
Self-Managing Sensor-based Middleware for Performance Monitoring and Data
Integration in Grids ∗

Hong-Linh Truong
Institute for Software Science,

University of Vienna
truong@par.univie.ac.at

Thomas Fahringer
Institute for Computer Science,

University of Innsbruck
tf@dps.uibk.ac.at

Abstract

This paper describes a sensor-based middleware for per-
formance monitoring and data integration in the Grid that
is capable of self-management. The middleware unifies both
system and application monitoring in a single system, stor-
ing various types of monitoring and performance data in
decentralized storages, and providing a uniform interface
to access that data. We have developed event-driven and
demand-driven sensors to support rule-based monitoring
and data integration. Grid service-based operations and
TCP-based data delivery are exploited to balance trade-
offs between interoperability, flexibility and performance.
Peer-to-peer features have been integrated into the mid-
dleware, enabling self-managing capabilities, supporting
group-based and automatic data discovery, data query and
subscription of performance and monitoring data.

1. Introduction

Grid monitoring is a crucial task as it provides perfor-
mance and monitoring data for several functions such as
performance analysis and tuning, performance prediction,
fault detection, and scheduling. Grid monitoring middle-
ware has to support monitoring of disparate resources and
applications and to integrate performance and monitoring
data from many sources.

To monitor various resources in Grids, a large num-
ber of monitoring sensors needs to be developed and de-
ployed in different domains. In our view, such sensors are
very similar to those in sensor networks [2, 30] in which
the sensor follows resource constraints such as communi-
cation (e.g., sensors must use limited bandwidth), compu-
tation (e.g., sensors have to use limited computing power
and memory sizes). These constraints limit data processing

∗ This research is supported by the Austrian Science Fund as part of the
Aurora Project under contract SFBF1104.

capability of a sensor thus normally the sensor sends col-
lected data to a sensor manager. Also because resources on
which sensors execute and resources sensors monitor may
join and leave, the structure of sensor networks is frequently
changed. Therefore, sensors and sensor managers must op-
erate in self-managed, decentralized manner.

Most existing Grid monitoring tools have monitoring
sensors operating in distributed manner and the network
connecting sensors to sensor managers exploits the various
types of communication such as shared memory [7], TCP
[31], UDP [9], multicast [23]. However, these tools do not
focus on the interoperability among sensor networks and
the self-organization within them, and support limited types
of sensors. Mostly they support event-driven sensors (e.g.
in [7, 23, 31]). Sensor managers are configured into tree of
point-to-point connections (e.g. in [7, 23]); or directory ser-
vices, supporting discovery of data and sensor managers, do
not interact with each other (e.g. in [31]).

Lack of interoperability among sensor networks and lack
of self-organization within them have hindered distributed
data discovery, data query and subscription (DQS) in Grid
monitoring tools, not to mention fault-tolerance. Currently
data discovery and DQS are mostly based on hierarchical
or centralized models, as studied in [17]. But such mod-
els do not work well with more dynamic, large-scale dis-
tributed environments in which useful information services
may not be known in advance. As suggested, e.g. in [27],
and demonstrated, e.g. in [28, 19], the super-peer model and
service group, powered by peer-to-peer (P2P) computing
[24], have the advantages in solving the above-mentioned
issues, but have not been exploited in Grid monitoring mid-
dleware. Moreover, most Grid monitoring tools are not ca-
pable of self-configuration and -reconfiguration under vary-
ing conditions which occur frequently in the Grid. Auto-
nomic computing [21] which aims to cope with the unpre-
dictable conditions of systems should be exploited.

Integrating performance and monitoring data in Grids is
crucial because it is likely that no single tool will be de-
ployed to provide performance data for all Grid sites and we

need to utilize and analyze monitoring data across multiple
Grids at the same time. Seamlessly integration and highly
interoperability require well-defined interfaces, rich expres-
sive customized data representations, and more power to
process and store data. However, involving more function
and processing results in slower performance. Therefore,
we need to balance tradeoffs between interoperability and
performance. Using Grid/Web service-based operations and
XML data supports highly interoperability among different
tools, easily customizing collected data, however, the per-
formance considerably suffers when data is delivered via
Web service operations with SOAP [14]. On the other hand,
(parallel) TCP-based data streams can be utilized to achieve
higher performance in delivering data in Grids [3]. Current
Grid monitoring tools exploit either Grid service-based op-
erations or TCP-based streams.

In this paper, we describe our first step in exploiting, de-
veloping and incorporating self-managing and P2P features
into a sensor-based middleware for Grid monitoring and
performance data integration within the SCALEA-G system
[29]. The rest of this paper is organized as follows: Section
2 outlines our sensor-based architecture. Section 3 discusses
our sensor model for performance monitoring and data in-
tegration. We then describe self-managing capabilities in
Section 4. We discuss DQS in Section 5. Hybrid commu-
nication based on service-based operations and TCP-based
streams are presented in Section 6. Section 7 illustrates ex-
periments and examples. We present some related work in
Section 8 before presenting our conclusions in Section 9.

2. Sensor-based Middleware Overview

Figure 1 depicts the architecture of sensor-based middle-
ware implemented in SCALEA-G with the main Grid ser-
vices named Directory Service, Sensor Manager Service,
Client Service. These services, based on OGSA [15] and
organized into service groups, support managing, storing
and providing various types of performance and monitor-
ing data measured and gathered by an extensive set of dis-
tributed sensors. They are capable of self-management and
can collaborate in serving the requests from clients.

Directory Service (DS) stores information (e.g. schema,
availability) about performance and monitoring data, SM
and other services of the middleware. Sensor Manager
Service (SM) manages sensors and data collected and gath-
ered by sensors, and provides these data to consumers via
DQS operations. An SM can interact with several sensor in-
stances executed in distributed machines; sensor instances
will send their collected data to SMs. SM uses XML con-
tainers to store performance and monitoring data. Client
Service (CS) provides interfaces for administrating activ-
ities of SMs, querying data registered in DS, subscribing
and/or querying data stored in SMs, etc.

SM and DS are organized into two types of groups (com-
munities): SM Group and DS group. Within a Virtual Or-
ganization (VO) [16] there could be several SM groups. A
DS group is deployed for multiple VOs; each VO provides
a number of DSs which form the DS group. DSs register
their information with a set of Registry Services. By using
CS, the client of the monitoring middleware, exploring the
monitoring service through existing Registry Services, can
find DSs, SMs and then access performance and monitor-
ing data. In our framework, we reuse existing implementa-
tion of Registry Service. However, DS and SM are specially
designed for performance and monitoring purpose.

3. Sensor-based Model for Performance Mon-
itoring and Data Integration

3.1. Monitoring Sensor Conceptualization

Sensors are used to capture performance data and to
monitor resources including computational and network re-
sources, and Grid applications. Every sensor monitors one
or more resources (e.g. machine, network, Grid applica-
tions) and provides measurement data of the monitored
resources; each resource is determined by a unique re-
source identifier (ResourceID) and measurement data
is described in XML. Each sensor presents a sensor pro-
file which describes the sensor, e.g. unique sensor iden-
tifier (SensorID), sensor description and lifetime, how
to control the sensor (e.g. calling parameters) and infor-
mation about the provided sensor data (e.g. XML schema
of data). How a sensor works is described by the sensor
model, e.g. event-driven or demand-driven, or rule-based
monitoring. For measurement data, the tuple (SensorID,
ResourceID) is unique that is used to determine monitor-
ing data of a resource.

3.1.1. Event-driven and Demand-driven sensors Sen-
sors in most existing Grid monitoring tools are based on
event-driven model; a sensor measures and collects data
based on events, mostly time-based event. Event-driven sen-
sors collect the data and store the collected data when an
event happens at a time, without consideration at that time
the data is needed. Demand-driven sensors collect and pro-
vide data only when receiving requests. Demand-driven
sensors are particularly useful for integrating data provided
by other sources. To realize the importance of both types
of sensors, our middleware supports both event-driven and
demand-driven sensors.

3.1.2. System Sensors and Application Sensors We dis-
tinguish two types of sensors: system sensors and applica-
tion sensors. System sensors are used to monitor and mea-
sure the performance of Grid computational services (e.g.
computational hosts) and network services (e.g. network

VOBVOA

Registry Service

System
Sensors

Application
Sensors

XML
Data ContainerSystem

Sensors

DS

SM
SM

Client Service
DS: Directory Service
SM: Sensor Manager Service

Service-based operation

Service group

SM

SM DS

DS
DS

SM

Registry Service

SM

System
Sensors

Application
Sensors

TCP-based Data stream

Application
Sensors

Figure 1. High-level view of self-managing sensor-based middleware.

Fuzzy bandwidth= new Fuzzy(0,5) {
Shoulder VERYLOW =new Shoulder(0,1,ARL.Left);
Triangle LOW =new Triangle(1,1.5,2);
Trapezoid MEDIUM =new Trapezoid(2,2.2,2.8,3);
Triangle HIGH = new Triangle(3,3.5,4);
Shoulder VERYHIGH=new Shoulder(4,5,ARL.Right);
};

Figure 2. A fuzzy variable describing status
of the bandwidth of a network path.

connections). Application sensors embedded in Grid appli-
cations are used to measure execution behavior of code re-
gions and to monitor user-defined events in these applica-
tions. The two types of sensors are treated basically the
same. They, however, differ in control and security model.
This distinction allows us to simplify the management of
two different types of sensors.

3.2. Rule-based Monitoring

Different from event-driven sensors in existing Grid
monitoring tools, our event-driven sensors support rule-
based monitoring. Instead of sending monitoring data
it collects, the sensor uses rules to analyze monitor-
ing data, and reacts with appropriate functions.

We use ABLE Rule Language (ARL)[11], which sup-
ports if-then-else rules, when-do pattern match rules, etc.,
to define rule sets for sensors. ABLE toolkit [10] provides a
wide range of inference engines to process the ARL rule-

sets, e.g. boolean forward/backward chaining, fuzzy for-
ward chaining, pattern match engine. For example, to de-
fine a fuzzy variable for monitoring bandwidth of a network
path in the Austrian Grid [4], we used Iperf [20] to test the
bandwidth, and obtained the maximum observed bandwidth
which never exceeds 5 MBytes/s. We divided the bandwidth
into 5 states by using fuzzy logic as shown in Figure 2.
Based on this fuzzy variable, we define a rule set, presented
in Figure 3. With this rule set, depending on the status of
bandwidth of the network path, e.g. very low, low or very
high, the sensor will react with appropriate functions.

S1: bandwidth = getBandwidth();
R_VERYLOW: if (bandwidth is VERYLOW) {

doReactionWhenBandwidthVeryLow();
}

R_LOW: if (bandwidth is LOW) {
doReactionWhenBandwidthLow();

}
R_VERYHIGH: if (bandwidth is VERYHIGH) {

doReactionWhenBandwidthVeryHigh();
}

R_OTHER: doNormalReaction();

Figure 3. Example of rule set for bandwidth of
a network path.

In the case where rules are not specified when a sen-
sor is instantiated, the sensor instance will work as in the
normal model (e.g. sending monitoring data when the event

happens). Rule-based monitoring approach brings many ad-
vantages as it allows us to easily customize the monitoring
actions. In addition, we can implement autonomic features
that consider changing systems as an effect of the monitor-
ing behavior. However, there is no common rule set for all
resources even those monitored by a single sensor. Rules
have to be built for each resources based on best practices.

3.3. Performance Data Integration by Using
Demand-driven Sensor

Demand-driven sensor

Parsing
Query

Querying
Data

Provider-
specific queryQuery in

XPath

Provider-
specific data

Information
Provider

XML Data
Building

XML Data

Requester

Parsing
Results

XML
Schema

Figure 4. Using a demand-driven sensor to
integrate performance data.

Besides using demand-driven sensors to monitor re-
sources, we also exploit them for data integration. Fig-
ure 4 presents the model of using demand-driven sen-
sor for integrating performance and monitoring data
from other providers, e.g. MDS (Monitoring & Direc-
tory System) [12], NWS (Network Weather Service)
[31], Ganglia [23]. To access different providers, we de-
velop different demand-driven sensors taking the role of
data mediators. As shown in Figure 4, when the sensor re-
ceives an XPath-based request from a requester, based on
XML schema, it parses the request, extracting informa-
tion of the request such as tag names with their associated
attributes. The sensor then constructs a provider-specific re-
quest, calling the information provider with that re-
quest, and obtaining the result in provider-specific format.
The sensor then parses this result and builds a new re-
sult described in XML. The XML-based result will be
sent back to the requester. With this approach, other ser-
vices use the same mechanism to access data in other
providers as in our service.

When a demand-driven sensor is activated, the sensor re-
turns information about resources whose monitoring data it
can collect to the SM which in turn publishes the informa-
tion to DSs. With that information, consumers can create
requests for monitoring data. The requester only knows the
XML schema of requested data in order to specify the re-

quest. The rest, where the requested data locates and how to
get the requested data, are done by the middleware.

4. Self-Managing Services

4.1. Service Group

Each SM or DS group has a set of operations associ-
ated with the group. These operations address (i) how the
requests for performance data are handled, and (ii) how the
requested data are delivered. The real number of members
of a group is dependent on the actual deployment which can
dynamically change.

The group operations associated with SM group are
group-based DQS. One member in the group can act as a
mediator for other members. Given a DQS request, an SM
can provide requested data even though its storage does not
contain the requested data by collaborating with other SMs
in the same SM group. For a DS group, the group-based op-
eration supports the discovery of data providers. Given a re-
quest to find the provider of a needed data type, DSs in a
DS group can cooperate in determining the data provider.

4.2. Data Dissemination and Maintenance

Instances of sensors are executed in monitored nodes and
then send collected data to SM which in turn stores the data
into its data container. SM automatically publishes charac-
teristics of received data to a set of DSs, not to a single DS.
Each SM keeps its group name and a list of DSs to which it
publishes data. The list of DSs can be dynamically changed
over the time. Each SM keeps a list of Registries where it
can search information about DSs. When an SM is created,
the SM gets a maximum number p of DSs it should regis-
ter with and a pre-defined updated interval t seconds. In the
cycle of t, SM looks up Registries to get n DSs. The SM
then selects min(n,p)DSs from n ones. SM then dissem-
inates information about data it stores to its selected DSs.

A DS can publish information about itself to multiple
Registries. In the current implementation, one DS belongs
to a DS group. A DS keeps a list of Registries with which
it registers its information. A DS maintains a list of DSs in
its groups; these DSs are its edge peers. Repeatedly with
predefined tr seconds, the DS searches Registries for up-
to-date information about its edge peers. DS also performs
ping test to its edge peers to check whether its edge peers
are alive. To make sure that it provides the updated infor-
mation, the DS checks its data in the database periodically
based on a pre-defined td seconds. During the checking pro-
cedure, DS invokes ping operation of its registered SMs.
If a ping to an SM failed, DS assumes that the SM is out
of service and then DS removes all information associated
with that SM. In the cycle of tu seconds, DS publishes its in-

formation to Registries. Before DS finishes its execution, it
unregisters its information from the Registries.

The availability of Registries, DSs and SMs is the key is-
sue to fault-tolerance of the middleware. Instead of storing
data into a centralized SM, collected data are stored over a
set of distributed SMs, thus guaranteeing that a failure of
one or many SMs does not bring the whole service down.
Our SM publishes its information to multiple DSs, thus, not
only data is widely disseminated and highly available but
also it makes sure that if a DS is failed to serve requests
from clients, still other DSs can do.

4.3. Discovery of Data Providers

Any client that wants to subscribe or query perfor-
mance data of a resource has to locate a corresponding SM
which provides the data. The discovery of data providers
is based on requests containing tuples of (SensorID,
ResourceID). A tuple (SensorID, ResourceID)
is unique that determines monitoring data of a resource.
Each DS provides a set of operations for other ser-
vices to retrieve and search its registered data. With
(SensorID, ResourceID), a client can invoke oper-
ations of a DS to discover data providers registered with
that DS. (SensorID, ResourceID) can also be speci-
fied in data content filters of DQS requests.

Data discovery can also be done automatically by CS
thus a client does not need to directly interact with DSs.
CS parses client requests to get detailed elements such as
SensorID, ResourceID. A list of DSs will be obtained
from given Registries. The request is then sent to DSs which
in turn cooperate in locating SMs by using group-based op-
erations. When a DS cannot locate the provider of the re-
quested data, it forwards the request to all its edge peers,
otherwise it just sends back the results. These edge peers
conduct the search and return the result to the peer who calls
them. The DS then sends back the result to the requester. A
parameter is used to control the request forwarding policy.

5. Data Query and Subscription

5.1. Query and Subscription Operations

SM provides a set of service operations for other services
to subscribe and query data available in the SM, to unsub-
scribe and renew existing subscriptions. DQS requests con-
sist of information about sensors and resources, data con-
tent filter, subscription duration (for subscription requests),
etc. Content filters are described in XPath that can be eas-
ily written based on XML schemas of data provided by sen-
sors. By using operations of SM, CS supports both one-to-
one and one-to-many DQS requests. In one-to-one mode, a
subscription or query request is used to obtain performance

data provided by a single SM whereas in one-to-many mode
a client subscribes or queries data from many SMs by using
a single subscription or query request.

5.2. Automatic Query and Subscription

Clients can also perform DQS automatically without
knowing where the requested data is located. The content
filter, specified in DQS requests, can contain characteristics
of data such as SensorID, ResourceID. When receiv-
ing a request from clients, CS processes the content filter
and obtains (SensorID, ResourceID) information.
It then searches DSs in order to find SMs that provide the
requested data; the search is mentioned in Section 4.3. CS
then sends requests to SMs which provides the requested
data. As a result, the client does not necessary know where
the monitoring data is stored. If DQS requests contain in-
formation about sensors and monitoring resources, the mid-
dleware can automatically handle DQS requests.

The middleware provides APIs for clients to conduct au-
tomatic DQS. The APIs hide all the lower-level details of
the middleware. Figure 5 presents a simple code which
is used to query available monitoring data of CPU us-
age of the machine schareck.dps.uibk.ac.at.
The ConsumerService class is responsible for pro-
cessing DQS tasks. The client knows a Registry Ser-
vice and indicates the service handle of Registry Service
(variable handle), specifies the content filter (vari-
able content filter), and calls the CS. The resulting
data is retrieved through a DataSensorReader.

5.3. Group-based Data Query and Subscription

An SM can act as a mediator for other services to ac-
cess data provided by other SMs in its group. When a client
sends a DQS request to an SM, if the SM does not pro-
vide the requested data, SM will search its registered DSs to
find SMs that can serve the request. If the search is success-
ful, the SM acts as a super-peer between the data requester
and the SM provider by forwarding the request to the SM
provider. The provider first tries to communicate with the
requester. If successful, the provider sends requested data
to requester, otherwise it sends data back to the caller. If an
SM receives request from another SM, it will not propagate
the request when it cannot serve the request. In this model,
an SM can take the role of the super-peer in either/both for-
warding requests or/and delivering data. Any SM may be-
come a super peer at the runtime.

5.4. Notification

In all mentioned DQS, the client conducts DQS based
on available information about monitoring data published

ConsumerService cs = new ConsumerService();
cs.activateUpDataService();
String handle="http://bridge.vcpc.univie.ac.at:8765/ogsa/services/

samples/registry/VORegistryService";
String content_filter="/sensordata[@SensorID=\"host.cpu.used\"]

[@ResourceID=\"schareck.dps.uibk.ac.at\"]";
SensorDataReader out =cs.distributedQueryDataWithRegistry(handle, content_filter);

Figure 5. Example of querying monitoring data by using information from Registry Service.

in DS. However, there are many cases in which the client
wishes to subscribe for a notification of interesting data
which is not available at the time of the subscription. For
example, the client may inform the monitoring system that
it wishes to receive execution status of activities of a work-
flow application being executed by the workflow enactment
before it submits the workflow application. We call this type
of data subscription notification subscription.

DS and SM provide two service opera-
tions named subscribeNotification,
unsubscribeNotification for subscribing and un-
subscribing notification data. DS and SM use a table to keep
existing subscriptions of notifications. The client can sub-
scribe the notification on a specific SM or on the whole
monitoring system. If the client wishes to receive notifi-
cation message from a specific SM, the client can regis-
ter with the SM by calling subscribeNotification
operation of that SM. In this case, the client will not re-
ceive notification data collected by other SMs even though
that data satisfies the client’s request.

In our framework, SM gathers and stores performance
data collected from sensors. However, there is no mech-
anism to determine SMs which are capable of distribut-
ing a specific notification data because SMs and sensors
can enter and exit the monitoring system arbitrarily. The
client may only know of a few services to which it con-
tacts, e.g. a DS or an SM, but it wishes to receive a notifi-
cation without knowing the service which is capable of pro-
viding this notification. We support this type of notification
subscription by implementing a global notification mecha-
nism. By using the CS, the client registers with a set of DSs
{DS1, DS2, · · · , DSn} that it knows, and indicates infor-
mation about interesting data which it wishes to be noti-
fied. Each DSi updates the table containing subscriptions of
notifications and then calls subscribeNotification
operation of registered {SMi1, SMi2, · · · , SMim} in its
directory with that indicated information. Similarly, when
a new SM registers with a DS, the DS calls that oper-
ation of the SM with existing subscriptions in its table.
When receiving a subscribeNotification call, the
SM updates a table containing tuples of (ResultID,
Subscription). Whenever SM receives data satisfying

notification constraint, SM delivers the data to CS. If SM
cannot deliver a notification to a client, the SM will remove
the subscription of that notification from the table. To un-
subscribe a notification, CS sends unsubscription requests
to DSs which in turn pass these requests to SMs.

6. Service-based Operations and TCP-based
Data Delivery

Each SM can be viewed as a peer in a P2P network. It,
however, also is a Grid service. In most P2P systems, a peer
processes request and delivers data via TCP/UDP channels.
Our peer is unique as we try to integrate both concepts,
P2P model and Grid service, into a single peer. A peer pro-
vides Grid service operations for other peers and high-level
clients to access and control its service. However, peers use
TCP-based streams to deliver monitoring data, thus data de-
livery among peers can be easily implemented and it gives
a higher performance for data delivery.

Figure 6 depicts how requests for data and the requested
data are handled. CS or SM requests data through Grid
service-based invocations whereas requested data is deliv-
ered via TCP-based streams. Data Sender, Data Receiver
and Data Relay of SM and CS are responsible for send-
ing, receiving, and relaying performance data, respectively.
An SM has only one connection to a consumer for deliver-
ing all kinds of subscribed data. The connection is created
at the first subscription and will be freed after pre-defined
tδ seconds since the last subscription finishes. For deliver-
ing resulting data of queries, an on-demand connection will
be created and freed when the delivery finishes. A request
for data always specifies a unique ResultID which is as-
sociated with requested data satisfying the requested con-
straints. SM uses ResultID to route requested data to the
destination while CS uses ResultID to aggregate results
of the same request delivered from multiple SMs.

In our middleware, monitoring data is described in XML.
While using XML to describe performance and monitor-
ing data provides a widely accessible interface and simpli-
fies the interoperability among services, XML data grows
in size. To reduce the size of monitoring data transfered, we
compress the data before sending it over the network.

SM1
Data Sender

SM2
Data Sender

SM5
Data Receiver

CS
Data Receiver

SM3
Data Relay

SM5
Data Sender

SM4
Data Receiver

SM4
Data Sender

Data requests through
service-based invocations
Requested data flow via
TCP-based connections

Figure 6. Service-based invocations and
TCP-based data streams.

In Table 1, we monitored the data size and transfer time
of CPU usage data from an SM in UIBK domain to a client
in PAR domain (see Section 7 for more detail about the
experimental test bed); transfer time is the average value
of observed values at different times. In our measurement,
compression ratio, compression and decompression time
are all dependent on the data size and the type of monitoring
data. When the data size is large, compressing data reduces
the data size substantially which improves both data transfer
time and throughput significantly. For most types of moni-
toring data supported, when the size of data to be transfered
is less than 512 bytes, the compression does not achieve a
better transfer time and throughput because the compres-
sion ratio is close to 1. Therefore, we develop a simple self-
adaptive mechanism for deciding whether the resulting data
should be compressed before sending to the requester that is
based on the size of delivered data. If the data size is larger
than sδ, the data will be compressed, otherwise data is trans-
fered as normal. Currently, sδ is set to 512 bytes.

7. Experiments

Our middleware is implemented based on GT 3.2 [18],
Java Cogkit [22], with various other libraries. We have de-
ployed our sensor-based monitoring infrastructure on three
domains: VCPC (University of Vienna), UIBK (University
of Innsbruck) and GUP (Linz University) in the Austrian
Grid [4]. Figure 7 presents our experimental test-bed. We
set up three SM groups named SM-VCPC, SM-UIBK and
SM-GUP in VCPC, UIBK, GUP, respectively. We establish
a DS group that includes one DS in VCPC (DS-VCPC) and
one in UIBK (DS-UIBK). Each DS stores data in a Post-
greSQL database server which can be executed on the same
domain (e.g. in case of DS-UIBK) or different one (e.g. DS-
VCPC). SM stores collected data into XML containers im-
plemented atop Berkeley DB XML [1]. There are two Reg-
istries in VCPC and UIBK. A client is deployed in PAR do-

Data size Tf Tfcd r Tc + Td

(bytes) (ms) (ms) (ms)
588 110 109 1.863 2

1560 119.33 115.24 4.537 2.11
3019 120.45 114.85 8.137 2.19
3991 120.68 114.68 10.207 2.44
5449 129.2 116.15 13.257 2.53
6421 130.45 116.05 14.967 2.73
7879 131.63 117.85 17.316 2.76
8851 136.28 117.48 18.712 3.08

10309 141.39 117.68 20.742 3.09
11281 143.25 117.93 21.949 3.22
12739 147.83 117.5 23.548 3.42
13711 149.75 117.25 24.355 3.67

Table 1. Example of transfer time without
compression (Tf), transfer time of com-
pressed data (Tfcd), compression ratio (r),
compression and decompression time (Tc +

Td) for CPU usage data.

main (in University of Vienna). All DSs and Registries can
be accessed by all SMs and clients, but only SMs executed
on bridge/VCPC, olperer/UIBK, iris/GUP can di-
rectly deliver data to the client executed on kim/PAR.

gsr402/VCPCgsr401/VCPC
SM SM

gescher/VCPC
SM pghost/PAR

PostgreSQL

ochsner/UIBK

SM

hafner/UIBK

SM

schareck/UIBK

SM

DS: Directory Service
RS: Registry Service
SM: Sensor Manager
Service

olperer/UIBK

DS RS

bridge/VCPC

DS RS

kim/PAR

Client
SM

SM

iris/GUP

SM

pan/GUP

SM

pc6163-c703/UIBK

PostgreSQL RS

Figure 7. Experimental test-bed.

7.1. Performance Analysis of Data Discovery

To evaluate the performance of the discovery of data
providers within the test-bed, we setup two modes. In one-
to-one mode, a client sends requests directly to DS which
in turns finds data providers of the requested data. If the DS

cannot locate the data provider, it will not send the request
to other DSs in the same group. In group mode, if the DS
cannot answer the request, it sends the request to its edge
peers in its group asking for the location of data providers.
In both modes, a client in PAR domain sends requests to
DSs at the same time.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(m

s)

Test cases

Ping latency to DS-UIBK
One-to-one search on DS-UIBK

Group search on DS-UIBK
Ping latency to DS-VCPC

One-to-one search on DS-VCPC
Group search on DS-VCPC

Figure 8. Ping latency and search time.

Figure 8 presents search time in one-to-one and group
mode, and latency of ping operation. Overall for both DSs,
the ping latency is larger than a half of the time spent on the
search for data providers in one-to-one mode, suggesting
that the time DS spends in searching its database is small
when compared with ping latency. A considerable portion
of time spent in the discovery process is service-operation
latency from client to service. In our implementation, for
group mode, DS creates a new thread which calls an edge
peer when the DS cannot locate the data provider. Search
time in group mode nearly doubles that in one-to-one mode
partially because at the same time a DS has to fulfill a re-
quest from an edge DS and to forward a request to its edge
DS. The latency from client domain (PAR) to DS-UIBK
is higher than that to DS-VCPC, also DS-VCPC is exe-
cuted on an SMP machine where DS-UIBK is executed on
a single CPU machine. Therefore, conducting group-based
and one-to-one discovery through DS-VCPC is consider-
ably faster than that via DS-UIBK due to the differences of
network latency and computation power.

7.2. Monitoring and Data Integration Example

Figure 9 presents an analysis of profiling data collected
by application sensors. Online profiling data of Grid appli-
cations is incrementally sent to SMs. The application pro-
file analyzer then conducts DQS on profiling data, analyzing

and visualizing the results to the user. The left window of
Figure 9 shows code regions associated with their process-
ing units (compute node, process, thread). For each code re-
gion, profiling metrics are displayed in the right window.

Figure 9. Analysis of application profiling
data.

Figure 10. Events generated by a rule-based
sensor monitoring network bandwidth.

Figure 10 presents an example of bandwidth monitoring
of a network path from VCPC to UIBK. We setup a simple
rule set based on fuzzy variable for the bandwidth, as pre-
sented in Section 3.2. Only when the bandwidth of the net-
work path is very low, low and very high, the sensor sends
events to SM. Events are subscribed and visualized by a
simple generic event viewer as shown in Figure 10.

Figure 11 presents few snapshots of monitoring system
load, CPU usage and network delay roundtrip (monitoring
data provided by event-driven sensors), and of forecasting
CPU usage and TCP bandwidth (forecasted data provided

Figure 11. Snapshots of online monitoring system load, CPU usage and networks.

by demand-driven sensors). For example, data about CPU
usage (waiting time, idle time, system time, user time) are
measured per CPU. CPU monitoring data is periodically
collected and the change of CPU usage can be observed on
the fly through data subscription (see window CPU Usage).

8. Related Work

Over the past few years, many Grid monitoring and per-
formance tools have been developed, as cataloged in [17].
Several existing tools are available for monitoring Grid
computing resources and networks, e.g. MDS [12], NWS
[31], GridRM [6], Gangila [23] and many of them are based
on the generic Grid Monitoring Architecture (GMA) model
[5]. However, few tools have been developed for monitor-
ing Grid applications. e.g., GRM [25], OCM-G [8].

None of aforementioned systems, except MDS, is
OGSA-based service. They support the monitoring of ei-
ther infrastructures or applications while we unify both
in a single system. Most existing tools employ com-
munication either based on TCP-based streams or
based on Web/Grid service whereas our middleware ex-
ploits both Grid service invocations and TCP-based data
streams. These tools, although conduct distributed moni-
toring, mostly support data discovery and DQS based on
hierarchical and centralized models, and event-driven sen-
sors without rule-based monitoring. We use decentralized

data storages, and support event- and demand-driven sen-
sors, and rule-based monitoring.

The use of actuators to enable and configure resource
management, e.g. in [26], is one aspect of using monitor-
ing data for self-configuring. Based on rule sets, our sen-
sors can self-manage its actions in processing monitoring
data of monitored resources but we do not provide actua-
tors/effectors that control monitored resources yet.

9. Conclusion and Future Work

Due to the diversity and dynamics of the Grid, monitor-
ing middleware needs to unify and provide different types
of monitoring sensors such as system and application sen-
sors, event- and demand-driven sensor, and to integrate var-
ious types of data from many sources. Exploiting both Grid
service-based operation and TCP-based data stream can
help balancing tradeoffs among interoperability, manage-
ability and performance. Middleware must store collected
data on distributed sites, providing the same mechanism for
accessing that distributed data. By incorporating P2P and
autonomic technologies, Grid monitoring middleware is ca-
pable of self-organization, supporting group-based data dis-
covery and DQS. As a result, it helps increasing availability
and reliability of the middleware as well as dealing with the
dynamics of large distributed environments. This paper con-
tributes on the design and implementation of a Grid moni-

toring middleware that exploits the above-mentioned points.
We are currently improving our prototype and investigat-

ing to port our framework to WSRF [13]. Although P2P and
autonomic features give many promising solutions to solve
challenges in Grid monitoring, it is not a simple task to in-
corporate these features into a Grid service-based middle-
ware. To continue our effort on utilizing sensor networks,
P2P and autonomic computing features, the set of sensors
will be extended, together with effectors, to support self-
healing. We plan to provide adaptive capabilities for SM
and DS so that they can self-adjust their functions under the
computing capabilities of the hosting environment.

References

[1] Sleepcat Berkeley DB, http://www.sleepycat.com.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A Survey on Sensor Networks. IEEE Communi-
cations Magazine, 40(8):102–114, Aug 2002.

[3] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke. Data management and transfer in high-
performance computational grid environments. Parallel
Comput., 28(5):749–771, 2002.

[4] AustrianGrid. http://www.austriangrid.at/.
[5] B. Tierney et. al. A Grid Monitoring Architecture. Tech-

nical report, Performance Working Group, Grid Forum,
January 2002. http://www-didc.lbl.gov/GGF-PERF/GMA-
WG/papers/GWD-GP-16-2.pdf.

[6] M. Baker and G. Smith. GridRM: An Extensible Resource
Management System. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER’03), pages
207–215, Hong Kong, December 01-04 2003. IEEE Com-
puter Society Press.

[7] Z. Balaton and G. Gombas. Resource and Job Monitoring in
the Grid. In Proceedings. Euro-Par 2003 Parallel Process-
ings, Klagenfurt, Austria, 2003.

[8] B. Balis, M. Bubak, W. Funika, T. Szepieniec, and
R. Wismüller. An infrastructure for Grid application mon-
itoring. LNCS, 2474:41–49, 2002.

[9] O. Barring. Towards automation of computing fabrics us-
ing tools from the fabric management workpackage of the eu
datagrid project. ECONF, C0303241:MODT004, 2003.

[10] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III,
and Y. Diao. ABLE: A toolkit for building multiagent auto-
nomic systems. IBM Systems Journal, 41(3):350–371, 2002.

[11] I. T. W. R. Center. ABLE Rule Language: User’s Guide and
Reference. Version 2.1.0.

[12] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Sharing.
In Proceedings of the 10th IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10).
IEEE Press, August 2001.

[13] I. F. el al. Modeling Stateful Resources with Web Services.
Specification, Globus Alliance, Argonne National Labora-
tory, IBM, USC ISI, Hewle tt-Packard, Jan. 2004.

[14] R. Elfwing, U. Paulsson, and L. Lundberg. Performance of
SOAP in Web Service Environment Compared to CORBA.
In Ninth Asia-Pacific Software Engineering Conference
(APSEC’02), pages 84–, Gold Coast, Australia, December
04 - 06. IEEE Computer Society.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. IEEE Computer,
pages 37–46, June 2002.

[16] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International
Journal of Supercomputer Applications, 15(3), 2001.

[17] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P. Kac-
suk, Z. Nemeth, N. Podhorszki, H.-L. Truong, T. Fahringer,
M. Bubak, E. Laure, and T. Margalef. Performance Tools
for the Grid: State of the Art and Future, volume 30 of
Research Report Series, Lehrstuhl fuer Rechnertechnik und
Rechnerorganisation (LRR-TUM) Technische Universitaet
Muenchen. Shaker Verlag, 2004. ISBN 3-8322-2413-0.

[18] Globus Project. http://www.globus.org.
[19] J. Hwang and P. Aravamudham. Middleware Services for

P2P Computing in Wireless Grid Networks. IEEE Internet
Computing, 8(4), 2004.

[20] Iperf. http://dast.nlanr.net/projects/iperf/.
[21] J. O. Kephart and D. M. Chess. Cover feature: The vision of

autonomic computing. Computer, 36(1):41–50, Jan. 2003.
[22] G. Laszewski, I. Foster, J. Gawor, and P. Lane. A java com-

modity grid kit. Concurrency and Computation: Practice
and Experience, 13(643-662), 2001.

[23] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Dis-
tributed Monitoring System: Design, Implementation, and
Experience. Parallel Computing, May 2004.

[24] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-To-
Peer Computing. Technical Report HPL-2002-57, HP Labs,
March 2002.

[25] N. Podhorszki and P. Kacsuk. Design and implementation
of a distributed monitor for semi-on-line monitoring of vi-
sualmp applications. In DAPSYS’2000 Distributed and Par-
allel System, From Instruction Parallelism to Cluster Com-
puting, pages 23–32, Balatonfured,Hungary, 2000.

[26] D. A. Reed, H. Simitci, and Y. L. Ribler. Autopilot
performance-directed adaptive control system. Jan. 10 1998.

[27] D. Talia and P. Trunfio. Toward a synergy between p2p and
grids. IEEE Internet Computing, 7(04):96–95, 2003.

[28] D. Talia and P. Trunfio. Web Services for Peer-to-Peer Re-
source Discovery on the Grid. In DELOS Workshop: Digital
Library Architectures, S. Margherita di Pula, Cagliari, Italy,
24-25, June 2004. Edizioni Libreria Progetto, Padova.

[29] H.-L. Truong and T. Fahringer. SCALEA-G: a Unified Mon-
itoring and Performance Analysis System for the Grid. Sci-
entific Programming, 12(4):225–237, 2004. IOS Press.

[30] M. Tubaishat and S. Madria. Sensor networks: an overview.
IEEE Potentials, 22(2):20–23, April-May 2003.

[31] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Future Generation Computing
Systems, 15:757–768, 1999.

