
Vimoware - a Toolkit for Mobile Web Services and Collaborative Computing ∗

Hong-Linh Truong, Lukasz Juszczyk, Shariq Bashir, Atif Manzoor, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{truong, juszczyk, bashir, manzoor, dustdar}@infosys.tuwien.ac.at

Abstract

Mobile devices are considered to be very useful in ad-
hoc and team collaborations, for example in disaster re-
sponses, where dedicated infrastructures are not available.
Such collaborations normally require flexible and interop-
erable services while running on mobile devices and being
integrated with various other services. Therefore, middle-
ware and toolkits for developing mobile services which can
be accessed by using standard interfaces and protocols are
in demand. Due to the lack of tools, the support of the devel-
opment of Web services and collaboration tools on mobile
devices is still limited. This paper presents the Vimoware
toolkit which allows both developers and users to develop
Web services for mobile devices, to conduct ad-hoc team
collaborations by executing pre-defined or on-situ flows of
tasks, and to test collaboration scenarios.

1 Introduction

Recently, many research efforts have focused on provid-
ing programming tools and software engineering method-
ologies for developing applications for mobile devices
(PDA, smartphone, subnotebook and laptop). First, in most
cases, existing tools and methodologies aim at supporting
the development of mobile applications acting as a client
to access data and services from dedicated, high-end sys-
tems. This is partially due to constrained resources of mo-
bile devices on which the applications execute, and the us-
age mode in which mobile devices access services rather
than provide them. Second, there are tools for developing
applications for mobile devices in ad-hoc networks but the
applications tend to be specific and inflexible as they bind to
specific protocols and models. It is not easy to reuse and in-
tegrate current mobile applications for/into existing, diverse
Web services available in today’s pervasive environments.

∗This research is partially supported by the European Union through
the FP6-2005-IST-5-034749 project WORKPAD.

Mobile devices have been increasingly used for critical
missions, such as in disaster responses [4], which require
access to diverse services. In particular, mobile devices are
considered to be very useful in ad-hoc team collaborations
where dedicated infrastructures are not available. Such col-
laborations normally require flexible and interoperable ap-
plications to access as well as offer services. This raises the
question of how to provide pervasive and mobile devices
with middleware and applications so that the devices can
provide collaboration services accessible through standard
interfaces and protocols. The Web services model which
has introduced means to foster the interoperability, flexibil-
ity, and reusabilty of software can be used to develop mo-
bile Web services for collaborative computing. Until now,
there is a lack of generic Web services based toolkits for de-
veloping and testing mobile Web services and collaboration
tools.

Our research focuses on a Web services based toolkit that
allows the developer and the user to develop and test Web
services on mobile devices, to conduct ad-hoc team collab-
orations by executing pre-defined or on-situ flows of tasks,
and to test collaboration scenarios. The goal of the toolkit
is to provide means for developing and executing customiz-
able and interoperable mobile Web services and applica-
tions. Yet the development process should be simple, for
example, based on the concept of POJO (Plain Old Java Ob-
ject). In this paper, we introduce Vimoware which includes
tools for developing and deploying Web services on mobile
devices and for specifying and executing user-defined flows
of tasks. Vimoware allows for setting up different collab-
oration scenarios described by different models based on
various plugins. In this paper, we present various examples
to demonstrate the usefulness of Vimoware.

The rest of this paper is organized as follows. Section
2 presents main related work. The Vimoware toolkit is de-
tailed in Section 3. We describe potential applications and
examples built atop Vimoware in Section 4. Performance
experiments are presented in Section 5. Section 6 sum-
marizes the paper and outlines possible future work on Vi-
moware.

2 Related Work

The use of mobile devices for collaborative work is
widely known and acknowledged. Therefore, many mobile
middleware have been developed, such as intermediate plat-
forms [11], coordination middleware [1], and collaborative
working environments [6].

Web services have been widely employed in normal en-
vironments due to its ability to address the integration and
interoperability. However, Web services have not been
well exploited in mobile devices due to limited capabilities
of mobile devices. Some potential applications and chal-
lenges of Web services hosted in mobile devices are dis-
cussed in [3]. In the last years mobile devices have become
more powerful, and lightweight implementations, such as
kSOAP21 for Java or the Microsoft .NET Compact Frame-
work made SOAP communication feasible for mobile de-
vices. Silver [7], a lightweight BPEL engine in mobile
devices, also provides some facilities for handling SOAP
communication. Part of our Vimoware middleware utilizes
kSOAP2 and Silver SOAP communication facilities.

Existing work normally exploits mobile devices as a
client to access remote Web services, but not as a service
provider. Recently, researchers have investigated Web ser-
vices solutions for sensor networks [2], embedded systems
[15], and ambient environments [8], signalling a strong
need for having tools to develop Web services on mobile
devices. Another trend to support SOA-based on mobile
devices is to use the OGSi model which supports the devel-
opment of components interacting with each other within
a single system; OGSi components can also be exposed as
Web services. R-OGSi [13] is a middleware built atop OGSi
that transparently connects, deploys and executes OGSi ser-
vices spanning multiple OGSi containers. We follow the
Web services programming model which is different from,
but complementary to, the OGSi programming model.

In [9], a lightweight hosting environment for Web ser-
vices on mobile devices is presented. This environment
supports broker-based service publishing and service mi-
gration. Vimoware provides more features than just hosting
Web services, but it has not addressed the service migra-
tion. [12, 7] support BPEL and workflows in mobile de-
vices, however, they are not flexible enough for team col-
laboration in dynamic scenarios. A SOA-based toolkit for
collaborative work based on a network of mobile devices
is currently missing. The MoCA framework [14] provides
custom APIs and basic services for developing collabora-
tive applications. However, server applications are only for
a network of static machines, and MoCA is not SOA-based.

Our Vimoware also differs from the above-mentioned
works with respect to supporting collaborative teamwork by
providing a flexible toolkit for developers to develop Web

1http://ksoap2.sourceforge.net/

services, and to define and execute collaborative processes
with customized scenarios. Not only does Vimoware sup-
port developers to write Web services on mobile devices in
simple way but also provides many specific features for the
development and deployment of collaborative work.

3 The Vimoware Toolkit

Figure 1. Components of Vimoware

Figure 1 depicts the main components of Vimoware.
SOAP-based Web services are hosted and advertised us-
ing the Lightweight Web services Middleware. The Artifact
Management is used for sharing documents, figures, multi-
media files, etc., through HTTP. Device and Location Sen-
sors support the gathering of data about the current status of
the device. The User and Team Management supports the
provision of user and team profiles and the Flow Execution
Engine facilitates the realization of ad-hoc and pre-defined
workflows of tasks. To enable the exchange of messages
between end users, the Communication is developed to pro-
vide instant messaging features. The Task Handler is a ser-
vice that receives tasks sent by the Flow Execution Engine
and controls the execution of the tasks in a given device.
The Flow Editor supports the user to design their workflows
which are executed by the Flow Execution Engine.

3.1 Lightweight Web Services Middleware

In Vimoware, Web services are developed by applying
the POJO principle which is widely used due to its simplic-
ity and therefore is preferred by us. The service developer
creates a Web service by extending an abstract Java class
(see Listing 1). This class requires the specification of a
service description, provides basic methods for extracting

metadata about the service, and expects the service opera-
tions to be implemented as normal Java methods. Based on
the description provided by the service developer and on the
metadata, we support the generation of WSDL files which
can be in turn used by remote clients to generate clients
stubs for invoking mobile Web services.

p u b l i c a b s t r a c t c l a s s AWebService {
p u b l i c AWebService (S t r i n g ID , S t r i n g namespace) ;
p u b l i c f i n a l S t r i n g g e t S e r v i c e I D () ;
p u b l i c f i n a l S t r i n g g e t S e r v i c e N a m e s p a c e () ;
p u b l i c a b s t r a c t H a s h t a b l e g e t A t t r i b u t e s () ;
p u b l i c vo id onDeploy () ;
p u b l i c vo id onUndeploy () ;
p u b l i c a b s t r a c t C o l l e c t i o n ge tOpera t ionNames () ;
p u b l i c H a s h t a b l e getOpera t ionNameMapping () ;
p u b l i c a b s t r a c t H a s h t a b l e g e t O p e r a t i o n D e s c r i p t i o n

(S t r i n g opera t ionName) ;
p u b l i c a b s t r a c t S t r i n g g e t C o n f i g u r a t i o n R e s s o u r c e N a m e () ;
p u b l i c vo id s e t P u b l i s h e d (boolean p u b l i s h e d) ;
}

Listing 1. The abstract Java class for services

As Vimoware is designed for Web services in ad-hoc net-
work of mobile devices, runtime and reconfigurable service
provisioning and service discovery are of paramount impor-
tance.

3.1.1 Service Provisioning

With respect to service provisioning, it is important that any
middleware for mobile devices is able to support recon-
figurable Web services as mobile environments are highly
dynamic and different in multitude of capability degrees.
Vimoware supports the reconfiguration of communication
protocols, multiple types of service invocations, and run-
time deployment.

First, Vimoware uses kSOAP2 and selected parts of
Sliver [7] to deploy Web services and provide them to re-
mote clients. At the transport level, communication can be
established either via HTTP, which is realized by a light-
weight version of the Jetty2 engine, or via direct TCP socket
communication. Depending on specific need and perfor-
mance issue, the TCP or HTTP transport can be selected.

Second, in Vimoware invocations can happen in three
manners: (a) one-way message sending, (b) synchronous
request-response interactions and (c) real asynchronous
request-response. The asynchronous invocation is realized
by a callback service which is a mandatory part of each
middleware instance. When a client sends an asynchronous
request, the middleware automatically appends a message
ID to the SOAP header and registers it at the callback ser-
vice. When the processing of the request finished and the
response is ready to be sent back, the middleware checks
whether the requesting host is available and the response

2http://jetty.mortbay.org/

can be sent back, or whether the requesting host disappeared
meanwhile and the response has to be postponed until the
requesting host reappears. By decoupling the requesting
and responding host this way, it is possible to overcome typ-
ical problems related to the dynamics of ad-hoc networks.

Third, services can be deployed into Vimoware at run-
time and from remote host. This feature is required in sce-
narios when local deployment is impossible, for example,
in a disaster scenario where volunteers can offer their sup-
port by joining teams with their mobile devices. Also, this
allows new services to be deployed in mobile/embedded de-
vices without interrupting operations of the devices.

3.1.2 Service Advertisement and Discovery

The well-known publish-find-bind triangle of SOA with a
dedicated registry is not suitable for ad-hoc networks of mo-
bile devices. In Vimoware we chose to implement a P2P-
based subscription/notification approach for service adver-
tisement and a discovery which allows to be notified imme-
diately, reduces network traffic, and is suitable for ad-hoc
networks. Currently, discovery works purely decentralized
in which all Vimoware instances advertise themselves via
UDP multicast. We have developed a customized service
discovery protocol optimized for highly dynamic environ-
ments.

The customized protocol tackles the changing availabil-
ity of devices and services, and works as follows3. In or-
der to reduce network traffic, advertisements are not sent
out for every service but only for each Vimoware middle-
ware instance. These advertisements contain information
whether the deployment status of the hosted services has
changed since the last update. In this case other Vimoware
instances in the environment request an incremental change
report in order to update to the new status. If a host disap-
pears without having had the possibility of advertising its
unavailability (e.g., on middleware shutdown) the informa-
tion about its services will automatically expire after a pre-
defined period of time. As a consequence, all participants
in the environment are aware of current available services
and are being informed as quickly as possible with any sta-
tus changes. This approach comes at the cost of scalability,
and thus, is not suitable for large environments consisting
of hundreds of participants. Nevertheless, it is suitable for
small or medium scale mobile environments and offers a
benefit of real-time notifications. Furthermore, it is possi-
ble to establish interoperability with other discovery proto-
cols, such as the Service Location Protocol (SLP), through
a bridging mechanism which translates Vimoware-specific
advertisements into the SLP format.

3The full account of the customized protocol and its evaluation is out
of the scope of this paper.

3.2 Location and Device Sensors

Providing context information of devices and location is
a need for enhancing collaboration work and decision mak-
ing and dynamically adapting service behavior according to
changes. In our framework, device sensors (CPU, network,
memory, and device profile) and location sensor are devel-
oped as Web services which describe their provided infor-
mation as Web service attributes in the middleware. Thus,
client application can browse the information and subscribe
or query context information using interfaces provided by
these sensor services. Client applications can send request
specified in XPath/XQuery to sensor services to obtain con-
text information. Client applications can also permanently
subscribe for any information. Currently, sensors provid-
ing machines information are built atop the Intel Mobile
Platform SDK4. Implementing the sensors as Web services
enhances the interoperability and integration of different
context information sources, fostering the development of
context-aware mobile Web services.

3.3 User and Team Management

This component manages the profile of the person using
a device and a list of teams that the person belongs to. The
profile includes basic information, such as name, ID and
skills, used to associate human with services deployed in
the device. Therefore, other services can search for a spe-
cific service provided by a specific individual. In Vimoware,
the profile of a human is described by a pre-defined XML
representation. The XML-based profile will be provided by
the end-user. However, it is not difficult to synchronize this
information with existing team and user management ser-
vices in particular organizations or to utilize information in
real PIM (Personal Information Management) implemented
based on JSR-755 in mobile devices.

Services can publish the profile information
through the middleware by expressing the informa-
tion into service attributes. For example, a quadruple
(namei, teamj , stk, URIl) published through the middle-
ware indicates that the user namei of team teamj provides
a service identified by URIk belongs to the service type
stk. At each device, this component maintains a list of
(namei, teami, sti, URIi). The profile information is
used when a service needs to find another service provided
by another user. Although the profile information is simple,
it is particularly useful when having ad-hoc collaborations,
such as volunteering work in a disaster response. In such
collaborations, the personal skill is the key information for
selecting services and humans for particular tasks. This

4http://ossmpsdk.intel.com/
5http://jcp.org/en/jsr/detail?id=75

component is available only in an individual device. Pro-
viding access to profile information across a network can be
achieved by building overlay services atop Vimoware. One
example of such services is the CIMS (Context Information
Management Service, in Figure 1) which provides Web
service operations for obtaining profile information of
teams and users.

3.4 Flow Execution Engine

The Flow Execution Engine is used to execute flows of
tasks of collaborations. Vimoware’s Flow Execution Engine
is lightweight and built based on a (simplified) backport of
the BeanFlow library6 using POJO concept. The engine can
execute flows modeled by an XML schema or defined on
demand.

To support lightweight task distribution and control, the
Flow Execution Engine implements a simple, yet powerful,
flow language proposed in [10] by the WORKPAD project7.
This flow language consists of basic, well-known flow con-
structs such as parallel, sequence, loop and task. In this
flow language, a task is used to describe an atomic activ-
ity of a flow. However, the task model in [10] is not flex-
ible enough, as it fixes the way how a task is described
and does not include interaction models which are used to
model different scenarios. For example, in a disaster re-
sponse scenario[4], when a team member receives any new
task from the team leader, the team member can notify the
team leader whether he/she accepts or rejects the task, e.g.,
in volunteering and flexible responses, or the team member
must perform the task - as usually in a professional team. To
provide a customizable mechanism for implementing differ-
ent types of scenarios, we enrich the task model in [10] with
metadata to specify (i) whether a task receiver is allowed to
reject the task or not, (ii) a task can be assigned to multiple
members, and (iii) a task can be executed in synchronous
or asynchronous models (see Listing 2). This allows us to
configure the flow execution suitable for different scenarios
and teamwork.

<t a s k name="takePhoto" p r i o r i t y ="3" l o c a t i o n ="A">
<d e s c r i p t i o n>Take p h o t o s o f b u i l d i n g A</ d e s c r i p t i o n>
<r e q C a p a b i l i t y name="camera"></ r e q C a p a b i l i t y>
<e x e c u t i o n mode="synchronous" r e j e c t a b l e ="false" />

</ t a s k>

Listing 2. Metadata associated with a task

Writing a flow based on the above-mentioned language
might be enough for the end user. However, Vimoware also
supports the developer to write flows for different purposes.
Flows of activities are developed based on the POJO con-
cept by composing activities. We provide a VActivity

6The BeanFlow (http://servicemix.apache.org/beanflow.html) is imple-
mented in Java 1.5. We did a backport of the BeanFlow for Java 1.4.

7http://www.workpad-project.eu

class which extends TimeoutActivity class provided
by the BeanFlow. An activity described by VActivity
will accept a Task which captures information related to
a task described above. Given a Task, VActivity au-
tomatically assigns the Task to a resource or a particular
Task Handler based on plugins of task assignment models or
the actor invoking the engine can manually map the Task
onto a resource. As Vimoware aims at supporting differ-
ent scenarios where different task assignment models can
be applied, we provide a plug-in mechanism to support the
developer and the user to write and include various different
models for assigning tasks. Listing 3 outlines the generic in-
terface for task mapping plugins supplied by the developer.

p u b l i c c l a s s TaskMapping {
p u b l i c TaskMapping () ;
p u b l i c Task g e t T a s k () ;
p u b l i c vo id s e t T a s k (Task t a s k) :
p u b l i c S t r i n g [] f i n d S u i t a b l e R e s o u r c e () ;
p u b l i c S t r i n g a s s i g n T a s k (S t r i n g r e s o u r c e) ;

}

Listing 3. Interface for mapping task to re-
source (human or service)

Our objective is to provide customizable mechanism for
plugging in different mappings of tasks to resources (per-
son or service), and we test our mechanism with some
well-known task assignments, such as FIFO, as a proof-
of-concept. Potentially, the developers can write different
mappings, such as shown in [5], by utilizing various sources
of information given by Vimoware. To write a flow, the de-
veloper just uses the POJO concept introduced in the Bean-
Flow. A flow is constructed like a Java program by using
basic constructs, such as if, for and sequence of state-
ments. Listing 4 shows an example of a parallel construct
within a flow.

L i s t t A c t i v i t i e s = new A r r a y L i s t () ;
Enumera t ion i t e m s = n u l l ;
. . . .
/ / l i s t o f a c t i v i t i e s i n a p a r a l l e l c o n s t r u c t
whi le (i t e m s . hasMoreElements ()) {

f i n a l O b j e c t t a s k = i t e m s . n e x t E l e m e n t () ;
t A c t i v i t i e s . add (new V A c t i v i t y ((Task) t a s k)) ;

}
/ / s t a r t a j o i n t f l o w
J o i n A l l f low = new J o i n A l l (t A c t i v i t i e s) ;
f low . s t a r t () ;
f low . j o i n () ;

Listing 4. Example of a parallel construct

3.5 Task Handler

The Task Handler provides a set of operations, as meth-
ods of a Web service, for receiving and handling tasks from
and interacting with the Flow Execution Engine. As men-
tioned before, Vimoware supports both synchronous and

Figure 2. Interaction model between the Flow
Execution Engine and the Task Handler

asynchronous task execution models. Figure 2 describes
the interaction model between the Flow Execution Engine
and the Task Handler. The engine can send tasks to a Task
Handler. On receiving a new task, the Task Handler passes
the task to a corresponding pre-configured Task Executor.
Our goal is to support different ways to execute a task, such
as tasks can be executed automatically by software compo-
nents to implement different models or manually by human.
Therefore, we provide a generic interface for implementing
Task Executors. The Task Handler does not return the result
of the task to the engine. Instead, it returns the URI of the
result; the URI is obtained from the Artifact Management
which is a RESTful service providing two main operations
for putting and getting the result. Given the URI, the en-
gine or any application can obtain the result. This design is
made based on the fact that tasks might return multimedia
data as well as it allows us to share artifacts in mobile ad-
hoc network, e.g., by integrating the Artifact Management
with existing P2P file sharing systems.

4 Vimoware Applications

4.1 Mobile and Collaborative Services

To illustrate how the development of mobile and col-
laboration Web services is simplified with Vimoware, we
present an example of the Communication component
which is developed based on the Lightweight Web services
Middleware and utilizes the User and Team Management
module. It is realized as a Web service that makes use of
the subscription facility of the Web services middleware to
place messages which are being either sent immediately, if
the recipient is available, or are being postponed until he/she
reappears again. In the next code snippets we demonstrate
how such a behavior can be implemented in a simple way.

Listing 5 shows a simplified communication service
which offers a single operation for printing out messages
to the console. This service is described by its name
and namespace, and publishes additionally information
about it’s owner and the teams he/she belongs to (see
getAttributes()). The published operations and their
descriptions are retrieved via getOperationNames()

and getOperationDescription(). These methods
are mandatory and provide information which is being ad-
vertised by the middleware.

p u b l i c c l a s s IMServ ice ex tends AWebService {
p u b l i c IMServ ice () {

super (IMSERVICENAME, IMSERVICENAMESPACE) ;
}
p u b l i c H a s h t a b l e g e t A t t r i b u t e s () {

H a s h t a b l e a t t r i b u t e s =new H a s h t a b l e () ;
a t t r i b u t e s . p u t (TEAM, TeamManagement . getTeams ()) ;
a t t r i b u t e s . p u t (MEMBER, TeamManagement () . g e t U s e r ()) ;
/ / . . . a d d i t i o n a l a t t r i b u t e s
re turn a t t r i b u t e s ;

}
p u b l i c H a s h t a b l e g e t O p e r a t i o n D e s c r i p t i o n (

S t r i n g opera t ionName) {
H a s h t a b l e d e s c r i p t i o n =new H a s h t a b l e () ;
i f ("message" . e q u a l s (opera t ionName)) {

/ / u s e r d e f i n e d d e s c r i p t i o n s
d e s c r i p t i o n . p u t (TEXT, "...") ;
d e s c r i p t i o n . p u t (KEYWORDS, "...") ;

}
/ / . . . d e s c r i b e o p e r a t i o n s
re turn d e s c r i p t i o n ;

}
p u b l i c C o l l e c t i o n ge tOpera t i onNames () {

V e c to r o p e r a t i o n s =new Vec to r () ;
/ / p u b l i s h e d o p e r a t i o n s
o p e r a t i o n s . add ("message") ;
re turn o p e r a t i o n s ;

}
/ / Web s e r v i c e method
p u b l i c vo id message (S t r i n g msg) {

System . o u t . p r i n t l n (msg) ;
}

}

Listing 5. Instant Messaging Service

At the sender side, transferring a message consists of two
steps: finding the receiver endpoint and sending the mes-
sage. By utilizing the middleware facilities, a query used
to match services can easily be created for finding service
endpoints via their published attributes and descriptions, as
shown in Listing 6.

p u b l i c c l a s s IMQuery ex tends S e r v i c e Q u e r y {
S t r i n g memberName ;
S t r i n g teamName ;
p u b l i c IMQuery (S t r i n g memberName , S t r i n g teamName) {

t h i s . memberName=memberName ;
t h i s . teamName=teamName ;

}
p u b l i c boolean matches (S e r v i c e I n f o i n f o) {

t r y {
re turn teamName . e q u a l s (i n f o . g e t A t t r i b u t e (TEAM)) &&

memberName . e q u a l s (i n f o . g e t A t t r i b u t e (MEMBER)) &&
IMSERVICENAME . e q u a l s (i n f o . g e t I d ()) &&
IMSERVICENAMESPACE . e q u a l s (i n f o . getNamespace ()) ;

} catch (M i s s i n g S e r v i c e A t t r i b u t e E x c e p t i o n e) {
re turn f a l s e ;

}
}

}

Listing 6. Instant Messaging Service Query

This query object can be used to find a matching service im-
mediately or to subscribe and wait for a notification when
the service appears in the network. In Listing 7 a sub-
scription is done and notifications are caught by the method

notification(). The advantage of using subscriptions
is that if a recipient service is already known to exist the
notification will be fired immediately, which means that
there is not any particular delay compared to normal invo-
cations. However, if the recipient has become unavailable
meanwhile the invocation will be postponed until the recip-
ient reappears. This kind of communication provides a high
flexibility and convenience for asynchronous interaction in
collaborative work.

p u b l i c c l a s s IM implements S e r v i c e S u b s c r i b e r {
ServiceDB db=Middleware . g e t S e r v i c e D a t a b a s e () ;
/ / . . .
p u b l i c vo id sendTo (S t r i n g member , S t r i n g team) {

IMQuery query =new IMQuery (member , team) ;
db . s u b s c r i b e (query , t h i s) ;

}
p u b l i c vo id n o t i f i c a t i o n (S e r v i c e Q u e r y query ,

S e r v i c e I n f o i n f o) {
t r y {

i n f o . i n v o k e O p e r a t i o n (
"message" , new S t r i n g []{"hello"} , n u l l) ;

db . u n s u b s c r i b e (que ry) ;
} ca tch (E x c e p t i o n e) {

System . e r r . p r i n t l n ("Error: "+e . ge tMessage ()) ;
}

}
}

Listing 7. Sending Messages

4.2 Modeling and Executing Collabora-
tive Teamwork

For the ease of understanding how Vimoware supports
team members in different collaborative situations, let us
look at a simple scenario in a disaster response. The re-
sponse task flow, designed by the team leader, is shown in
Figure 3; this flow was described in detail in [5]. Based on
the middleware, our Flow Execution Engine automatically
detects all Task Handlers in a team. Figure 4 shows four
different members detected by the engine (see Section 5 for
our testbed).

Based on the available information, the engine can exe-
cute different tasks by assigning the tasks to corresponding
team members; task assignment can be done manually by
the team leader or automatically based on a task assignment
configuration (see Section 3.4). In this example, the en-
gine just uses a simple FIFO model to assign tasks to the
members who have no running tasks. As the above collab-
orative example is related to disaster response application,
a single task configuration file is loaded on all Task Han-
dlers with four set of options: show (show the description
and goals of the task), accept (if a member has checked
the task), reject (if a member has rejected the task), and
complete (if a member has completed the task).

For example, for the task Take photos of
burning buildings, the engine found Lukasz
as the member who can handle this task, and it sent this

Send data by GPRS/UMTS

Compile Questionnaire X about destination A Move to burning building location B

Move to destination A

Take photos of destination A

Evaluate Photos

are Photos OK?

No

Send data by GPRS/UMTS

Evaluate how many stories burned

Take photos of burning buildings

Take position at location XYZ

Take photos of building from location XYZ

Evaluate Photos

are Photos OK?

No

Figure 3. An illustrating flow in a disaster re-
sponse [5]

Figure 4. Detecting existing team members

task to Lukasz’s Task Handler. Figure 5 shows the list of
tasks that Lukasz has received and performed. The team
leader was notified when any member accepted or rejected
a task and a team member can inform the leader when the
member finishes the task and the result of the task can be
received via the Artifact Management. The engine also logs
all interactions for further analysis.

5 Performance Analysis of Vimoware

As Vimoware supports Web services on mobile devices,
it is important to examine its performance in current mobile
devices to prove its applicability. Our testbed consists of
2 HTC Tytn II PDAs (Qualcomm MSM7200TM, 400MHz,
128 MB RAM, Windows CE 6.0, 2GB external MicroSD),
3 HP iPAQ 6915 PDAs (Intel PXA 270 416 MHz, 64 MB
RAM, Windows CE 5.0, 2GB external MiniSD), a Dell XPS
M1210 (Intel Centrino Duo Core 1.83 GHz, 2GB RAM,
Windows XP) notebook, and a Dell D620 (Intel Core 2 Duo
2GHz, 2 GB RAM, Debian Linux) notebook. For running
Java applications on the PDAs we used the IBM J9 imple-
mentation of the J2ME CDC 1.1 profile. Our tests were fo-
cused on the PDAs and the overhead caused by Vimoware.

First of all, it is important to state that even in the idle

Figure 5. Interface of the Task Handler

state, without Vimoware, the iPAQ uses 10-15% of the CPU
and 18 MB of memory. Thus, approximately 30 MB are
left for client applications. We noticed that the plain virtual
machine of J9 uses 5 MB. The speed of the wireless link
in our testbed rarely exceeded 300 KBit/s and the network
had a high packet loss rate. These factors characterize the
highly unstable ad-hoc network in our experiences.

The system load caused by Vimoware depends heavily
on the applications running atop it. This includes, e.g., the
number and complexity of deployed services, the number
of clients and frequency of invocations, and the complexity
of executed workflows. Hence, we examined only the per-
formance of the core components. The middleware, includ-
ing a running lightweight Jetty HTTP servlet container, con-
sumes less than 2 MB of memory and uses only a marginal
amount of the CPU. Using the Dell D620 to perform 1000
sequential invocations of a dummy service on the iPAQ,
which delivered simple data (wrapped in a SOAP envelope
of 2.5 KB), we obtained the following results:

sync async
average data size 2.7 KB 5.3 KB
average response time 74 ms 210 ms
average CPU load 50% 30%
average network traffic 296 Kbit/s 204 Kbit/s

Given that the network bandwidth was approximately
300 KBit/s and no other applications used the network, the
bandwidth utilization in our experiments mostly reached the
limit. For the synchronous invocation the transferring time
of the request and response messages was approx. 95% of
the whole response time. For the asynchronous invocation,
which causes the double amount of traffic, due to the sep-
arately incoming response message, the transferring time
used only approx. 70% of the response time. This was
caused by the delay in the internal handling of asynchronous
invocations in the middleware. Another observation was the
CPU load which increased linearly with the network traffic.
Because of no calculations performed, the CPU load was
obviously caused by the operating system due to the trans-

fer, encryption and decryption of the wireless messages.
Let us consider the impact of packet loss on the adver-

tisements in the tests by examining the time taken to de-
tect new services in the testbed. In Vimoware advertise-
ments are relied on multicast and sent out in flexible inter-
vals which adapt to the deployment times of the services.
These intervals range from 1 second, which is the prede-
fined minimum interval, to a configurable maximum inter-
val, which was set to 5 seconds in our test cases. In the
ideal scenario, where no packet loss exists at all, new ser-
vices will be advertised within one second which means that
the expectation value for the detection by the other peers
is half a second plus the network delay for the exchanged
packets. However, in cases of packet loss, the detection of
new services for the other peers was delayed to the next
advertisement round. In our experiments, which were con-
ducted in an unstable wireless network, we experienced that
depending on the loss rate 70 − 90% of the services could
be detected after approx. 0.6 seconds, while for the rest it
took around 5.7 seconds. Such a delay of the detection is
acceptable in real scenarios with such a high rate of packet
loss.

6 Conclusion and Future Work

In this paper, we introduced Vimoware for supporting
end-users to conduct collaborative work and developers to
develop Web services and collaborative tools on mobile
devices. Vimoware is Web services-based and consists
of components which can be customized and programmed
for different tasks. We have presented different applica-
tions, with the focus on collaborative work, to demonstrate
the usefulness of Vimoware. We are currently integrating
Vimoware with advanced task assignment and adaptation
like in [5] and data sharing in the framework of the EU
WORKPAD project. We are extending Vimoware to cover
also RESTful services and to address reliability and check-
pointing issues to deal with the service disruption problem.

References

[1] Lime: A middleware for physical and logical mobility. In
ICDCS ’01: Proceedings of the The 21st International Con-
ference on Distributed Computing Systems, page 524, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[2] E. Avilés-López and J. A. Garcı́a-Macı́as. Providing service-
oriented abstractions for the wireless sensor grid. In C. Cérin
and K.-C. Li, editors, GPC, volume 4459 of Lecture Notes
in Computer Science, pages 710–715. Springer, 2007.

[3] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghu-
nath. Web services on mobile devices - implementation and
experience. wmcsa, 0:100, 2003.

[4] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Sal-
vatore, G. Vetere, S. Dustdar, L. Juszczyk, A. Manzoor, and

H.-L. Truong. Pervasive software environments for support-
ing disaster responses. IEEE Internet Computing, 12(1):26–
37, 2008.

[5] M. de Leoni, M. Mecella, and G. D. Giacomo. Highly dy-
namic adaptation in process management systems through
execution monitoring. In G. Alonso, P. Dadam, and
M. Rosemann, editors, BPM, volume 4714 of Lecture Notes
in Computer Science, pages 182–197. Springer, 2007.

[6] H. D. H. Duong, C. Melchiorre, E. M. Meyer, I. Nieto,
M. Arrufat, P. Pelliccione, and F. Tastet-Cherel. Popeye: a
simple and reliable collaborative working environment over
mobile ad-hoc networks. In The 3rd International Con-
ference on Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom 2007), number
1-4244-1317-6. IEEE Computer Society, 2007.

[7] G. Hackmann, M. Haitjema, C. D. Gill, and G.-C. Roman.
Sliver: A bpel workflow process execution engine for mo-
bile devices. In A. Dan and W. Lamersdorf, editors, ICSOC,
volume 4294 of Lecture Notes in Computer Science, pages
503–508. Springer, 2006.

[8] V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chi-
bout, N. Lévy, and A. Talamona. Developing ambient intel-
ligence systems: A solution based on web services. Autom.
Softw. Eng., 12(1):101–137, 2005.

[9] Y.-S. Kim and K.-H. Lee. A light-weight framework for
hosting web services on mobile devices. In ECOWS ’07:
Proceedings of the Fifth European Conference on Web Ser-
vices, pages 255–263, Washington, DC, USA, 2007. IEEE
Computer Society.

[10] M. de Leoni, A. Marrella, M. Mecella. D2.1
The WORKPAD Architecture, November 2007.
WORKPAD Consortium. http://www.workpad-
project.eu/documents/D2.1v1 v1.0.pdf.

[11] S. Oh, G. C. Fox, and S. Ko. Gmsme: An architecture for
heterogeneous collaboration with mobile devices. In The
Fifth IEEE International Conference on Mobile and Wire-
less Communications Networks (MWCN 2003) Singapore in
September / October, 2003, September 2003.

[12] L. Pajunen and S. Chande. Developing workflow engine
for mobile devices. In EDOC ’07: Proceedings of the 11th
IEEE International Enterprise Distributed Object Comput-
ing Conference, page 279, Washington, DC, USA, 2007.
IEEE Computer Society.

[13] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi: Dis-
tributed applications through software modularization. In
R. Cerqueira and R. H. Campbell, editors, Middleware, vol-
ume 4834 of Lecture Notes in Computer Science, pages 1–
20. Springer, 2007.

[14] V. Sacramento, M. Endler, H. Rubinsztejn, L. Lima,
K. Goncalves, F. Nascimento, and G. Bueno. Moca: A mid-
dleware for developing collaborative applications for mobile
users. Distributed Systems Online, IEEE, 5(10):2–2, Oct.
2004.

[15] E. Zeeb, A. Bobek, H. Bohn, S. Pruter, A. Pohl, and
H. Krumm. WS4D: SOA-Toolkits making embedded sys-
tems ready for Web Services. In Open Source Software and
Productlines 2007 (OSSPL07), Limerick, Ireland, 2007.

