popular metric for understanding
how an imbalance work in parallelizing activities impacts on the performance
of the region. It is the inverse of PerfScaleFactor and defined by

SlowdownFactor = n ×
maxn

k=1(ProcessingT imen(aik))

ProcessingT ime1(ai1)
(9)

where ProcessingT imen(aik) is the processing time of activity aik in fork-join
region with n activities and ProcessingT ime1(ai1) is the fastest processing
time of activity ai1 in the (fork-join) region of single activity. Load imbalance
and slowdown factor metrics can also be computed for fork-join structures of
sub workflow regions. In this case, ProcessingT imen(aik) will be the process-
ing time of a sub-region in a version with n sub-regions.

3.5 Metrics at Workflow Level

Category Metric Name Description

Execution time ElapsedTime, ... Similar to those of workflow regions but for workflows.

ParallelTime Portion of processing time that workflow activities exe-
cuted in parallel.

SequentialTime Portion of processing time that workflow activities exe-
cuted in sequential manner.

ResProcessingTime Time a resource spends on processing work.

Ratio QueuingPerElapsedTime Ratio of queuing time to elapsed time.

MeanProcessingTime Mean processing time per activity.

MeanQueuingTime Mean queuing time per activity.

ResUtilization Ratio of ResProcessingT ime to the elapsed time of the
workflow.

Correlation ActivityPerRes Number of activities executed on a resource.

ResLoadIm Load imbalance between processing time of resources.

ActivityDistIm The imbalance number of activities distributed on com-
putational nodes.

Scalability PerfScaleFactor Performance scale factor.

Table 6
Performance metrics at workflow level.

Table 6 presents performance metrics at the workflow level. PerfScaleFactor
for a workflow is defined similar to that of workflow regions. Let CPi be
a critical path from the initial node to the terminal node of an execution
of workflow wf . The elapsed time, ElapsedT ime(wf), and the processing

13



time, ProcessingT ime(wf), of wf are defined based on Equation 5 and 6,
respectively. Performance scale factor of workflow wfg over workflow wfh,
PerfScaleFactor(wfg, wfh), is defined by Equation 7. Let ResProcessingT ime(Ri)
be the processing time performed by computational node Ri

5 . Load imbalance
of Ri among computational nodes {R1, · · · , Rn}, ResLoadIm(Ri), is defined
by

ResLoadIm(Ri) = ResProcessingT ime(Ri) −

∑n
k=1(ResProcessingT ime(Rk))

n
(10)

The imbalance of the distribution of activities among computational nodes
can also be computed as

ActivityDistIm(Ri) = ActivityPerRes(Ri) −

∑n
k=1(ActivityPerRes(Rk))

n
(11)

3.6 Performance Metric Ontology

WfMetric

String

hasMetricName hasUnit hasDescription

List

hasSynonym inLevel

Fig. 5. Description of a WF performance metric.

Proposed performance metrics are described in an ontology named WfMetri-

cOnto. A metric is described by class WfMetric. Figure 5 presents the concept
WfMetric. WfMetric has five properties. Property hasMetricName specifies the
name of the performance metric. Property hasSynonym specifies other names
of the performance metric. Property hasUnit specifies the measurement unit
of the metric. Property inLevel specifies the level with which the metric is
associated. Property hasDescription explains the performance metric.

3.7 Monitoring and Measurement of Performance Metrics

To provide different metrics at multiple levels of abstraction, performance
monitoring and analysis tools for Grid scientific workflows need to operate at
multiple levels and to correlate performance metrics from those levels. For ana-
lyzing metrics at workflow, workflow region, and activity levels, the tools have

5 To determine processing time performed by a computational node, we need in-
formation of all activities executed on this node. Therefore, this metric is classified
into workflow level.

14



to conduct the monitoring and measurement of WfMSs. Mostly the tools have
to collect execution status of workflows and activities from execution engines
of WfMS. At this level, monitoring and measurement can be done at central-
ized or distributed location(s). For analyzing metrics at invoked applications
and code regions of invoked applications, the tools have to instrument and
measure invoked applications. At this level, the monitoring and measurement
are normally conducted at various distributed Grid sites.

The combination of the two different instrumentation mechanisms is a chal-
lenging problem. Previously, we have partially addressed some issues on this
problem in [32], using static and dynamic instrumentation techniques. Cur-
rently, we are developing a comprehensive instrumentation infrastructure that
supports the measurement of metrics at all abstraction levels mentioned in
this paper [33].

4 Ontology for Performance Data of Workflows

We develop an ontology named WfPerfOnto for describing performance data
of workflows; WfPerfOnto is based on OWL [34]. This section just outlines
main classes and properties of WfPerfOnto shown in Figure 6.

Fig. 6. Part of ontology for describing performance data of workflows visualized
within Protege [35].

Workflow describes the workflow (WF). A WF has WF regions (represented
by hasWorkflowRegion property) and other information. A WF region is de-
scribed by WorkflowRegion. Each WF region has, for example, activities (has-
Activity), activity instances (hasActivityInstance), sub WF regions (hasWork-

flowRegion).

15



Activity describes an activity of a WF. ActivityInstance describes an activity
instance. Each ActivityInstance, executed on Resource, has an execution graph
described by class ExecutionGraph. Resource identifies the computational node
from which static and dynamic information (e.g., machine name, memory,
CPU usage) about computational node can be obtained. Execution graph
consists of ExecutionPhase and ActivityEvent describing activity state and
event, respectively. The dependency (control or data) between two activity
instances is described by Dependency. An ActivityInstance is an object or a
subject of a dependency; the object depends on the subject. Activity instances
have invoked applications (hasInvokedApplication).

InvokedApplication describes an invoked application of an activity. Each In-

vokedApplication is associated with a SIR (Standardized Intermediate Rep-
resentation) [36], which represents the structure of the application, including
main elements of interest for performance monitoring and analysis, in XML,
with a DRG (Dynamic Coderegion Callgraph), which represents the dynamic
code region call graph [30], and with events occurred inside the application.

The SIR basically contains a set of code regions which are of interest for
performance monitoring and analysis. Code region, described by CodeRegion

includes source code information, such as code region type, source code lines
and sub code regions. The dynamic code region call graph, described by DRG,
consists of region summaries, each stores summary performance measurements
of an instrumented code region in a processing unit. A processing unit, de-
scribed by ProcessingUnit, indicates the context in which the code region is
executed; the context contains information about the activity identifier, com-
putational node, process identifier and thread identifier. A region summary,
described by RegionSummary has performance metrics (hasPerfMetric) and
sub region summaries (hasChildRS). PerfMetric describes a performance met-
ric, each metric is represented as a tuple of (name, value). The metric name is
in WfMetricOnto. Event describes an event record. Event happens at a time
and has event attributes (hasEventAttr). EventAttribute describes an attribute
of an event that has an attribute name and value.

Performance metrics of Workflow, WorkflowRegion, WorklfowRegionInstance,

Activity, Dependency, ActivityInstance, InvokedApplication, and RegionSum-

mary are determined through hasPerfMetric property. Each performance met-
ric has name and value; metric names are defined in Section 3.

Note that although WfPerfOnto describes relevant performance data of
workflows, it does not mean that a tool which implements WfPerfOnto has
to describe information for all classes and properties in WfPerfOnto. In-
stead, the level of implementation detail should be tool-specific. For example,
a tool can describe summary information of activities rather than detailed
information of activity instances.

16



5 Applications of Workflow Performance Ontology

5.1 Common Understanding of Performance Results

(a) (b)

(c)

Fig. 7. Examples of workflow performance metrics and execution phases supported:
(a) metrics in ASKALON workflow performance tool [37], (b) metrics in K-WfGrid
performance tool [38], (c) similar visualization for execution phases in both tools.

In the ASKALON framework [39] and the K-WfGrid project [40], we have de-
veloped workflow performance tools that support the proposed performance
metrics and concepts. Figure 7 shows simple snapshots of metrics and ex-
ecution phases implemented in the ASKALON and K-WfGrid performance
tools. Figure 7(a) and (b) show metrics associated with activity instance
second 16 0, provided by ASKALON workflow performance tool [37] and
with activity instance computeSSSP, provided by the K-WfGrid performance
tool [38], respectively. Figure 7(c) shows similar execution phases supported in
both tools. The ASKALON toolkit supports a structured workflow language
and workflows of executable applications while the K-WfGrid project supports
a Petri net workflow language and workflows of Web services. However, both
ASKALON and K-WfGrid support common performance metrics and con-
cepts proposed in this paper. Figure 7 gives a simple example of a common
view on the performance of workflows from a user’s point of view. When dif-
ferent workflow performance tools support a common ontology, the user can
benefit from having a common understanding of performance behavior given
by these tools for different WfMSs.

17



Fig. 8. Part of WfPerfOnto for workflow MeteoAG.

5.2 Describing and Specifying Performance Data

A performance analysis tool can use workflow performance ontologies to de-
scribe performance data of a Grid workflow. Also, ontological performance
data can be stored to facilitate the performance knowledge assimilation. For
example, when a client of the performance analysis service requests perfor-
mance results of a workflow, the client can specify the requests based on
WfPerfOnto (e.g., by using RDQL [41]). The service can use performance
ontologies to express performance metrics of the workflow. As performance re-
sults are described in a well-defined ontology, the client will easily understand
and utilize the performance results.

We are developing tools that can produce ontological performance knowledge,
based on WfPerfOnto, from online performance monitoring data. Figure
8 presents part of ontological performance data associated with a workflow
named MeteoAG which is used for meteorological simulations using a numerical
limited area model. We can observe in detail the structure of the workflow, in-
cluding workflow regions (e.g., pForEachCase, pForAkmin, continueSimulating),
activities (e.g., simulation init, case init, rams init), as well as activ-

18



Fig. 9. Workflow analysis request language (WARL).

ity instances, performance metrics, resources. Based on ontological perfor-
mance data, we could perform further tasks (e.g., reasoning and storing per-
formance data).

Performance metrics, concepts, and properties in WfPerfOnto, can be used
to specify SLAs (Service Level Agreements) [42,43] for workflows. While an
SLA consists of many different information agreed between different partners,
one important part of an SLA is a set of performance metrics that specifies con-
straints on the performance of various components. Well-defined performance-
related concepts, properties, and metrics establish standard terms in specify-
ing the expected performance for various components, ranging from a single
activity to the whole workflow.

5.3 Workflow Analysis Request Language

Another goal when developing workflow performance ontologies is that well-
defined concepts and properties can be used to specify performance analysis
requests sent to different performance analysis services which actually analyze
events captured during the execution of workflows. Although RDQL can be
used to query performance data, it is, however, only suitable for accessing
existing ontological performance data, e.g., stored in ontological databases, not
for requesting and controlling the task of performance analysis components at
runtime.

19



Our approach is that, during the execution of a workflow, distributed perfor-
mance analysis services collaborate in fulfilling analysis requests from clients
using well-defined concepts and properties defined in workflow performance
ontologies, and the ontological performance data is built after the workflow
finishes for further analyses. Therefore, we develop an XML-based language
which utilizes concepts defined in WfPerfOnto and WfPerfMetric. Fig-
ure 9 presents our first version of a simple workflow analysis request lan-
guage (WARL), given in [38]. A WARL request includes constraints (type
WARLConstraint), metrics to be analyzed (type WARLAnalyze), performance
problems to be checked (type WARLPerfProblemSpec). Both constraints and
analysis requests are built based on performance metrics and concepts defined
in WfPerfOnto and WfPerfMetric. The following simple request exam-
ple is used to ask the performance analysis service to analyze two metrics,
ElapsedTime and QueueingTime, for activity named activity 1 of the work-
flow identified as Wien2K 12.

<warl>

<constraint>

<workflowID>Wien2K_12</workflowID>

<concepts>

<concept name="activity_1" type="Activity"/>

</concepts>

</constraint>

<analyze>

<metric>ElapsedTime</metric>

<metric>QueuingTime</metric>

</analyze>

</warl>

By supporting the same ontology, different performance analysis services are
able to provide performance metrics of diverse applications to different clients
which request these metrics by using the same language. This helps simplify
the interoperability and integration among performance tools and their clients
in the Grid.

6 Related Work

Many techniques have been introduced to study quality of service (QoS) and
performance models of workflows, e.g., [44–48]. However, most existing work
concentrates on business workflows and Web services processes while our work
targets to workflows executed in Grids which are more diverse, dynamic, and
inter-organizational. Performance metrics in [44,45] are associated with activ-
ity level. Not all the metrics mentioned in this paper are new; various met-

20



rics have been presented in previous work and existing parallel tools, e.g., in
[44,45,32,30,49] but they are targeted to a single (parallel) application or to
workflows but at the activity level only. Until now there is no ontology that
collects such a large number of metrics. We have defined, collected and asso-
ciated various metrics with relevant concepts in Grid workflows. Our study
considers performance metrics in many levels of detail such as code regions,
invoked applications, and workflow regions. Moreover, besides normal perfor-
mance metrics, e.g., ProcessingTime and QueueingTime, available in most
studies, specific performance metrics, e.g., communication time and temporal
overheads, which normally are interesting for scientific workflows/applications
are also addressed. Performance metrics are just a subset of QoS metrics.
Therefore, many QoS metrics are not considered in this paper, for example,
authentication and authorization.

We observed a number of works building QoS metrics and ontologies for Web
services. For example, [50] discusses QoS metrics associated with Grid archi-
tecture layers. Our work studies performance metrics of Grid workflows. Ex-
isting tools supporting performance analysis of workflows, e.g., [51,52], have
some performance metrics in common with our metrics. However, our study
covers a large set of performance metrics ranging from the workflow level to
the code region level. [53] discusses the role of an ontology of QoS metrics for
management Web Services. However, there is a lack of such an ontology for
Grid workflows. An OWL-based QoS ontology for service-centric systems is
presented in [54]. This ontology introduces concepts relevant to QoS such as
Time and Dependability. Our ontology includes performance metrics which
can be used for specifying QoS. However, performance metrics are not equiva-
lent to QoS metrics. Moreover, our ontology also supports performance metrics
of different structured levels of Grid workflows.

Recently, there is a growing effort on mining the workflow [18–21]. Workflow
activities are traced and log data is used to discover the workflow model.
Events logged, however, are only at activity level. Workflow mining focuses
on discovery workflow model from tracing data where our study is to dis-
cuss important performance metrics of workflows and methods to describe
performance data of workflows. Workflow event logs can be used to analyze
performance metrics proposed by our study.

7 Conclusion and Future Work

The performance of Grid workflows must be characterized by well-defined per-
formance metrics. This paper presents a novel study of performance metrics
and ontologies for Grid workflows. Performance metrics are associated with
multiple levels of abstraction, ranging from a code region to the whole work-

21



flow. We have introduced a novel ontology that describes essential components
of Grid workflows and their relationships and associates those components and
relationships to performance data obtained through the performance monitor-
ing and analysis of Grid workflows. We also discussed benefits and illustrated
experimental applications of the proposed performance metrics and ontologies
for Grid workflows that are currently being implemented in the ASKALON
and the K-WfGrid project. In this paper, we present performance metrics that
should be collected for Grid workflows, but we do not focus on the instrumen-
tation, monitoring and measuring of these metrics. However, partially, we ad-
dressed the measurement of these metrics by introducing a flexible, multi-level
instrumentation of Grid scientific workflows [32,33]. We believe that perfor-
mance metrics we proposed are a useful input for not only sharing performance
knowledge of Grid workflows but also composing QoS requests or SLAs.

We have just finished the conceptual part of our approach on using ontology
for performance analysis of Grid workflows and started to build our proto-
type. Still our work presented in this paper is just at an early stage. We
need to evaluate and enhance the proposed ontology, and to extend the set of
performance metrics. We are working on a prototype of a distributed analysis
framework in which performance analysis services use WfPerfOnto based re-
quests to exchange analysis tasks when conducting the performance analysis
of Grid workflows. In the EU K-WfGrid project [40], we are currently inte-
grating WfPerfOnto into the GOM (Grid Organizational Memory) [55], an
ontology-based knowledge system for supporting automatic workflow compo-
sition and execution. By doing so, various components such as the automatic
workflow builder and the workflow optimization tool can reuse existing per-
formance knowledge about workflows executed in the past for composing and
optimizing new Grid workflows. How to combine WfPerfOnto with existing
workflow QoS ontologies is also a future research topic.

Acknowledgments

This paper is a significantly extended version of a paper published in [6]. We
thank Peter Brunner for his help in collecting workflow monitoring data. The
work described in this paper is partially supported by the European Union
through the IST-2002-511385 K-WfGrid project.

References

[1] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, Journal of Grid Computing 3 (3-4) (2005) 171–200.

22



URL http://dx.doi.org/10.1007/s10723-005-9010-8

[2] E. Deelman, R. Plante, C. Kesselman, G. Singh, M.-H. Su, G. Greene,
R. Hanisch, N. Gaffney, A. Volpicelli, J. Annis, V. Sekhri, T. Budavari, M. A.
Nieto-Santisteban, W. O’Mullane, D. Bohlender, T. McGlynn, A. H. Rots,
O. Pevunova, Grid-based galaxy morphology analysis for the national virtual
observatory., in: SC, ACM, 2003, p. 47.

[3] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. F. Kurose, D. McLaughlin,
R. Wilhelmson, S. Graves, M. Ramamurthy, R. D. Clark, S. Yalda, D. A. Reed,
E. Joseph, V. Chandrasekar, Casa and lead: Adaptive cyberinfrastructure for
real-time multiscale weather forecasting., IEEE Computer 39 (11) (2006) 56–64.

[4] P. M. A. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, C. A. Boucher, From
molecule to man: Decision support in individualized e-health., IEEE Computer
39 (11) (2006) 40–46.

[5] Interview Tom Gruber, AIS SIGSEMIS Bulletin 1(3), http://www.sigsemis.org/
(October 2004).

[6] H. L. Truong, T. Fahringer, F. Nerieri, S. Dustdar, Performance metrics and
ontology for describing performance data of grid workflows., in: CCGRID, IEEE
Computer Society, 2005, pp. 301–308.

[7] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[8] OASIS Web Services Resource Framework (WSRF) TC, http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf.

[9] W3C: Web Services Architecture, http://www.w3.org/tr/ws-arch/.

[10] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, A. P. Barros,
Workflow patterns, Distrib. Parallel Databases 14 (1) (2003) 5–51.

[11] Workflow Patterns, http://is.tm.tue.nl/research/patterns/patterns.htm.

[12] Worldflow Management Coalition: Terminology and glossary. technical report
wfmc-tc-1011, feb 1999.

[13] Business Process Execution Language for Web Services, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

[14] E.-K. Byun, J.-W. Jang, W. Jung, J.-S. Kim, A dynamic grid services
deployment mechanism for on-demand resource provisioning, in: CCGRID ’05:
Proceedings of the Fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 2, IEEE Computer Society, Washington,
DC, USA, 2005, pp. 863–870.

[15] T. Fahringer, J. Qin, S. Hainzer, Specification of Grid Workflow Applications
with AGWL: An Abstract Grid Workflow Language, in: Proceedings of IEEE
International Symposium on Cluster Computing and the Grid 2005 (CCGrid
2005), IEEE Computer Society Press, Cardiff, UK, 2005.

23



[16] M. Alt, A. Hoheisel, H. W. Pohl, S. Gorlatch, A grid workflow language using
high-level petri nets., in: R. Wyrzykowski, J. Dongarra, N. Meyer, J. Wasniewski
(Eds.), PPAM, Vol. 3911 of Lecture Notes in Computer Science, Springer, 2005,
pp. 715–722.

[17] XScufl Language Reference,
http://www.ebi.ac.uk/t̃mo/mygrid/XScuflSpecification.html.

[18] W. van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering
process models from event logs, IEEE Transactions on Knowledge and Data
Engineering 16 (9) (2004) 1128–1142.

[19] J. Herbst, D. Karagiannis, Workflow mining with inwolve, Comput. Ind. 53 (3)
(2004) 245–264.

[20] W. Gaaloul, S. Bhiri, C. Godart, Discovering workflow transactional behavior
from event-based log., in: CoopIS/DOA/ODBASE (1), 2004, pp. 3–18.

[21] S. Dustdar, T. Hoffmann, W. van der Aalst, Mining of ad-hoc Business
Processes with TeamLog, Data and Knowledge Engineering.

[22] Ian Foster et. al, The Open Grid Services Architecture, Version 1.0, global grid
forum (January 2005).

[23] I. Redbooks, Introduction to Grid Computing with Globus, IBM, 2003.

[24] J. Joseph, M. Ernest, C. Fellenstein, Evolution of grid computing architecture
and grid adoption models., IBM Systems Journal 43 (4) (2004) 624–645.

[25] The Three Types of Grids, http://nz.sun.com/2002-0708/grid/types.html.

[26] J. F. Sowa, Knowledge Representation: logical, philosophical, and compuational
foundations, Brooks/Cole, Pacific Grove, CA, 2000.

[27] M. M. Tikir, J. K. Hollingsworth, Using hardware counters to automatically
improve memory performance, in: SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, IEEE Computer Society, Washington, DC,
USA, 2004, p. 46.

[28] S. Browne, J. Dongarra, N. Garner, K. S. London, P. Mucci, A scalable cross-
platform infrastructure for application performance tuning using hardware
counters., in: SC, 2000.

[29] W. Mathur, J. Cook, Improved estimation for software multiplexing of
performance counters., in: MASCOTS, IEEE Computer Society, 2005, pp. 23–
34.

[30] H.-L. Truong, T. Fahringer, SCALEA: A Performance Analysis Tool for Parallel
Programs, Concurrency and Computation: Practice and Experience 15 (11-12)
(2003) 1001–1025.

[31] J. Bull, A Hierarchical classification of Overheads in Parallel Programs, in: P. C.
I. Jelly, I. Gorton (Ed.), Proceedings of Firs IFIP TC10 International Workshop
on Software Engineering for Parallel and Distributed Systems, Chapman Hall,
1996, pp. 208–219.

24



[32] H.-L. Truong, T. Fahringer, S. Dustdar, Dynamic Instrumentation, Performance
Monitoring and Analysis of Grid Scientific Workflows, Journal of Grid
Computing 3 (1-2) (2005) 1–18.

[33] B. Balis, H.-L. Truong, M. Bubak, T. Fahringer, K. Guzy, K. Rozkwitalski,
An Instrumentation Infrastructure for Grid Workflow Applications, 2006, on
submission.

[34] OWL Web Ontology Language Reference, http://www.w3.org/tr/owl-ref/.

[35] Protege, http://protege.stanford.edu/.

[36] C. Seragiotto, H.-L. Truong, T. Fahringer, B. Mohr, M. Gerndt, T. Li,
Standardized Intermediate Representation for Fortran, Java, C and C++
Programs, Tech. rep., Institute for Software Science, University of Vienna
(October 2004).

[37] P. Brunner, H. L. Truong, T. Fahringer, Performance monitoring and
visualization of grid scientific workflows in askalon., in: M. Gerndt,
D. Kranzlmüller (Eds.), HPCC, Vol. 4208 of Lecture Notes in Computer Science,
Springer, 2006, pp. 170–179.

[38] H.-L. Truong, P. Brunner, T. Fahringer, F. Nerieri, R. Samborski,
B. Balis, M. Bubak, K. Rozkwitalski, K-WfGrid Distributed Monitoring and
Performance Analysis Services for Workflows in the Grid, in: 2nd IEEE
International Conference on e-Science and Grid Computing, IEEE Computer
Society, Amsterdam, The Netherlands, 2006.

[39] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H.-L. Truong, A. Villazon, M. Wieczorek, ASKALON: A Grid Application
Development and Computing Environment, in: 6th International Workshop on
Grid Computing (Grid 2005), IEEE Computer Society Press, Seattle, USA,
2005.

[40] K-WF Grid Project. http://www.kwfgrid.net.

[41] RDQL: RDF Data Query Language,
http://www.hpl.hp.com/semweb/rdql.htm.

[42] A. Leff, J. T. Rayfield, D. M. Dias, Service-level agreements and commercial
grids, IEEE Internet Computing 07 (4) (2003) 44–50.

[43] C. K. Fung, P. C. K. Hung, R. C. Linger, G. H. Walton, Extending business
process execution language for web services with service level agreements
expressed in computational quality attributes, in: HICSS ’05: Proceedings of
the Proceedings of the 38th Annual Hawaii International Conference on System
Sciences (HICSS’05) - Track 7, IEEE Computer Society, Washington, DC, USA,
2005, p. 166.1.

[44] K.-H. Kim, C. A. Ellis, Performance analytic models and analyses for workflow
architectures, Information Systems Frontiers 3 (3) (2001) 339–355.

25



[45] J. Cardoso, A. P. Sheth, J. A. Miller, Workflow quality of service., in:
K. Kosanke, R. Jochem, J. G. Nell, A. O. Bas (Eds.), ICEIMT, Vol. 236 of
IFIP Conference Proceedings, Kluwer, 2002, pp. 303–311.

[46] L. jie Jin, F. Casati, M. Sayal, M.-C. Shan, Load balancing in distributed
workflow management system, in: Proceedings of the 2001 ACM symposium
on Applied computing, ACM Press, 2001, pp. 522–530.

[47] M. C. Jaeger, G. Rojec-Goldmann, G. Mühl, QoS Aggregation for Service
Composition using Workflow Patterns, in: Proceedings of the 8th International
Enterprise Distributed Object Computing Conference (EDOC 2004), IEEE CS
Press, Monterey, California, USA, 2004, pp. 149–159.

[48] F. Rosenberg, C. Platzer, S. Dustdar, Bootstrapping performance and
dependability attributes ofweb services, icws 0 (2006) 205–212.

[49] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, J. Träff, Knowledge
Specification for Automatic Performance Analysis, Tech. rep., APART Working
group (August 2001).

[50] D. A. Menasce, E. Casalicchio, Quality of Service Aspects and Metrics in Grid
Computing, in: Proc. 2004 Computer Measurement Group Conference, 2004.

[51] B. T. R. Savarimuthu, M. Purvis, M. Fleurke, Monitoring and controlling of
a multi-agent based workflow system, in: Proceedings of the second workshop
on Australasian information security, Data Mining and Web Intelligence, and
Software Internationalisation, Australian Computer Society, Inc., 2004, pp. 127–
132.

[52] A. F. Abate, A. Esposito, N. Grieco, G. Nota, Workflow performance evaluation
through wpql, in: Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM Press, 2002, pp. 489–495.

[53] V. Tosic, B. Esfandiari, B. Pagurek, K. Patel, On requirements for ontologies
in management of web services, in: Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web, Springer-
Verlag, 2002, pp. 237–247.

[54] G. Dobson, R. Lock, I. Sommerville, Qosont: a qos ontology for service-centric
systems., in: EUROMICRO-SEAA, IEEE Computer Society, 2005, pp. 80–87.

[55] B. Kryza, R. Slota, M. Majewska, J. Pieczykolan, J. Kitowski, Grid
organizational memory: provision of a high-level grid abstraction layer
supported by ontology alignment., Future Generation Comp. Syst. 23 (3) (2007)
348–358.

26


