
Overhead Analysis of Grid Workflow Applications
Francesco Nerieri, Radu Prodan, Thomas Fahringer, Hong-Linh Truong

Institute for Computer Science, University of Innsbruck
Technikerstraße 21A, A-6020 Innsbruck, Austria
{nero,radu,tf,truong}@dps.uibk.ac.at

Abstract— In this paper we propose a systematic approach
to performance analysis of workflow applications on the Grid.
We introduce an ideal model for the workflow execution time
and explain the difference to the real measured times based
on a hierarchy of performance overheads for Grid computing.
We describe how to systematically measure and compute the
overheads from individual activities to entire workflow applica-
tions. We adjusted well-known parallel processing metricsto the
scope of Grid computing, comprising speedup and efficiency.We
have implemented and largely automatised our analysis approach
in the context of the ASKALON Grid application development
and computing environment. We present experimental results
that show detailed overhead analysis of two real-world workflow
applications executed in a national Grid environment.

I. I NTRODUCTION

Computational Grids aim to provide a ubiquitous infras-
tructure for seamless, dependable, and pervasive access to
geographically distributed high-end computational capabilities
that are part of different administrative domains. While there
is still no consensus on the programming model, the workflow
paradigm has gained increasing interest as an important class
of applications appropriate for programming the Grid.

Whereas the Grid provides in theory unlimited amount of
computational power, efficient utilisation of Grid resources is
an open issue that received little attention from the community.
Similar to compiler optimisations, Grid schedulers aim to solve
complex optimisation problems by applying heuristics for
achieving good mappings of complex workflow applications
onto the Grid resources that, e.g. minimise the execution
time (and the overheads) or maximise the throughput. While
scheduling remains an undecidable NP-complete problem, per-
formance analysis tools can take an important role by giving
new insight into overheads that have not been previously
considered and that can be further reduced through improved
heuristics or by restructuring the workflow.

In this paper, we propose a systematic analysis approach
that aims to help the Grid application developer and user
understand the nature of performance losses within large-scale
executions of workflow applications in heterogeneous Grid
environments. We introduce a theoretical reference parameter
called ideal execution timethat aims to provide a realistic
bound for the lowest (i.e. ”fastest”) execution time that could
be achieved by a workflow application in a certain Grid envi-
ronment. We define the difference between the ideal execution
time and the actual measured time astemporal overhead.
We present a novel classification of workflow overheads
covering middleware, loss of parallelism, and activity-specific

overheads, that help the application or the middleware service
developer understand the real reason of performance losses.
We further divide these overheads in more detailed subclasses
that explain the performance problems at a finer granularity.
Finally, we adjust several well-known scalability metricsfor
Grid computing, including speedup and efficiency. For this
paper we have implemented our approach as a post-mortem
analysis service integrated in the ASKALON Grid application
development and computing environment [1].

Our paper is organised as follows. In the next section we de-
scribe the generic workflow and Grid models that we use in our
analysis. Section III introduces a hierarchical classification of
performance overheads and a systematic methodology for in-
strumentation, computation, and analysis. Section IV presents
experimental results of two real-world workflow applications.
We summarise the most relevant related work in Section V
and conclude the paper in Section VI.

II. M ODEL

A. Workflow Model

In this section we give a formal definition of a workflow ap-
plication that represents the sufficient foundation for modeling
all real-world scientific applications that we are currently using
as case studies. This more restrictive model has the advantage
of allowing the clear definition of many of the heterogeneous
overheads that we will present Section III-B.

We model a well-structuredworkflow application as a
directed graphWF = (Nodes, Edges), where Nodes =
{N1, . . . , Nn} is the set of workflow nodes andEdges =
⋃n−1

i=1 (Ni, Ni+1)
⋃

{(Nj , Nk) | j > k ≥ 1} is the set ofcon-
trol flow dependencies. The edges in the latter union set model
backward dependencies which implement sequential loops.
A node N can have any of the following types representing
workflow regions: (1) computational activity, denoted in this
paper asCA; (2) data transfer activitydenoted asDA; (3)
parallel section, denoted asNPar = (Np1, . . . Npm); (4) sub-
workflow, denoted as(Nodesi, Edgesi) and recursively defined
according this definition.

If the set of activities in a parallel section have the
same type, we call itparallel loop. For example, the work-
flow depicted in Figure 4 (see Section IV) contains two
parallel loops: NPar1 = (lapw1 k1, . . . , lapw1 kn) and
NPar2 = (lapw2 k1, . . . , lapw2 kn), and a backward edge
(Converged, lapw0).



B. Workflow Execution Model

We base our Grid workflow analysis on the ASKALON Grid
application development and computing environment [1]. In
ASKALON, the user specifies workflow applications at a high-
level of abstraction using a graphical UML-based modeling
tool or an abstract XML-based language. The workflow XML
specification is then given to theEnactment Enginethat
requests from aSchedulerservice to ”optimally” map the
activities onto the available Grid resources using heuristic-
based algorithms. To make a mapping decision, the Scheduler
invokes aResource Brokerto find the computational resources
that match the software and hardware requirements of the
workflow, and a Performance Prediction service that returns
forecast information about the executions time of each activ-
ity based on historical data and regression techniques. The
Performance Analysisservice requests for instrumentation to
compute the required metrics and overheads. After all these
steps are completed, the Enactment Engine submits the work-
flow activities on the corresponding Grid sites according tothe
control flow and data flow dependencies, and automatically
collects and stores the raw performance data into a perfor-
mance database for post-mortem analysis and visualisation.
Any of these execution steps may fail, in which case the
Enactment Engine retries the previous step and considers the
failure as an overhead. For example, whenever sites appear or
disappear from the Grid environment, a rescheduling event is
triggered and a new mapping obtained from the Scheduler.

In this execution model, only the work performed by the
workflow computational activities is considered as useful exe-
cution time. The time required for any other task is considered
a temporal overhead.

C. Grid Model

We consider the Grid as an aggregation of heterogeneous
Grid sites. A Grid site consists of a number of computers and
storage systems that share samelocal security, network, and
resource management policies. Computers within a Grid site
may comprise single processors, symmetric multiprocessors,
massively parallel processors, and workstation clusters that are
utilised as a single computing resource.

III. W ORKFLOW TEMPORAL OVERHEADS

The execution of workflow applications on the Grid is
prone to a broad set of overheads that must be understood
in order to improve the overall performance. We therefore
model the real execution time of a Grid workflowWF as the
sum of a theoreticalideal timeT ideal

WF and a set oftemporal
overheadsTOWF that originate from various sources:TWF =
T ideal

WF + TOWF. Describing the sources of the overheads,
classifying them in a detailed hierarchy, and measuring them
in a systematic manner is the scope of our analysis effort.

A. Ideal Workflow Execution Time

In this section we introduce a lower bound for the execution
time of workflow applications on the Grid, to which we refer
as ideal execution time. Our analysis definitions begin from

a given workflow schedule decided either statically or at run-
time.

The ideal execution time of a sequential computational
activity CA, denoted asT ideal

CA , is the the fastest wallclock
execution time of the underlying operating system (Unix)
process(es) on all processors available on the Grid. Theideal
execution time of a data transfer activityis zero, since we
consider it an overhead:T ideal

DA = 0. The ideal execution time
of a parallel sectionNPar is the fastest ideal execution time
of all its activities: T ideal

NP ar
= min

∀CA∈NP ar

{

T ideal
CA

}

. The ideal

execution timeof a workflow WF, introduced in Section II-
A, is the sum of the ideal execution times of all its activities
N ∈ Nodes: T ideal

WF =
∑

∀N∈NodesT
ideal
N .

We define thetotal overheadTOWF of a workflow WF as
the difference between its measured execution timeT and its
ideal execution time:TOWF = TWF − T ideal

WF

B. Overhead Computation

We propose a new detailed hierarchical classification of per-
formance overheads for Grid workflow applications illustrated
in Figure 1. When designing and computing this overhead
hierarchy, we have paid special attention to the fact that the
overheads need to benon-overlapping.

Similar to the workflow ideal execution time, we compute
the value of any overhead such as load imbalance, serialisation,
data transfer, external load, job replication, and so on (see
following paragraphs) for any workflow region by adding the
overhead values computed for the underlying computational
activities, parallel sections, and sub-workflows (see Section II-
A): TO =

∑

∀N∈NodesTON.
We show in the following how we compute the most impor-

tant overheads classified in Figure 1 for individual computa-
tional activities and parallel sections, while for sub-workflows
they can be computed through recursive summations.

1) Middleware overheads:We define thejob management
middleware overhead of a computational activityCA as:
TOJMCA = max

∀end(CA)
{end(CA)} − max

∀start(CA)
{start(CA)} − TCA,

whereTCA is the wallclock time of the activityCA measured
directly on the Grid execution site using the POSIXtime
command. Themaxoperator is applied to all event timestamps
since an activity may fail at various stages and, therefore,be
retried several times until it succeeds.

We divide the middleware overhead into several smaller
overhead categories, each sub-category being computed differ-
ently. For example, we compute thejob submission, waiting,
queue residency, respectivelyjob polling overheads as (see
Figure 2):

TOJSCA = max
∀submit(CA)

{submit(CA)}− max
∀start(CA)

{start(CA)};

TOWCA = max
∀pend(CA)

{pend(CA)} − max
∀submit(CA)

{submit(CA)};

TOQRCA = max
∀active(CA)

{active(CA)} − max
∀pend(CA)

{pend(CA)};

TOPCA = max
∀end(CA)

{end(CA)} − max
∀active(CA)

{active(CA)} − TCA.

We define the overhead of the other ASKALON Grid
middleware servicesMS, including the Resource Broker, the
Scheduler, and the Performance Prediction service using a



temporal overheads

middleware

loss of parallelism

data transfer

activity

scheduling

execution management

security

optimization algorithm

performance prediction

resource brokerage

job management

submission decision policy

queue

queue waiting

queue residency

access to database

third party data transfer

external load

rescheduling

control of parallelism

fork construct

barrier

job preparation

service latency

restart

job failure

input from user

job submission

polling

file staging

stage in

stage out

load imbalance

serialisation

archive / compression of data

execution management

resource broker

scheduler

performance prediction

job cancel

extract / decompression

replicated job

job restart

data transfer imbalance

parallel processing

unidentified overhead

Fig. 1. Grid workflow overhead classification.

formula that expresses the time required to complete a task:
TOSMS = max

∀end(MS)
{end(MS)} − max

∀start(MS)
{start(MS)}.

2) Loss of parallelism overheads:The first question that
arises when computing the parallel section overheads for any
workflow region is how we compute them based on the
overheads collected for each individual activity.

Let TOCA denote an arbitrary temporal overhead of a
computational activityCA. We define the temporal overhead
TONP ar

for a full parallel sectionNPar as the sum of the
contributed overheadsTOconCA of all individual activities
CA ∈ NPar. The contributed overhead of an activityCA to
an enclosing parallel section is the temporal overheadTOCA

averaged across the number of processorsused in executing
the parallel section (i.e. as indicated by the Scheduler, which is

Fig. 2. Activity-related events and middleware overheads.

not necessarily the full available Grid), where each processor
P is weighted with its relative speed (execution time ofCA
on processorP): TONP ar

=
∑

∀CA∈NP ar
TOconCA, where

TOconCA = TOCA
P

∀P∈Grid
TCA

TCA P

and TCA P denotes the wallclock

time of the computational activityCA on processorP. The
rationale behind this formula is that, for example, one minute
of queuing time before running on a fast Pentium 4 processor
is more critical than waiting the same amount of time for
Pentium 3 processor and, therefore, the former should produce
a proportionally higher temporal overhead value.

In addition, workflow parallel sections introduce a new
source of performance overheads that we callloss of par-
allelism. It is common in practice that, as a result of a
scheduling algorithm, two parallel computational activities are
mapped onto the same (fast) processor that delivers the earliest
completion time. This is often due to the fact that the number
of fast processors available in our Grid is smaller than the
size of the workflow parallel sections. The Scheduler and
the Enactment Engine handle this situation by serialising the
execution of parallel activities, which is usually faster than
competing for processor cycles, memory modules, or other
resources.

If two independentCA activities (e.g. part of a parallel
activity) are scheduled onto the same machine, the Sched-
uler and the Enactment Engine introduce arun-time sched-
ule dependencythat prohibits the two activities from run-
ning simultaneously on the same processor. We call the set
of parallel activities of a parallel sectionNPar serialised
through run-time schedule dependencies as aserialised block:
B = {CA1, . . . , CAn ∈ NPar| S(CA1) = . . . = S(CAn)},
where S(CA) denotes the schedule of the taskCA. The
execution time of a serialised block is the sum of the serialised
activities:TB =

∑

∀CA∈B TCA.

Fig. 3. Parallel section overheads.

For parallel computers as
Grid sites, we introduce run-
time schedule dependencies if
the number of parallel ac-
tivities exceeds the number
of available parallel proces-
sors. For example, assume
in Figure 3 a parallel sec-
tion that consists of seven
parallel activities: NPar =
(CA1, CA2, CA3, CA4, CA5, CA6, CA7) such that:S(CA1) =
S(CA4) = S(CA7) = P1, S(CA2) = S(CA5) = P2, and
S(CA3) = S(CA6) = P3 (whereP1 andP2 are part of a dual
SMP node of a parallel computer). Since the number of par-
allel activities exceeds the number of processors available, the



Scheduler generates three serialised blocks by enhancing the
workflow with the following run-time schedule dependencies:
{(CA1, CA4), (CA4, CA7), (CA2, CA5), (CA3, CA6)}.

The load imbalanceoverhead occurs in the context of a
parallel section when some of the computational activities
finish earlier and leave the allocated processors idle. We define
the load imbalance overhead of a parallel activityNPar as the
difference between the maximum serialisation block end-time
and the ideal execution time of the parallel section on the set of
scheduled processorsS(NPar) (see Figure 3):TOLINP ar

=
max

∀B∈NPar

{TB} − T ideal
S(NPar). We compute the termT ideal

S(NP ar)

from the following equation:Work =
∑

∀P∈S(NPar) WorkP =
∑

∀P∈S(NP ar) vP · T ideal
S(NP ar) =

∑

∀P∈S(NPar)
Work

Tseq P
· T ideal

S(NP ar),
whereWork is the total computational work of all activities
in the parallel section,WorkP is the ideal distribution of the
parallel work on processorP, vP is the speed of processor
P, and Tseq P is the sequential execution time of the entire
parallel section serialised on the processorP. The ideal time
becomes therefore the harmonic mean of the single proces-
sor sequential times divided by the number of processors:
T ideal
S(NP ar) = 1

P

∀P∈S(NP ar) T
−1
seq P

.

We define thedata transfer imbalancein a simpler way,
as the difference between the maximum and the aver-
age end-time of the parallel file transfers:TODINPar

=
max

∀DA∈NPar

{end(DA)} − avg
∀DA∈NP ar

{end(DA)}.

Finally, we calculate theserialisation overheadof a parallel
section as follows (see Figure 3):
TOSERNPar

= TNPar
− min

∀N∈NPar

{TN} − TOLINP ar
, where

the load imbalance overhead in this case has an additional
serialisation aspect (in contrast to the case when all activities
of a parallel section are executed simultaneously).

Sometimes replicating the same computation on multiple
sites in parallel is faster than computing it on the fastest
Grid site and then broadcasting the data. Since it does not
make sense to synchronise replicated jobs and produce load
imbalance, we calculate thereplicated joboverhead of a set of
identical activitiesNPar as the ideal time for computing the
entire replicated work (i.e. harmonic mean of all replicated
job end-times divided by the number of jobs) minus the end-
time of the fastest replicated job representing the only useful
computation:TORJNP ar

=
∑

∀CA∈NP ar

1
P

CA∈NP ar
T

−1
CA

−TCA1
,

whereTCA1 ≤ TCA, ∀ CA∈ NPar.
3) Activity overheads:We outline in the following the

method of computing some of the most important overheads
related to individual computational activities.

We define theexternal loadoverhead of a computational
activity CA as the difference between the measured wallclock
time and its ideal execution time:TOELCA = TCA − T ideal

CA .
We compute therestart overhead due to ajob failure of a

computational activityCA as the time difference between the
earlieststart and the latestfail timestamp events:ORSCA =
max

∀fail(CA)
{fail(CA)} − min

∀start(CA)<fail(CA)
{start(CA)}.

We define thedata transferoverhead of an activityDA
that does a (e.g. GridFTP) file transfer as:TODTDA =

max
∀end(DA)

{end(DA)} − max
∀start(DA)

{start(DA)}.

Further, we include in our classification the parallel process-
ing overheads extensively addressed in the previous research.

4) Unidentified overhead:Let TWF be the measured ex-
ecution time,T ideal

WF the ideal execution time,TO
identified
WF

the sum of the measured workflow overheads, andTOWF

the (theoretical) total overhead introduced in Section III-A.
We call the difference between the total overhead and the
sum of the identified overheads asunidentified overhead:
TO

unidentified
WF = TOWF − TO

identified
WF . Minimising the

unidentified overhead is one of the important goals of our
performance analysis effort. A high unidentified overhead
value indicates that the analysis is unsatisfactory and further
efforts are required to spot new sources of overhead in the
workflow execution.

C. Normalised Metrics

Normalised metrics are valuable means for understanding
the importance of the temporal overheads with respect to the
entire workflow execution.

The value of an overheadTO normalised against the
workflow execution timeT represents theoverhead severity
which quantifies the importance of the performance overhead
for the specific workflow execution:SEV = TO

T
. The higher

the severity for an overhead, the more important or severe this
overhead is.

In defining the speedup and efficiency metrics for Grid
workflows, we considered to be more realistic to use the Grid
site as the sequential computational unit rather than individual
processors.

We define the workflowspeedupas the ratio between the
execution timeTseq M on the fastest (for this workflow) single
site available and the actual execution time of the workflow

on the GridT : S =
min

∀M∈Grid
{Tseq M}

T
. The rationale behind this

formula is that only by normalising against thefastestparallel
computer available the scientists can understand the potential
gain of using the Grid.

Further, we define the workflowefficiencyas the speedup
normalised against the number of the Grid sites used, where
each Grid siteM is weighted with the speedup of the corre-
sponding single site execution time:

E =
S

∑

M∈Grid SM
, where:SM =

min
∀M′∈Grid

{Tseq M′}

Tseq M
.

The efficiency formula becomes therefore:E = T−1

P

∀M∈Grid T
−1
seq M

.

The fastest Grid site has a weight of one, whereas the slowest
Grid site has the smallest weight (i.e. closest to zero).

Finally, since our main interest is on measuring overheads,
we define theinefficiencyas the converse of the efficiency
metric: I = 1 − E.

IV. EXPERIMENTS

Beyond a detailed overhead analysis, our experiments try to
answer the following question. Assume that we execute and
measure the execution time on the fastest Grid site available



Fig. 4. The WIEN2k workflow.

for a certain workflow. Thereafter, we incrementally add the
next fastest site to the Grid execution environment. If the
execution time decreases substantially with each additional
Grid site, then we demonstrate to the application developers
good performance potential for running in a distributed Grid
environment.

We have performed experiments for two different workflow
applications by varying various parameters and Grid testbeds,
aggregating up to250 processors altogether using Globus
Toolkit version 2 as the underlying infrastructure. We have
started by executing each workflow application on every
individual Grid site available and ranked the sites according
to the execution times obtained (see Tables I and II). After
establishing a ranking of the Grid sites for every application,
we proceeded with the repeated execution of the workflow on
multiple Grid sites, by incrementally adding the next fastest
site to the Grid environment (in different executions).

A. WIEN2k

WIEN2k (seehttp://www.wien2k.at) is a program package
for performing electronic structure calculations of solids using
density functional theory, based on the full-potential (lin-
earised) augmented plane-wave ((L)APW) and local orbitals
(lo) method. We have ported the WIEN2k application onto
the Grid by splitting the monolithic code into several course-
grain activities coordinated in a workflow, as illustrated in
Figure 4. Thelapw1 and lapw2 activities can be solved in
a parallel region by a fixed number of so-calledk-points. A
final activity calledConvergedis applied on several output
files and tests whether the problem convergence criterion is
fulfilled. The number of recursive loops is statically unknown.
We have chosen a problem case (calledatype) that we solved
by using two different number of parallel k-points (i.e. size of
the two parallel sections –lapw1 and lapw2): 100 and252.

For the large252 k-point parallelization, the speedup curve
displayed in Figure 5(a) shows that the Grid execution im-

proves for up to seven sites. The improvement comes from
the parallel execution of the computationally expensive k-
points on multiple Grid sites that significantly lowers the
execution time of the parallel sections. The speedup for
the 100 k-point parallelization deteriorates beyond four Grid
sites, which we will explain in the next paragraphs (see
the load imbalance overhead). The efficiency curve slightly
decreases in both cases and remains above0.5, which we
find quite promising considering the modest problem sizes
that we executed (i.e. overall completion time of about10,
respectively30 minutes on eight sites) and the rather high
overheads experienced, which we describe in the remainder of
this section. Figures 5(d) and 5(e) compare the ideal execution
time and the most significant overheads against the real Grid
execution time. We have marked with asterisks the most severe
overheads (the legible ones in these figures), which the reader
can follow in a top-bottom order on the individual bars.

The severity of the total overhead for the100 k-points
experiment constantly decreases with the Grid size from over
80% on one site to45% on eight Grid sites (see Figure 5(b)).
Figure 5(c) summarises in one graph the overhead severitiesin
every Grid site configuration, which indicates the importance
of each overhead and guides the application and middleware
developers on which parts to concentrate their tuning efforts.

The most important overhead is the serialisation overhead
due to the limited Grid size, that counts for over90% of
the total overhead on a singe site, but decreases to zero
on eight sites. This overhead indicates the performance one
could gain by acquiring or adding new processors to the Grid
environment. If extending the Grid size is irrelevant, one could
consider this overhead as part of the ideal execution time.

The second severe overhead is the loss of parallelism due
to load imbalance that fluctuates depending on the number of
k-points, processors available, and the size of the serialised
block of each processor (see Section III-B.2). For instance,
Figure 5(a) shows that the speedup for100 parallel k-points
remains constant for four, five, and six Grid sites, and increases
again once we add the seventh site. By adding the fourth site
(gescher) to the Grid infrastructure, we reach a number of58
processors, so we only need serialised blocks of size two to
complete the execution of the first parallel section (that isthe
most time consuming section of the workflow). By adding the
fifth and the sixth sites, we reach a total of78, respectively
98 processors which arenot enough for executing the parallel

Site # CPU, GHz Arch. Mgr. Location

altix1.jku 14 Itanium2,1.6 ccNUMA PBS Linz
altix1.uibk 14 Itanium2,1.6 ccNUMA PBS Innsbruck
schafberg 14 Itanium2,1.6 ccNUMA PBS Salzburg
gescher 16 Pentium4,3 COW Maui Vienna
agrid1 20 Pentium4,1.8 NOW Torque Innsbruck
arch19 20 Pentium4,1.8 NOW Torque Innsbruck
arch20 20 Pentium4,1.8 NOW Torque Innsbruck
arch21 20 Pentium4,1.8 NOW Torque Innsbruck

TABLE I

GRID TESTBED FORWIEN2K 100 AND 252 K-POINTS.



section without any serialised block. This produces a high
load imbalance overhead which has the severe impact on the
speedup that we mentioned before. By adding the seventh site,
we gain again speedup since we reach the number of100
processors required for eliminating any serialised block that
produces the load imbalance.

The next important overhead is the job preparation overhead
for compression / decompression of a large number of files
into / from an archive, with the purpose of reducing the data
transfer overhead. The WIEN2k activities have a large number
of data dependencies (i.e. files) that increase proportionally
with the number of parallel k-points (about three times).
Moreover, the size of the data that needs to be transferred
between activities increases with the number of k-points and
Grid sites (about500 MBytes for 100 k-points). Therefore, it
becomes crucial to archive and compress the output files before
transferring them over the network to the next activity. This
overhead remains relatively constant for the first four Gridsite
infrastructures. The last four Pentium 4 workstation networks
(which are part of a large, intensively used student workstation
network), however, exhibit unexpectedly large access latencies
to the shared AFS file system upon decompressing file archives
of about50 MBytes. This overhead grows linearly with the
number of archives used (i.e.n − 1 tar archives forn Grid
sites) that significantly slows down the execution.

We managed to keep the data transfer overhead relatively
constant (about140 seconds) by using parallel streams over
the GridFTP protocol to transfer the archives between sites.
Additionally, we exhibit a constant imbalance on parallel data
transfers between50 and60 seconds per workflow execution.

The overheads of the ASKALON middleware services,
comprising the Resource Broker, the Scheduler, and the Per-
formance Prediction service are constant and count for less
than1% each of the entire execution time.

Our tool can also perform analysis on a region basis, which
is useful in tracing the execution behaviour, for example in
dynamic environments like the Grid. To illustrate this, we
have run another WIEN2k case consisting of193 k-points in
a more dynamic Grid testbed illustrated in Table II, where the
clusters with the ranks4 − 7 are workstation networks that
are heavily used during the day by bachelor students for their
exercises (usually in Windows mode), and are automatically
rebooted into Linux Grid mode during night, weekend, and
public holidays. Figure 5(f) shows the overheads for the four
main regions of the WIEN2k workflow, where the last three
activities have been merged for performance reasons. Since
the starting number of processors was bigger than the number
of k-points, in the first parallel region (lapw1) we did not
experience any serialisation overhead. For this particular first
experiment of this kind, we have forced a manual shutdown
of the GRAM gatekeeper of the agrid, arch20, arch21, and
agrid1 sites as soon as the workflow reached the middle
FERMI activity (we will describe a more realistic scenario
in Section IV-B). As a consequence, the Enactment Engine
rescheduled thelapw2 activities onto the three remaining SGI
Altix Grid sites which produced the serialisation overheadof

getScene???

mpegjoin

sc001.mpg

sc002.mpg

sc00N.mpg

sc001.pov
sc001.ini

movie.pov movie.ini

movie.mpg

sc002.pov
sc002.ini

scN.pov
scN.ini

Fig. 6. The POV-Ray workflow.

running multiple parallel activities sequentially due to the lack
of enough processors.

B. POV-Ray

The Persistence Of Vision Raytracer (see
http://www.povray.org) is a high quality free tool for
creating three-dimensional graphics, which is known to be
an extremely time consuming process. We have modeled
a POV-Ray rendering scenario as a workflow depicted in
Figure 6, where the description of a movie can be separated
in several scenes, each scene being composed of several
frame images (e.g. in .png format) which can be rendered
as parallel activities on the Grid. Finally, all the frames are
merged into a .mpg movie.

We chose to render a movie from a POV-Ray Internet
Raytracing Competition consisting of19 scenes and1650
frames. Table II displays the Grid testbed that we used for
this experiment.

The speedup for this application displayed in Figure 5(a)
is lower than for WIEN2k, primarily because of the different
Grid testbed used, where the most powerful site is now four
times faster than the second site in the ranking (see Table II).
For example, from one to four Grid sites did not even double
the the number of processors, therefore we only obtained a
speedup of1.69. The efficiency, however, follows the same
good curve as for WIEN2k and stays over50% for the largest
eight site Grid configuration used.

Because the number of workflow activities corresponding to
the frames to be rendered is larger than the Grid testbed (1650

Site # CPU, GHz Arch. Mgr. Location

altix.uibk 64 Itanium2,1.6 ccNUMA PBS Linz
altix.jku 16 Itanium2,1.6 ccNUMA PBS Innsbruck

schafberg 16 Itanium2,1.6 ccNUMA PBS Salzburg
agrid 21 Pentium4,1.8 NOW Torque Innsbruck

arch20 23 Pentium4,1.8 NOW Torque Innsbruck
arch21 21 Pentium4,1.8 NOW Torque Innsbruck
agrid1 32 Pentium4,1.8 NOW Torque Innsbruck
hc-ma 8 Opteron,2.2 COW SGE Innsbruck

TABLE II

THE GRID TESTBED FORPOV-RAY AND WIEN2K 193 K-POINTS.



(a) WIEN2k and POV-Ray speedup and efficiency. (b) WIEN2k total overhead severity; 100 k-points.

(c) WIEN2k overhead severities; 252 k-points. (d) WIEN2k execution overheads; 252 k-points.

(e) WIEN2k execution overheads; 100 k-points. (f) WIEN2k region based overheads; 193 k-points; 7 sites.

(g) POV-Ray execution overheads;1650 frames. (h) POV-Ray overhead severities;1650 frames.

Fig. 5. Performance analysis results.



parallel activities versus201 processors), the main overhead
is again the serialisation (see Figure 5(h)). It is interesting to
notice that for this workflow the severity of the job submission
overhead is considerable, as a large number of jobs had to be
submitted to remote Grid sites.

For the eight site execution, we went again through the
same dynamic scenario as for the last WIEN2k experiment,
this time more realistically by running the workflow shortly
before8AM when the student classes start. A few minutes
after8AM , the teachers rebooted to Windows mode the master
workstations running the GRAM gatekeeper of the student labs
ranked4 − 8 in Table II and, as a consequence, these sites
were no longer available for the remainder of the execution.
The Enactment Engine handles this situation by resubmitting
the remaining frames to the remaining four available sites.
The job restart overhead increases to about12% in severity,
since it also counts for the rendering computation that has
been lost on the rebooted sites, and which has to be repeated
on the remaining parallel machines. This also explains the
lack of improvement in the speedup from six to eight Grid
sites (see Figure 5(a)). In addition, we optimised the GridFTP-
based data transfer by collecting the images as soon as they are
generated. Therefore, the severity of the data transfer overhead
is low despite the large volume of data to be transferred. In
addition, such early data collection significantly reducedthe
job restart overhead in the eight site execution, since all the
image files have already been collected by the time the four
sites have been rebooted. Only the running rendering jobs had
to be restarted on a different site.

V. RELATED WORK

Workflow monitoring has been extensively studied for many
years in the business field. Many techniques have been in-
troduced to study various quality of service and performance
models for workflows [2], [3] and to support monitoring and
analysis of workflow executions [4], [5]. However, scientific
workflows for Grid computing have different requirements
that are not addressed in the business field, like scalability
(over Grid and workflow sizes), heterogeneity (of Grid parallel
computers and computationally intensive activities), andlarge
complex data dependencies.

Numerous performance monitoring and analysis tools have
been developed for the Grid [6], [7], [8], however, most of
them target low-level resource monitoring or special-purpose
middleware services [9] with little attention paid to workflow-
level performance analysis.

Clearly, there is a lack of formal specifications of perfor-
mance overheads and metrics for Grid workflows compared
to similar efforts in the parallel processing arena. A high-level
and dedicated performance analysis tool, such as the one we
proposed in this paper, is missing.

VI. CONCLUSIONS

In this paper, we proposed a systematic approach to perfor-
mance analysis of Grid workflow applications. We presented
a model consisting of a theoretical ideal execution time and

a detailed hierarchy of performance overheads that help the
application developers understand the sources of bottlenecks
that slow down the distributed execution of scientific work-
flows in heterogeneous Grid infrastructures. We have carefully
defined the overheads to be as little overlapping as possible,
which gives us important indication of whether any perfor-
mance loss remained unidentified. We have adjusted well-
known normalised metrics from parallel processing to fit the
Grid computing scope, like overhead severity, speedup, and
efficiency.

We have implemented our approach within the ASKALON
programming and computing environment for the Grid. We
learned that serialisation of independent activities, load imbal-
ance, job preparation, and data transfer were the most severe
overheads for our application that have to be carefully tuned
to further improve the speedup and efficiency Grid metrics.
The job submission latencies on the Grid can be substantial
and thus, may be a major reason for the poor scalability of
workflows with relatively fast computational activities.

ACKNOWLEDGEMENT

This research has been supported by the Austrian Science
Fund through the SFBF1104 project Aurora and by the Euro-
pean Union through the IST-2002- 511385 project K-Wf Grid.

REFERENCES

[1] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek, “ASKALON:
A Grid Application Development and Computing Environment,” in 6th
International Workshop on Grid Computing (Grid 2005). Seattle, USA:
IEEE Computer Society Press, Nov. 2005.

[2] J. Cardoso, A. P. Sheth, and J. Miller, “Workflow quality of service,”
in IFIP TC5/WG5.12 International Conference on Enterprise Integration
and Modeling Technique. Kluwer, B.V., 2003, pp. 303–311.

[3] K.-H. Kim and C. A. Ellis, “Performance analytic models and analyses
for workflow architectures,”Information Systems Frontiers, vol. 3, no. 3,
pp. 339–355, 2001.

[4] A. F. Abate, A. Esposito, N. Grieco, and G. Nota, “Workflowperformance
evaluation through wpql,” inProceedings of the 14th international
conference on Software engineering and knowledge engineering. ACM
Press, 2002, pp. 489–495.

[5] B. T. R. Savarimuthu, M. Purvis, and M. Fleurke, “Monitoring and
controlling of a multi-agent based workflow system,” inProceedings of
the second workshop on Australasian information security,Data Mining
and Web Intelligence, and Software Internationalisation. Australian
Computer Society, Inc., 2004, pp. 127–132.

[6] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P. Kacsuk, Z. Nemeth,
N. Podhorszki, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure, and
T. Margalef, Performance Tools for the Grid: State of the Art and
Future, ser. Research Report Series, Lehrstuhl fr Rechnertechnikund
Rechnerorganisation (LRR-TUM) Technische Universitaet Muenchen.
Shaker Verlag, 2004, vol. 30.

[7] S. Zanikolas and R. Sakellariou, “A Taxonomy of Grid Monitoring
Systems,”Future Generation Computing Systems, vol. 21, no. 1, pp. 163–
188, January 2005.

[8] H.-L. Truong and T. Fahringer, “SCALEA-G: A Unified Monitoring
and Performance Analysis System for the Grid,”Scientific Programming,
vol. 12, no. 4, pp. 225–237, January 2004.

[9] X. Zhang, J. L. Freschl, and J. M. Schopf, “A performance study of
monitoring and information services for distributed systems,” in Interna-
tional Symposium on High Performance Distributed Computing. IEEE
Computer Society, 2003.


