
ESCAPE - An Adaptive Framework for Managing and
Providing Context Information in Emergency

Situations⋆

Hong-Linh Truong, Lukasz Juszczyk, Atif Manzoor, SchahramDustdar

Vitalab, Distributed Systems Group, Vienna University of Technology
{truong, juszczyk, atif.manzoor, dustdar}@infosys.tuwien.ac.at

Abstract. Supporting adaptive processes in tackling emergency situations, such
as disasters, is a key issue for any emergency management system. In such sit-
uations, various teams are deployed in many sites, at the front-end or back-end
of the situations, to conduct tasks handling the emergency.Context information
is of paramount importance in assisting the adaptation of these tasks. However,
there is a lack of middleware supporting the management of context information
in emergency situations. This paper presents a novel framework that manages and
provides various types of context information required foradapting processes in
emergency management systems.

1 Introduction

Supporting emergency situations (e.g., disaster responses) could benefit a lot from the
recent increasing availability and capability of computerdevices and networks. Perva-
sive devices have been widely used to capture data for and to coordinate the manage-
ment of tasks at disaster fields. Communication networks help bringing collected data
to the back-end center, and at the back-end, high performance computing/Grid sys-
tems and data centers can conduct advanced disaster management tasks. Still, there are
many challenging issues in order to utilize advantages brought by pervasive computing,
mobile networks, and Grid computing for supporting the management of emergency
situations.

Take the scenarios being supported by the EU WORKPAD project[29] as examples.
Aiming at supporting natural disaster responses, the front-end of the WORKPAD sys-
tem will assist teams of human workers by providing servicesthat are able to adaptively
enact processes used in disaster responses. On the one hand,these services are executed
on mobile ad-hoc networks whose availability and performance are changed frequently.
On the other hand, processes carried out in disaster scenarios are normally established
on demand and changed accordingly to meet the current statusof the disaster scenarios.
It means that depending on the context of specific scenarios,tasks conducted during
the scenarios can be altered, either in an automatic fashionor a manual one controlled
by team leaders. Therefore, it is of paramount importance that these services are able

⋆ This research is partially supported by the European Union through the FP6-2005-IST-5-
034749 project WORKPAD.

to use context information to adjust the enactment and collaboration of processes. This
leads to a great demand for frameworks that can be used to provide and manage various
types of context information. However, most of existing context information manage-
ment middleware are targeted to indoor and small scale environments, e.g., as discussed
in [8]. There is a lack of similar middleware for emergency situations. The environment
in which supporting tasks for emergency situations are performed is highly dynamic
and unstructured.

In this paper, we discuss ESCAPE, a peer-to-peer based context-aware framework
for emergency situations with the focus on crisis situations, such as disasters, in per-
vasive environments. We present the design and implementation of the context man-
agement services within ESCAPE that can support multiple teams working at different
sites within many responses for emergency situations to collect and share various types
of context information. ESCAPE is able to manage relevant context information which
is described by arbitrary XML schema and required for emergency responses, and to
provide the context information to any clients. In this paper, we also illustrate early
experiments of the current prototype of the framework. The ESCAPE framework is an
ongoing development. Therefore, in this paper, we only focus on the discussion of the
management and provisioning of context information in emergency situations at mid-
dleware layer, instead of presenting adaptation techniques and applications.

The rest of this paper is organized as follows: Section 2 discusses the requirement
and motivation. Section 3 presents the related work. The architecture of the context
management services is described in Section 4. We describe the management of con-
text information in Section 5. Prototype implementation isoutlined in Section 6. Ex-
periments are illustrated in Section 7. We discuss existingissues in the framework in
Section 8. We summarize the paper and discuss about the future work in Section 9.

2 Requirements and Motivation

Effective responses to an emergency situation (e.g, a natural disaster) require key infor-
mation at sites where the situation occurs in order to optimize the decision making and
the collaborative work of teams handling the emergency. Context information can sub-
stantially impact on responses to the situation. The key to the success of responses to
an emergency is to have effective response processes which are actually established on-
demand and changed rapidly, depending on the context of the situation. Such effective
response processes cannot be achieved without understanding the context associated
with entities inherent in the situation. Required context information related to entities at
each site in the emergency situation is related to not only teams performing responses,
for example, information about team member tasks, status ofdevices, networks, etc.,
but also entities affected by the emergency situation, suchas victims and infrastructure.
To date, context information is widely used in context-aware systems but most of them
are not targeted to emergency scenarios.

In our work, we consider the support to the management of various kinds of emer-
gencysituationssuch as disasters (e.g., earthquake and forest fire). In suchsituations,
many supportteamsof individualswill be deployed, as soon as possible, atsites(e.g., a
village) where the situations occur in order to conduct situationresponses(e.g., to res-

cue victims). All members of the teams will collect various types of data and perform
different tasks, such as relief works or information gathering, for supporting response
tasks. Within emergency situations, teams are equipped with diverse types of devices
with different capabilities, such as PDAs and laptops. These devices have limited pro-
cessing capacity, memory and lifetime. Moreover, the underlying network that connects
these devices together is established as a mobile ad-hoc network in which usually a few
devices can be able to connect to the back-end services. In addition to professional
teams, teams of non-professional volunteers can also be established in a dynamic fash-
ion. Given the current trend in mobile devices consumption,many people have their
own networked PDAs and smart phones which can be easily used to support emergency
situations.

Moreover, as teams in the site may perform tasks in a dangerous environment and
the teams lack a strong processing power and necessary data,the front-end teams may
need support from teams at the back-end. This requires us to store context information
at the back-end due to several reasons. For example, teams atthe back-end can use con-
text information to perform other tasks that could not be done by the front-end teams.
Furthermore, as people at the front-end are working in dangerous environments, latest
location information (one type of context information) of people who are in dangerous
environment can be used for, e.g., to rescue them in case theyare in danger.

To support the above-mentionedscenarios, context-aware support systems for emer-
gency situations using mobile devices and ad-hoc networks have to be developed. An
indispensable part of these systems is a context managementmiddleware which must
be able to collect various context information related to the emergency situation. Such
context information will be utilized at the site by multipleteams and by the back-end
support teams. As the middleware has to be deployed in constrained devices, various
design issues must be considered. Since devices do not have astrong communication
and processing capability, the network of teams is unstructured and the operating en-
vironment is highly dynamic. As a result, context information is exchanged between
various peers in a dynamic and volatile environment. Therefore, a P2P (peer-to-peer)
data exchange model is more suitable.

Context management services have to exchange context information with many sup-
porting tools, such as GIS (Geographic Information Systems) and multimedia emer-
gency management applications. Moreover, we have to make the front-end services
interoperable with the back-end (Grid-based) services which might belong to differ-
ent organizations. As a result, SOA-based models and techniques will be employed in
the management and dissemination of context information. In this aspect, the middle-
ware operates on Pervasive Grid environments [17]. However, the context management
framework for emergency scenarios should be flexible or be easily adapted to han-
dle context information specified by different models at multiple levels of abstraction
since context information in emergency situations is not known in advance. In this re-
spect, the framework should support an extensible data model, e.g. XML, and query
mechanism, e.g. XQuery [31] and XUpdate [33]. Then, variousplug-ins used to handle
specific cases, such as sensors, event notification, event condition action, etc., could be
seamlessly integrated into the framework to support situation-specific scenarios.

3 Related Work

Several studies of context-aware systems have already beenconducted, such as in [8].
In this paper, we concentrate our study only on existing middleware for managing con-
text data. RCSM [35, 5] is a middleware supporting context sensitive applications based
on an object model. The JCAF (Java Context Awareness Framework) supports both the
infrastructure and the programming framework for developing context-aware applica-
tions in Java [4, 10]. JCAF is based on the peer-to-peer modelbut it does not support
automatic discovery of peers or a super-peer. Moreover, thecommunication is based
on Java RMI (Remote Method Invocation). The AWARENESS project [1] provides an
infrastructure for developing context-aware and pro-active applications. It targets to ap-
plications in mobile networks for the health care domain. The PACE middleware [15]
provides context and preference managements together witha programming toolkit
and tools for assisting context-aware applications to store, access, and utilize context
information managed by the middleware. PACE supports context-aware applications
to make decisions based on user preferences. The GAIA project is a CORBA-based
middleware supporting active space applications [26]. GAIA active space has limited
and well-defined physical boundaries so GAIA is not suitablefor emergency manage-
ment. It is targeted to small and constrained environment such as smart homes and
meeting rooms. The CARMEN middleware [11] uses CC/PP for describing metadata
of user/device profiles while the Mercury middleware prototype [28] describes user,
terminal, network, and service profiles using CC/PP. We observed that most of above-
mentioned middleware do not support a variety of context data inherent in emergency
situations. Furthermore, most of them are targeted to in door environment and do not
support scenarios of collaborative teamwork in emergency situations in which front-end
teams and back-end systems are connected and exchange context information through
a large scale and highly dynamic environment.

Relational databases are widely used to store context information. For example,
[24] stores context information about geography, people and equipments in a relational
database. In [20], Location historical information is stored in a database that can be
accessed using SQL. The PACE middleware provides a context management whose
back-end is a relational database [15]. The Aura context information service is a dis-
tributed infrastructure which includes different information providers [22]. Context-
aware applications can subscribe to middleware in order to obtain context information
through subscription/notification [24, 10] or can query information stored in persistent
databases, e.g., in [15]. We take a different approach in which we rely on XML-based
information and XQuery/XPath for accessing context information. It helps to facilitate
the integration with different types of application and support the extensibility and gen-
eralization of the middleware in handling different types of context information.

Context information is also widely utilized in personal applications in pervasive
computing such as electronic communication [25], in office and education use, e.g., for
monitoring user interactions in the office [30], for managing presentations in meeting
rooms [16], and for office assistants [34]. In [9], context information in hospitals is
used in context-aware pill containers and hospital beds. [21] describes how context
information can be used in logistics applications. Our workis different as we aim at
supporting emergency management applications which require much diverse context

information and operate in a highly dynamic environment. The ORCHESTRA [3] and
OASIS [2] projects focus on disaster/crisis management, however, they do not aim at
supporting context-awareness.

4 Architecture of ESCAPE Context Management Services

4.1 Architectural Overview

Fig. 1. Architecture of the ESCAPE context management framework for emergency situations

Figure 1 presents the architecture of the ESCAPE context management framework
which includes context information management services (CIMSs) and the back-end
support system. Each individual’s device will host an instance of the CIMS used by the
individual who is responsible for collecting and managing context information related
to the individual. As individuals are organized into teams,each team will establish a
network of CIMSs. For each team, one CIMS whose hosting device has more powerful
capability, such as the device of the team leader, will act asa super peer. This super
peer will periodically gather context information available in CIMSs within its team
and then push the context information to the back-end systems. Within a team, we use a
simple peer structure: all peers are equal and there is no forwarding mechanism among
peers1. Any peer which wants to obtain context information provided by another peer
just directly queries or subscribes context information from the provider.

At the back-end, we store context information into a situation context information
management service (SCIMS) which keeps all the context datarelated to a situation.
By using this information, various support teams at the back-end can utilize rich data
sources and computing services to support teams at sites. Furthermore, the context in-
formation managed by SCIMS can be used for post-situation studies. Two different
teams can exchange context information by either using the back-end systems, e.g.,

1 This is only at context management middleware level. The underlying network can support
multi-hop communication, depending on mobile ad-hoc network techniques employed.

in case the teams are not located in the same site or the network connection among
two teams is not available, or utilizing the team leader CIMSby searching team leader
devices in the network.

Fig. 2. Overview of the context information management service

Figure 2 presents the architecture of a context informationmanagement service
(CIMS) which is used to manage and provide context information at an individual’s
device. TheWeb Services Client APIis used to communicate with other Web services.
The SOAP serverprovides features for building services based on SOAP.SLP (Ser-
vice Location Protocol) component supports team service advertisements and discov-
ery. The two componentsService DiscoveryandTeam Managementwill be responsible
for discovering other CIMSs and for managing CIMSs belonging to the same team, re-
spectively. TheQuery and Subscriptioncomponent is responsible for processing data
query and subscription requests from any clients. TheData Aggregation and Publish
component gathers context information from various peers and publishes the informa-
tion to the back-end. TheSensor Executoris responsible for controlling internal sensors
collecting context information. These sensors are considered as plug-ins of CIMS. The
context information gathered at each CIMS will be stored in theLightweight Data Stor-
age.

4.2 Service Discovery and Team Management

A CIMS will publish information about itself by exploiting multicast service discovery
based on SLP (Service Location Protocol)[27]. Each CIMS is described mainly by a
triple (teamID, individualID, serviceURI) in which teamID is used to
identify the team; all instances of CIMS within a team will have the sameteamID. The
elementindividualID identifies the individual whose device manages the CIMS
whereasserviceURI specifies the URI of the CIMS. This triple information will be
mapped into SLP advertisements. Based on that, service discovery can be performed.

A CIMS will publish its service information periodically and will keep a record
of this information of all CIMSs in its team. A CIMS will checkits team members
regularly by pinging them. By doing so, each CIMS has an up-to-date record of all its
team members. Currently, we use a configuration file to specify the intervals based on
which CIMS should publish its information and check its teammembers presence.

4.3 Publishing and Querying Context Information

In our framework, context information will be collected by different clients and moni-
toring sensors (software- and hardware-based sensors). CIMSs will provide interfaces
for these clients and sensors to publish and query context information. Being able to
handle different kinds of context information, CIMSs will accept any type of context
information that is described in XML format, without knowing the detailed representa-
tion of context information.

CIMS provides two mechanisms for sensors/clients to publish context information.
We distinguish two cases: sensors execution will be and willnot be controlled by CIMS.
In the first case, sensors will be invoked directly by CIMS as aplugin. To support this,
we develop a generic interface that sensors should implement. This interface includes
three main methods namedsetParameters, execute andgetContextInfo,
allowing CIMS to initialize sensors, invoke sensors instances and obtain XML-based
context data without considering how the sensors are implemented. In the second case,
CIMS provides Web services operations for any sensors/clients to publish context in-
formation. To retrieve context information, clients have to use Web services operations
provided by CIMS. Clients can also specify XQuery-based requests in searching for
context information from a CIMS.

4.4 Customized Middleware Components

Supporting reconfigurable middleware components is important in pervasive environ-
ments since specific platforms, e.g., PDA or laptop, have a multitude of varying capa-
bilities and support technologies that should be exploiteddifferently. We identify two
main components within the CIMS that should be reconfigured according to underly-
ing platforms:Query and SubscriptionandLightweight Data Storage. As we aim at
supporting different kinds of context information, the context management framework
does not bind to any specific representations of context information as long as the rep-
resentations are in XML. Using existing tools like Xerces [7] and kSOAP2 [19], we
are able to generate and process XML data in constrained devices. Nevertheless, sup-
porting advanced XML processing functions, such as query and update of XML data
with XQuery [31] and XUpdate [33], in constrained capability devices is very limited.
Our Lightweight Data Storageis based on eXist XML database [12] when a CIMS is
deployed in normal devices supporting Java SE (e.g., laptop). Otherwise, the storage
will be based on a round-robin model in which context information is stored into XML
files, and XQuery processing is based on MXQuery [23] which isa lightweight XQuery
engine for mobile devices.

5 Management of Context Information

5.1 Context Information Level

In emergency situations, context information will be collected by and exchanged among
individuals and teams within different scopes of knowledge, e.g. within the knowledge

of an individual or a team at a site during a response or the whole situation. There-
fore, we support five levels of knowledge in which context information is available:
individual, team, site, responseandsituation. Theindividual level indicates the context
information within the knowledge of an individual. It meansthat context information
is either associated with or collected by an individual. Theteamlevel indicates context
information gathered from all individuals of a team. Thesite level specifies context in-
formation collected from all teams working on the same site whereas theresponselevel
indicates context information gathered within a response.Thesituationlevel specifies
all context information gathered during the situation. Thefive levels of knowledge pro-
vide a detailed structure of context information. Based on that, context information can
be efficiently shared among teams and utilized for differentpurposes.

5.2 Storage and Aggregation of Context Information

A single level/place in storing context information, such as only at the team leader
device, is not suitable for emergency situations. In such situations, teams at sites are
equipped with devices which are not always highly capable and the network is nor-
mally not reliable. Therefore, rather than relying on centralized managers, we believe
that context information should be provided by and exchanged among individuals in a
dynamic fashion. Context information in emergency situation must be widely shared
among different teams at different places and be stored for post-situation studies. Thus,
context information exchange should not be limited in a single team/place.

Addressing two different storage mechanisms, distributedstorage information in
mobile devices and in high-end systems is a challenging issue. Our context management
services support any kind of context information modeled inXML. At each CIMS,
context information sent by sensors to the service is managed in records. Each recordr
is represented as a triple(individualID, timestamp, contextDataURI)
whereindividualID is the unique identifier of the team member,timestamp is
the time at which the context information was collected, andcontextDataURI is the
URI specifying the location from which detailed context information can be retrieved.
The detailed context information can be stored into files or XML databases, depending
on the capability of the hosting device. As mobile devices have a limited resource and
context information will partially be stored in the back-end services, not all context
information will be kept in a device. Instead, we employ a round robin mechanism to
maintain existing context information stored in each CIMS.Depending on the device
capability, the round robin database mechanism may be relaxed.

As mentioned before, context information will be collectedat CIMSs which hold
the context information at the individual level. Aggregation of context information with
in a team will be conducted by the team leader. Context information will be available
from different places, and the information has to be stored over the time. At a time
t, the newest instance of context information collected is called a snapshotof con-
text information. We consider the management of context information at five levels:
within a device managed by an individual, within a team, within a site, within a re-
sponse, and within the whole situation. Consequently, we have five different types of
snapshots in the scopes of the above-mentioned levels. Spanning the timeline of situ-
ation responses, various teams are deployed and context information associated with

the situation is collected by the teams. Since response timeis a critical issue in the
management of emergency situation and the devices used havelimited capabilities,
we employ simple mechanisms to manage context information.Let ctxs(level, time)
wherelevel ∈ {individual, team, site, response, situation} denote a context snap-
shot within alevel at a giventime. Within a team, each member monitors and col-
lects context information which will be stored and updated locally. A snapshot of con-
text information stored in a device is associated with a timestampt and is denoted as
ctxs(individual, t). Depending on the capabilities of the device, the number of snap-
shots kept in a device could be limited to a pre-defined valuen.

The context information collected by a team will be stored temporarily at the team
leader device or pushed back to the back-end service periodically by CIMS of the team
leader. At a given timet, ctxs(team, t) will be a fusion of{ctxs(individual, t)} for all
individual belonging to the team. Similarly,ctxs(site, t) is a fusion of{ctxs(team, t)}
for all teams within the site,ctxs(response, t) is a fusion of{ctxs(site, t)} for all sites
involved in the response. The snapshot of the situation,ctxs(situation, t), is defined
as a fusion of{ctxs(response, t)} for all responses conducted in the situation. While
context information atindividualandteamlevels is available at the front-end, the infor-
mation of the other levels is available at the back-end system only.

5.3 Provenance of Context Information

All context information gathered could be tracked through our provenance support. We
design a generic XML schema based on that provenance information of context in-
formation can be described. Figure 3 describes main elements of the schema used to
describe provenance information. This representation allows us to specify detailed in-
formation about the five levels of knowledge by using elementssituation, site,
response, team andindividual. The detailed content of provenance informa-
tion about these levels can be described in XML and encoded byusing<![CDATA["
"]]> section. The elementcollectedAt indicates the time at which the context
information is collected while elementcontextDataURI specifies the URI through
which context information can be retrieved.

The framework will automatically store provenance information into the back-end
system whenever context information is pushed back to the back-end system. Prove-
nance information is important because it allows us to correlate all gathered context
information to its sources and creators, providing tracingcapability and improving the
understanding of actions performed within emergency situations.

6 Implementation

To implement the architecture mentioned in Section 4, we employ various libraries for
handling Web services and XML on mobile devices such as kSOAP2 [19] and CDC-
based Xerces[6]. XQuery/XUpdate supports are based on eXist [12] and MXQuery
[23]. Our current prototype is implemented in Java ME CDC forPDA and can be
customized with Java SE-based libraries for normal laptopsto exploit advanced Web
services and XML capabilities.

<xsd:complexType name="ContexProvenance">
<xsd:sequence>
<xsd:element name="provenanceEntry" type="tns:ContextProvenanceEntry"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ContextProvenanceEntry">

<xsd:sequence>
<xsd:element name="situation" type="xsd:string"/>
<xsd:element name="site" type="xsd:string"/>
<xsd:element name="response" type="xsd:string"/>
<xsd:element name="team" type="xsd:string"/>
<xsd:element name="individual" type="xsd:string"/>
<xsd:element name="collectedAt" type="xsd:dateTime"/>
<xsd:element name="contextURI" type="xsd:anyURI"/>

</xsd:sequence>
</xsd:complexType>

Fig. 3. Schema (simplified) for describing provenance of context information

In our implementation,Service DiscoveryandTeam Managementare implemented
on top of jSLP [18] which is a lightweight Java implementation of SLP for mobile
devices. We use theSOAP serverin Sliver BPEL [14] and implement our service-based
components on top of that. Sliver supports both TCP socket-based and Jetty HTTP-
based communications. Within a team, CIMSs can communicatewith each other using
SOAP by selecting one of those communications.

The back-end context information service is currently implemented based on eXist
XML database [12]. CIMSs push data to back-end services by using the REST (Repre-
sentational State Transfer) interface provided by eXist database.

7 Experiments

7.1 Experimental Application: Supporting Disaster Responses

One of the main motivations for developing this framework isto use it in supporting
disaster responses in the WORKPAD project [29]. Being able to collect and provide
context data relevant to disaster responses is the key issueto the WORKPAD adaptive
process management systems used by team leaders to plan response activities. Further-
more, context information is required by the disaster management support based on
geographic information systems (GIS). To this end, we have developed a novel context
information model for disaster managements. Figure 4 describes main concepts of the
first version of the WORKPAD context information model whichcan describe various
context information inherent in a disaster response.

In the case of disaster responses, the five levels of knowledge about context informa-
tion aresupport worker, support team, disaster site, disaster response, disasterwhich
are mapped toindividual, team, site, response, situation, respectively. In order to test the
current prototype of our framework, we use many simulated sensors whose functional-
ities are exactly the same as that of real sensors, except that the context information is
automatically generated from simulation configuration parameters.

Fig. 4. WORKPAD context information model in disaster responses

7.2 Testbed

Figure 5 describes our current testbed. We setup a testbed which includes 3 iPAQ 6915
PDAs (Intel PXA 270 416 MHz, 64 MB RAM, Windows CE 5.0, 2GB external Min-
iSD, IBM J9 WebSphere Everyplace Micro Environment 6.1), a Dell XPS M1210 (Intel
Centrino Duo Core 1.83 GHz, 2GB RAM, Windows XP) notebook, and a Dell D620
(Intel Core 2 Duo 2GHz, 2 GB RAM, Debian Linux). Devices in thetestbed are con-
nected through a mobile ad-hoc network based on 802.11b. A CIMS is deployed on
each device and the Dell D620 laptop is designated as the gateway to the back-end.
In our setting, the mobile ad-hoc network bandwidth is limited to 220 Kbits/s but we
observed that the average bandwidth is around 150 Kbits/s. The back-end system is
based on a Dell Blade (2 Xeon 3.2 GHz CPUs with Hyperthreading, 2GB RAM, and
Ubuntu Linux). We use simulated sensors to produce context information according
to the WORKPAD context information model. In our experiments, we focus on pre-
senting some preliminary analyses of data transfers and examples of accessing context
information using XQuery.

Fig. 5. Testbed deployment

7.3 Performance Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45

T
im

e
(m

s)

Data (KB)

Jetty HTTP-based data transfer
TCP socket-based data transfer

Fig. 6. Data transfer between a CIMS member
(PDA) and CIMS team leader (laptop)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1 2 3 4 5

T
im

e
(m

s)

Number of connections

Concurrent data transfer with 10 KB/request
Concurrent data transfer with 20 KB/request

Fig. 7. Concurrent data transfer between a CIMS
(PDA) and its client (laptop)

In the first scenario, we consider a team including five members. Three members
use PDAs and two members use laptops in our testbed. The Dell D620 is designated as
the device of the team leader. Figure 6 shows Jetty HTTP-based and TCP socket-based
data transfers between a CIMS deployed in a member and a CIMS deployed the team
leader. Overall when the data size is smaller than15KB the performance is almost the
same. However, TCP socket-based data transfer outperformsJetty HTTP-based when
the transferred size is increased. We also found that the TCPsocket-based communi-
cation in Sliver is not quite stable. Therefore, in the following experiments we relied
on Jetty HTTP-based communication. Figure 7 presented the concurrent data transfer
tests between a CIMS in a PDA and a client in the Dell D620. Whendoubling the data
size from 10KB/request to 20KB/request, with the number of concurrent connections is
smaller than3, the transfer time increases but not substantial. However,with more than
3 connections, the transfer time increases significantly. This suggested that we should
not use multiple concurrent connections to transfer a largedata size to PDAs. Moreover,
PDAs might not be used as team leader device in case the numberof team member is
large and there is a need to transfer large amount of data.

In the second scenario, we modeled a system including four teams. Two team lead-
ers use PDAs and two team leaders use laptops. CIMSs running on devices of the four
team leaders will gather information of teams and send the context information back
to the back-end system. Non-leader members of a team are simulated through sensors
that send data to the team leader. CIMS of each team leader made three concurrent con-
nections to the back-end system and sent totally approximate 17KB every 5 seconds.
We conducted the tests in which from one team to four teams send data simultaneously,
and measured the average execution time in 5 minutes run. Still in this scenario, all de-
vices connect to the back-end through the designated routerDell D620. Figure 8 shows
the performance of transferring data from team leader devices to the back-end system.
Overall, we observed that the performance of CIMSs in PDAs isdifferent. These behav-

Fig. 8. Performance of transferring data to the back-end system

iors need to be examined in more detail by analyzing how the back-end system handles
requests from teams. The transfer time also increased during the test because the eXist
database had to handle more XML documents in the same collection.

All performance data presented are average values determined from various runs.
We observed there is a high variation between different runsin PDAs. For example,
when measuring parallel data transfer with 3 connections with 20 KB, the fastest trans-
fer time is 190 ms whereas the slowest transfer time is 5170 ms. We also observed that
storing the whole big XML document in SCIMS is much faster than updating small
XML data fragment into an existing XML document using XUpdate when the frame-
work stored context information into separate XML documents and all provenance in-
formation into a single XML document. It means that it would be better to store multiple
small XML documents than merge them into a big one. Since the framework focuses on
bringing data to the back-end system quickly we changed the way we stored provenance
information. Instead of storing all provenance information into a single document, we
store provenance information in separate files.

7.4 Search for Relevant Context Information

As context information is described in XML, relevant context information can be searched
by using XQuery. We outline few examples in the following.

Team A wants to reach to a place “P”. Let’s check unusable roads lead to “P”:
this can be done by the team leader when deciding to move the team to a new place.
Another team might approach “P” before and notice unusable roads leading to be “P”.
The following query can be used to find out roads which are unusable.

for $infrastructure in collection(’/db/contextinformation’)//includeInfrastructure
where $infrastructure/category="ROAD" and $infrastructure/condition="UNUSABLE"
return $infrastructure

Let’s send one worker to place “P” to take a photo: This can be decided by the team
leader when she/he needs to send some support workers immediately to one area, e.g.,
for taking a photo needed for a further analysis. The team leader, for example, can obtain
the location information of the support workers, and depending on this information, the
leader can assign the task to those people who are near to thatplace. Similarly the
team leader can also look for the activities that the supportworkers are performing and
assign the new task to those who are doing activities with less priority. We can retrieve
this information from team level context by using the following query:

for $worker in collection(’db/contextinformation’)//SupportWorker
where $worker//hasCamera and $worker/belongsTo/description="Team 1"
and $worker//Activity/status="LOW"
return $worker

8 Discussion of Existing Issues

One of the main issues about context information managementis the quality aspects of
context information such as incompleteness, duplication and inconsistency. For exam-
ple, considering the case of context information aggregation. Since the team leader will
pull and fuse the latest snapshot from members, it is possible that the team snapshots
will miss some information when more information sent to a member than retrieved
from the member. However, if we reduce the polling interval,the team snapshots may
include duplicate context information. This issue is well known and many methods have
been proposed to address it. However, context information is collected by using mobile
devices which do not have enough capabilities to conduct these methods. Therefore,
in our framework, checking quality of context information could be implemented as a
plug-in for the CIMS.

Another issue is the data aggregation at CIMS. Each context management service
retrieves various types of context information from different sensors and clients. The in-
formation may follow the same model (e.g., in the example of the WORKPAD project)
but in practice, different sensors provide different information fragments at different
times. Therefore, not only the context management service has to manage multiple frag-
ments of information but also we cannot put the information fragments into a coherent
view even they follow the same model. When context information does not follow the
same model, CIMS cannot merge information fragments. However, in case context in-
formation follows the same model, we can merge information fragments into a single
one. We can merge data fragments received in a predefined windows time into a single
one, for example based on approximate XML joins [13] or usingXUpdate/XSLT[32].
In doing so, we could define plug-ins for CIMSs. However, thismight be applicable
only to high-end mobile devices as we observed performance issues in updating XML
documents in Section 7.3.

Since context information is gathered from various places by various teams, it is
important to automatically process context information. We could define rules based
on which context information can be evaluated and corresponding actions can be per-
formed based on the evaluation of context information, e.g., inform relevant parties
about new emerging issues. To this end, we can apply rule-based systems, event condi-
tion action (ECA) and complex event processing (CEP) concepts to the CIMS and the
SCIMS.

9 Conclusion and Future Work

Adapting tasks in emergency situations is an important and required feature because
both human teams and processes involved in disaster scenarios are established in a dy-
namic manner and are changed on-demand, depending on specific situations. In this

paper, we have presented a novel, generic framework for managing and providing con-
text information in emergency situations, such as natural disasters. We have developed
a P2P context management framework that is able to support multiple levels of context
information such as individual, team, site, response and situation. We have presented
how context information management services in ESCAPE helpmanaging and provid-
ing context information to teams at both front-end and back-end sites of the emergency
scenarios. We also presented performance analysis of the system and outlined ESCAPE
functions for the disaster response management in the EU WORKPAD project. The
ESCAPE context management services are based on a SOA model and support XML-
based context information. Thus they can be easy used and integrated into emergency
situation support systems.

We have not presented different application scenarios. Currently, applications uti-
lizing our framework, such as adaptive process management and GIS-based disaster
management systems, are being developed. Our future work isto fully achieve the pro-
totype implementation by addressing issues mentioned in Section 8 and focusing on
adaptive aspects within the framework. Moreover, we are working on utilizing context
information for adapting processes in disaster responses.

References

1. AWARENESS - Context AWARE mobile NEtworks and ServiceS.
http://www.freeband.nl/project.cfm?id=494&language=en.

2. EU OASIS project - Open Advanced System for dISaster and emergency management.
http://www.oasis-fp6.org.

3. EU ORCHESTRA project. http://www.eu-orchestra.org/.
4. JCAF - The Java Context-Awareness Framework. http://www.daimi.au.dk/∼bardram/jcaf/.
5. RCSM Middleware Research Project. http://dpse.asu.edu/rcsm.
6. Xerces CDC, http://imbert.matthieu.free.fr/jgroups-cdc/files/xerces-cdc.jar.
7. Apache Xerces, http://xerces.apache.org/.
8. Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware

systems.International Journal of Ad-Hoc and Ubiquitous Computing, Jan 2006.
9. Jakob E. Bardram. Applications of context-aware computing in hospital work: examples

and design principles. InSAC ’04: Proceedings of the 2004 ACM symposium on Applied
computing, pages 1574–1579, New York, NY, USA, 2004. ACM Press.

10. Jakob E. Bardram. The java context awareness framework (jcaf) - a service infrastructure
and programming framework for context-aware applications. In Hans-Werner Gellersen, Roy
Want, and Albrecht Schmidt, editors,Pervasive, volume 3468 ofLecture Notes in Computer
Science, pages 98–115. Springer, 2005.

11. Paolo Bellavista, Antonio Corradi, Rebecca Montanari,and Cesare Stefanelli. Context-aware
middleware for resource management in the wireless internet. IEEE Trans. Software Eng.,
29(12):1086–1099, 2003.

12. eXist XML database, http://exist.sourceforge.net/.
13. Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu. Approximate

xml joins. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, pages 287–298, New York, NY, USA, 2002. ACM Press.

14. Gregory Hackmann, Mart Haitjema, Christopher D. Gill, and Gruia-Catalin Roman. Sliver:
A bpel workflow process execution engine for mobile devices.In Asit Dan and Winfried
Lamersdorf, editors,ICSOC, volume 4294 ofLecture Notes in Computer Science, pages
503–508. Springer, 2006.

15. Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan Balasubramaniam.
Middleware for distributed context-aware systems. In Robert Meersman, Zahir Tari,
Mohand-Said Hacid, John Mylopoulos, Barbara Pernici,Özalp Babaoglu, Hans-Arno Jacob-
sen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors,OTM Conferences
(1), volume 3760 ofLecture Notes in Computer Science, pages 846–863. Springer, 2005.

16. Christopher K. Hess, Manuel Román, and Roy H. Campbell.Building applications for ubiq-
uitous computing environments. In Friedemann Mattern and Mahmoud Naghshineh, editors,
Pervasive, volume 2414 ofLecture Notes in Computer Science, pages 16–29. Springer, 2002.

17. Vipul Hingne, Anupam Joshi, Tim Finin, Hillol Kargupta,and Elias Houstis. Towards a
pervasive grid.ipdps, 00:207b, 2003.

18. jSLP, http://jslp.sourceforge.net/.
19. kSOAP2, http://ksoap2.sourceforge.net/.
20. Teddy Mantoro and Chris Johnson. Location history in a low-cost context awareness en-

vironment. InACSW Frontiers ’03: Proceedings of the Australasian information security
workshop conference on ACSW frontiers 2003, pages 153–158, Darlinghurst, Australia, Aus-
tralia, 2003. Australian Computer Society, Inc.

21. Ulrich Meissen, Stefan Pfennigschmidt, Agnès Voisard, and Tjark Wahnfried. Context-
and situation-awareness in information logistics. In Wolfgang Lindner, Marco Mesiti, Can
Türker, Yannis Tzitzikas, and Athena Vakali, editors,EDBT Workshops, volume 3268 of
Lecture Notes in Computer Science, pages 335–344. Springer, 2004.

22. Nancy Miller, Glenn Judd, Urs Hengartner, Fabien Gandon, Peter Steenkiste, I-Heng Meng,
Ming-Whei Feng, and Norman Sadeh. Context-aware computingusing a shared contextual
information service. InPervasive 2004 Hot Spots, 2004.

23. MXQuery, http://www.dbis.ethz.ch/research/currentprojects/MXQuery.
24. Hani Naguib, George Coulouris, and Scott Mitchell. Middleware support for context-aware

multimedia applications. In Krzysztof Zielinski, Kurt Geihs, and Aleksander Laurentowski,
editors,DAIS, volume 198 ofIFIP Conference Proceedings, pages 9–22. Kluwer, 2001.

25. Anand Ranganathan, Roy H. Campbell, Arathi Ravi, and Anupama Mahajan. Conchat: A
context-aware chat program.IEEE Pervasive Computing, 1(3):51–57, 2002.

26. Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. Gaia: A middleware infrastructure to enable active spaces.IEEE
Pervasive Computing, pages 74–83, Oct-Dec 2002.

27. ”Service Location Protocol (SLP)”. ”http://tools.ietf.org/html/rfc2608”.
28. Marcin Solarski, Linda Strick, Kiminori Motonaga, ChieNoda, and Wolfgang Kellerer. Flex-

ible middleware support for future mobile services and their context-aware adaptation. In
Finn Arve Aagesen, Chutiporn Anutariya, and Vilas Wuwongse, editors,INTELLCOMM,
volume 3283 ofLecture Notes in Computer Science, pages 281–292. Springer, 2004.

29. The EU WORKPAD Project. http://www.workpad-project.eu.
30. Stephen Voida, Elizabeth D. Mynatt, Blair MacIntyre, and Gregory M. Corso. Integrating

virtual and physical context to support knowledge workers.IEEE Pervasive Computing,
1(3):73–79, 2002.

31. XQuery, www.w3.org/TR/xquery/.
32. XSL Transformations (XSLT), http://www.w3.org/TR/xslt.
33. XUpdate, http://xmldb-org.sourceforge.net/xupdate/.
34. Hao Yan and Ted Selker. Context-aware office assistant. In IUI ’00: Proceedings of the

5th international conference on Intelligent user interfaces, pages 276–279, New York, NY,
USA, 2000. ACM Press.

35. Stephen S. Yau and Fariaz Karim. A context-sensitive middleware for dynamic integration
of mobile devices with network infrastructures.J. Parallel Distrib. Comput., 64(2):301–317,
2004.

