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SUMMARY

Many existing performance analysis tools lack the flexibility to control instrumentation
and performance measurement for code regions and performance metrics of interest.
Performance analysis is commonly restricted to single experiments.

In this paper we present SCALEA, which is a performance instrumentation,
measurement, analysis, and visualization tool for parallel programs that supports post-
mortem performance analysis. SCALEA currently focuses on performance analysis for
OpenMP, MPI, HPF, and mixed parallel programs. It computes a variety of performance
metrics based on a novel classification of overhead. SCALEA also supports multi-
experiment performance analysis that allows to compare and to evaluate the performance
outcome of several experiments. A highly flexible instrumentation and measurement
system is provided which can be controlled by command-line options and program
directives. SCALEA can be interfaced by external tools through the provision of a full
Fortran90 OpenMP /MPI/HPF frontend that allows to instrument an abstract syntax
tree at a very high-level with C-function calls and to generate source code. A graphical
user interface is provided to view a large variety of performance metrics at the level
of arbitrary code regions, threads, processes, and computational nodes for single- and
multi-experiment.
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1. INTRODUCTION

The evolution of parallel and distributed architectures and programming paradigms for
performance-oriented program development challenge the state of technology for performance
tools. Coupling different programming paradigms such as message passing and shared memory
programming for hybrid cluster computing (e.g. SMP clusters) is one example for high
demands on performance analysis tools that are capable to cope with applications for multiple
programming models and target architectures. Performance tools must be able to observe
performance problems at all levels of a system while relating low-level behavior to the
application program.

One of the challenges faced by performance analysis tools is the selection of an appropriate
level of measurement and analysis detail to systematically identify the origins of performance
problems. On the one hand, a programmer may be well aware about which code sections
and performance metrics should be in the center of performance analysis. On the other hand,
tools can automatically divide a program into code regions, determine whether those regions
cause performance problems and map code region to a given class of performance overheads.
A combination of user directions and tools functionality can provide a simple and efficient
mechanism to control the level of measurement and analysis. The difference between ideal
and measured execution time is commonly defined as the overhead implied by parallelizing
a program. A classification of performance overheads will provide the user with a detailed
understanding of where and how performance was lost. Most existing tools, however, lack a
classification of performance overheads and support limited measurement and instrumentation
features, thus a systematic performance analysis is severely hampered.

In this paper we describe SCALEA, a performance instrumentation, measurement, and
analysis system for distributed and parallel architectures that currently focuses on OpenMP
[34], MPI [15], HPF [18], and mixed programming paradigms such as OpenMP/MPI. SCALEA
seeks to explain the performance behavior of each program by computing a variety of
performance metrics based on a novel classification of performance overheads for shared
and distributed memory parallel programs which includes data movement, synchronization,
control of parallelism, additional computation, loss of parallelism, and unidentified overheads.
In order to determine overheads, SCALEA divides the program sources into code regions
(ranging from entire program units to single statements) and finds out what performance
problems occur in those regions. A highly flexible instrumentation and measurement system is
provided which can precisely be controlled by program directives and command-line options.
In the center of SCALEA’s performance analysis is a novel dynamic code region call graph
(DRG) which reflects the dynamic relationship between code regions and their subregions
and enables a detailed overhead analysis for every code region. SCALEA combines source
code and hardware-profiling in a single system, which broadens the performance aspects
that can be examined substantially. A combination of command-line options and program
directives enables the programmer to precisely control instrumentation, measurement, and
analysis so that performance metrics can be computed for user-selected or pre-defined code
regions. Moreover, SCALEA supports a high-level interface to traverse an abstract syntax
tree (AST), to locate arbitrary code regions, and to mark them for instrumentation. Thus the
SCALEA instrumentation and overhead analysis engine can be used by external tools as well.
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A data repository is employed in order to store performance data and information about
performance experiments which alleviates the association of performance information with
experiments and the source code. SCALEA also supports multi-experiment performance
analysis that allows to examine and compare the performance outcome of different program
executions. A sophisticated visualization engine is provided to view the performance of
programs at the level of arbitrary code regions, threads, processes, and computational nodes
(e.g. single-processor systems, Symmetric Multiple Processor (SMP) nodes sharing a common
memory) for single- and multi-experiment.

The rest of this paper is organized as follows: Section 2 presents an overview of SCALEA.
In Section 3 we present a classification of performance overheads. The next section outlines
the various instrumentation mechanisms offered by SCALEA. Section 5 presents the dynamic
code region call graph. The performance data repository is described in the following Section.
Experiments are shown in Section 7. Related work is outlined in Section 8, followed by
conclusions in Section 9.

2. SCALEA OVERVIEW

SCALEA is a performance instrumentation, measurement, and analysis system for distributed
memory, shared memory, and mixed parallel programs. Figure 1 shows the architecture
of SCALEA which consists of several components: SCALEA Instrumentation System
(SIS), SCALEA Runtime System, SCALEA Performance Data Repository, and SCALEA
Performance Analysis & Visualization System. All components provide well-defined interfaces
thus they can easily be used by external tools as well.

SIS uses the front-end and unparser of the VFC compiler [4]. SIS supports automatic
instrumentation of MPI, OpenMP, HPF, and mixed OpenMP/MPI programs. The user can
select (by directives or command-line options) code regions (loops, subroutines, OpenMP
regions, MPI Communications, etc) and performance metrics (timing, HW-parameters, and
performance overheads) of interest. Moreover, SIS offers an interface for other tools to traverse
and annotate the AST at a high level in order to specify code regions for which performance
metrics should be obtained. SIS also generates an instrumentation description file to relate all
gathered performance data back to the input program.

The SCALEA runtime system supports profiling and tracing for parallel and distributed
programs, and sensors and sensor managers for capturing and managing performance data of
individual computing nodes of parallel and distributed machines. The SCALEA profiling and
tracing library collects timing, event, and counter information, as well as hardware parameters
(determined through an interface with the PAPI library [6]).

The SCALEA performance analysis and visualization module analyzes the raw performance
data which is collected post-mortem and stored in the performance data repository. It computes
all user-requested performance metrics, and visualizes them together with the input program.
Besides single-experiment analysis, SCALEA also supports multi-experiment performance
analysis. The visualization engine provides a rich set of displays for various metrics in isolation
or together with the source code.
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Figure 1. Architecture of SCALEA.

The SCALEA performance data repository holds relevant information about the experiments
conducted which includes raw performance data and metrics, source code, machine
information, etc. In the following sections, we provide a more detailed overview of SCALEA.

3. CLASSIFICATION OF TEMPORAL OVERHEADS

According to Amdahl’s law [1], theoretically the best sequential algorithm takes time T to
finish the program, and T, is the time required to execute the parallel version with p processors.
The temporal overhead of a parallel program is defined by T, = T,, — T,/p and reflects the
difference between achieved and optimal parallelization. T, can be divided into T; and T, such
that T, = T;+T,, where T; is the overhead that can be identified and Ty, is the overhead fraction
which could not be analyzed in detail. In theory 7T, cannot be negative, which implies that the
speedup T /T, cannot exceed p [20]. However, in practice it occurs that temporal overhead can
become negative due to super linear speedup of applications. This effect is commonly caused
by an increased available cache size.
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In previous work [32], we presented a preliminary and very coarse grain classification of
performance overheads which has been stimulated by [7]. Figure 2 shows our novel and
substantially refined overhead classification which includes:

e Data movement shown in Fig. 2(b) corresponds to any data transfer within local memory
(e.g. cache misses and page faults), file I/O, communication (e.g. point to point or
collective communication), and remote memory access (e.g. put and get). Note that
the overhead Communication of Accumulate Operation has been stimulated by the
MPI_Accumulate construct which is employed to move and combine (through reduction
operations) data at remote sites via remote memory access.

e Synchronization (e.g. barriers and locks) shown in Fig. 2(c) is used to coordinate processes
and threads when accessing data, maintaining consistent computations and data, etc. We
subdivided the synchronization overhead into single- and multi-address space overheads.
A single-address space overhead corresponds to a synchronization inside a single process
on parallel systems, for instance any kind of OpenMP synchronization falls into this
category, whereas multi-address space synchronization has been stimulated by MPI [15]
synchronization, remote memory locks, barriers among different processes, etc.

o Control of parallelism (e.g. fork/join operations and loop scheduling) shown in Fig. 2(d)
is used to control and manage the parallelism of a program which is commonly caused
by code inserted by the compiler (e.g. runtime library) or by the programmer (e.g. to
implement data redistribution).

e Additional computation (see Fig. 2(e)) reflects any change of the original sequential
program including algorithmic or compiler changes to increase parallelism (e.g. by
eliminating data dependences) or data locality (e.g. through changing data access
patterns). Moreover, requests for processing unit identifications or for the number of
threads to execute a code region may also imply additional computation overhead.

e Loss of parallelism (see Fig. 2(f)) is due to imperfect parallelization of a program. Loss of
parallelism is further classified into: unparallelized code (executed by only one processor),
replicated code (executed by all processors), and partially parallelized code (executed by
more than one but not all processors).

e Unidentified overhead corresponds to the overhead that is not covered by the above
categories.

4. SCALEA Instrumentation System (SIS)

SIS provides the user with three alternatives to control instrumentation which includes
command-line options, SIS directives, and a high-level instrumentation library combined
with an OpenMP/MPI/HPF frontend and unparser. All of these alternatives support
the specification of performance metrics and code regions of interest for which SCALEA
automatically generates instrumentation code and determines the desired performance values
during or after program execution. In the remainder of this paper we assume that a code
region refers to a single-entry single-exit code region. A large variety of predefined mnemonics
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Figure 2. Classification of temporal overheads.
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are provided by SIS for instrumentation purposes. The current implementation of SCALEA
supports 49 code region and 30 performance metric mnemonics:

e code region mnemonics: arbitrary code regions, loops, outermost loops, procedures, I/O
statements, HPF INDEPENDENT loops, HPF redistribution, OpenMP parallel loops,
OpenMP sections, OpenMP critical, MPI send, receive, and barrier statements, etc.

e performance metric mnemonics: wall clock time, cpu time, communication overhead,
cache misses, barrier time, synchronization, scheduling, compiler overhead, unparallelized
code overhead, HW-parameters, etc. See also Fig. 2 for a classification of performance
overheads considered by SCALEA.

4.1. Instrumentation

The user can specify arbitrary code regions ranging from entire program units to single
statements and name (to associate performance data with code regions) these regions by
using the following directive:

ISIS$ CR region_-name BEGIN
code region
ISIS$ END CR

In order to specify a set of code regions R = {rq,...,7,} in an enclosing region r and
performance metrics which should be computed for every region in R, SIS offers the following
directive:

ISIS$ CR region_name [,cr-mnem-list] [PMETRIC perf-mnem-list| BEGIN
code region r that includes all regions in R
!SIS$ END CR

The code region r defines the scope of the directive. Note that every (code) region in R is a
sub-region of r but r may contain sub-regions that are not in R.

The code region (cr_mnem-list) and performance metric (perf-mnem-list) mnemonics are
indicated as a list of mnemonics separated by commas. One of the code region mnemonics
(CR-A) refers to arbitrary code regions. Note that the above specified directive allows the
user to indicate either only code region mnemonics or performance metric mnemonics, or a
combination of both. If in a SIS directive d only code region mnemonics are indicated, then
SIS is instrumenting all code regions that correspond to these mnemonics inside of the scope
of d. The instrumentation is done for a set of default performance metrics which can be
overwritten by command-line options or at runtime. This option can be particularly useful if
the user knows that only a few code regions can cause critical performance problems whose
performance overheads are unknown. Only if the mnemonic CR_A is included in the list of
code region mnemonics of a directive d, then instrumentation for arbitrary code regions inside
of the scope of d will be conducted.

If only performance metric mnemonics are indicated in a directive d then SIS is instrumenting
those code regions that have an impact on the specified metrics. This option is useful if a user
is interested in specific performance metrics but does not know which code regions may cause
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these overheads. For instance, compilers often substantially restructure OpenMP (e.g. implicit
synchronization) and HPF (e.g. implicit data redistribution) codes which is not visible at the
input code. In order to find the associated compiler overhead, the programmer could specify
some control of parallelism overhead mnemonics in a SIS directive.

If both code regions and performance metrics are defined in a directive d, then SIS is
instrumenting these code regions for the indicated performance metrics in the scope of d.
Feasibility checks are conducted by SIS, for instance, to determine whether the programmer is
asking for OpenMP overheads in HPF code regions. For these cases, SIS outputs appropriate
warnings. If neither code region nor overhead mnemonics are indicated then the directive is
simply ignored.

All previous directives are called local directives as the scope of these directives is restricted
to a part of a program unit (main program, subroutines or functions). The scope of a directive
can be extended to the full program unit by using the following syntax:

ISIS$ CR [cr-mnem-list] [PMETRIC perf-mnem-list]

A global directive d collects performance metrics — indicated in the PMETRIC part of d — for
all code regions — specified in the CR part of d — in the program unit which contains d. A local
directive implies the request for performance information restricted to the scope of d. There
can be nested directives with arbitrary combinations of global and local directives. If different
performance metrics are requested for a specific code region by several nested directives, then
the union of these metrics is determined. In addition, SIS supports command-line options to
instrument specific code regions for well-defined performance metrics in the entire application
(across all program units).

Moreover, SIS provides directives to control tracing/profiling. The directives MEASURE
ENABLE and MEASURE DISABLE allow the programmer to turn on and off tracing/profiling
of a specific code region.

!SIS$ MEASURE DISABLE
code region
!SIS§ MEASURE ENABLE

SIS also provides an interface that can be used by other tools to exploit SCALEA’s
instrumentation features. We have developed a C-library to traverse the AST and to mark
arbitrary code regions for instrumentation. For each code region, the user can specify the
performance metrics of interest. Based on the annotated AST, SIS automatically generates an
instrumented source code.

In the following example we demonstrate some of the directives as mentioned above by
showing a fraction of an application code of Section 7.

di: !SIS$ CR PMETRIC ODATA_SEND, ODATA_RECV, ODATA_COL
call MPI_BCAST(nx, 1,MPI_INTEGER, mpi_master,MPI_COMM_WORLD,mpi_err)

do: !SIS$ CR compmain, CR_A, CR_S PMETRIC WTIME, L2_TCM BEGIN

ds: !SIS$ CR init_comp BEGIN
dj=real(nx,b8)/real(nodes_row,b8)
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da: !SIS$ END CR

ds: !SIS$ MEASURE DISABLE
call bc(psi,il,i2,j1,j2)
dg: 1SIS$ MEASURE ENABLE

call do_force(il,i2,j1,j2)

dr: !SIS$ END CR

Directive d; is a global directive which instructs SIS to instrument all send, receive and
collective communication statements in this program unit. Directives da (begin) and d7 (end)
define a specific code region with the name comp_main. Within code region comp_main,
SCALEA will determine wall clock times (WTIME) and the total number of L2 cache misses
(L2_-TCM) for all arbitrary code regions (based on mnemonic CR_A) and subroutine calls
(mnemonic CR_S) as specified in ds. Directives d3 and d4 specify an arbitrary code region
with the name init_comp. No instrumentation as well as measurement is done for the code
region between directives ds and dg.

4.2. Instrumentation Description File (IDF)

A crucial aspect of performance analysis is to relate performance information back to the
original input program. When instrumenting a program, SIS generates an instrumentation
description file (IDF) which correlates profiling, trace and overhead information with the
corresponding code regions. The IDF maintains for every instrumented code region a variety
of information (see Table I).

IDF Entry Description

id code region identifier

type code region type

file source file identifier

unit identifier of the program unit that encloses this region

line start line number where this region starts

column _start column number where this region starts

line_end line number where this region ends

column_end column number where this region ends

performance_metric_mnemonics | mnemonics representing performance metrics which
will be collected or computed for this region

aux auxiliary information

Table I. Content of an entry in the instrumentation description file (IDF')

A code region type describes the type of the code region, for example, entire program unit,
outermost loop, read statement, OpenMP SECTION, OpenMP parallel loop, MPI barrier, etc.
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The program unit corresponds to a subroutine or function which encloses the code region. The
performance data of a code region stored in a separate repository is associated with the code
region description via the code region identifier.

5. DYNAMIC CODE REGION CALL GRAPH

Every program consists of a set of code regions which can range from single statements to
entire program units. A code region can be, respectively, entered and exited by multiple entry
and exit control flow nodes (points) (see Figure 3). In most cases, however, code regions are
single-entry-single-exit code regions.

In order to measure the execution behavior of a code region, the instrumentation system
has to detect all entry and exit nodes of the code region and insert probes at these nodes.
Basically, this task can be done with the support of a compiler or guided through manual
insertion of directives. Figure 3 shows an example of a code region with its entry and exit
nodes; each node represents a statement in the program. To select an arbitrary code region,
the user, respectively, marks two statements as the entry and exit statements — which are at the
same time entry and exit nodes — of the code region (e.g., by using SIS directives). Through the
compiler analysis, SIS then automatically tries to determine all entry and exit nodes of the code
region. The instrumentation tries to detect all of these nodes and automatically inserts probes
before and after all entry and exit nodes, respectively. Note that code regions can overlap
each other, however, SIS at this point does not support instrumentation of overlapped code
regions. The current implementation of SIS supports mainly instrumentation of single-entry
multiple-exit code regions. We are enhancing SIS to cover also multiple-entry multiple-exit
code regions.

5.1. Dynamic code region call graph

SIS has a set of predefined (static) code regions which are classified into common (e.g. program,
procedure, loop, function call, statement) and programming paradigm-specific code regions
(MPI_calls, HPF INDEPENDENT loops, OpenMP parallel regions, loops, and sections, etc.).
Moreover, SIS provides directives to define arbitrary code regions (see Section 4) in the input
program.

An instrumented (static) code region can be called multiple times (each time one activation
of the code region is executed) during runtime of a program. One activation of an instrumented
code region is associated with a code region stack trace which is our extension version of the
program stack trace for functions [16] to arbitrary code regions :

A code region stack trace of a program at an instant of time is the sequence of
instrumented code regions that are active at that time.

A code region stack trace C' denoted by C = (c;,,, = ¢, — -0+ — chk) starts with an
activation ¢, —of the root code region r,,, , followed by an activation c,,, of code region rp,,
called inside the activation c,,, , followed by an activation of code region r.,, called inside
the activation ¢, , and so on. The above definition implies that activations of the same code
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Figure 3. A code region with several entry and exit nodes.

region may appear in the same code region stack trace or in various code region stack traces.
For example, a program @) which has a set of code regions R = {r1,7a,rs,r4} may have three
different code region stack traces at different times as follows:

1 1 1

c{1 — c{3 — c§4, \
. c{1 — c§2 — 023 — cg4, and
® c. —Cp, = Cp > C,

where 71 is the root code region and ¢, — c’,fj means that activation numbered k of code
region r; is called directly by activation numbered ! of code region r;. We then define the
equivalence relation for code region stack traces:

Let p7* = De the activation numbered ny of code region rp, and q.* be the
Mk

I

activation numbered nj, of code region r;, .. Cp = (pyt — pf2 — -~ = pp* )

Tmq Tmy,
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is the code region stack trace which leads to activation pi:: ~and Cy = (g —
™1

a7,

The stack trace Cp is called equivalent with C, iff both stack traces satlsfy the

following conditions: (i) k = k', k > 1 and (ii) for all 1 < i <k, rm; =1y,

— =g, ,’“' ) is the code region stack trace which leads to activation g, ,’“' .

To clarify the above definition, we back to the abovementioned example. The equivalence
relation holds for the code region stack trace of activation c and c . However, the code region
stack trace of activation cl4 and c} r, do not fulfill the condltlons of the equivalence relation.
The key idea is that if activations have equivalent code region stack traces, we can compact
them into a record of the data structure representing the calling behavior of code regions while
still can associate their performance metrics with their calling context. For example, instead of
storing information of activation c and c in two separate records, we save their information
into one record.

We then extend the code region stack trace into the context of the parallel program with
the assumption that the parallel program has multiple processes, each of them contains several
threads of computation, and it is executed in set of computational nodes at the runtime. Each
code region stack trace is associated with a thread on which activations inside the code region
stack trace are executed. We can define a new data structure called dynamic code region call
graph (DRG) which is used for recording the calling behavior and performance metrics of code
regions:

A dynamic code region call graph (DRG) of a program @ with a set of code regions
R = {r1,72,...,mp} is defined by a directed flow graph G = (N, E,s) with a set
of nodes N and a set of edges E. A node n € N represents a set of activations of
a code region 1, € R which is executed at least once during runtime of (). The
equivalence relation holds for all code region stack traces of all activations in n. An
edge (n1,n2) € E is a pair of ny,ns € N where n; and ns are a set of activations
of code region 7, and r,, respectively and activations in n, is called directly by
activations in n,. The set of activations of the first code region executed during
execution of @ is defined by s.

For example, Figure 4 shows an excerpt of an OpenMP code together with its associated DRG.

The DRG is stimulated by the idea of the calling context tree (CCT)[2]. However, the DRG
differs CCT in several aspects:

e A node in the CCT represents activations at procedure-level whereas in the DRG a node
is defined as set of activations of an arbitrary code region (e.g. function, loop, statement).

e The DRG provides the context of parallel program. Calling context associates with not
only call path of code regions but also computational calling environments (information
about computational nodes, processes, threads).

The DRG is used as a key data structure to conduct a detailed performance overhead analysis
under SCALEA. Notice that the generic timing overhead of a code region r with n explicitly

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 0000; 00:0-0
Prepared using cpeauth.cls
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PROGRAM EXAMPLE;
INTEGER::X, AN

PRINT *, "Input N="
- READ *N
- @

call SISF_START(3 )
I$SOMP PARALLEL SHARED(X,N),
DEFAULT(PRIVATE)
A =0
call SISF_START(4 )
ISOMP DO
DO I=1,N
4 A =A+1
END DO
I$SOMP END DO NOWAIT
call SISF_STOP(4 )
call SISF_START(5S )

r_ | 1$OMP CRITICAL
’ X =X+A

!$SOMP END CRITICAL

call SISF_STOP(5 )
!$SOMP END PARALLEL

call SISF_STOP(3 )

END PROGRAM

Figure 4. OpenMP code excerpt with DRG when executing with 4 threads (denoted by TCRy—T'CR3).
Code region R, R are executed only in thread 0 whereas R3, R4, Rs are executed in all threads. This
program is running with 1 process (denoted by PCRy) on a computational node (denoted by CCRy).

instrumented sub-regions 71, ...,y is given by
T(r) =T (Start,) + T(r1) + ... + T(rn) + T(Remain) + T(End,)

where T'(r;) is the timing overhead for an explicitly instrumented code region r; (1 <1 < n).
T(Start,) and T(End,) correspond to the overhead at the beginning (e.g. fork threads,
redistribute data) and at the end (join threads, barrier synchronization, process reduction
operation, etc.) of r. T (Remain) corresponds to the code regions that have not been explicitly
instrumented. However, we can easily compute T'(Remain) as region r is instrumented as well.

5.2. Generating and Building the Dynamic Code Region Call Graph

Calling code region r» inside a code region r1 during the execution of a program establishes a
parent-children relationship between executions of r; and rs. The instrumentation library will
capture these relationships, build nodes of the DRG and maintain them during the execution
of the program. Each node in the DRG is represented by a data entry point which contains
performance measurement for all activations whose code region stack traces are equivalent. An
edge (n1,n2) of the DRG is represented by a link from the caller n; to the called node ns. In our
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% SCALEA: A PERFORMANCE ANALYSIS TOOL 13

implementation, a global pointer per thread is used to maintain the current node (data entry
point) of the sub-DRG of the thread. The performance measurement of the current activation
will be stored into the corresponding data entry point maintained by the global pointer.

If a new activation of code region r; starts to be executed inside an activation of code
region rp, the instrumentation library then searches all children of the current data entry
point maintained by the global pointer. If no child representing activations of r, is found,
then a new data entry point is generated for holding information of the new activation and
an edge linking the current entry point to the new data entry point is made. Otherwise, there
exists a previous data entry point representing activations of r2; code region stack traces of
these activations are equivalent with that of the new activation. In this case, the existing data
entry point is used to keep information of the new activation. In both cases, the global pointer
is then pointed to the new or existing data entry point which holds information of the new
activation. When the new activation ends its execution, the data entry point maintained by the
global pointer will be updated with performance measurement. And then, the global pointer
is transfered to the parent of the current data entry point. If a code region r (e.g. the code
region that is executed first) is encountered that it is not a child of any other code region, an
abstract code region is assigned as its parent. Every code region has a unique identifier which
is included in the probe inserted by SIS and stored in the instrumentation description file.

The DRG data structure maintains the information of code regions that are instrumented
and executed. Each thread of individual process will build and maintain its own sub-DRG when
executing. In the post-processing phase, the DRG of the entire application will be constructed
based on the individual sub-DRGs of all threads by processing the profiles/trace files that
contain the performance data of threads.

6. PERFORMANCE DATA REPOSITORY

A key concept of SCALEA is to store the most important information about performance
experiments including application, source code, machine information, and performance results
in a data repository. The reasons for utilizing a data repository are manifold. Firstly, we need
to structure the data associated with performance experiments thus performance results can
always be associated with their source codes and machine description on which the experiment
has been taken. Secondly, any other performance tool can store its performance data for
a given application to the same repository thus providing a large potential to enable more
sophisticated performance analysis. Thirdly, other tools or middleware — such as higher level
performance tools [10], performance modeling and prediction tools [26], or middleware for
distributed systems [12], etc. — can easily access the performance data through a well-defined
interface (e.g. JDBC [35]).

Figure 5 shows the structure of the data stored in SCALEA’s performance data repository.
An experiment refers to a sequential or parallel execution of a program on a given target
architecture. Every experiment is described by experiment-related data, which includes
information about the application code, the portion of a machine on which the code has
been executed, and performance information. An application (program) may have a number
of implementations (code versions). Every implementation consists of a set of source files and
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end_line
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Figure 5. SCALEA Performance Data Repository.

it is associated with one or several experiments. A source file contains one or several static
code regions (ranging from entire program units to single statements), each of them is uniquely
specified by startPos and endPos (position — start/end line and column — where the region
begins and ends in the source file). Experiments are associated with a virtual machine on
which they have been taken. The virtual machine is part of a physical machine available
to the experiment at the time of its execution; it is described as a set of computational
nodes (e.g. single-processor systems, Symmetric Multiple Processor (SMP) nodes sharing a
common memory, etc.) connected by a specific network. Specific data of physical machines
such as memory capacity, peak FLOPS are also measured and stored in the data repository.
A region summary refers to the performance information collected for a given code region
and processing unit (process or thread) on a specific virtual node used by the experiment.
The region summaries are associated with performance metrics that comprise performance
overheads, timing information, and hardware parameters. Moreover, most data can be exported
in XML format which further facilitates accessing performance information by other tools (e.g.
compilers or runtime systems), middleware, and applications.

7. EXPERIMENTS

SCALEA as shown in Fig. 1 has been fully implemented. However, some performance overheads
(see Fig. 2) are not yet supported which includes replicated code, algorithm change, compiler
change, implicit barrier operations, scheduling, and communication overhead of reduction
operation. Our analysis and visualization system are implemented in Java which greatly
improves their portability. The performance data repository uses PostgreSQL [27] which is a
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public source relational database and the interface between SCALEA and the data repository
is realized by Java and JDBC. SCALEA also provides well-defined interfaces for other tools
to exploit SCALEA’s analysis, visualization and data repository features.

SCALEA provides several analyses for single-experiment (e.g. Load Imbalance Analysis,
Inclusive/Exclusive Analysis, Metric Ratio Analysis, Overhead Analysis, Summary Analysis)
and multi-experiment (e.g. Speedup/Improvement Analysis, Scalability Analysis, Multi-Region
Analysis, Multi-Set Experiment Analysis). In this section, we restrict the experiments shown in
this section to a few selected features for post-mortem performance analysis. The experiments
have been conducted on an SMP cluster with 16 SMP nodes (connected by Myrinet and
Fast-Ethernet) each of which comprises 4 Intel Pentium III 700 MHz CPUs.

7.1. Inclusive/Exclusive Analysis

SCALEA’s Inclusive/Exclusive Analysis can be used to determine the execution time or
overhead intensive code regions. Each code region is related to a set of threads and processes in
which the code region is executed. For each code region instance various user-selected metrics
can be displayed in the inclusive/exclusive mode.

We illustrate the use of this analysis for an MPI Fortran named 3D Particle-In-Cell
(3DPIC)[13] which simulates the interaction of high intensity ultrashort laser pulses with
plasma in three dimensional geometry. An experiment is conducted on 3SMP nodes with 4
CPUs per node using the MPICH communication library for Fast-Ethernet 100Mbps. The
problem size (3D geometry) has been fixed with 30 cells in x-direction (nnz_glob=30), 30 cells
in y-direction (nny_glob=30), and 100 cells in z-direction (nnz_glob=100). The simulation has
been done for 800 time steps (itmaz=800).

The two lower-windows in Fig. 6 present the inclusive wallclock times and the number of
L2 cache accesses for sub-regions of the subroutine MAIN executed by thread 0 in process
0 of SMP node gsr405. The most time consuming region is IONIZE_MOVE and its related
source code is displayed in the upper-right window. It is shown that specific MPI routines also
consume considerably wallclock. The time spent in three top time-consuming MPI routines is
larger than a half of that spent in the most time-consuming code region IONIZE_MOVE.

7.2. Metric Ratio Analysis

SCALEA’s Metric Ratio Analysis is used to examine various important metric ratios (e.g.
cache miss ratio, system time/wall clock time, floating point instructions per second) of code
region instance(s) in an experiment. SCALEA supports not only built-in metric ratios (e.g.
L2 cache miss ratio, floating point instructions per second) but also user-defined metric ratios.
The user just selects performance metrics availability for code regions and graphically defines
the metric ratio and then SCALEA will compute the metric ratio. Metric ratios of a given code
region can be compared among its instances inside a thread or a process or a computational
node.

We applied this analysis to the abovementioned experiment of 3DPIC. Figure
7 shows the most critical system time/wall clock time and L2 cache misses/L2
cache accesses ratios together with the corresponding code regions. The code regions
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Figure 6. Inclusive/Exclusive analysis for sub-regions of the MAIN program.
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Figure 7. Metric ratios for important code regions. The left-window shows system time/wall clock
time ratio and the right-window displays L2 cache misses/L2 cache accesses ratio.

CAL_ POWER,SET_FIELD_PAR_BACK, SR_E_FIELD, and PARTICLE_LOAD imply a high
system time/wall clock time ratio due to expensive MPI constructs (included in system
time). Both ratios are rather low for region IONIZE_MOVE because this region represents
the computational part without any communication (mostly user time). The code region
PARTICLE_LOAD shows a very high L2 cache misses/L2 cache accesses ratio because it
initializes all particles in the 3D volume without accessing it again (little cache reuse).

7.3. Execution Summary Analysis

SCALEA’s Execution Summary Analysis displays a break-down of varies performance
metrics (e.g execution time, overheads) for a single experiment. For each experiment,
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summary of a given performance metric for computational nodes is shown. The summary
for computational nodes can then be broken down into that for processes.

For instance, SCALEA’s Execution Summary Analysis has been employed to examine
the impact of communication on the execution time of 3DPIC. Figure 8 and 9 depict the
ezecution time summary for the experiment executed with 3 SMP nodes and with 1 SMP
node (4 processors per node), respectively. In the top window of Fig. 8 each pie represents one
SMP node and each pie slice value corresponds to the average value across all processes of an
SMP node (min/max/average values can be selected). By clicking onto an SMP pie, SCALEA
displays a detailed summary for all processes in this node in the three lower windows of Fig.
8. Each pie is broken down into time spent in MPI routines and the remainder. Clearly, with
the given problem size, SCALEA indicates the dramatic increase of communication time when
increasing number of SMP nodes.

7.4. Overhead Analysis for a Single Experiment

The Owverhead Analysis is used to investigate performance overheads of an experiment based
on our overhead classification.

Performance overheads of code region instances of a given experiment are computed,
displayed and stored into the performance data repository. We illustrate the use of this analysis
with a mixed OpenMP /MPI Fortran program that solves the 2d Stommel model [29] of an
ocean circulation using a five-point stencil and Jacobi iteration.

SCALEA supports the user in the effort to examine the performance overheads for a single
experiment of a given program by providing two modes for this analysis. Firstly, the Region-to-
Overhead mode (see the “Region-to-Overhead” window in Fig. 10) allows the user to select any
code region instance in the DRG for which all detected performance overheads are displayed.
Secondly, the Overhead-to-Region mode (see the “Overhead-to-Region” window in Fig. 10)
enables the user to select the performance overhead of interest, based on which SCALEA
displays the corresponding code region(s) in which this overhead occurs. This selection can be
limited to a specific code region instance, thread or process. For both modi the source code of
a region is shown if the code region instance is selected in the DRG by a mouse click.

7.5. Multiple Experiments Analysis

Most performance tools investigate the performance for individual experiments one at a time.
SCALEA goes beyond this limitation by supporting also performance analysis for multiple
experiments. The user can select several experiments, code regions and performance metrics of
interest whose associated data are stored in the data repository (see Figure 11). The outcome
of every selected metric is then analyzed and visualized for all experiments. In this section
we demonstrate multi-experiment analyses applied to LAPWO [5] which is a material science
program that calculates the effective potential of the Kohn-Sham eigen-value problem. LAPWO0
has been implemented as a Fortran90 MPI code.

Multi-experiment analysis is not only based on a single set of experiments but can also be
applied to compare different sets of experiments. The user can analyze the overall execution
of the application across various sets of experiments; experiments are grouped based on their
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Figure 10. Region-To-Overhead and Overhead-To-Region DRG View.
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Figure 11. Multiple Experiments Analysis.
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Figure 12. Execution time of LAPWO0 with 36 and 72 atoms. CH_P/, GM means that MPICH has
been used for CH_P4 (for Fast-Ethernet 100Mbps) and Myrinet, respectively.

= SCALEA: Overhead Table |- ]=
Experiments [ 1MxdPP436 | 2MxdPP436 | 3Mx4PP436 | 4Mx4PP436 | ENx4PF436 | EMx4P P4 36
Drata moverment 0.804 0.833 1.562 2.426 1.809 2749
Synchronization 0 o o o o o
Contral of parallelism 2.895 3.939 4743 5.270 5814 6.519
Loss of Parallelism 12.544 14.682 15.358 18,722 15.921 16.065
Additional Overhead ] 0 0 0 0 0
Total identified overhead 16.443 19.555 32.662 33.418 33,644 35.333
Total unidentified overhead 14.958 33.078 19.382 26.75 74.891 26.911
Total overhead 31.402 42.633 42.045 50.168 40,534 52.245
| Total execution tirme(s) 137.704 95734 77.479 76744 60.705 £9.062

Figure 13. Performance overheads for LAPWO.

properties (e.g. the same problem sizes and communication library). For example, we use this
analysis to study the performance of LAPWO for two problem sizes and six machine sizes with
two different network configurations as shown in Fig. 12. Based on this study, we observed
that changing the communication network from Fast-Ethernet by Myrinet did not actually
improve the performance.

Overhead Analysis also can be applied to multiple experiments. SCALEA provides a
Performance Overhead Summary to examine various sources of performance overheads
across experiments. For example, the overhead summary for LAPWO0 with problem size of 36
atoms displayed in Fig. 13 uncovers a small amount of data movement overhead but a large
of overhead for loss of parallelism and unidentified overhead. As a result, instead of focusing
our effort on analyzing code regions that are sources of data movement (e.g. send/receive), we
study code regions that possibly cause loss of parallelism overhead.
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Figure 14. Execution time of computationally intensive code regions (left window) and program’s
speedup/improvement (right window). INz{P,P4,36 means 1 SMP node with 4 processors using
MPICH CH_P4 and the problem size is 36 atoms.

Multi-experiment analysis normally applied to the entire program is useful for examining
the scalability of applications, however, it does not reveal the details of the scalability of
code regions. In order to support studying the performance behavior of selected code regions,
SCALEA provides a Multiple Region Analysis. For instance, the left-window of Fig. 14
visualizes the execution times for the most computational intensive code regions in LAPWO.
The right-window of Fig. 14 displays the program’s speedup/improvement behavior. The exe-
cution times of code regions including CAL_CP_INSIDE_SPHERES, CAL_.COULOMB_RMT,
CA_COULOMB_INTERSTITIAL POTENTIAL, CA_MULTIPOLMENTS remain almost
constant although the number of processors is increased from 12 to 16 and 20 to 24. In addition,
code regions FFT_REANO, FFT_REAN3, and FFT_REAN4 are executed sequentially. These
code regions should therefore be subject of parallelization in order to gain performance.

In summary, we believe that multiple experiments analysis feature is very useful for
scalability analysis of individual performance metrics and code regions for changing problem
and machine sizes and underlying computing resources.

8. RELATED WORK

Significant work has been done by Paradyn [22, 31], TAU [21], VAMPIR  [24, 14], Pablo toolkit
[28], Paraver [33], and EXPERT [9].SCALEA differs from these approaches by providing a
more flexible mechanism to control instrumentation of code regions and performance metrics
of interest. Although Paradyn enables dynamic insertion of probes into a running code, its
analysis is limited to procedures and procedure calls whereas SCALEA can instrument - at
source level only - arbitrary code regions including single statements. While TAU and VAMPIR
provide begin/end marker routines which allow measuring arbitrary code regions, this feature
is instrumented manually by the user. Therefore, the user has to deal with code regions
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individually, spending a great care in processing multiple-entry multiple-exit code regions.
SCALEA also provides more high-level performance metrics (e.g. data movement and control
of parallelism overhead) than TAU and VAMPIR do. Moreover, SCALEA differs in many ways
from the aforementioned tools by storing experiment-related data into a data repository, by
providing multiple instrumentation options (directives, command-line options, and high-level
AST instrumentation), and by supporting multi-experiment performance analysis.

Call graph techniques have widely been used in performance analysis. Tools such as
VAMPIR, gprof [11], CXperf [17] support a call graph which shows how much time was spent
in each code region and its children. In [8] a call graph is used to improve the search strategy
for automated performance diagnosis. Our DRG requires space less than the dynamic call
tree (each node represents a single activation of a code region, e.g. VAMPIR) and provides
information more precisely than the dynamic call graph (each node represents all activations
of a code region, e.g. gprof, CXperf). In addition, nodes of the call graph in gprof and CXperf
represent function calls. In contrast our DRG defines a node as an arbitrary code region (e.g.
function, function call, loop, statement).

In [19], information about each experiment is stored in a Program Event and techniques for
comparison between experiments are done automatically. A prototype of Program Event has
been implemented in Paradyn. However, the lack of capability to export and share performance
data has hindered external tools from using and exploiting data in Program Events.

Prophesy [30] provides a performance data repository. Prophesy uses performance data
to perform the automatic generation of performance models. Data measured/analyzed by
SCALEA could be used by Prophesy for modeling systems.

USRA Tool family [25] collects and combines information of parallel programs from various
sources at level of subroutines and loops. Information is stored in flat files which can further
be saved in a format understood by spreadsheet programs. SCALEA’s repository provides a
better infrastructure for storing, querying and exporting performance data with a relational
database system.

Recent work on an OpenMP performance interface [23] is based on directive rewriting which
is similar to the SIS instrumentation approach. A general method for instrumenting OpenMP
codes is presented. Directives are introduced to mark code regions and to control performance
data collection. SCALEA’s instrumentation directives are more flexible, as they allow to the
user to specify for what code regions which performance metrics should be determined.

9. CONCLUSION AND FUTURE WORK

In this paper, we described SCALEA which is a performance analysis tool for
OpenMP /MPI/HPF and mixed parallel programs. We have described the design of SCALEA
which includes a new classification of performance overheads for shared and distributed
memory parallel programs. The overhead classification provides a detailed view of the sources
of performance overheads for parallel programs. A highly flexible instrumentation system can
be used to instrument arbitrary code regions and to enable the programmer to request for a
large variety of performance metrics ranging from timing information and hardware parameters
to performance overheads. SCALEA also provides a high-level instrumentation interface based
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on an abstract syntax tree and an unparser provided by an external Fortran90 compiler.
SCALEA’s instrumentation interface can be used by other tools for instrumenting parallel
and distributed Fortran programs.

A performance data repository which holds all relevant information about applications,
experiments, and performance experiments is introduced. The data repository is capable
of exporting experiment data in XML format and has leveraged the collaboration among
performance analysis tools and high-level tools by providing a well-defined data schema
and interface for accessing information stored in repository. A variety of single- and multi-
experiment performance analyses is provided based on the data stored in the data repository
and a novel representation for code regions named dynamic code region call graph (DRG). The
DRG reflects the dynamic relationship between code regions and its subregions and enables a
detailed overhead analysis for every code region. The DRG is not restricted to function calls
but covers every code regions ranging from single statements to entire program units.

SCALEA is part of the ASKALON programming environment and tool set for cluster
and Grid architectures [3]. SCALEA is used by various other tools in ASKALON to
support automatic bottleneck analysis, performance experiment and parameter studies, and
performance prediction.

Currently, SCALEA is extended towards a unified system for online monitoring and
performance analysis for the Grid. The overhead classification will be extended to cover
the Grid fabric, services, middleware and applications. We also work on the dynamic
instrumentation and online performance analysis for the Grid. Moreover, we investigate
possibilities to extend SCALEA for C/C++, Java programs and other programming paradigms
such as component-based model.
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