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Abstract—In this paper we propose a systematic approach overheads, that help the application or the middlewareiserv
to performance analysis of workflow applications on the Grid  developer understand the real reason of performance losses
We introduce an ideal model for the workflow execution time \ye fyrther divide these overheads in more detailed subedass

and explain the difference to the real measured times based that lain th f bl tafi arit
on a hierarchy of performance overheads for Grid computing. al explain the performance probiems at a finer granuiarity

We describe how to systematically measure and compute the Finally, we adjust several well-known scalability metrics
overheads from individual activities to entire workflow applica- Grid computing, including speedup and efficiency. For this

tions. We adjusted well-known parallel processing metricgo the paper we have implemented our approach as a post-mortem

scope of Grid computing, comprising speedup and efficienciVe 531y sis service integrated in the ASKALON Grid applicatio
have implemented and largely automatised our analysis appach d | t and Hi . -
in the context of the ASKALON Grid application development evelopment and computing environment [1].

and computing environment. We present experimental resut ~ Our paper is organised as follows. In the next section we de-

that show detailed overhead analysis of two real-world workow  scribe the generic workflow and Grid models that we use in our

applications executed in a national Grid environment. analysis. Section Il introduces a hierarchical clasdiiraof

performance overheads and a systematic methodology for in-

strumentation, computation, and analysis. Section IV qrts
Computational Grids aim to provide a ubiquitous infrasexperimental results of two real-world workflow applicatso

tructure for seamless, dependable, and pervasive access\0summarise the most relevant related work in Section V

geographically distributed high-end computational cdfii#s and conclude the paper in Section VI.

that are part of different administrative domains. Whilerth

is still no consensus on the programming model, the workflow

I. INTRODUCTION

paradigm has gained increasing interest as an importass cla . MopEL
of applications appropriate for programming the Grid. A. Workflow Model
Whereas the Grid provides in theory unlimited amount of
computational power, efficient utilisation of Grid resoesds  In this section we give a formal definition of a workflow ap-

an open issue that received little attention from the conityun plication that represents the sufficient foundation for el
Similar to compiler optimisations, Grid schedulers aimatve ~ all real-world scientific applications that we are currgnising
complex optimisation problems by applying heuristics foS case studies. This more restrictive model has the agy@anta
achieving good mappings of complex workflow applicationgf allowing the clear definition of many of the heterogeneous
onto the Grid resources that, e.g. minimise the executiéierheads that we will present Section IlI-B.
time (and the overheads) or maximise the throughput. WhileWe model a well-structuredvorkflow applicationas a
scheduling remains an undecidable NP-complete problem, pdirected graphWF = (NodesEdges, where Nodes =
formance analysis tools can take an important role by gividdNi,...,N,} is the set of workflow nodes anBdges =
new insight into overheads that have not been previously ;" (Ni,Ni+1) U {(N;,Nx) | j > k > 1} is the set ofcon-
considered and that can be further reduced through improves flow dependenciedhe edges in the latter union set model
heuristics or by restructuring the workflow. backward dependencies which implement sequential loops.
In this paper, we propose a systematic analysis approattode N can have any of the following types representing
that aims to help the Grid application developer and usworkflow regions (1) computational activitydenoted in this
understand the nature of performance losses within lacgkes paper asCA; (2) data transfer activitydenoted asDA, (3)
executions of workflow applications in heterogeneous Grigarallel section denoted afNp,, = (Np1, ... Ny ); (4) sub-
environments. We introduce a theoretical reference paramevorkflow; denoted agNodes, Edges) and recursively defined
called ideal execution timehat aims to provide a realistic according this definition.
bound for the lowest (i.e. "fastest”) execution time thatlcb  If the set of activities in a parallel section have the
be achieved by a workflow application in a certain Grid envsame type, we call iparallel loop. For example, the work-
ronment. We define the difference between the ideal exetutitow depicted in Figure 4 (see Section V) contains two
time and the actual measured time @snporal overhead parallel loops: Npg-; = (lapwl_kl,... lapwl_kn) and
We present a novel classification of workflow overhead$p,., = (lapw2_k1,...,lapw2_kn), and a backward edge
covering middleware, loss of parallelism, and activitesific (Converged, lapw0).



B. Workflow Execution Model a given workflow schedule decided either statically or at run

We base our Grid workflow analysis on the ASKALON Grid/Me: o _ _
application development and computing environment [1]. In The ideal execution time of a sequential computational
ASKALON, the user specifies workflow applications at a higtctivity CA denoted asTER!, is the the fastest wallclock
level of abstraction using a graphical UML-based modelirfg€cution time of the underlying operating system (Unix)
tool or an abstract XML-based language. The workflow XMProcess(es) on all processors available on the Grid.idés
specification is then given to th&nactment Enginghat €Xecution time of a data transfer activity zero, since we
requests from aSchedulerservice to “optimally” map the consider itan ove_:rhead?,gieal = 0. Theideal execution time
activities onto the available Grid resources using heigrist ©f @ parallel sectioNp,,. is the fastest ideal execution time
based algorithms. To make a mapping decision, the Sched@g@ll its activities: T = vc’,}éﬁ}gw {T&x'}. The ideal
invokes aResource Broketo find the computational resourcesxecution timeof a workflow WF, introduced in Section II-
that match the software and hardware requirements of thAgis the sum of the ideal execution times of all its actidtie
workflow, and a Performance Prediction service that returhse Nodes Ty = >\ \cnogesl -
forecast information about the executions time of eachracti We define thetotal overheadl'Owr of a workflow WF as
ity based on historical data and regression techniques. The difference between its measured execution fimend its
Performance Analysiservice requests for instrumentation tadeal execution timeZ Owg = Twe — Ty
compute the required metrics and overheads. After all thege
steps are completed, the Enactment Engine submits the work- ) ) _ o
flow activities on the corresponding Grid sites accordintheo e propose a new detailed hierarchical classification of per
control flow and data flow dependencies, and automaticafg§fmance overheads for Grid workflow applications illugtch
collects and stores the raw performance data into a perfét-Figure 1. When designing and computing this overhead
mance database for post-mortem analysis and visualisatiBi¢rarchy, we have paid special attention to the fact that th
Any of these execution steps may fail, in which case ttfverheads need to ben-overlapping
Enactment Engine retries the previous step and considers thSimilar to the workflow ideal execution time, we compute
failure as an overhead. For example, whenever sites appealf$§ value of any overhead such as load imbalance, seriatisat
disappear from the Grid environment, a rescheduling ewentdata transfer, external load, job replication, and so om (se
triggered and a new mapping obtained from the Schedulerfollowing paragraphs) for any workflow region by adding the

In this execution model, only the work performed by thgve_rhgad values com_puted for the underlying computatlonal
workflow computational activities is considered as usekal-e activities, parallel sections, and sub-workflows (seeiSedt-
cution time. The time required for any other task is congiderA): TO = 3 ynenodes! ON-

Overhead Computation

atemporal overhead We show in the following how we compute the most impor-
_ tant overheads classified in Figure 1 for individual computa
C. Grid Model tional activities and parallel sections, while for sub-kftows

We consider the Grid as an aggregation of heterogenedgy can be computed through recursive summations.

Grid sites A Grid site consists of a number of computers and 1) Middleware overheadsWe define thgob management
storage systems that share salmeal security, network, and Middleware overhead of a computational activiBA as:
resource management policies. Computers within a Grid sk&JMca = vg}&lgA){eno(CA)} - VS?;r%cA){start(CA)} —Tca,
may comprise single processors, symmetric multiprocessaihereTc, is the wallclock time of the activigCA measured
massively parallel processors, and workstation cluskesare directly on the Grid execution site using the POSIXme
utilised as a single computing resource. command. Thenaxoperator is applied to all event timestamps
since an activity may fail at various stages and, therefoee,

. o ~_retried several times until it succeeds.

The execution of workflow applications on the Grid is e divide the middleware overhead into several smaller
prone to a broad set of overheads that must be understeRdrhead categories, each sub-category being compufed dif
in order to improve the overall performance. We therefor@nﬂy_ For example, we compute theb submissionwaiting,
model the real execution time qf a Grid workflowF as the queue residencgyrespectivelyjob polling overheads as (see
sum of a theoreticaideal time Tijje*! and a set otemporal Figyre 2):
overheadsI'Owe that originate from various sourcesjyr = TOJSca= maz {submifCA)}— maz {starf{CA)};
Tideal + TOwe. Describing the sources of the overheads, vsubmifCA) vstar(CA) ~
classifying them in a detailed hierarchy, and measuringithe! OWea = Vp@ggA){pendCA)} - VSJ[,‘”‘]‘{CA){Sme'(CA)}?
in a systematic manner is the scope of our analysis effort. TOQRca = max {activCA)} — maz {pendCA)};

active(CA) Vpend CA)

Ill. WORKFLOW TEMPORAL OVERHEADS

vacti
i i TOPca = CA} — tivCA)} — Tea.
A. Ideal Workflow Execution Time CA vgggg&{enc{ )} Vag?v%(:g/\){ac ivgCA)} — Tca

In this section we introduce a lower bound for the execution We define the overhead of the other ASKALON Grid
time of workflow applications on the Grid, to which we refemiddleware servicedS including the Resource Broker, the
asideal execution timeOur analysis definitions begin fromScheduler, and the Performance Prediction service using a



temporal overheads started submitted pending active completed

qu _ " QL_Jeue Ic_leal External .
+ Submissiony Waiting + Residency ¢ Time Load F’olllng"
Fig. 2. Activity-related events and middleware overheads.

—>] execution management |

job preparation

not necessarily the full available Grid), where each processor
P is weighted with its relative speed (execution time @A
archive / compression of data__| on prOCeSSOIP)' TONPar — ZVCAGNPLIT TOCOnCA, Where

] TOconca = —1 92— and Tcap denotes the wallclock
vPeGid T,
3 CAP ..
submission decision policy ] time of the computational activitCA on processoiP. The

rationale behind this formula is that, for example, one rténu

of queuing time before running on a fast Pentium 4 processor
is more critical than waiting the same amount of time for
Pentium 3 processor and, therefore, the former should pedu

a proportionally higher temporal overhead value.

In addition, workflow parallel sections introduce a new
source of performance overheads that we tadls of par-
allelism It is common in practice that, as a result of a
scheduling algorithm, two parallel computational actdstare
mapped onto the same (fast) processor that delivers tHestarl

completion time. This is often due to the fact that the number
of fast processors available in our Grid is smaller than the
size of the workflow parallel sections. The Scheduler and
the Enactment Engine handle this situation by serialisiey t
execution of parallel activities, which is usually fastban

N = competing for processor cycles, memory modules, or other
resources.

If two independentCA activities (e.g. part of a parallel
activity) are scheduled onto the same machine, the Sched-
uler and the Enactment Engine introduceua-time sched-
ule dependencyhat prohibits the two activities from run-
ning simultaneously on the same processor. We call the set

third party data transfer |

of parallel activities of a parallel sectiohp,, serialised
through run-time schedule dependencies asralised block

B = {CA,...,CA, € Npy,|S(CA)=...=S(CA)},

where S(CA) denotes the schedule of the ta§lA. The
execution time of a serialised block is the sum of the seedlli
activities: Tg = » ycacg Ica

.For parallel computers as

rid sites, we introduce run- pq[ear caa | car

Fig. 1. Grid workflow overhead classification.

formula that expresses the time required to complete a tas
TOSws = endMS)} — start(MS) }.
Ms v?ﬁéﬁa{ dMS)} ona {star(MS)}

start(MS) time schedule dependencies ifpz|[ caz CAS5
2) Loss of parallelism overheadsthe first question that the number of parallel ac- p3| cas [ cas |
arises when computing the parallel section overheads for aivities exceeds the number | | ] R
workflow region is how we compute them based on thef available parallel proces- —  idesi serialisaion load

time overhead imbalagce,

overheads collected for each individual activity. sors. For example, assume
Let TOca denote an arbitrary temporal overhead of m Figure 3 a parallel sec- Fig. 3. Parallel section overheads.

computational activityCA. We define the temporal overheadion that consists of seven

TOn,,, for a full parallel sectionNp,, as the sum of the parallel activities: Np,, =

contributed overhead3'Oconca of all individual activities (CA;, CAg, CAs, CA,,CAs, CAs,CA;) such that:S(CA)) =

CA € Np,,. The contributed overhead of an activiGA to S(CA,) = S(CA;) = Py, S(CA) = S(CA;) = Pe, and

an enclosing parallel section is the temporal overi€a¢, S(CA;) = S(CAs) = P3 (whereP; andP, are part of a dual

averaged across the number of processsedin executing SMP node of a parallel computer). Since the number of par-

the parallel section (i.e. as indicated by the Scheduleiciwis  allel activities exceeds the number of processors availabé



Scheduler generates three serialised blocks by enharfoéng tmaxz {endDA)} — Vm(t%r;cA){start(DA)}.
starf

; . . - YendDA)
workflow with the following run-time schedule dependenme§ Further, we include in our classification the parallel pasze

{(CAL, CAy), (CAy, CAy), (CAx, CAs), (CA;, CA) }- ing overheads extensively addressed in the previous &sear

The load imbalanceoverhead occurs in the context of a 4) Unidentified overheadLet Twe be the measured ex-
parallel section when some of the computational aCtiVitiee%ution time. Tiideal the idef;ll execution timeJQidentified
Lwr WF

finish earlier and leave the allocated processors idle. \iiaale the sum of the measured workflow overheads, &f@yr

;hf? load |mbbalance Of:/ erheaq of a parglll_ezl qchNgM fsrt::_ the (theoretical) total overhead introduced in SectiorAlll
iiterence between the maximum serialisation block €Mty 4| the difference between the total overhead and the

and the ideal execution time of the parallel section on thefse sum of the identified overheads amidentified overhead

scheduled processo®(Np,,) (see Figure 3)TOLIy,, = TOwEmied — TOwe — TOWE 4. Minimising the
ideal ideal '
ng&fM T} — Tg‘(ﬁlim)' We compute the temTé&‘Lm\) unidentified overhead is one of the important goals of our
from the following equationWork = 3 pc5(n,...) Worke = performance analysis effort. A high unidentified overhead
wPes(Npop) VP TSlNe ) = Y owPes(Npar) otk el value indicates that the analysis is unsatisfactory anthéar
ar ar ar seq.|

. N (Npgr)' . .
whereWork is the total computational work of all activitiesefforts are required to spot new sources of overhead in the
in the parallel sectionWorks is the ideal distribution of the workflow execution.
parallel work on processoP, vp is the speed of processor~

P, and T,.qp is the sequential execution time of the entire i i ]
parallel section serialised on the procesBoiThe ideal time Normalised metrics are valuable means for understanding

becomes therefore the harmonic mean of the single procl importance of the temporal overheads with respect to the

sor sequential times divided by the number of processofditire workflow execution. _ _
ideal 1 The value of an overhead’©O normalised against the

SWNpar)  Svecsmip,) Toeqn. . : workflow execution timeI’ represents th@verhead severity
we deflpe thedata transfer |mbalanc_en a simpler way, which quantifies the importance of the performance overhead
as the difference between the maximum and the Aoy the specific workflow executiorSEV = %. The higher
the severity for an overhead, the more important or sevése th

. Normalised Metrics

age end-time of the parallel file transfer8ODIy,,,

VD%%EM {endDA)} - voﬁé}gpw {endDA)}. overhead is.
Finally, we calculate theerialisation overheadf a parallel In defining the speedup and efficiency metrics for Grid
section as follows (see Figure 3): workflows, we considered to be more realistic to use the Grid

TOSERN,,, = INp,, — VNmm {In} — TOLI\,,,, where site as the sequential computational unit rather than iddal
Par,

the load imbalance overhead in this case has an additioREPC€SSOrS. .
serialisation aspect (in contrast to the case when alliiety e define the workflovspeedupas the ratio between the
of a parallel section are executed simultaneously). execution timeT’s., m on the fastest (for this workflow) single
Sometimes replicating the same computation on multiphi€ available and the acfyal execution time of the workflow
sites in parallel is faster than computing it on the fastesh the Grid7: S = == . The rationale behind this
Grid site and then broadcasting the data. Since it does fi@tmula is that only by normalising against tfestestparallel
make sense to synchronise replicated jobs and produce leathputer available the scientists can understand the fimiten
imbalance, we calculate threplicated joboverhead of a set of gain of using the Grid.
identical activitiesNp,,- as the ideal time for computing the Further, we define the workflowfficiencyas the speedup
entire replicated work (i.e. harmonic mean of all replicatenormalised against the number of the Grid sites used, where
job end-times divided by the number of jobs) minus the enéach Grid siteM is weighted with the speedup of the corre-

time of the fastest replicated job representing the onlfulsesponding single site execution time:

. o 1 _ .
computationT’ORJIN,,. = > ycaenp., S orenn Tar Tea, g min {Tseqm}
whereTca, < Tca,V CAE€ Npg,. E = S o where: Sy = T

3) Activity overheads:We outline in the following the 2_MeGrid SM seq-M
method of computing some of the most important overheaggq efficiency formula becomes therefofe:= 71

. i . EVMEGrid T.;?;_M :
The fastest Grid site has a weight of one, whereas the slowest
&rid site has the smallest weight (i.e. closest to zero).
Finally, since our main interest is on measuring overheads,
we define theinefficiencyas the converse of the efficiency

énetric: I=1-F.

related to individual computational activities.
We define theexternal loadoverhead of a computational
activity CA as the difference between the measured wallclo
time and its ideal execution tim&OFE Lca = Tea — T
We compute theestart overhead due to b failure of a
computational activityCA as the time difference between th

earlieststart and the latesfail timestamp eventSO RSca = IV. EXPERIMENTS
vg}ﬁ?gA){fa"(CA)} - vStan((%@a"(CA){Sta”(C )} Beyond a detailed overhead analysis, our experiments try to

We define thedata transferoverhead of an activitypA answer the following question. Assume that we execute and
that does a (e.g. GridFTP) file transfer d80DTpa = measure the execution time on the fastest Grid site availabl



proves for up to seven sites. The improvement comes from
the parallel execution of the computationally expensive k-
points on multiple Grid sites that significantly lowers the
execution time of the parallel sections. The speedup for
( .ap‘;ﬂ_h ] (Capwiic ) - - - the 100 k-point parallelization deteriorates beyond four Grid
I sites, which we will explain in the next paragraphs (see
the load imbalance overhead). The efficiency curve slightly
- decreases in both cases and remains alio¥ewhich we
( tapw2_k, ] (epwz . ] - - find quite promising considering the modest problem sizes
that we executed (i.e. overall completion time of abaQt
respectively30 minutes on eight sites) and the rather high
overheads experienced, which we describe in the remairder o
this section. Figures 5(d) and 5(e) compare the ideal exetut
time and the most significant overheads against the real Grid
converged execution time. We have marked with asterisks the most eever
overheads (the legible ones in these figures), which theeread
can follow in a top-bottom order on the individual bars.
Fig. 4. The WIEN2k workflow. The severity of the total overhead for th&0 k-points
experiment constantly decreases with the Grid size fromn ove
80% on one site tat5% on eight Grid sites (see Figure 5(b)).
for a certain workflow. Thereafter, we incrementally add thEigure 5(c) summarises in one graph the overhead sevarities
next fastest site to the Grid execution environment. If thevery Grid site configuration, which indicates the impoc&n
execution time decreases substantially with each additiomf each overhead and guides the application and middleware
Grid site, then we demonstrate to the application deve®pelevelopers on which parts to concentrate their tuning &ffor
good performance potential for running in a distributeddGri The most important overhead is the serialisation overhead
environment. due to the limited Grid size, that counts for ov@0% of
We have performed experiments for two different workflowhe total overhead on a singe site, but decreases to zero
applications by varying various parameters and Grid telstbeon eight sites. This overhead indicates the performance one
aggregating up ta250 processors altogether using Globusould gain by acquiring or adding new processors to the Grid
Toolkit version 2 as the underlying infrastructure. We havenvironment. If extending the Grid size is irrelevant, onald
started by executing each workflow application on everonsider this overhead as part of the ideal execution time.
individual Grid site available and ranked the sites acewydi The second severe overhead is the loss of parallelism due
to the execution times obtained (see Tables | and Il). Aftes load imbalance that fluctuates depending on the number of
establishing a ranking of the Grid sites for every applwati k-points, processors available, and the size of the ssili
we proceeded with the repeated execution of the workflow @ock of each processor (see Section 11I-B.2). For instance
multiple Grid sites, by incrementally adding the next fasteFigure 5(a) shows that the speedup o0 parallel k-points
site to the Grid environment (in different executions). remains constant for four, five, and six Grid sites, and iases
again once we add the seventh site. By adding the fourth site
A. WIENZK (gescher) to the Grid infrastructure, we reach a numbéof
WIEN2K (seehttp://www.wien2k.gtis a program package processors, so we only need serialised blocks of size two to
for performing electronic structure calculations of selitsing complete the execution of the first parallel section (thahés
density functional theory, based on the full-potentiah{li most time consuming section of the workflow). By adding the
earised) augmented plane-wave ((L)APW) and local orbitdfith and the sixth sites, we reach a total o, respectively
(lo) method. We have ported the WIEN2k application ontgs processors which aneot enough for executing the parallel
the Grid by splitting the monolithic code into several cairs
grain activities coordinated in a workflow, as illustrated i
Figure 4. Thelapwl and lapw2 activities can be solved in | = : d
a parallel region by a fixed number of so-callegpoints A | AU | 10| TETe S TENONAT ERS T 0
final activity called Convergedis applied on several output | schafberg | 14 | Itanium2,1.6 | ccNUMA | PBS | Salzburg
files and tests whether the problem convergence criterion |is gescher | 16 | Pentum4,3 | COW Maui | Vienna

. . . . agridl 20 | Pentium4,1.8 NOW Torque | Innsbruck
fulfilled. The number of recursive loops is statically untmo arch19 | 20 | Pentum4.1.8| NOW | Torque | Innsbruck

Iapwo

i

il

stage out

Site | # ] CPU,GHz [ Arch. [ Mgr. | Location |

We have chosen a problem case (cabéype that we solved arch20 | 20 | Pentium4,1.8)] NOW | Torque | Innsbruck
by using two different number of parallel k-points (i.e.esiaf arch2l | 20 | Pentium4,1.8| NOW | Torque | Innsbruck
the two parallel sections lapwl andlapw?2): 100 and 252. TABLE |

For the large252 k-point parallelization, the speedup curve GRID TESTBED FORWIEN2K 100 AND 252 K-POINTS.

displayed in Figure 5(a) shows that the Grid execution im-



section without any serialised block. This produces a high
load imbalance overhead which has the severe impact on the
speedup that we mentioned before. By adding the seventh site
we gain again speedup since we reach the number0of
processors required for eliminating any serialised bldukt t
produces the load imbalance.

The next important overhead is the job preparation overhe

for compression / decompression of a large number of files oy

into / from an archive, with the purpose of reducing the data s =
transfer overhead. The WIEN2k activities have a large numbe

of data dependencies (i.e. files) that increase propottjona pp—

with the number of parallel k-points (about three times).
Moreover, the size of the data that needs to be transferred
between activities increases with the number of k-points an
Grid sites (aboub00 MBytes for 100 k-points). Therefore, it
becomes crucial to archive and compress the output fileséefgnning multiple parallel activities sequentially due te tack
transferring them over the network to the next activity. sThigf enough processors.
overhead remains relatively constant for the first four Giid
infrastructures. The last four Pentium 4 workstation nekso B. POV-Ray
(which are part of a large, intensively used student wotksta The  Persistence  Of  Vision  Raytracer (see
network), however, exhibit unexpectedly large accessitaés http://www.povray.ory) is a high quality free tool for
to the shared AFS file system upon decompressing file archivesating three-dimensional graphics, which is known to be
of about50 MBytes. This overhead grows linearly with thean extremely time consuming process. We have modeled
number of archives used (i.e.— 1 tar archives forn Grid a POV-Ray rendering scenario as a workflow depicted in
sites) that significantly slows down the execution. Figure 6, where the description of a movie can be separated
We managed to keep the data transfer overhead relativigly several scenes, each scene being composed of several
constant (aboul40 seconds) by using parallel streams oveffame images (e.g. in .png format) which can be rendered
the GridFTP protocol to transfer the archives between .siteg parallel activities on the Grid. Finally, all the frames a
Additionally, we exhibit a constant imbalance on parallatad merged into a .mpg movie.
transfers betweeb0 and60 seconds per workflow execution. We chose to render a movie from a POV-Ray Internet
The overheads of the ASKALON middleware serviceRaytracing Competition consisting dfd scenes andl650
comprising the Resource Broker, the Scheduler, and the Pigemes. Table Il displays the Grid testbed that we used for
formance Prediction service are constant and count for lah#s experiment.
than 1% each of the entire execution time. The speedup for this application displayed in Figure 5(a)
Our tool can also perform analysis on a region basis, whigh lower than for WIEN2K, primarily because of the different
is useful in tracing the execution behaviour, for example iBrid testbed used, where the most powerful site is now four
dynamic environments like the Grid. To illustrate this, wéimes faster than the second site in the ranking (see Taple II
have run another WIEN2k case consistinglo8 k-points in  For example, from one to four Grid sites did not even double
a more dynamic Grid testbed illustrated in Table Il, whem thhe the number of processors, therefore we only obtained a
clusters with the rankd — 7 are workstation networks thatspeedup ofl.69. The efficiency, however, follows the same
are heavily used during the day by bachelor students for thgbod curve as for WIEN2k and stays ovi@% for the largest
exercises (usually in Windows mode), and are automaticalljght site Grid configuration used.
rebooted into Linux Grid mode during night, weekend, and Because the number of workflow activities corresponding to

public holidays. Figure 5(f) shows the overheads for the fothe frames to be rendered is larger than the Grid testb@ih(
main regions of the WIEN2k workflow, where the last three
activities have been merged for performance reasons. Since _ ]
the starting number of processors was bigger than the numbee—te__| # | CPU, GHz | Arch. | Mgr ] Locafion |
of k-points, in the first parallel regionlapwl) we did not a;ﬂﬁ(j'l'(%k o ::Zﬂ:ﬂmgig oA | poe | e
experience any serialisation overhead. For this partidirst schafberg| 16 | Itanium2,1.6 | ccNUMA | PBS | Salzburg
experiment of this kind, we have forced a manual shutdown a?gr?go gé ﬁiﬂﬂﬂmfﬁ mgw %;qﬂg mzmgt
of the GRAM gatekeeper of the agrid, arch20, arch2l, anf 51 | 51 | pentuma 1.8| NOw Torgue Innsbruck
agridl sites as soon as the workflow reached the middle agridi | 32 | Pentium4,1.8| NOw Torque | Innsbruck
FERMI activity (we will describe a more realistic scenario| _hcma | 8 | Opteron22 | COW SGE | Innsbruck
in Section 1V-B). As a consequence, the Enactment Engine TABLE I

rescheduled thiapw?2 activities onto the three remaining SGI  THE GRID TESTBED FORPOV-RAY AND WIEN2K 193 K-POINTS.

Altix Grid sites which produced the serialisation overheéd

Fig. 6. The POV-Ray workflow.
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parallel activities versug01 processors), the main overhea@ detailed hierarchy of performance overheads that help the
is again the serialisation (see Figure 5(h)). It is inténgsto application developers understand the sources of bottkesne
notice that for this workflow the severity of the job submissi that slow down the distributed execution of scientific work-
overhead is considerable, as a large number of jobs had toflog/s in heterogeneous Grid infrastructures. We have chyefu
submitted to remote Grid sites. defined the overheads to be as little overlapping as possible
For the eight site execution, we went again through thehich gives us important indication of whether any perfor-
same dynamic scenario as for the last WIEN2k experimentance loss remained unidentified. We have adjusted well-
this time more realistically by running the workflow shortlyknown normalised metrics from parallel processing to fit the
before RAM when the student classes start. A few minuteSrid computing scope, like overhead severity, speedup, and
after8AM , the teachers rebooted to Windows mode the mastfficiency.
workstations running the GRAM gatekeeper of the studerst lab We have implemented our approach within the ASKALON
ranked4 — 8 in Table Il and, as a consequence, these sitpsogramming and computing environment for the Grid. We
were no longer available for the remainder of the executiolearned that serialisation of independent activitiesd lmabal-
The Enactment Engine handles this situation by resubmittiance, job preparation, and data transfer were the mostesever
the remaining frames to the remaining four available sitesverheads for our application that have to be carefully dune
The job restart overhead increases to abidj$ in severity, to further improve the speedup and efficiency Grid metrics.
since it also counts for the rendering computation that hage job submission latencies on the Grid can be substantial
been lost on the rebooted sites, and which has to be repeatad thus, may be a major reason for the poor scalability of
on the remaining parallel machines. This also explains tirkflows with relatively fast computational activities.
lack of improvement in the speedup from six to eight Grid
sites (see Figure 5(a)). In addition, we optimised the GrieiF
based data transfer by collecting the images as soon asrihey a This research has been supported by the Austrian Science
generated. Therefore, the severity of the data transfeheae Fund through the SFBF1104 project Aurora and by the Euro-
is low despite the large volume of data to be transferred. R¢an Union through the IST-2002- 511385 project K-Wf Grid.
addition, such early data collection significantly reduted
job restart overhead in the eight site execution, sincehall t _ o . .
image files have already been collected by the time the fodk I/l gﬁ?&;gﬁfrhi. TPrrSgr?;' A'?m%é%’%’y gﬁle\‘/Ia.n\Elz\;:’eci)rglzqarﬂLgll\lr?’
sites have been rebooted. Only the running rendering jods ha A Grid Application Development and Computing Environmigi, 6th
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