
SCALEA-G: a Unified Monitoring and Performance
Analysis System for the Grid

�

Hong-Linh Truong
�

and Thomas Fahringer
�

�

Institute for Software Science, University of Vienna
truong@par.univie.ac.at

�

Institute for Computer Science, University of Innsbruck
Thomas.Fahringer@uibk.ac.at

Abstract. This paper describes SCALEA-G, a unified monitoring and perfor-
mance analysis system for the Grid. SCALEA-G is implementedas a set of
grid services based on the Open Grid Services Architecture (OGSA). SCALEA-
G provides an infrastructure for conducting online monitoring and performance
analysis of a variety of Grid services including computational and network re-
sources, and Grid applications. Both push and pull models are supported, provid-
ing flexible and scalable monitoring and performance analysis. Source code and
dynamic instrumentation are exploited to perform profilingand monitoring of
Grid applications. A novel instrumentation request language has been developed
to facilitate the interaction between client and instrumentation services.

1 Introduction

Grid Monitoring is an important task that provides useful information for several pur-
poses such as performance analysis and tuning, performanceprediction, fault detection,
and scheduling. Most existing Grid monitoring tools are separated into two distinct
domains:Grid infrastructure monitoringandGrid application monitoring. The lack of
combination of two domains in a single system has hindered the user from relating mea-
surement metrics of various sources at different levels when conducting the monitoring
and performance analysis. In addition, many existing Grid monitoring tools focus on
the monitoring and analysis for Grid infrastructure; yet little effort has been done for
Grid applications. To date, application performance analysis tools are mostly targeted
to conventional parallel and distributed systems (e.g. clusters, SMP machines). As a re-
sult, these tools do not well address challenges in Grid environment such as scalability,
diversity, dynamics and security.

To tackle above-mentioned issues, we are developing a new system named SCALEA-
G. SCALEA-G is a unified system for monitoring and performance analysis in the Grid.
SCALEA-G is based on the concept of Grid Monitoring Architecture (GMA) [1] and
is implemented as a set of OGSA-based services [12]. SCALEA-G provides an in-
frastructure of OGSA-compliant grid services for online monitoring and performance
analysis of a variety of Grid services including computational resources, networks, and
�

This research is supported by the Austrian Science Fund as part of the Aurora Project under
contract SFBF1104.

applications. Both push and pull models proposed in GMA are supported, providing a
flexible and scalable way when performing the monitoring andanalysis. In SCALEA-
G, each kind of monitored data is described by an XML schema, allowing any client to
easily access the data via XPath/XQuery. SCALEA-G supportsboth source code and
dynamic instrumentation for profiling and monitoring events of Grid applications. A
novel instrumentation request language has been devised tofacilitate the interaction be-
tween client and instrumentation services. System and application specific metrics are
related as close as possible in a single system, thus increasing the chance to uncover
Grid performance problems.

Due to space limit, in this paper, we just describe a few selected features of SCALEA-
G3. The rest of this report is organized as follows: Section 2 presents the architecture
of SCALEA-G. In Section 3, we describe SCALEA-G sensors and Sensor Manager
Service. Section 4 describes instrumentation service and instrumentation request lan-
guage. We then discuss the data delivery, caching and filtering mechanism in Section
5. Security issues in SCALEA-G are outlined in Section 6. Section 7 illustrates first
experiments and examples of the current prototype. We present some related work in
Section 8 before going to the Conclusion and Future work in Section 9.

2 SCALEA-G Architecture

Instrumentatio

n

Contro
l

Grid Experiment
 Data Repository Registry Service

System

Sensors

Application

Sensors

Sensor
Repository

Grid Experiment

 Data RepositorySystem

Sensors

Application

Sensors

Sensor
Repository

SCALEA-G
User GUI

Archival
Service

Archival

Service

Directory
Service

External
Tools

Sensor Manager

Service

Sensor Manager

Service

SCALEA-G Client Service

Performance

Analyzer

Consumer
Service

Instrumentation
Mediator

Source Code
Instrumentation

Service

Mutator
Service

Mutator
Service

Repository

 Sensor

SCALEA-G service

Data flow

Client, external tool, service

Both data and invocation/control flow

Diagram legend

Interaction with external service
Control flow

Fig. 1. High-level view of SCALEA-G Architecture.

SCALEA-G is an open architecture based on OGSA [12] combinedwith GMA [1].
Figure 1 depicts the architecture of SCALEA-G which consists of a set of OGSA-based
services and clients.SCALEA-G Directory Serviceis used for publishing and searching
information about producers and consumers that produce andconsume performance
data and information about types, characteristics of that data.Archival Serviceis a data
repository which is used to store monitored data and performance results collected and

3 More details can be found in ftp://ftp.vcpc.univie.ac.at/projects/aurora/reports/auroratr2003-
22.ps.gz and http://www.par.univie.ac.at/project/scaleag

analyzed by other components.Sensor Manager Serviceis used to manage sensors that
gather and/or measure a variety of kinds of data for monitoring and performance analy-
sis. The instrumentation of application can be done at source code level by usingSource
Code Instrumentation Serviceor dynamically at the runtime throughMutator Service.
Client Serviceprovides interfaces for administrating other SCALEA-G services and
accessing data in these services. In addition, it provides facilities for analyzing perfor-
mance data. Any external tools can access SCALEA-G by using Client Service.User
GUI supports the user to graphically conduct online monitoringand performance anal-
ysis; it is based on facilities provided by Client Service. SCALEA-G services register
information about their service instances with aRegistry Service.

Interactions among SCALEA-G services and clients are divided intoGrid service
operation invocationsand stream data delivery. Grid service operation invocations
are used to perform tasks which include controlling activities of services and sensors,
subscribing and querying requests for performance data, registering, querying and re-
ceiving information of Directory Service. In stream data delivery, a stream channel is
used to transfer data (monitored data, performance data andresults) between producers
(e.g. sensors, Sensor Manager Service) and consumers (e.g.Sensor Manager Service,
clients). Grid service operations use transport-level andmessage-level security whereas
data channel is secure connection; all base on Grid SecurityInfrastructure (GSI) [10].

In deployment of SCALEA-G, instances of sensors and MutatorService are exe-
cuted in monitored nodes. An instance of Sensor Manager Service can be deployed to
manage sensors and Mutator Services in a node or a set of nodes, depending on the real
system and workload. Similarly, an instance of Directory Service can manage multiple
Sensor Manager Services in an administrative domain. The client discovers SCALEA-
G services through registry services which can be deployed in different domains.

3 Sensors and Sensor Manager Service

SCALEA-G distinguishes two kinds of sensors:system sensorsandapplication sensors.
System sensors are used to monitor and measure the performance of Grid infrastructure.
Application sensors are used to measure execution behaviorof code regions and to
monitor events in Grid applications. All sensors are associated with some common
properties such as sensor identifier, data schema, parameters.

3.1 System Sensors and Sensor Repository

SCALEA-G provides a variety of system sensors for monitoring the most commonly
needed types of performance information on the Grid investigated by GGF DAMED-
WG [9] and NMWG [13].

To simplify the management and deployment of system sensors, asensor repository
is used to hold the information about available system sensors. Each sensor repository
is managed by a Sensor Manager Service that makes sensors in the repository available
for use when requested. Figure 2 presents XML schema used to express sensors in the
sensor repository. The XML schema allows to specify sensor-related information such
asname(a unique name of the sensor),measureclass(implementation class),schemafile

(XML schema of data produced by the sensor),params(parameters required when
invoking the sensor), etc. Although not specified in the repository, by default the lifetime
of a sensor instance will optionally be specified when the sensor instance is created.

<xsd:element name="sensorrepository"
type="SensorEntry"/>

<xsd:complexType name="SensorEntry">
<xsd:sequence>
<xsd:element name="desc"

type="xsd:string"/>
<xsd:element name="measureclass"

type="xsd:string"/>
<xsd:element name="schemafile"

type="xsd:string"/>
<xsd:element name="params" type="Params"/>
</xsd:sequence>

<xsd:attribute name="name"
type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="Params">
<xsd:sequence>
<xsd:element name="param"
minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:attribute name="name"
type="xsd:string"/>

<xsd:attribute name="desc"
type="xsd:string"/>

<xsd:attribute name="dataType"
type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

Fig. 2. XML schema used to describe sensors in the sensor repository.

3.2 Application Sensors

Application sensors are embedded in programs via source code instrumentation or dy-
namic instrumentation. Application sensors support profiling and events monitoring.

<xsd:element name="sensordata" type="SensorData"/>
<xsd:complexType name="SensorData">
<xsd:sequence>
<xsd:element name="experiment" type="xsd:string"/>
<xsd:element name="coderegion" type="CodeRegion"/>
<xsd:element name="events" type="Events"/>
<xsd:element name="metrics" type="Metrics"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:NMTOKEN"/>

</xsd:complexType>

Fig. 3. Top-level XML schema of data provided by
application sensors.

Data collected by applica-
tion sensors is also described in
XML format. Figure 3 shows
the top-level XML schema for
data provided by application
sensors. Thenametag specifies
kind of sensors, eitherapp.event
or app.prof, corresponding to
event or profiling data, respec-
tively. Theexperimenttag speci-
fies a unique identifier determin-
ing the experiment. This identi-
fier is used to distinguish data between different experiments. Thecoderegiontag refers
to information of the source of the code region (e.g. line, column). Theprocessingunit
tag describes the context in which the code region is executed; the context includes in-
formation aboutgrid site, computational node, process, thread. Theeventstag specifies
list of events, an event consists of event time, event name and a set of eventattributes.
Themetricstag specifies a list of performance metrics, each metric is represented in a
tuple of name and value.

3.3 Sensor Manager Service

The main tasks of Sensor Manager Service are to control and manage activities of sen-
sors in the sensor repository, to register information about sensors that send data to it
with a directory service, to receive and buffer data sensorsproduce, to support data sub-
scription and query, and to forward instrumentation request to instrumentation service.

Sensor Instance

Data
Receiver

Sensor Instance DataBuffer

Data Sender

Consumer

Consumer

Fig. 4.Data Service in Sensor Manager Service

In Sensor Manager Service,
a Data Service receives data
collected by sensor instances
and delivers requested data to
consumers. It implements filter-
ing, searching, forwarding and
caching data to/from various destinations/sources. In theData Service, as shown in
Figure 4, aData Receiveris used to receive data from sensors and to store the received
data into data buffers, and aData Senderis used to deliver data to consumers. The
data service uses only one connection to each consumer for delivering multiple types
of subscribed data. However, an on-demand connection will be created for delivering
resulting data of each query invocation and destroyed when the delivery finishes. Sen-
sor Manager Service supports both data subscription and query. Data query requests are
represented in XPath/XQuery based on XML schema published by sensors.

3.4 Interactions between Sensors and Sensor Manager Services

The interactions between sensors and Sensor Manager Services involve the exchange
of three XML messages. Ininitialization phase, the sensor instance sends asensorinit
XML message which containssensor name, anXML schemaof data which sensor in-
stance produces,lifetime anddescriptioninformation about the sensor instance to the
Sensor Manager Service which then makes these information available for consumers
via directory service. Inmeasurement phase, the sensor instance repeatedly performs
measurement, encapsulates its measurement data into asensordataentryXML mes-
sage, and pushes the message to the Sensor Manager Service. The measurement data
is enclosed by�![CDATA[...]] � tag. Thus, sensors can customize the structure of
their collected data. Before stopping sending collected data, the sensor instance sends a
sensorfinalXML message to notify the Sensor Manager Service.

4 Instrumentation Service

We support two approaches: source code and dynamic instrumentation. In the first ap-
proach, we implement a Source Code Instrumentation Service(SCIS) which is based on
SCALEA Instrumentation System [17]. SCIS however simply instruments input source
files (for Fortran), not addressing compilation issue. Thus, the client has to compile and
link the instrumented files with the measurement library containing application sensors.

In the second approach, we exploit the dynamic instrumentation mechanism based
on Dyninst [6]. AMutator Serviceis implemented as a GSI-based SOAP C++ Web ser-
vice [14] that controls the instrumentation of applicationprocesses on the host where
the processes are running. We develop an XML-based instrumentation request language
(IRL) to allow the client to specify code regions of which performance metrics should
be determined and to control the instrumentation process. The client controls the in-
strumentation by sending IRL requests to Mutator Services which in turn perform the
instrumentation, e.g. inserting application sensors intoapplication processes.

4.1 Instrumentation Request Language (IRL)

The IRL is provided in order to facilitate the interaction between instrumentation re-
quester (e.g. users, tools) and instrumentation services.IRL which is an XML-based
language consists of instrumentation messages: request and response. Clients send re-
quests to Mutator Services and receive responses that describe the status of the requests.

Figure 5 outlines the XML schema of IRL. The job to be instrumented is specified
by experimenttag. Current implementation of IRL supports four requests including
attach, getsir, instrument, finalize:

– attach: requests the Mutator Service to attach the application andto prepare to
perform other tasks on that application.

– getsir: requests the Mutator Service to return SIR (Standardized Intermediate Rep-
resentation) [11] of a given application.

– instrument: specifies code regions (based on SIR) and performance metrics should
be instrumented and measured.

– finalize: notifies the Mutator Service that client will not perform any request on the
given application.

In responding to a request from a client, the Mutator Servicewill reply to the client by
sending an instrumentation response which contains the name of the request, the status
of the request (e.g OK, FAIL) and possibly a detailed responding information encoded
in �![CDATA[...]] � tag.
<xsd:element name="irl" type="IRL"/>
<xsd:complexType name="IRL">
<xsd:sequence>
<xsd:element name="experiment"
type="Experiment" minOccurs="0" maxOccurs="1"/>
<xsd:element name="request" type="Request"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="response" type="Response"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Request">

<xsd:sequence>
<xsd:element name="experiment"

type="Experiment" />
<xsd:element name="task" type="Task"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:NMTOKEN"/>

</xsd:complexType>
<xsd:complexType name="Experiment">
<xsd:sequence>
<xsd:element name="applicationName"

type="xsd:string"/>
<xsd:element name="jobID"

type="xsd:string"/>
<xsd:element name="experimentID"

type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Task">
<xsd:sequence>

<xsd:element name="coderegion"
type="CodeRegion"/>

<xsd:element name="metrics"
type="ListString"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CodeRegion">

<xsd:attribute name="name"
type="xsd:string"/>

<xsd:attribute name="id"
type="xsd:string"/>

</xsd:complexType>
<xsd:complexType name="Response">

<xsd:sequence>
<xsd:element name="detail"

type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="name"

type="xsd:NMTOKEN"/>
<xsd:attribute name="status"

type="xsd:NMTOKEN"/>
</xsd:complexType>
<xsd:simpleType name="ListString">
<xsd:list itemType="xsd:string"/>

</xsd:simpleType>

Fig. 5. XML Schema of Instrumentation Request Language.

5 Data Delivery, Caching and Filtering

Contro
l data buffer

Sensor
Manager

Service

Consumer
Service

 data buffer

ClientSensor

Data payload Sensor ID
Data payload ResultID

Send Subscribe/Query
Command and ResultID

Invoke Subscribe/Query

Data payload ResultID

data repository

consumer/producer

monitored data flow
operation invocation

Diagram legend

Return ResultID

Fig. 6.Data Delivery and Caching.

Figure 6 depicts the
message propagation in
SCALEA-G that uses
a simple tunnel pro-
tocol. In this proto-
col, each sensor builds
its XML data messages
and sends the messages
to a Sensor Manager
Service which stores the messages into appropriate buffers. When a client subscribes
and/or queries data by invoking operations of Consumer Service, the Consumer Service
calls corresponding operations of Sensor Manager Service and passes aResultIDto the
Sensor Manager Service. The Sensor Manager Service then builds XML messages by
tagging the ResultID to the data met the subscribed/queriedcondition and sends these
messages to the Consumer Service. At the Consumer Service side, based on ResultID,
the messages are filtered and forwarded to the client.

Data produced by system sensors will be cached in circular bounded buffers at Sen-
sor Manager Service. In the current implementation, for each type of system sensor,
a separate data buffer is allocated for holding data produced by all instances of that
type of sensor. Inpushmodel, any new data entry met the subscribed condition will
always be sent to the subscribed consumers. Inpull model, Sensor Manager Service
only searches current available entries in the data buffer and entries met conditions of
consumer query will be returned to the requested consumers.Buffering data produced
by application sensors is similar to that for system sensors. However, we assume that
there is only one client to perform the monitoring and analysis for each application and
the size of the data buffer is unbounded.

6 Security Issues

The security in SCALEA-G is based on GSI [10] facilities provided by Globus Toolkit
(GT). Each service is identified by a certificate. SCALEA-G imposes controls on clients
in accessing its services and data provided by system sensors by using an Access Con-
trol List (ACL) which maps client’s information to sensors the client can access. The
client information obtained from client’s certificate whenthe certificate is used in au-
thentication will be compared with entries in the ACL in the authorization process.

The security model for Mutator Service is a simplified version of that for GT3
GRAM [10] in which Sensor Manager Service can forward instrumentation requests of
clients to Mutator Service. Mutator Service runs in a none-privilege account. However,
if Mutator Service is deployed to be used by multiple users, it must be able to create
its instances running in the account of calling users. By doing so, the instances have
permission to attach user application processes and are able to perform the dynamic
instrumentation. In the case of monitoring and analyzing application, when subscrib-
ing and/or querying data provided by application sensors, client’s information will be
recorded. Similarly, before application sensor instancesstart sending data to the Sensor
Manager Service, the Sensor Manager Service obtains information about the client who

executed the application. Both sources of information willbe used for authorizing the
client in receiving data from application sensors.

7 Experiments and Examples

We have prototyped SCALEA-G Sensor Manager Service, Directory Service, Mutator
Service, a set of system and application sensors. In this section we present few experi-
ments and examples conducted via SCALEA-G User GUI.

7.1 Administrating Sensor Manager Services and Sensors

Figure 7 presents the administration GUI used to manage activities of Sensor Manager
Services. By selecting a Sensor Manager Service, a list of available sensors and a list of
sensor instances managed by that Sensor Manager Service will be shown in the top-left
and top-right window of Figure 7, respectively. A user (withpermission) can make a re-
quest creating a new sensor instance by selecting a sensor, clicking theActivatebutton
and specifying input parameters and lifetime, e.g. Figure 7shows the dialog for setting
input parameters forpath.delay.roundtripsensor. An existing sensor instance can be de-
activated by selectingDeactivatebutton. By choosing a sensor, detailed information of
that sensor (e.g. parameters, XML schema) will be shown in the two bottom windows.

Fig. 7. SCALEA-G Administration GUI.

7.2 Dynamic Instrumentation Example

Figure 8 depicts the GUI for conducting the dynamic instrumentation in SCALEA-G.
On the top-left window, the user can choose a directory service and retrieve a list of
instances of Mutator Service registered to that directory service. The user can monitor
processes running on compute nodes where instances of Mutator Service execute by
invoking Get/Update User Processesoperation as shown in the top-right window of

Figure 8. For a given application process, its SIR (currently only at level of program
unit and function call) can be obtained viaGet SIRoperation, e.g. the SIR of��� ���
process is visualized in the bottom-right window. In the bottom-left window, the user
can edit IRL requests and send these requests to selected instances of Mutator Services.

Fig. 8.SCALEA-G Dynamic Instrumentation GUI.

8 Related Work

Several existing tools are available for monitoring Grid computing resources and net-
works such as MDS (a.k.a GRIS) [7], NWS [18], GridRM [2], R-GMA [15]. However,
few monitoring and performance analysis tools for Grid applications have been intro-
duced. GRM [3] is a semi-on-line monitor that collects information about an application
running in a distributed heterogeneous system. In GRM, however, the instrumentation
has to be done manually. OCM-G [4] is an infrastructure for Grid application mon-
itoring that supports dynamic instrumentation. Atop OCM-G, G-PM [5], targeted to
interactive Grid application, is used to conduct the performance analysis. However,
currently the instrumentation of OCM-G is limited to MPI functions. None of afore-
mentioned systems, except MDS, is OGSA-based Grid service.Furthermore, existing
tools employ a non-widely accessible representation for monitored data. SCALEA-G,
in contrast, is based on OGSA and uses widely-accepted XML for representing perfor-
mance data, and provides query mechanism with XPath/XQuery-based requests.

Although there are well-known tools supporting dynamic instrumentation, e.g. Para-
dyn [16], DPCL [8], these tools are designed for conventional parallel systems rather
than Grids and they lack a widely accessible and interoperable protocol like IRL, thus
hindering other services from using them to conduct the instrumentation.

9 Conclusion and Future Work

In this paper we presented the architecture of SCALEA-G, a unified monitoring and
performance analysis system in the Grid, based on OGSA and GMA concept. The main

contributions of this paper center on the unique monitoringand performance analysis
system based on OGSA and an instrumentation request language (IRL).

Yet, there are many rooms for improving the system. The set ofsensors will be
extended, enabling to monitor more resources and services,and providing more diverse
kinds of data. In addition, the sensor will be extended to support monitoring based
on resource model and rules. IRL will be extended to allow specifying more complex
instrumentation requests such as events, deactivating andremoving instrumentation.

References

1. B. Tierney et. al. A Grid Monitoring Architecture. http://www-didc.lbl.gov/GGF-
PERF/GMA-WG/papers/GWD-GP-16-2.pdf.

2. Mark Baker and Garry Smith. GridRM: A resource monitoringarchitecture for the Grid.
LNCS, 2536:268–??, 2002.

3. Zoltan Balaton, Peter Kacsuk, Norbert Podhorszki, and Ferenc Vajda. From Cluster Mon-
itoring to Grid Monitoring Based on GRM. InProceedings. 7th EuroPar’2001 Parallel
Processings, pages 874–881, Manchester, UK, 2001.

4. Bartosz Balis, Marian Bubak, Włodzimierz Funika, TomaszSzepieniec, and Roland
Wismüller. An infrastructure for Grid application monitoring. LNCS, 2474:41–??, 2002.

5. Marian Bubak, Włodzimierz Funika, and Roland Wismüller. The CrossGrid performance
analysis tool for interactive Grid applications.LNCS, 2474:50–??, 2002.

6. Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching.The Inter-
national Journal of High Performance Computing Applications, 14(4):317–329, 2000.

7. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for
Distributed Resource Sharing. InProceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10). IEEE Press, August 2001.

8. L. DeRose, T. Hoover Jr., and J. Hollingsworth. The dynamic probe class library: An in-
frastucture for developing instrumentation for performance tools. InProceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS-01), Los Alamitos,
CA, April 23–27 2001. IEEE Computer Society.

9. Discovery and Monitoring Event Description (DAMED) Working Group. http://www-
didc.lbl.gov/damed/.

10. Von Welch et all. Security for Grid Services. InProceedings of 12th IEEE International
Symposium on High Performance Distributed Computing (HPDC’03), pages 48–57, Seattle,
Washington, June 22 - 24 2003.

11. T. Fahringer, M. Gerndt, Bernd Mohr, Martin Schulz, Clovis Seragiotto, and Hong-Linh
Truong. Standardized Intermediate Representation for Fortran, Java, C and C++ Programs.
APART Working group (http://www.kfa-juelich.de/apart/), Work in progress, June 2003.

12. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System Inte-
gration. IEEE Computer, pages 37–46, June 2002.

13. GGF Network Measurements Working Group. http://forge.gridforum.org/projects/nm-wg/.
14. gSOAP: C/C++ Web Services and Clients. http://www.cs.fsu.edu/˜engelen/soap.html.
15. R-GMA: Relational Grid Monitoring Architecture. http://www.r-gma.org.
16. Paradyn Parallel Performance Tools. http://www.cs.wisc.edu/paradyn/.
17. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis Tool for Par-

allel Programs.Concurrency and Computation: Practice and Experience, 15(11-12):1001–
1025, 2003.

18. R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing.Future Generation Computing Sys-
tems, 15:757–768, 1999.

