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Abstract. While existing work concentrates on developing QoS models of busi-
ness workflows and Web services, few tools have been developed to support the
monitoring and performance analysis of scientific workflows in Grids. This pa-
per describes a Grid service for performance monitoring and analysisof Grid
scientific workflows. The service utilizes workflow graphs and various types of
performance data including monitoring data of resources, execution status of ac-
tivities, and performance measurement obtained from the dynamic instrumen-
tation, to provide a rich set of monitoring and performance analysis features.
We store workflows and their relevant information, devise techniques to compare
constructs of different workflows, and support multi-workflow analysis.

1 Introduction

Recently many interests have been shown in exploiting the potential of the Grid for
scientific workflows. Scientific workflows [12] are normally more flexible and diverse
than production and administrative business workflows. As the Grid is diverse, dynamic
and inter-organizational, even with a particular scientific experiment, there is a need of
having a set of different workflows because (i) one workflow mostly is suitable for a
particular configuration of underlying Grid systems, and (ii) available resources allo-
cated for a scientific experiment and their configuration arechanged in each run on the
Grid. This requirement is a challenge for the performance monitoring and analysis of
workflows (WFs) because very often the client of performance tools wants to compare
the performance of different WF constructs with respect to the resources allocated in
order to determine which WF construct should be mapped onto which topology of the
underlying Grid. Therefore, multi-workflow analysis, the analysis and comparison of
the performance of different WF constructs, ranging from thewhole WF to a specific
construct (e.g. a fork-join construct), is an important feature. Moreover, the performance
monitoring and analysis of Grid scientific workflows must be conducted online. Even
though numerous tools have been developed for constructingand executing scientific
workflows on the Grid, e.g. [9, 14, 4], there is a lack of tools that support scientists to
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monitor and analyze the performance of their workflows in theGrid. Most existing work
concentrates on develop QoS models of business workflows andWeb services [8, 3, 1].

To understand the performance of WFs on the Grid, we need to collect and analyze
a variety of types of data relevant to the execution of the WFs from many sources. In
previous work, we have developed a middleware which supports services to access and
utilize diverse types of monitoring and performance data ina unified system named
SCALEA-G [16]. This paper presents a Grid performance analysis service for scien-
tific WFs. The analysis service, utilizing the unified monitoring middleware, collects
monitoring data from the WF control and invocation services,and performance mea-
surements obtained through the dynamic instrumentation ofWF activities, and uses
WF graphs to monitor and analyze the performance of WFs during the runtime. Rel-
evant data of WFs including WF graphs and performance metrics are stored, and we
develop techniques for comparing the performance of different constructs of WFs.

The rest of this paper is organized as follows: Section 2 outlines the Grid perfor-
mance analysis service. Performance analysis for WFs is presented in Section 3. We
illustrate experiments in Section 4. Section 5 discusses the related work. Finally we
summarize the paper and outline the future work in Section 6.

2 Grid Performance Analysis Service

Figure 1 presents the architecture of the Grid monitoring and performance analysis ser-
vice for WFs. The WF is submitted to theWorkflow Invocation and Control(WIC)
which locates resources and executes the WF. Events containing execution status of
activities, such asqueuing, processing, and information about resources on which the
activities are executed will be sent to the monitoring tool.The Event Processingpro-
cesses these events and theAnalysis Controldecides which activities should be in-
strumented, monitored and analyzed. Based on information about the selected activity
instance and its consumed resources, the Analysis Control requests theInstrumentation
and Monitoring Controlto perform the instrumentation and monitoring. Monitoring
and measurement data obtained are then analyzed. Based on the result of the analysis,
the Analysis Control can decide the next step. The performance monitoring and analy-
sis service uses SCALEA-G as its supportive monitoring middleware. The monitoring
service (MS) and Instrumentation Service (IS) are providedby SCALEA-G [16].

3 Performance Monitoring and Analysis of Grid Workflows

3.1 Supporting Workflow Computing Paradigm
Currently we focus on the WF modeled as a DAG (Direct Acyclic Graph) because
DAG is widely used in scientific WFs. A WF is modeled as a DAG of which a node
represents an activity (task) and an edge between two nodes represents the execution
dependency between the two activities. An invoked application of an activity instance
may be executed on a single or multiple resources.

We focus on analyzing (i)fork-join model and (ii)multi-workflowof an application.
Figure 2(b) presents the fork-join model of WF activities in which an activity is fol-
lowed by a parallel invocation ofn activities. There are several interesting metrics that
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Fig. 1.Model of monitoring and performance analysis of workflow-based application.

can be obtained from this model such as load imbalance, slowdown factor, and syn-
chronization delay. These metrics help to uncover the impact of slower activities on the
overall performance of the whole structure. We also concentrate on fork-join structures
that containstructured blockof activities. A structured block is a single-entry-single-
exit block of activities. For example, Figure 2(c) presentsstructured blocks of activities.

A workflow-based application (WFA) can have different versions, each represented
by a WF. For example, Figure 2 presents an application with 3 different WFs, each
may be selected for execution on specific underlying resources. When developing a
WFA, we normally start with a graph describing the WF. The WFA is gradually de-
veloped in a stepwise refinement that creates a new WF. In a refinement step, a sub-
graph may be replaced by another subgraph, resulting in a setof different constructs
of the WF. For example, the activitya1 in Figure 2(a) is replaced by set of activities
{a1(1), a1(2), · · · , a1(n)} in Figure 2(b).

We focus on the case in which a subgraph of a DAG is replaced by aanother sub-
graph in the refined DAG. This pattern occurs frequently whendeveloping WFs. Let
G andH be DAG of WFWFg andWFh, respectively, of a WFA.G andH represent
different versions of the WFA.H is said to be arefinementof G if H can be derived
by replacing a subgraphSG of G by a subgraphSH of H. The replacement can be
controlled by the following constraints:

– Every edge(a, b) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge(a, c) ∈ H,
∀c ∈ SH satisfies nod ∈ H such that(d, c) ∈ SH.

– Every edge(b, a) ∈ G, a /∈ SG, b ∈ SG is replaced by an edge(c, a) ∈ H,
∀c ∈ SH satisfies nod ∈ H such that(c, d) ∈ SH.

SH is said to be areplaced refinement graphof SG. Note thatSG andSH may not be a
DAG nor aconnected graph. For example, consider the cases of Figure 2(a) and Figure
2(b). SubgraphSG = {a1} is replaced by subgraphSH = {a1(1), a1(2), · · · , a1(n)};
both are not DAG, the first is a trivial graph and the latter is not connected graph.
Generally, we assume that a subgraphSG hasn components. Each component is either
a DAG or a trivial graph. Comparing the performance of different constructs of a WFA
can help to select and map WF constructs to the selected Grid resources in an optimal
way.
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Fig. 2. Multiple workflows of an workflow-based application: (a) Sequence workflow, (b) Fork-
join workflow, and (c) Fork-join of structured blocks of activities.

Graph refinement is a well-established field and it is not our focus. We do not con-
centrate on the determination of refinement graphs in WFs, rather, the WF developers
and/or WF construction tools are assumed to do this task. In this paper,(ai, aj) indi-
cates the dependency between activityai andaj , andpred(ai) andsucc(ai) denote sets
of the immediate predecessors and successors, respectively, of ai.

3.2 Activities Execution Model
We use discrete process model [13] to represent the execution of an activitya. Let
P (a) be the discrete process modeling the execution of activitya. A P (a) is a directed,
acyclic, bipartite graph(S,E,A), in which S is a set of nodes representingactivity
states, E is a set of nodes representingactivity events, andA is a set of edges represent-
ing ordered pairs of activity state and event. Simply put, anagent (e.g. WIC, activity
instance) causes an event (e.g. submitted) that changes theactivity state (e.g. from queu-
ing to processing), which in turn influences the occurrence and outcome of the future
events (e.g. active, failed). Figure 3 presents an example of a discrete process modeling
the execution of an activity.

initializing submitted queuing active processing completed

Fig. 3. Discrete process model for the execution of an activity.¤ represents an activity state,©

represents an activity event.

Each states is determined by two events: leading eventei, and ending eventej such
that ei, ej ∈ E, s ∈ S, and(ei, s), (s, ej) ∈ A of P (a). To denote an eventnameof



P (a) we useename(a). We uset(e) to refer to the timestamp of an evente andtnow

to denote the timestamp at which the analysis is conducted. Because the monitoring
and analysis is conducted at the runtime, it is possible thatan activitya is on a state
s but there is no such(s, e) ∈ A of P (a). When analyzing such states, we usetnow

as a timestamp of the current time of states. We use→ to denote thehappened before
relation between events.

3.3 Intra-activity and Inter-activity Performance Metrics
Performance data relevant to a Grid WF are collected and analyzed at two levels:activ-
ity andworkflowlevel.
Activity Level Firstly, we dynamically instrument code regions of the invoked applica-
tion of the activity. We capture performance metrics of the activity, for example its exe-
cution status, performance measurements of instrumented code regions (e.g. wall-clock
time, hardware metrics), etc. Performance metrics of code regions are incrementally
provided to the user during the execution of the WF. Based on these metrics, various
analysis techniques can be employed, e.g. load imbalance, metric ratio. We extend our
overhead analysis for parallel programs [15] to WFAs. For each activity, we analyze
activity overhead. Activity overhead contains various types of overheads, e.g. commu-
nication, synchronization, that occur in an activity instance.

Secondly, we focus on analyzing response-time of activities.Activity response time
corresponds to the time an activity takes to be finished. The response time consists of
waiting time and processing time. Waiting time can be queuing time, suspending time.
For each activitya, its discrete process of execution model,P (a), is used as the in-
put for analyzing activity response time. Moreover, we analyze synchronization delay
between activities. Let consider a dependency between two activities (ai, aj) such as
ai ∈ pred(aj). ∀ai ∈ pred(aj), whenecompleted(ai) → esubmitted(aj), the synchro-
nization delay fromai to aj , Tsd(ai, aj), is defined as

Tsd(ai, aj) = t(esubmitted(aj)) − t(ecompleted(ai)) (1)

If at the time of the analysis,esubmitted(aj) has not occurred,Tsd(ai, aj) is computed
asTsd(ai, aj) = tnow − t(ecompleted(ai)). Each activity associates with a set of the
synchronization delays. From that set, we compute maximum,average and minimum
synchronization delay ataj . Note that synchronization delay can be analyzed for any
activity which is dependent on other activities. This metric is particularly useful for
analyzing synchronization points in a WF.
Workflow level We monitor and analyze performance metrics that characterize the in-
teraction and performance impact among activities. Interactions between two activities
can be file exchanges, remote method invocations or service calls. In the analysis phase,
we compute load imbalance, computation to communication ratio, activity usage, and
success rate of activity invocation, average response time, waiting time, synchroniza-
tion delay, etc. We combine WF graph, execution status information and performance
data to analyze load imbalance for fork-join model. Leta0 be the activity at the fork
point.∀ai, i = 1 : n, ai ∈ succ(a0), load imbalanceTli(ai, s) in states is defined by

Tli(ai, s) = T (ai, s) −

∑n

i=1
T (ai, s)

n
(2)



We also apply load imbalance analysis to a set of selected activities. In a WF, there
could be several activities whose functions are the same, e.g. mProject activities in
Figure 4, but are not in fork-join model.

3.4 Multi-workflow Analysis
We computeslowdown factorfor fork-join model. Slowdown factorsf is defined by

sf = n ×
maxn

i=1
(Tn(ai))

T1(ai)
(3)

whereTn(ai) is the processing time of activityai in fork-join version withn activities
andT1(ai) is the processing time of activityai in the version with single activity. We
also extend the slowdown factor analysis to fork-join structures that contain structured
block of activities. In this case,Tn(ai) will be the processing time of a structured block
of activities in a version withn blocks.

For different replaced refinement graphs of WFs of the same WFA,we compute
speedupfactor between them. LetSG be a subgraph of WFWFg of a WFA; SG has
ng components. LetPi =< ai1, ai2, · · · , ain > be a critical path from starting node to
the ending node of the componenti, Ci, of SG. The processing time ofSG, Tcp(SG),
is defined by

Tcp(SG) = max
ng

i=1
(Tcp(Ci)), Tcp(Ci) =

n∑

k=1

T (aik) (4)

whereT (aik) is the processing time of activityaik. Now, letSH be the replaced refine-
ment graph ofSG, SG andSH are subgraphs of WFWFg andWFh, respectively, of
a WFA. Speedup factorsp of SG overSH is defined by

sp =
Tcp(SG)

Tcp(SH)
(5)

The same technique is used when computing the speedup factorbetweenWFg and
WFh.

In order to support multi-workflow analysis of WFs, we have to collect and store dif-
ferent DAGs of the WF, performance data and machine information into an experiment
repository powered by PostgreSQL. Each graph is stored withits associated perfor-
mance metrics; graph can be DAG of the WF or a subgraph. We use a table to represent
relationship between subgraphs. Currently, for each experiment, the user can select sub-
graphs, specifying refinement relation between two subgraphs of two WFs. The perfor-
mance tool uses data in the experiment repository to conductmulti-experiment analysis.

4 Experiments

We have implemented a prototype of the Grid performance analysis service with WIC
is based on JavaCog [10]. JGraph [6] and JFreeChart [5] are used to visualize WF
DAGs and performance results, respectively. In this section, we illustrate experiments
of different WFs of the Montage application in the Austrian Grid [2].



tRawImage

mImgtbl1

mProject1

mImgtbl2

mAdd

tUncorrectedMosaic

(a)

tRawImage1

mImgtbl11

mProject11

tRawImage2

mImgtbl12

mProject12

tProjectedImage1 tProjectedImage2

mImgtbl2

mAdd

tUncorrectedMosaic

(b)

tRawImage1

mImgtbl11

mProject11

...

...

...

tRawImagen

mImgtbl1n

mProject1n

tProjectedImage1 ... tProjectedImagen

mImgtbl2

mAdd

tUncorrectedMosaic

(c)

Fig. 4. Experimental workflows of the Montage application: (a) workflow executed on single
resource, (b) workflow executed on two resources, and (c) workflow executed onn resources

Montage [11] is a software for generating astronomical image mosaics with back-
ground modeling and rectification capabilities. Based on the Montage tutorial, we de-
velop a set of WFs, each generates a mosaic from 10 images without applying any
background matching. Figure 4 presents experimental WFs of the Montage applica-
tion. In Figure 4(a), the activitytRawImage andtUncorrectedMosaic are used
to transfer raw images from user site to computing site and resulting mosaics from
computing site to user site, respectively.mProject reprojects input images to a com-
mon spatial scale.mAdd coadds the reprojected images.mImgtbl1 is used to build
image table which is accessed bymProject, mAdd. In WFs executed on multiple
resources, we have several subgraphstRawImage → mImgtbl1 → mProject1 →
tProjectedImage, each subgraph is executed on a resource. The newtProjectedImage
activity is used to transfer projected images produced bymProject to the site on
which mAdd is executed. When executed onn resources, the subgraphmImgtbl2 →
mAdd → tUncorrectedMosaic is allocated on one of thatn resources.

We conduct experiments on sites named GUP (University of Linz), UIBK (Univer-
sity of Innsbruck), AURORA6 (University of Vienna) and VCPC(University of Vienna)
of the Austrian Grid. Due to the space limit, we just present afew experiments of online
performance analysis of Montage WFs.

Figure 5 presents the performance analysis GUI when analyzing a Montage WF ex-
ecuted on two resources in UIBK. Performance analysis component retrieves profiling
data through the dynamic instrumentation of invoked applications. The left-pane shows
the DAG of the WF. The middle-pane shows the dynamic code region call graph (DRG)
of invoked applications of activities. We can examine the profiling data of instrumented
code region on the fly. The user can examine the whole DRG of theapplication, or DRG
of an activity instance. By clicking on a code region, detailed performance metrics will
be displayed in the right-pane. We can examine historical profiling data of a code re-
gion, for example windowHistorical Data shows the execution time of code region
computeOverlap executed onhafner.dps.uibk.ac.at. The user also can



monitor resources on which activities are executed. For example, the windowForecast
CPU Usageshows the forecasted CPU usage ofhafner.dps.uibk.ac.at.

Fig. 5.Online profiling analysis for WF activities.

Figure 6(a) presents the response time and synchronizationdelay analysis for ac-
tivity mImgtbl2when the Montage WF, presented in Figure 4(c), is executed on 5ma-
chines, 3 in AURORA6 and 2 in GUP. The synchronization delay from tProjectedIm-
age3, 4, 5 to tImgtbl2are very high. This causes by the high load imbalance between
mProjectinstances, as shown in Figure 6(b). The two machines in GUP can process
significantly faster than the rest machines in AURORA6.

(a) (b)

Fig. 6.Analysis of Montage executed on 5 machines: (a) response time and synchronization delay
of mImgtbl, (b) load imbalance ofmProject.

Over the course of the WF development process, subgraph namedmProjectedImage
which includestRawImage → mImgtbl1 → mProject1 in single resource ver-
sion is replaced by subgraphs oftRawImage → mImgtbl1 → mProject1 →
tProjectedImage in a multi-resource version. These subgraphs basically provide pro-
jected images to themAdd activity, therefore, we consider they are replaced refinement
graphs. We collect and store performance of these subgraphsin different experiments.
Figure 7 shows the speedup factor for the subgraphmProjectedImage of Mon-



tage WFs executed on several experiments. The execution ofmProjectedImage
of the WF executed on single resource in LINZ is faster than that of its refinement
graph executed on two resources (in AURORA6 or UIBK). However, the execution of
mProjectedImage of WF executed on 5 resources, 3 of AURORA6 and 2 of LINZ,
is just very slightly faster than that executed on 5 resources of AURORA6. The reason is
that the slower activities executed on AURORA6 resources have a significant impact on
the overall execution of the wholemProjectedImage as presented on Figure 6(b).

Fig. 7.Speedup factor for refinement graphProjectedImage of Montage WFs.

5 Related Work

Monitoring of WFs is an indispensable part of any WfMS. Therefore it has been dis-
cussed for many years. Many techniques have been introducedto study quality of ser-
vice and performance model of WFs, e.g., [8, 3], and to supportmonitoring and analysis
of the execution of the WF on distributed systems, e.g. in [1].We share many common
ideas and concepts with respect to performance metrics and monitoring techniques of
the WF model. However, existing works concentrate on business WFs and Web ser-
vices processes while our work targets to scientific WF executed on Grids. We support
dynamic instrumentation of activity instances and online monitoring and performance
profiling analysis of WFs, and integrate resources monitoring with WF monitoring.

Most effort on supporting the scientist to develop Grid workflow-based applications
concentrates on WF language, WF construction and execution systems, but not focuses
on monitoring and performance analysis of the Grid WFs. P-GRADE [7] is one of a
few tools that supports tracing of WF applications. Instrumentation probes are automat-
ically generated from the graphical representation of the application. It however limits
to MPI and PVM applications. Our Grid WF monitoring and performance analysis ser-
vice supports monitoring execution of activities and online profiling analysis. Also the
dynamic instrumentation does not limit to MPI or PVM applications.

6 Conclusion and Future Work

This paper introduces a Grid performance analysis service that can be used to monitor
and analyze the performance of scientific WFs in the Grid. The Grid performance anal-
ysis service which combines dynamic instrumentation, activity execution monitoring,



and performance analysis of WFs in a single system presents a dynamic and flexible
way to conduct the performance monitoring and analysis of scientific WFs. We be-
lieve techniques for comparing performance of subgraphs ofWFs and for supporting
multiple-workflow analysis are very useful for optimizing WFstructures and mapping
WF constructs onto selected underlying Grid resources.

In the current prototype, we manually instrument WIC in orderto get execution sta-
tus of activities. We can extend WF specification language with directives specifying
monitoring conditions. These directives will be translated into code used to publish the
status to the monitoring middleware. WIC can also offer an interface for the monitoring
service to access that status. Meanwhile, the process of analysis, monitoring and instru-
mentation is controlled by the end-user. The future work is to automate that process.
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