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Abstract. While existing work concentrates on developing QoS models of busi-
ness workflows and Web services, few tools have been developeggorsthe
monitoring and performance analysis of scientific workflows in Gridss Pa-

per describes a Grid service for performance monitoring and analy<isid
scientific workflows. The service utilizes workflow graphs and variopgs$yof
performance data including monitoring data of resources, executitus sthac-
tivities, and performance measurement obtained from the dynamiciimsitr-
tation, to provide a rich set of monitoring and performance analysis rieatu
We store workflows and their relevant information, devise techniquesnpare
constructs of different workflows, and support multi-workflow aséy

1 Introduction

Recently many interests have been shown in exploiting thenpial of the Grid for
scientific workflows. Scientific workflows [12] are normallyone flexible and diverse
than production and administrative business workflows h&<Grid is diverse, dynamic
and inter-organizational, even with a particular scienfiperiment, there is a need of
having a set of different workflows because (i) one workflowsthois suitable for a
particular configuration of underlying Grid systems, ariggvailable resources allo-
cated for a scientific experiment and their configurationcii@nged in each run on the
Grid. This requirement is a challenge for the performancaitodng and analysis of
workflows (WFs) because very often the client of performancéstwants to compare
the performance of different WF constructs with respect erésources allocated in
order to determine which WF construct should be mapped onichvtbpology of the
underlying Grid. Therefore, multi-workflow analysis, theadysis and comparison of
the performance of different WF constructs, ranging fromwihele WF to a specific
construct (e.g. a fork-join construct), is an importantdee. Moreover, the performance
monitoring and analysis of Grid scientific workflows must lmmducted online. Even
though numerous tools have been developed for construatidgexecuting scientific
workflows on the Grid, e.g. [9, 14, 4], there is a lack of todlattsupport scientists to
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monitor and analyze the performance of their workflows inGhiel. Most existing work
concentrates on develop QoS models of business workflowsvehdservices [8, 3, 1].

To understand the performance of WFs on the Grid, we need lectaind analyze
a variety of types of data relevant to the execution of the Wésifmany sources. In
previous work, we have developed a middleware which supenvices to access and
utilize diverse types of monitoring and performance data mnified system named
SCALEA-G [16]. This paper presents a Grid performance aialgervice for scien-
tific WFs. The analysis service, utilizing the unified monitgr middleware, collects
monitoring data from the WF control and invocation serviaes] performance mea-
surements obtained through the dynamic instrumentatioWefactivities, and uses
WEF graphs to monitor and analyze the performance of WFs dunaguntime. Rel-
evant data of WFs including WF graphs and performance metreestared, and we
develop techniques for comparing the performance of diffeconstructs of WFs.

The rest of this paper is organized as follows: Section 2ireglthe Grid perfor-
mance analysis service. Performance analysis for WFs igmpiex$ in Section 3. We
illustrate experiments in Section 4. Section 5 discussegdlated work. Finally we
summarize the paper and outline the future work in Section 6.

2 Grid Performance Analysis Service

Figure 1 presents the architecture of the Grid monitorirdj@erformance analysis ser-
vice for WFs. The WF is submitted to th&orkflow Invocation and ContrdWIC)
which locates resources and executes the WF. Events corgarecution status of
activities, such agueuing, processingnd information about resources on which the
activities are executed will be sent to the monitoring tddle Event Processingro-
cesses these events and thaalysis Controldecides which activities should be in-
strumented, monitored and analyzed. Based on informabiontahe selected activity
instance and its consumed resources, the Analysis Costjoests thinstrumentation
and Monitoring Controlto perform the instrumentation and monitoring. Monitoring
and measurement data obtained are then analyzed. Based m@stii of the analysis,
the Analysis Control can decide the next step. The perfocmamonitoring and analy-
sis service uses SCALEA-G as its supportive monitoring teigidre. The monitoring
service (MS) and Instrumentation Service (IS) are provioe&CALEA-G [16].

3 Performance Monitoring and Analysis of Grid Workflows

3.1 Supporting Workflow Computing Paradigm
Currently we focus on the WF modeled as a DAG (Direct Acycli@®@r) because
DAG is widely used in scientific WFs. A WF is modeled as a DAG of etha node
represents an activity (task) and an edge between two negessents the execution
dependency between the two activities. An invoked appdoadf an activity instance
may be executed on a single or multiple resources.

We focus on analyzing (fprk-join model and (iiymulti-workflowof an application.
Figure 2(b) presents the fork-join model of WF activities ihigh an activity is fol-
lowed by a parallel invocation of activities. There are several interesting metrics that
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Fig. 1. Model of monitoring and performance analysis of workflow-basealiegtion.

can be obtained from this model such as load imbalance, slewdactor, and syn-
chronization delay. These metrics help to uncover the imnpleglower activities on the
overall performance of the whole structure. We also comagmbn fork-join structures
that containstructured bloclof activities. A structured block is a single-entry-single
exit block of activities. For example, Figure 2(c) presesttactured blocks of activities.

A workflow-based application (WFA) can have different vensipeach represented
by a WF. For example, Figure 2 presents an application withfferdnt WFs, each
may be selected for execution on specific underlying ressuré/hen developing a
WFA, we normally start with a graph describing the WF. The WFA riadgally de-
veloped in a stepwise refinement that creates a new WF. In @&nedint step, a sub-
graph may be replaced by another subgraph, resulting in af skfferent constructs
of the WF. For example, the activityl in Figure 2(a) is replaced by set of activities
{al(1),al(2),---,al(n)} in Figure 2(b).

We focus on the case in which a subgraph of a DAG is replacedanother sub-
graph in the refined DAG. This pattern occurs frequently weweloping WFs. Let
G and H be DAG of WFW F, andW F;, respectively, of a WFAG and H represent
different versions of the WFAH is said to be aefinemenof G if H can be derived
by replacing a subgrapBG of G by a subgraplt H of H. The replacement can be
controlled by the following constraints:

— Every edge(a,b) € G,a ¢ SG,b € SG is replaced by an edge:, ¢) € H,
Ve € SH satisfies nal € H such thatd, c) € SH.

— Every edge(b,a) € G,a ¢ SG,b € SG is replaced by an edge,a) € H,
Ve € SH satisfies nal € H such thafc,d) € SH.

SH is said to be aeplaced refinement grapdf SG. Note thatSG andS H may not be a
DAG nor aconnected graph-or example, consider the cases of Figure 2(a) and Figure
2(b). SubgrapltG = {al} is replaced by subgraphl = {al(1),al(2),--,al(n)};

both are not DAG, the first is a trivial graph and the latter i¢ connected graph.
Generally, we assume that a subgr&fik hasn components. Each component is either
a DAG or a trivial graph. Comparing the performance of défarconstructs of a WFA
can help to select and map WF constructs to the selected Godnees in an optimal
way.
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Fig. 2. Multiple workflows of an workflow-based application: (a) Sequencekilow, (b) Fork-
join workflow, and (c) Fork-join of structured blocks of activities.

Graph refinement is a well-established field and it is not oau$. We do not con-
centrate on the determination of refinement graphs in WHserathe WF developers
and/or WF construction tools are assumed to do this task.idrptiper,(a;, a;) indi-
cates the dependency between activityinda;, andpred(;) andsucc;) denote sets
of the immediate predecessors and successors, respgative).

3.2 Activities Execution Model

We use discrete process model [13] to represent the exacatian activitya. Let
P(a) be the discrete process modeling the execution of activity P(a) is a directed,
acyclic, bipartite grapiS, E, A), in which S is a set of nodes representiagtivity
states F is a set of nodes representiagtivity eventsandA is a set of edges represent-
ing ordered pairs of activity state and event. Simply putagant (e.g. WIC, activity
instance) causes an event (e.g. submitted) that changastiviey state (e.g. from queu-
ing to processing), which in turn influences the occurremmk @utcome of the future
events (e.g. active, failed). Figure 3 presents an exanf@aiscrete process modeling
the execution of an activity.

initializing queuing processing |

Fig. 3. Discrete process model for the execution of an actiityepresents an activity statg)
represents an activity event.

Each state is determined by two events: leading eveptand ending event; such
thate;,e; € E, s € S, and(e;, s), (s,e;) € A of P(a). To denote an evemameof



P(a) we usee,,me(a). We uset(e) to refer to the timestamp of an evenandt,, .,
to denote the timestamp at which the analysis is conductedalse the monitoring
and analysis is conducted at the runtime, it is possibledhadctivitya is on a state
s but there is no sucls,e) € A of P(a). When analyzing such state we uset,, .
as a timestamp of the current time of stat&Ve use— to denote thénappened before
relation between events.

3.3 Intra-activity and Inter-activity Performance Metrics

Performance data relevant to a Grid WF are collected and zethlyt two levelsactiv-
ity andworkflowlevel.

Activity Level Firstly, we dynamically instrument code regions of the k&t applica-
tion of the activity. We capture performance metrics of tbévity, for example its exe-
cution status, performance measurements of instrumentégregions (e.g. wall-clock
time, hardware metrics), etc. Performance metrics of cedens are incrementally
provided to the user during the execution of the WF. Based esetlmetrics, various
analysis techniques can be employed, e.g. load imbalareteicmatio. We extend our
overhead analysis for parallel programs [15] to WFAs. Foheaativity, we analyze
activity overheadActivity overhead contains various types of overheads, @mmu-
nication, synchronization, that occur in an activity imste.

Secondly, we focus on analyzing response-time of actsuifietivity response time
corresponds to the time an activity takes to be finished. €spanse time consists of
waiting time and processing time. Waiting time can be qugtime, suspending time.
For each activitya, its discrete process of execution modBla), is used as the in-
put for analyzing activity response time. Moreover, we gpalsynchronization delay
between activities. Let consider a dependency between ttivitees (a;, a;) such as
a; € pred(aj). Va; € pred(a;j), Whenecompicted(@i) — €submitted(a;), the synchro-
nization delay fromu; to a;, Ts4(as, a;), is defined as

Tsd<ai7 aj) = t(esubmitted<aj)> - t(ecompleted(ai)) (1)

If at the time of the analysi$,susmitted(a;) has not occurredisq(a;, a;) is computed
asT,q(ai, a;) = thow — t(ecompletea(@i)). Each activity associates with a set of the
synchronization delays. From that set, we compute maxinawerage and minimum
synchronization delay at;. Note that synchronization delay can be analyzed for any
activity which is dependent on other activities. This mets particularly useful for
analyzing synchronization points in a WF.
Workflow level We monitor and analyze performance metrics that charaeténe in-
teraction and performance impact among activities. lioteras between two activities
can be file exchanges, remote method invocations or serailse I the analysis phase,
we compute load imbalance, computation to communicatitio, ractivity usage, and
success rate of activity invocation, average response tiaging time, synchroniza-
tion delay, etc. We combine WF graph, execution status inftion and performance
data to analyze load imbalance for fork-join model. hgtbe the activity at the fork
point.Va;,i = 1 : n,a; € succ(ag), load imbalancdy;(a;, s) in states is defined by
22;1 T(as, s)

Tis(as,5) = T(az, ) — &=L 2000 @



We also apply load imbalance analysis to a set of selectédtamst. In a WF, there
could be several activities whose functions are the sargetrer oj ect activities in
Figure 4, but are not in fork-join model.

3.4 Multi-workflow Analysis
We computeslowdown factofor fork-join model. Slowdown factos f is defined by
mazi_ (Tn(a:))

sf=nx T1(a) 3)
whereT,, (a;) is the processing time of activity, in fork-join version withn activities
andTi (a;) is the processing time of activity; in the version with single activity. We
also extend the slowdown factor analysis to fork-join stutes that contain structured
block of activities. In this casé,, (a;) will be the processing time of a structured block
of activities in a version wit blocks.

For different replaced refinement graphs of WFs of the same WiEAcompute
speedugactor between them. LeiG be a subgraph of WK F, of a WFA; SG has
ngy components. Lel’; =< a;1,a42, - -, a;n, > be a critical path from starting node to
the ending node of the componentC;, of SG. The processing time #G, T..,(SG),
is defined by

Tep(SG) = mawi2, (Tep(C)), Tep(Ci) = > T(au) 4
k=1

whereT (a;1) is the processing time of activity;,.. Now, letS H be the replaced refine-
ment graph oSG, SG andSH are subgraphs of WR F,; andW F},, respectively, of
a WFA. Speedup factatp of SG over SH is defined by
T,y (SG)
- 5

V7L, (5H) ©
The same technique is used when computing the speedup fatiseenlV F;, and
W F},.

In order to support multi-workflow analysis of WFs, we havedtert and store dif-
ferent DAGs of the WF, performance data and machine infoonatito an experiment
repository powered by PostgreSQL. Each graph is stored itgithssociated perfor-
mance metrics; graph can be DAG of the WF or a subgraph. We adxdestd represent
relationship between subgraphs. Currently, for each éxyat, the user can select sub-
graphs, specifying refinement relation between two subbgraptwo WFs. The perfor-
mance tool uses data in the experiment repository to comdulti-experiment analysis.

4 Experiments

We have implemented a prototype of the Grid performanceyaisaservice with WIC
is based on JavaCog [10]. JGraph [6] and JFreeChart [5] aé tesvisualize WF
DAGs and performance results, respectively. In this sectie illustrate experiments
of different WFs of the Montage application in the Austriandd].
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Fig. 4. Experimental workflows of the Montage application: (a) workflow exedwn single
resource, (b) workflow executed on two resources, and (c) vawldkecuted om resources

Montage [11] is a software for generating astronomical ienagpsaics with back-
ground modeling and rectification capabilities. Based @enNtontage tutorial, we de-
velop a set of WFs, each generates a mosaic from 10 imagesuviipplying any
background matching. Figure 4 presents experimental WFeeoMontage applica-
tion. In Figure 4(a), the activity Rawl mage andt Uncor r ect edMosai ¢ are used
to transfer raw images from user site to computing site asdltieg mosaics from
computing site to user site, respectivetr oj ect reprojects input images to a com-
mon spatial scalexAdd coadds the reprojected images.ngt bl 1 is used to build
image table which is accessed br oj ect, mAdd. In WFs executed on multiple
resources, we have several subgrapfRewImage — mImgtbll — mProjectl —
tProjectedImage, each subgraph is executed on a resource. The Fewj ect edl nage
activity is used to transfer projected images producedrByoj ect to the site on
which mAdd is executed. When executed arresources, the subgraphl/mgtbl2 —
mAdd — tUncorrectedM osaic is allocated on one of that resources.

We conduct experiments on sites named GUP (University of),.idIBK (Univer-
sity of Innsbruck), AURORAG (University of Vienna) and VCRQniversity of Vienna)
of the Austrian Grid. Due to the space limit, we just presefetraexperiments of online
performance analysis of Montage WFs.

Figure 5 presents the performance analysis GUI when amglygMontage WF ex-
ecuted on two resources in UIBK. Performance analysis compiretrieves profiling
data through the dynamic instrumentation of invoked apfibms. The left-pane shows
the DAG of the WF. The middle-pane shows the dynamic code imegat) graph (DRG)
of invoked applications of activities. We can examine thafifing data of instrumented
code region on the fly. The user can examine the whole DRG @fiihkcation, or DRG
of an activity instance. By clicking on a code region, det@iperformance metrics will
be displayed in the right-pane. We can examine historioafilprg data of a code re-
gion, for example windowHistorical Data shows the execution time of code region
conput eOver | ap executed orhaf ner . dps. ui bk. ac. at. The user also can



monitor resources on which activities are executed. Fomgia, the windowForecast
CPU Usageshows the forecasted CPU usagénaf ner . dps. ui bk. ac. at .
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Fig. 5. Online profiling analysis for WF activities.

Figure 6(a) presents the response time and synchronizdilary analysis for ac-
tivity mimgtbl2when the Montage WF, presented in Figure 4(c), is executedroa-5
chines, 3 in AURORA®G and 2 in GUP. The synchronization detayftProjectedIim-
ages, 4, 5to timgtbl2 are very high. This causes by the high load imbalance between
mProjectinstances, as shown in Figure 6(b). The two machines in GUWRpoacess
significantly faster than the rest machines in AURORAG.
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Fig. 6. Analysis of Montage executed on 5 machines: (a) response time aciagrepization delay
of m ngt bl , (b) load imbalance afPr oj ect .

Over the course of the WF development process, subgraph rmePneg ect edl nage
which includestRawImage — miImgtbll — mProjectl in single resource ver-
sion is replaced by subgraphs tRawlImage — mImgtbll — mProjectl —
tProjectedImage in a multi-resource version. These subgraphs basicallyigegro-
jected images to theAdd activity, therefore, we consider they are replaced refimeme
graphs. We collect and store performance of these subgmapliferent experiments.
Figure 7 shows the speedup factor for the subgnaphoj ect edl nage of Mon-



tage WFs executed on several experiments. The executioffodj ect edl mage

of the WF executed on single resource in LINZ is faster tham d¢iidts refinement
graph executed on two resources (in AURORAG or UIBK). Howetlee execution of
nPr oj ect edl mage of WF executed on 5 resources, 3 of AURORAG and 2 of LINZ,
is just very slightly faster than that executed on 5 resaicf AURORAG. The reason is
that the slower activities executed on AURORAG resources hasignificant impact on
the overall execution of the whotePr oj ect edl nage as presented on Figure 6(b).

gi SCALEA—G: Speedup factor ‘ . ‘J‘
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Fig. 7. Speedup factor for refinement graPhoj ect edl mage of Montage WFs.
5 Related Work

Monitoring of WFs is an indispensable part of any WfMS. Therefb has been dis-
cussed for many years. Many techniques have been introdacgddy quality of ser-
vice and performance model of WFs, e.qg., [8, 3], and to supportitoring and analysis
of the execution of the WF on distributed systems, e.g. in\jid.share many common
ideas and concepts with respect to performance metrics amitaring techniques of
the WF model. However, existing works concentrate on busivéss and Web ser-
vices processes while our work targets to scientific WF exsetah Grids. We support
dynamic instrumentation of activity instances and onlirenitoring and performance
profiling analysis of WFs, and integrate resources monigpwith WF monitoring.

Most effort on supporting the scientist to develop Grid vitmk-based applications
concentrates on WF language, WF construction and executst@nsyg, but not focuses
on monitoring and performance analysis of the Grid WFs. P-GRAT7] is one of a
few tools that supports tracing of WF applications. Instratagion probes are automat-
ically generated from the graphical representation of th@ieation. It however limits
to MPI and PVM applications. Our Grid WF monitoring and penfiance analysis ser-
vice supports monitoring execution of activities and oalprofiling analysis. Also the
dynamic instrumentation does not limit to MPI or PVM apptioas.

6 Conclusion and Future Work

This paper introduces a Grid performance analysis serkitecan be used to monitor
and analyze the performance of scientific WFs in the Grid. The @erformance anal-
ysis service which combines dynamic instrumentationyagtexecution monitoring,



and performance analysis of WFs in a single system presentaaaic and flexible

way to conduct the performance monitoring and analysis @ngsific WFs. We be-

lieve techniques for comparing performance of subgraph&/ie§ and for supporting
multiple-workflow analysis are very useful for optimizing V€Fuctures and mapping
WEF constructs onto selected underlying Grid resources.

In the current prototype, we manually instrument WIC in ortbeget execution sta-
tus of activities. We can extend WF specification languagé ditectives specifying
monitoring conditions. These directives will be transthiteto code used to publish the
status to the monitoring middleware. WIC can also offer aarfiate for the monitoring
service to access that status. Meanwhile, the process lyk@anonitoring and instru-
mentation is controlled by the end-user. The future work igutomate that process.
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