Performance Metrics and Ontology for Describing Performance Data of Grid Workflows

Hong-Linh Truong, Thomas Fahringer, Francesco Nerieri

Distributed and Parallel Systems Group

Institute for Computer Science, University of Innsbruck

{truong,tf,nero}@dps.uibk.ac.at

Schahram Dustdar

Information Systems Institute, Vienna University of Technology dustdar@infosys.tuwien.ac.at

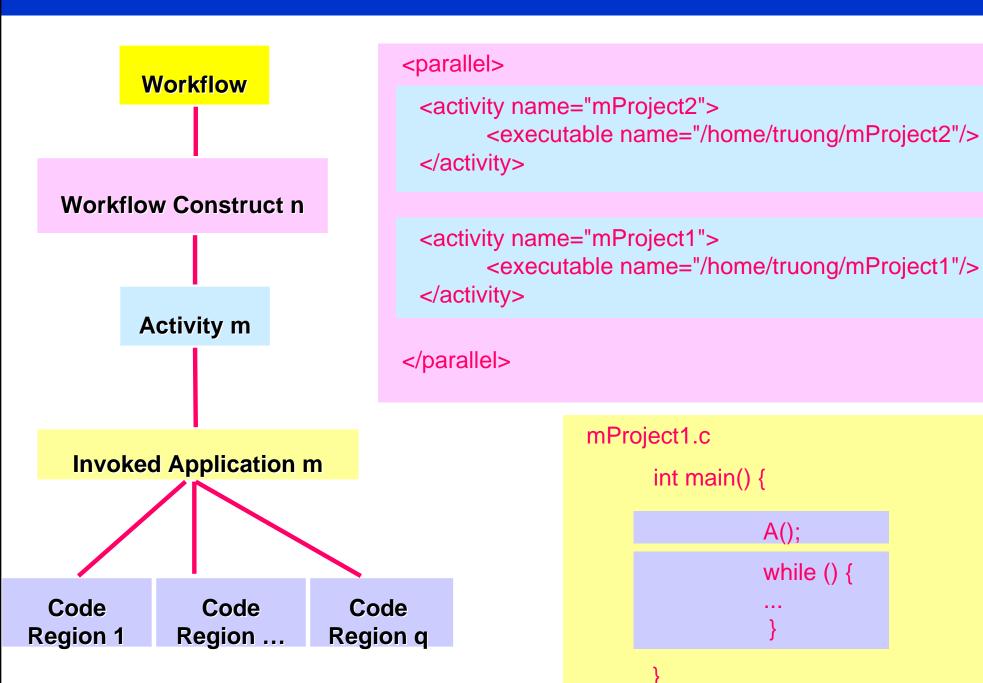
http://dps.uibk.ac.at/projects/pma

Outline

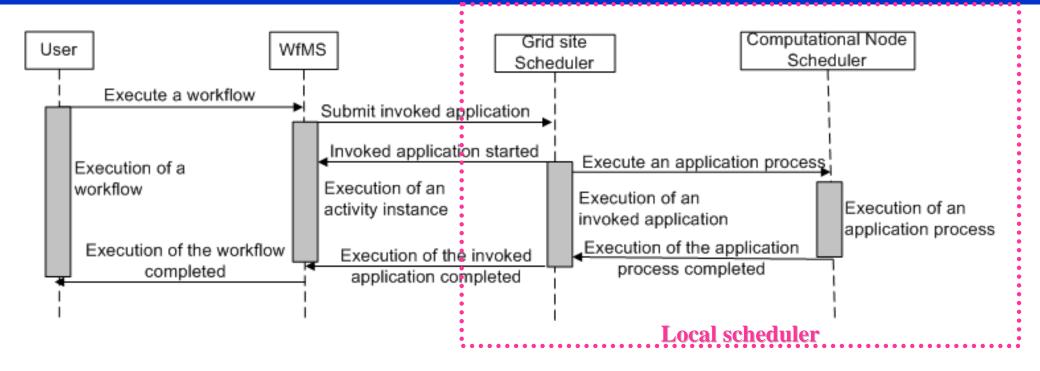
- Motivation
- Grid workflows and workflow execution model
- Performance metrics of Grid workflows
- WfPerfOnto: Ontology for describing performance data of Grid workflows
- Utilizing WfPerfOnto
- Conclusion and Future work

Motivation

- Lack of comprehensive study of useful performance metrics for Grid workflows
 - A few metrics are studied and supported
 - Most of metrics are being limited to the activity (task) level.


study performance metrics at multiple levels of abstraction

- Describing and sharing performance data of Grid workflows
 - Highly heterogeneous, inter-related and dynamic
 - Inter-organizational
 - Multiple types of performance and monitoring data provided by various tools


an ontology for performance data

- Can be used to describe concepts associated with workflow executions
- Will facilitate the performance data sharing

Hierarchical Structure View of a Workflow

Workflow Execution Model (Simplified)

- Workflow execution
 - Spanning multiple Grid sites
 - Highly inter-organizational, inter-related and dynamic
- Multiple levels of job scheduling
 - At workflow execution engine (part of WfMS)
 - At Grid sites

Performance Metrics of Grid Workflows

- Interesting performance metrics associated with multiple levels of abstraction
 - Metrics can be used in workflow composition, for comparing different invoked applications of a single activity, etc.
- ❖Five levels of abstraction
 - Code region, Invoked application
 - Activity, Workflow construct, Workflow
- Performance metrics of a lower level can be used to construct similar metrics for the immediate higher-level
 - By using aggregate operator
 - Based on metric definition and structure of workflows

Performance Metrics at Code Region Level

Category	Metric	
Execution time	ElapsedTIme, UserCPUTime, SystemCPUTime, SerialTime, EncodingTime	
Counter	L2_TCM, L2_TCA, etc., (hardware counters)	
	NCalls, NSubs, RecvMsgCount, SendMsgCount	
Synchronization	CondSynTime, ExclSynTime	
Data Movement	TotalCommTime, TotalTransSize	
Ratio	MeanElapsedTime, CommPerComp, MeanTransRate, MeanTranSize	
	CachMissRatio, MFLOPS, etc.	
Temporal overhead	temporal overhead of parallel code regions	

- * Most existing conventional performance tools provide these metrics
- Existing workflow monitoring and analysis tools normally do not
- Challenging issues
 - Integrate conventional performance monitoring tools into workflow monitoring tools

Performance Metrics at Invoked Application Level

Most metrics can be constructed from metrics at code region level

Category	Metric
Execution time	ElapsedTime
	FailedTime
Counter	NCallFailed
	NCalls
Ratio	FailedFreq
Performance Improvement	SpeedupFactor

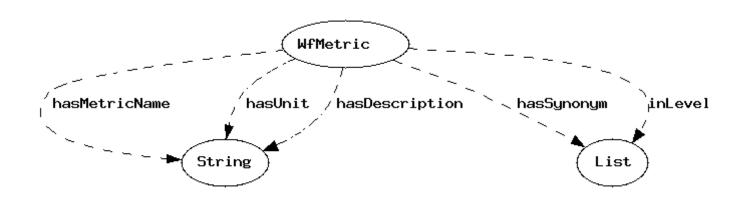
Performance Metrics at Activity Level

Category	Metric
Execution time	ElapsedTime, ProcessingTime, QueuingTime, SuspendingTime
	FailedTime, SharedResTime
Counter	RedandantActivity, NIteration, PathSelectionRatio, ResUtilization
Ratio	Throughput, MeanTimePerState, TransRate
Synchronization	SynDelay, ExecDelay
Performance Improvement	SlowdownFactor

- Metrics can be defined for both activity and activity instance
- Aggregate metrics of an activity can be defined based on its instances and the execution of instances at runtime
- Challenging problems
 - How to monitor and correlate metrics when a resource is shared among applications

Performance Metrics at Workflow Construct Level

Category	Metric
Execution time	ElapsedTime, ProcessingTime
Counter	RedandantActivity,
	NIteration, PathSelectionRatio, ResUtilization
Load balancing	LoadIm (Load imbalance)
Performance Improvement	SpeedupFactor
Resource	RedundantProcessing


- Aggregate metrics of a workflow construct/workflow construct instance are defined based on the structure of the construct. E.g.,
 - LoadIm (load imbalance) is for parallel construct
 - ElapsedTime/ProcessingTime is defined based on critical path

Performance Metrics at Workflow Level

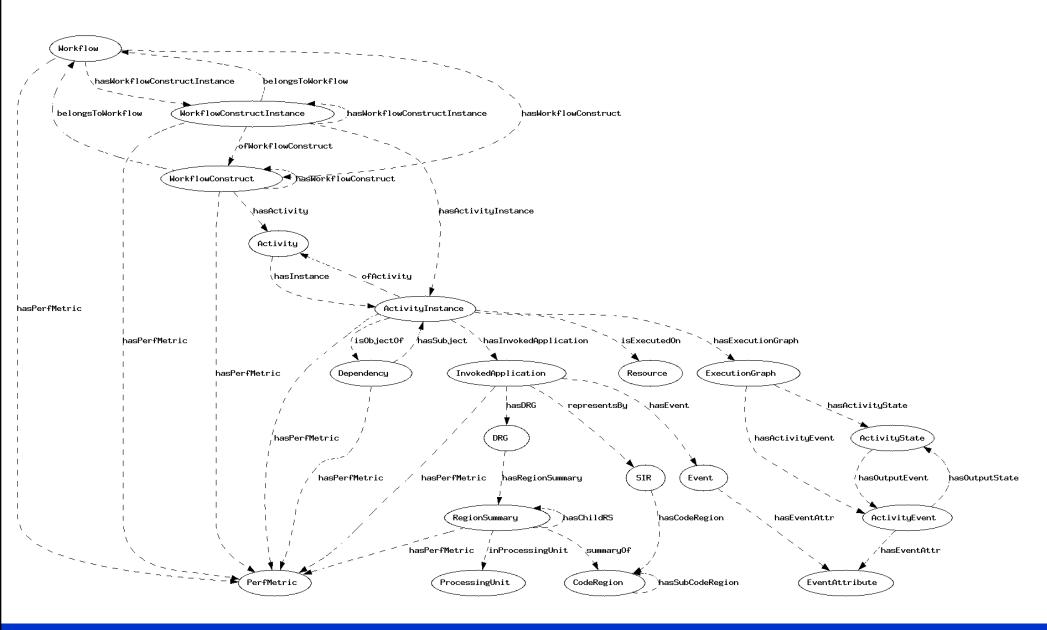
Category	Metric
Execution time	ElapsedTime,ProcesingTime
	ParTime,SeqTime
Ratio	QueuingRatio, MeanProcessingTime, MeanQueuingTime, ResUtilization
Correlation	NAPerRes,ProcInRes,LoadImRes
Performance Improvement	Speedup

Performance Metrics Ontology

- WfMetricOnto
 - OWL-based performance metrics ontology

- Metrics ontology
 - Specifies which performance metrics a tool can provide
 - Simplifies the access to performance metrics provided by various tools

Monitoring and Measuring Performance Metrics


- Performance monitoring and analysis tools
 - Operate at multiple levels
 - Correlate performance metrics from multiple levels
- Middleware and application instrumentation
 - Instrument execution engine of WfMS
 - Execution engine can be distributed or centralized
 - Instrument applications
 - Distributed, spanning multiple Grid sites
- Challenging problems: Performance tool and data complexity
 - Integrate multiple performance monitoring tools executed on multiple Grid sites
 - Integrate performance data produced by various tools

Ontology Describing Performance Data of Grid Workflows

*Objectives

- Understanding basic concepts associated with performance data of Grid workflows
- Performance data integration for Grid workflows
- Towards distributed/intelligent performance analysis
- WfPerfOnto (Ontology describing Performance data of Grid Workflows)
 - Basic concepts
 - Concepts reflects the hierarchical view of a workflow
 - Static and dynamic performance and monitoring data of workflow
 - Relationships
 - Static and dynamic relationships among concepts

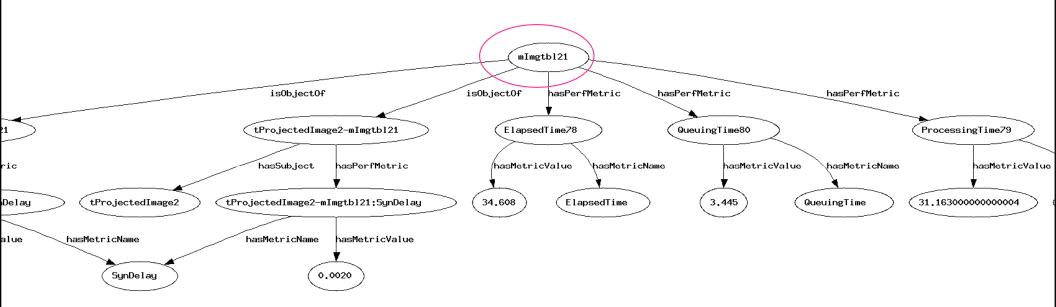
Ontology for Describing Performance Data of Grid Workflows

Utilizing WfPerfOnto

Describing Performance Data and Data Integration

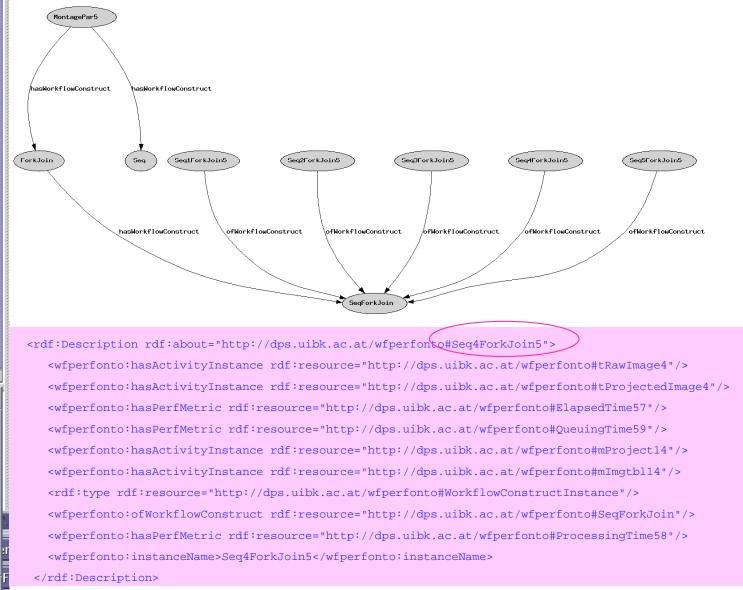
- Different monitoring and analysis tools can store/export performance data in/to ontological representation
- High-level search and retrieval of performance data

Knowledge base performance data of Grid workflows

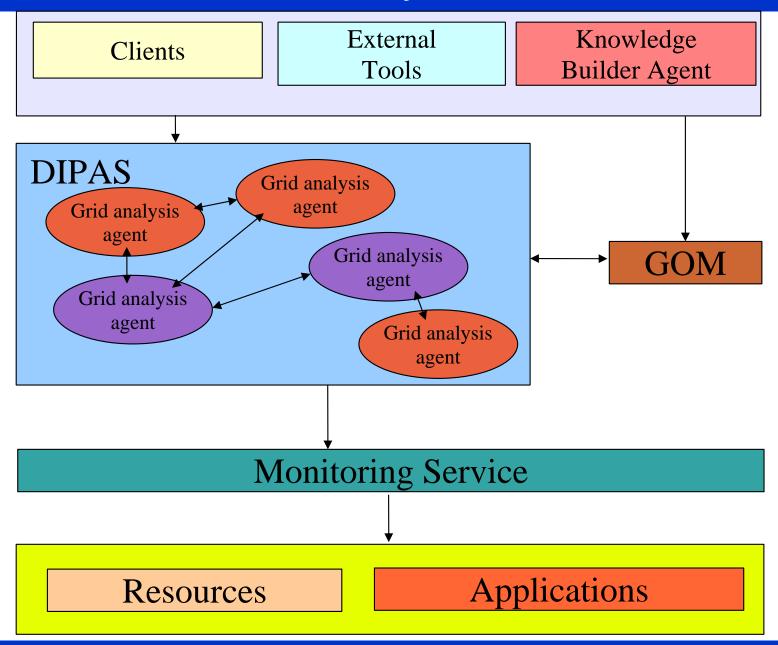

- Utilized by high-level tools such as schedulers, workflow composition tools, etc.
- Used to re(discover) workflow patterns, interactions in workflows, to check correct execution, etc.

Distributed Performance Analysis

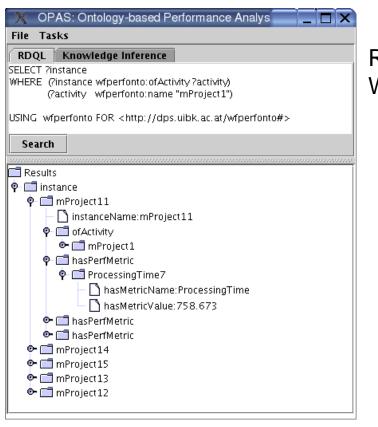
 Performance analysis requests can be built based on WfPerfOnto

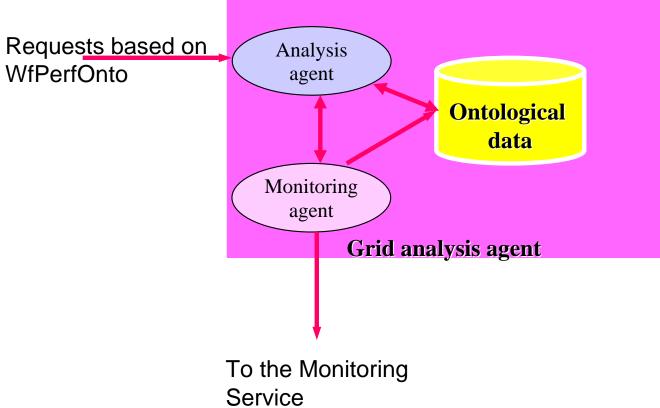

Utilizing WfPerfOnto: Describing Performance Data

<rdf:Description rdf:about="http://dps.uibk.ac.at/wfperfonto#mlmgtbl21">
<wfperfonto:hasPerfMetric rdf:resource="http://dps.uibk.ac.at/wfperfonto#ElapsedTime78"/>
<rdf:type rdf:resource="http://dps.uibk.ac.at/wfperfonto#ActivityInstance"/>
<wfperfonto:instanceName>mlmgtbl21</wfperfonto:instanceName>
<wfperfonto:hasPerfMetric rdf:resource="http://dps.uibk.ac.at/wfperfonto#QueuingTime80"/>
<wfperfonto:ofActivity rdf:resource="http://dps.uibk.ac.at/wfperfonto#mlmgtbl2"/>
<wfperfonto:hasPerfMetric rdf:resource="http://dps.uibk.ac.at/wfperfonto#ProcessingTime79"/>
</rdf:Description>



SCALEA-G: ASKALON Wf Ana File Actions Analysis Online Application Data ForkJoin5 Seq1ForkJoin5 🐧 tRawlmage1 mlmgtbl11 mProject11 T tProjectedImage1 Seq2ForkJoin5 T tRawlmage2 mlmgtbl12 mProject12 T tProjectedImage2 T tRawlmage3 mlmgtbl13 mProject13 Trojected/mage3 • Geq4ForkJoin5 🔼 tRawlmage4 mlmgtbl14 N mProject14 The tProjected Image 4 • Geq5ForkJoin5 T tRawlmage5 mlmgtbl15 mProject15 The tProjected Image 5 Seq1 mlmgtbl21 MAdd1 T tUncorrectedMosaic1 SCALEA-G: Activity/Construct Metric mlmgtbl21 The ElapsedTime: 34.608(s) 🔖 📹 SynDelay ThrojectedImage1->mlmgtbl21: 4.792(s) Type throjected Image 4->mlmgtbl21:518.554(s) Type throjected image 5->mimgtbl21:522.081(s) Type: the things of the things Type: tProjectedImage2->mlmgtbl21: 0.0020(s) ProcessingTime: 31.163000000000004(s) N QueuingTime: 3.445(s)


Utilizing WfPerfOnto: Checking Correct Execution



Utilizing WfPerfOnto: Distributed Performance Analysis

Utilizing WfPerfOnto: Analysis Request

Conclusion and Future Work

- Performance metrics of Grid workflows that characterize the performance and dependability of Grid workflows; metrics associated with multiple levels of abstraction
- Ontology describing performance data of Grid workflows

Current implementation

- OWL-based ontologies, Jena toolkit for processing ontology-related task
- Store and export performance data in/to WfPerfOnto representation

⋄Future work

- Extend and revise performance metrics and WfPerfOnto
- Distributed performance analysis
- Reasoning performance data

Shared conceptualization → community work?