
An Ontology-based Approach to Performance Analysis, Data

Sharing and Tools Integration in Grids∗

Hong-Linh Truong‡, Thomas Fahringer§

‡Institute for Software Science, University of Vienna
Nordbergstr 15/C/3, A-1090 Vienna, Austria

truong@par.univie.ac.at

§Institute for Computer Science, University of Innsbruck
Technikerstr. 21a, A-6020 Innsbruck, Austria

Thomas.Fahringer@uibk.ac.at

Last revised: January 21, 2005

Abstract

In this paper, we propose a new approach to perfor-
mance analysis, data sharing and tools integration in
Grids that is based on ontology. We devise a novel
ontology for describing the semantics of monitoring
and performance data that can be used by perfor-
mance monitoring and measurement tools. We in-
troduce an architecture for an ontology-based model
for performance analysis, data sharing and tools inte-
gration. At the core of this architecture is a Grid ser-
vice which offers facilities for other services to archive
and access ontology models along with collected per-
formance data, and to conduct searches and perform
reasoning on that data. We also discuss how ontology
can be used in automatic performance analysis. Using
an approach based on ontology, performance data will
be easily shared and processed by automated tools,
services and human users, thus helping to leverage
the data sharing and tools integration, and increas-
ing the degree of automation of performance analysis.

Key words: Performance analysis, performance
data model, Grid, ontologies.

∗Appear as Aurora technical report numbered
AURORATR-2004-01. A short version of this report is
published in Proceedings of International Conference on
Computational Science 2004 (ICCS 2004), Krakow, Poland,
June 7-9, 2004.

1 Introduction

The recent emerging Grid computing raises many
challenges in the domain of performance analysis.
One of these challenges is how to understand and
utilize performance data where the data is diversely
collected and no central component manages and pro-
vides semantics of the data. Performance monitoring
and analysis in Grids differ from that in conventional
parallel systems in terms of no single tool provid-
ing performance data for all Grid sites and the need
of conducting monitoring, measurement and analysis
across multiple Grid sites at the same time. Normally
users run their applications in multiple Grid sites,
each is equipped with different computing capabili-
ties, platforms, libraries that require various tools to
conduct performance monitoring and measurement.
Without the central component, performance mon-
itoring and measurement tools have to provide a
means for seamlessly utilizing the data they collect
and provide, because many tools and services atop
them need the data for specific purposes such as per-
formance analysis, scheduling and resource matching.
Current Grid performance tools focus on monitoring
and measurement, but neglect data sharing and tools
integration.

We take a new direction on describing the se-
mantics of performance data and establishing perfor-
mance data sharing and tools integration by inves-
tigating the use of ontology in performance analysis
domain. Basically, ontologies provide a shared and

1

common understanding of a domain that can be used
in the communication between people and applica-
tion systems and among different software; ontology
is developed to facilitate knowledge sharing and reuse
[13, 8, 23]. Based on sharable and extensible ontolo-
gies in the domain of performance analysis, an anal-
ysis tool, service or user is able to access multiple
sources of performance and monitoring data provided
by a variety of performance monitoring and measure-
ment tools, understanding the data and making use
of that data. With the expressive power provided
by ontology which can describe concepts, resources in
sufficient detail, supporting automated performance
analysis will also be enhanced. In this paper, we
describe a proposed ontology for performance data
that defines semantics of performance data. We in-
troduce an architecture for an ontology-based model
for performance analysis, data sharing and tools in-
tegration. At the core of this architecture is a Grid
service of ontology-based performance data repository
which archives and provides ontology models with ac-
companied instance performance data.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the motivation. In Section 3 we
present our proposed ontology for describing per-
formance data. We describe an architecture for an
ontology-based model for performance analysis, data
sharing and tools integration in Section 4. In Section
5, we outline how ontology can be applied in auto-
matic performance analysis. Section 6 overviews our
prototype implementation. The related work is dis-
cussed in Section 7 followed by the Conclusion and
Future work in Section 8.

2 Motivation

Most monitoring and measurement tools collect raw
data (e.g. performance metrics) of objects monitored
but they do not explicitly model and clarify the rel-
evant aspects of these objects. As a result, the col-
lected data lacks semantics and is difficultly corre-
lated with the appropriate domain knowledge, and
that hinders users from being able to interpret the
data provided. The software program hardly under-
stands and handles that data, thus not fostering to
automatically detect, correct and predict behavior of
applications and computing systems at runtime. Lack
of detailing model of resources monitored also pre-
vents us from moving performance analyzers as close
to the source monitored as possible. As a result,
the performance analysis still is very centralized even

though the monitoring and measurement are quite
distributed in Grid.

Currently, several data representations with differ-
ent capabilities and expressiveness, e.g. XML, XML
schema and relational database schema, are employed
by Grid performance monitoring and measurement
tools. However, little effort has been done to stan-
dardize the semantics of performance data as well
as the way performance tools collaborate. In Grids,
data is diversely collected and no central component
manages and provides its semantics. Each Grid site
may be equipped with its own performance monitor-
ing and measurement tool. Thus, the end user or
the high-level tool in Grids has to interact with a va-
riety of tools offering monitoring and measurement
service. Performance monitoring and measurement
tools should not simply offer well-defined operations
for other services calling them, e.g. based on Open
Grid Services Architecture (OGSA) [9], but they have
to provide a means for adding semantics to the data
as Grid users and services require seamless integra-
tion and utilization of (performance) data provided
by different tools.

Existing approaches on performance data sharing
and tools integration that mostly focus on building
wrapper libraries for directly converting data between
different formats, making data available in relational
database with specific data schema, or exporting data
into XML, have several limitations. For example,
building a wrapper requires high implementation and
maintenance costs; wrappers convert data between
representations but not always between semantics.
Although XML and XML schemas may be enough for
exchanging data between parties that have agreed in
advance on the definitions, use and meaning of XML
vocabularies, they mostly are suitable for one-to-one
communication and impose no semantic constraints
on the meaning of the data. Everyone can create his
own XML vocabularies with his own definitions for
describing his data. However, such vocabularies and
definitions are not sharable and do not establish a
common understanding about the data, thus prevent-
ing semantic interoperability between various parties
which is an important issue that Grid monitoring and
measurement tools have to support. Utilizing rela-
tional databases to store performance data [33, 31]
makes data more sharable and accessible. However,
data models represented in relational database are
still very tool-specific and inextensible. Moreover,
integrating different relational tables by using SQL
join may generate nonsense information as relational
database checks the data type, instead of the se-

2

mantics, of the data. Notably, XML and relational
database schemas do not explicitly express meanings
of data they encode. Since all above-mentioned tech-
niques do not provide enough capability to express the
semantics of performance data and to support tools
integration, they might not be applicable in Grids due
to the autonomy and diversity of performance moni-
toring and measurement tools.

We investigate whether the use of ontology can help
to solve the above-mentioned issues. Ontologies are a
popular research topic in various communities such as
knowledge representation and reasoning, information
integration, cooperative information systems and re-
cently ontology has been considered as the main tool
that can be used to achieve the semantic interoper-
ability in the Grid [5, 29]. As defined in [13, 14], an
ontology is a formal, explicit specification of a shared
conceptualization. Typically, an ontology consists of
descriptions of main concepts in a domain, descrip-
tions of the properties of each concept, and axioms
that impose constraints on these concepts and prop-
erties. There are several reasons why ontology should
be used [24]. One of key features of ontology is that it
provides a shared and common understanding of some
domains that can be communicated between people
and application systems [13, 14]. Another feature is
that we can directly infer another facts from a set of
ontology statements, e.g. based on description logics
[2, 15], while that cannot be achieved with XML or
database schema.

There are many ways in using ontology for address-
ing the above-mentioned issues. Firstly, ontology can
be used to directly describe and model the data col-
lected, thus allowing to share a common understand-
ing of performance data and easily correlating the
data with the knowledge domain. Secondly, ontology
can be used to define mappings between different rep-
resentations employed by different Grid monitoring
and measurement tools. This would allow a high-level
service to transparently access different types of data
in a homogeneous way. This paper works on the first
direction. By describing and modeling performance
data in ontological representation, the performance
data is made smarter and more tool-independent.

3 PERFONTO: Ontology for
Describing Performance Data

While initial work on using ontology for system and
network management has been introduced, e.g in [6],
to date we are not aware of any ontology for describ-

ing performance data of applications in the field of
performance analysis. Our starting point is that we
try to propose an ontology for describing monitoring
and performance data of both applications and sys-
tems. In this section, we describe PERFONTO1, an
ontology used to describe and represent performance
data.

3.1 Selecting Ontology Language

Although various languages can be used to represent
ontology such as RDFS (Resource Description Frame-
work Schema) [27], DAML (DARPA Agent Markup
Language) [19], OIL (Ontology Inference Layer) [21],
DAML+OIL [4], we choose OWL (Web Ontology
Language) [25] for developing PERFONTO due to
several reasons. OWL is developed as a vocabulary
extension of RDF (Resource Description Framework)
[26] and is derived from DAML+OIL. OWL can de-
scribe classes and properties in more complex ways
than RDFS. For example, properties in RDFS can
be organized into a property hierarchy (one property
may be a subproperty of another). In OWL, proper-
ties can be denoted as transitive, symmetric or func-
tional, and one property can be defined as an inverse
of as well as a subproperty of another. OWL dis-
tinguishes two main types of properties: Data Prop-
erty and Object Property. Data properties have data-
values as their range whereas object properties have
individual-values as their range. OWL is currently
being standardized by W3C.

OWL follows the object-oriented approach, with
the structure of the domain being described as a set
of definitions of classes and properties. It consists of
a set of axioms including class axioms and property
axioms that assert subsumption relationship between
classes and properties. Class axioms specify neces-
sary and/or sufficient characteristics of a class, e.g.
subclass, equivalent class, whereas a property axiom
defines (additional) characteristics of a property such
as range, domain, relations to other properties.

3.2 PERFONTO Design

PERFONTO comprises two parts that describe
experiment-related concepts and resource-related con-
cepts. Here we briefly discuss main classes in current
version of PERFONTO.

Experiment-related concepts describe experiments
and their associated performance data of applica-

1PERFONTO is a shorthand for ONTOlogy for
PERFormance data

3

Experiment

RegionInstanceRegionSummary

hasRegionSummary
hasRegionInstance

CodeRegion ProcessingUnit

MPCodeRegion SeqCodeRegion SMCodeRegion

PerformanceMetric

SourceFile

Version Application

Event

EventAttribute

EnterEvent ExitEvent

ofCodeRegion inProcessingUnit

ofCodeRegion

inProcessingUnit
hasMetric

inSourceFile

inVersion

ofApplication

hasEvent

hasEventAttr

ofVersion

hasVersion

hasChildRS
hasChildRI

Class

property relation

subClassOf construct

Diagram legend

Figure 1: Illustrative classes and properties of experiment-related concepts. subClassOf construct allows to
define a class as a subclass of another class. Property relation represents the relation between classes.

tions. The structure of the concepts is described as
a set of definitions of classes and properties. Fig-
ure 1 demonstrates several classes and a few proper-
ties of experiment-related concepts in PERFONTO.
(The figure does not contain all formalisms to repre-
sent PERFONTO. It is only for illustrative purpose.)
Application describes information about the appli-
cation. Version describes information about ver-
sions of an application. The property ofApplication
of a version identifies the application to which the
version belongs. (The property hasVersion, which
is an inverse of ofApplication, of an application de-
scribes versions of the application). SourceFile de-
scribes source file of a version. CodeRegion de-
scribes a static (instrumented) code region. Code re-
gions are classified into subclasses that are program-
ming paradigm-dependent, e.g. message passing code
region described by MPCodeRegion, shared mem-
ory code regions described by SMCodeRegion, and
paradigm-independent, e.g. loops, arbitrary code re-
gions; a sequential code region is described by Se-
qCodeRegion. Experiment describes an exper-
iment which refers to a sequential or parallel exe-
cution of a program. The relationship between an
experiment with a program version is described by
property ofVersion. RegionInstance describes a re-
gion instance which is an execution of a static (in-
strumented) code region at runtime. A code region

instance is associated with a processing unit (property
inProcessingUnit) and has events (hasEvent) and sub-
region instances (hasChildRI). A processing unit, rep-
resented by class ProcessingUnit, describes the con-
text in which the code region is executed; the context
includes information about grid site, compute node,
process, thread. RegionSummary describes the
summary of code region instances of a static (instru-
mented) code region in a processing unit. A region
summary has performance metrics (hasMetric) and
subregion summaries (hasChildRS). Performance-
Metric describes a performance metric, each metric
has a name and value (hasMetricName, hasMetric-
Value). Event describes an event record. Subclasses
of Event are EnterEvent and ExitEvent that describe
enter and exit event of a region instance, respec-
tively. An event happens at a time (atEventT ime)
and has event attributes (hasEventAttr). EventAt-
tribute describes an attribute of an event which has
an attribute name and value (hasAttrName, hasAttr-
Value). An excerpt of OWL for RegionSummary is
shown in Figure 2.

Resource-related concepts describe static, bench-
marked, and dynamic (performance) information of
computing and network systems. In the current ver-
sion, resource-related concepts provide classes to de-
scribe static and benchmarked data of computing and
network resources. For example, Site describes infor-

4

<owl:Class rdf:ID="RegionSummary">

<rdfs:label>RegionSummary</rdfs:label><rdfs:comment>RegionSummary Class</rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="inProcessingUnit">

<rdfs:label>inProcessingUnit</rdfs:label><rdfs:comment>processing unit</rdfs:comment>

<rdfs:domain rdf:resource="#RegionSummary"/>

<rdfs:range rdf:resource="#ProcessingUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="ofCodeRegion">

<rdfs:label>ofCodeRegion</rdfs:label> <rdfs:comment>code region</rdfs:comment>

<rdfs:range rdf:resource="#CodeRegion"/>

<rdfs:domain rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasChildRS">

<rdfs:label>hasChildRS</rdfs:label> <rdfs:comment>child region summary</rdfs:comment>

<rdfs:domain rdf:resource="#RegionSummary"/>

<rdfs:range rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasMetric">

<rdfs:label>hasMetric</rdfs:label> <rdfs:comment>performance metric</rdfs:comment>

<rdfs:range rdf:resource="#PerformanceMetric"/>

<rdfs:domain rdf:resource="#RegionSummary"/>

</owl:ObjectProperty>

Figure 2: Description of RegionSummary has four object properties namely inProcessingUnit, ofCodeRe-
gion, hasChildRS, hasMetric that specify associated processing unit, code region, subregion summary and
performance metric of the region summary, respectively.

mation of (grid) computing site. Cluster describes
a set of physical machines (compute nodes). Clus-
ter has subclasses such as SMPCluster represented
a cluster of SMP. ComputeNode describes infor-
mation about physical machine. ComputeNode has
subclasses, e.g. SMPComputeNode represented an
SMP machine. Network describes an available net-
work. Subclasses of Network can be EthernetNetwork,
MyrinetNetwork, etc. NodeSharedMemoryPerf
describes performance characteristics of shared mem-
ory operations of a compute node. NetworkMP-
ColPef and NetworkMPP2PPerf describe perfor-
mance characteristics of message passing collective
and point-to-point operations of a network, respec-
tively. Other classes describing performance of high-
level protocols (e.g. HTTP, SOAP) are also being
proposed.

The proposed ontology is largely based on our pre-
vious work on developing data schema for expressing
experiment data in relational database [33] and based
on on APART experiment model [7]. The develop-
ment of PERFONTO should be considered as the

investigation of using ontology for describing perfor-
mance data, not establishing a standard for all tools.
However, one of the main key advantages of ontol-
ogy is that different ontologies can be reconciled [22].
Therefore, one can employ or extend PERFONTO,
others may develop their own ontologies. Finally, pro-
posed ontologies could be merged.

4 An Architecture for An
Ontology-based Model for

Performance Analysis, Data
Sharing and Tools Integra-

tion

Figure 3 presents a three layers architecture for an
ontology-based model for performance analysis, data
sharing and tools integration in Grids. At the core
of this architecture is a performance data repository
service which includes:

5

• PERFONTO is ontology for representing perfor-
mance data discussed in Section 3.

• Ontological database is a relational database
which is used to hold ontologies (e.g PER-
FONTO) and performance data (instance data).

• ONTO APIs are interfaces used to store and ac-
cess data in ontological database.

• Query Engine provides searching and querying
functions on ontological data.

• Inference Engine provides reasoning facilities to
infer, discover and extract knowledge from onto-
logical performance data.

The performance data repository service is de-
signed as a Grid service. The Performance Data
Collector of performance monitoring and measure-
ment tools can store collected data (instance data)
along with corresponding ontology model (e.g. PER-
FONTO) into the ontological database. Via service
operations, any clients needed performance data such
as performance analysis tools, schedulers or users can
easily request the ontology model and then retrieve
instance data from ontological database. The key dif-
ference from approaches of using XML or relational
database is that performance data is either described
by a common ontology (e.g. PERFONTO) or by
a tool-defined ontology, thus, with the presence of
ontology model, these clients can easily understand
and automatically process retrieved data. Via Per-
formance Data Wrapper, data in tool-defined non-
ontology format also can be extracted an transformed
into ontological representation and vice versa.

To implement this architecture, we select Jena [17]
for processing ontology-related tasks. Jena is open
source and grown out of work with the HP Labs Se-
mantic Web [16]. It is an Java framework for building
Semantic Web applications and provides a program-
ming environment for RDF, RDFS and OWL, includ-
ing a rule-based inference engine. The performance
data repository service is developed based on OGSA
[9]. In the following subsections, we detail compo-
nents of ontology-based performance data repository
service.

4.1 Ontological Database

Ontological database is used as a persistent storage
for ontology descriptions and instance data. Given an
application, for each experiment, performance data is

a set of instances (individuals) following a specific on-
tology model (e.g. PERFONTO). Similarly, for each
Grid site, system performance data is collected and
archived. We can store both ontology model and in-
stance data in persistent storage. Note that the onto-
logical database is used as a storage. The task of stor-
ing and retrieving ontological data is done by other
components (e.g. sensors, measurement and monitor-
ing tools). To store ontology model and instance data
into persistent storage, we use Jena API for persistent
database models. The ontology model and associated
instance data are kept in separately although this is
not required.

4.2 Search on Ontological Data

A search engine is developed to support clients finding
interesting data in the ontological database. At the
initial step, we use a search engine provided by Jena
that supports RDQL (RDF Data Query Language)
query language [20].

RDQL syntax is similar to SQL. In RDQL, the SE-
LECT clause identifies the variables to be returned
to the application; variables are introduced with a
leading ’?’. The FROM clause specifies the model
by URI (Uniform Resource Identifiers) whereas the
WHERE clause specifies the graph pattern as a list of
triple patterns. The AND clause specifies the Boolean
expressions. RDQL introduces USING clause which
provides a way to shorten the length of URIs.

The use of RDQL in combining with ontology can
simplify and provide a high-level model of search
in performance analysis in which searching query
is easily understood and defined by end-user, not
only by the tool developer. Let us show a simple
example: a client wants to find any region sum-
mary executed in compute node gsr410 that its
wallclock time (denoted by metric name wtime) is
greater than or equal to 3E8 microsecond. The
corresponding RDQL query based on PERFONTO
is presented in Figure 4. Line l1 selects variable
regionsummary via SELECT clause. In line l2 in-
formation about processing unit of regionsummary,
determined by property perfonto:inProcessingUnit, is
stored in variable processingunit. The compute node
of processingunit must be “gsr410” as stated in line
l3. In line l4, performance metric of regionsummary
is stored in variable metric and line l5 states that the
name of metric must be “wtime”. In line l6, the value
of metric is stored in variable value which must be
greater than or equal to 3E8 as specified in line l7.
Line l8 specifies the URI for the shortened name per-

6

Ontology-based
Performance Analysis

Service (OPAS)

ONTO APIs

Ontology for
Performance Data

(PERFONTO)

Query Engine

User Client High-level Service

Performance Data
Wrapper

 Database

File system

Performance Data
Collector

 Ontological
Database

Inference Engine

 Ontology-based
Performance Data
Repository Service

Performance Monitoring
and Measurement Tool

Figure 3: Three layers architecture for an ontology-based model for performance analysis, data sharing and
tools integration.

fonto.
In comparison with searching performance data

based on relational database [33], we found that
ontology-based searching query is more simple, user-
oriented and easy to be implemented.

4.3 Reasoning on Ontological Data

The use of ontology for representing performance data
allows additional facts to be inferred from instance
data and ontology model by using axioms or rules.
Based on ontology, we can employ inference engine to
capture knowledge via rules.

Let us analyze a simple rule for detecting all MPI
point-to-point communication code regions of which
the average message length is greater than a prede-
fined threshold [7]. As presented in Figure 5, line
l1 defines the name of the rule. In line l2, a term
of triple pattern specifies link between a region sum-
mary and its associated code region. Line l3 states the
code region is an instance of MPCodeRegion (mes-
sage passing code region) and is an MPI point-to-
point communication region (denoted by mnemonic
CR MPIP2P) as specified in line l4. Line l5, l6 and l7
are used to access the average message length of the
region summary. Line l8 checks whether the average
message length is greater than a predefined threshold

(BIG MESSAGES THRESHOLD) by using a built-
in function. In line l9, the action of this rule concludes
and prints the region summary having big message.
This example shows how using ontology helps simpli-
fying the reasoning on performance data.

5 Enhanching Automatic Per-

formance Analysis

An automatic performance analysis system typically
consists of various components based on different
tools and specifications [11]. The use of PERFONTO
particularly and ontology generally can help increas-
ing the degree of automation of performance analysis.
For example, to automate basic performance analysis
experiments, performance analyzers must be able to
process information (including static and dynamic)
about the application; that information is mostly col-
lected by different tools. The idea of using ontology
(e.g. PERFONTO) fits well for that purpose as ontol-
ogy can describe the semantics of information about
applications. Moreover, by using ontology, high-level
components such as analysis agents [10] could be able
to understand data provided by many sources in het-
erogenious environment even if they do not know the
exact type of that data in advance. Another poten-

7

l1: SELECT ?regionsummary

WHERE

l2: (?regionsummary perfonto:inProcessingUnit ?processingunit)

l3: (?processingunit perfonto:inNode "gsr410")

l4: (?regionsummary perfonto:hasMetric ?metric)

l5: (?metric perfonto:hasMetricName "wtime")

l6: (?metric perfonto:hasMetricValue ?value)

l7: AND (?value >=3E8)

l8: USING perfonto FOR <http://www.par.univie.ac.at/project/scalea/perfonto#>

Figure 4: An example of RDQL query based on PERFONTO.

l1: [rule detect bigmessages:

l2: (?regionsummary perfonto:ofCodeRegion ?codeRegion),

l3: (?codeRegion rdf:type perfonto:MPCodeRegion),

l4: (?codeRegion perfonto:hasCrType "CR MPIP2P"),

l5: (?regionsummary perfonto:hasMetric ?metric),

l6: (?metric perfonto:hasMetricName "AvgMessageLength"),

l7: (?metric perfonto:hasMetricValue ?length),

l8: greaterThan(?length, BIG MESSAGES THREADHOLD)

l9: -> print(?regionsummary,"Big message hold!")]

Figure 5: An example of Rule-based Reasoning based on PERFONTO.

tial of ontology that can be applied in automatic per-
formance analysis is reasoning capability. As simply
demonstrated in Section 4.3, we can define rules for
automatic performance analysis. Based on predefined
patterns, the action of rules can automatically deter-
mine and perform appropriate tasks without or with
little any human intervention. By doing so, we can
also move analysis components as close to resources
monitored as possible.

Ontology can also be used for ensuring semanti-
cally interactions between tools of an automatic per-
formance analysis system, e.g. instrumentor, experi-
ment planner. The ontology can represent features of
available tools by classifying their main components
and specifying the relationships and contraints among
them, thus allowing users/services to select and con-
figure the most suitable solution for automatically ex-
ecuting a performance analysis process.

6 Prototype Implementation

We are currently implementing the proposed ontol-
ogy and ontology-based service. The ontology-based
performance data repository is an OGSA-based ser-
vice of which the ontological database is based on
PostgreSQL. However, in current prototype this ser-
vice supports only operations for retrieving and stor-
ing ontology descriptions and instance data; searching
and reasoning have to be done at client side. We are
working on providing searching and reasoning opera-
tions.

We develop an Ontology-based Performance Anal-
ysis Service (OPAS) which supports ontology-based
searching and reasoning. Figure 6 presents an user
interface for performing searches in OPAS. In the top
window the user can specify queries whereas the re-
sult will be shown in the bottom window. For exam-
ple, we conducted a search with the query presented
in Section 4.2 with a 3D Particle-In-Cell application.
In the bottom window, under the subtree of vari-
able regionsummary, list of region summaries met
the condition will be shown. The user can examine

8

Figure 6: Graphical User Interface for conducting searches.

performance metrics in details. Other information,
such as source code and machine, can be visualized
as needed.

7 Related work

The Pablo Self-Defining Data Format (SDDF) [1] is
a data description language that specifies both data
record structures and data record instances. The
method of using ontology provides more facilities to
describe the semantics of performance data.

Database schemas are proposed for representing
performance data such as in SCALEA [?], Proph-
esy [31]. However, these approaches are tool-specific
rather than widely-accepted data representations. It
is difficult to extend database schema structure to de-
scribe new resources. The relational database schema
does not explicitly express semantics of data whereas
the ontology does. As a result, building knowledge
discovery via inference in ontological data is less in-
tensive work, hard and costly.

CIM [3] is a model for describing overall manage-
ment information in a network/enterprise environ-
ment. Our work is different as we are focusing on
describing performance data by using OWL.

The Global Grid Forum (GGF) Network Measure-
ments working group has created an XML schema
which provides a model for network measurement
data [12]. Similarly, GLUE schema [32] defines a con-
ceptual data model to describe computing and stor-
age elements and networks. In [6], ontology has been
applied for improving the semantic expressiveness of
network management information and the integration
of information definitions specified by different net-
work managements. None of these schemas models
concepts of application experiments. However, the
modeled objects in GGF and GLUE schema are sim-
ilar to that in our resource-related ontology thus vo-
cabularies and terminologies of these schemas can be
incorporated into our resource-related ontology.

There are tools for publishing and managing on-
tologies on the Web such as Joseki [18], TAP [30].
Our repository service differs from these tools as it

9

is a Grid service intentionally designed for publishing
and archiving ontological performance data.

Recent work in [28] describes how ontology can be
used in Grid resource matching. Our work differs as
we try to propose an ontology to describe performance
data of not only compute resources but also applica-
tions. Our framework can provide data for matching
resources in the Grid.

8 Conclusion and Future Work

In this paper, we have investigated how ontology can
help to overcome the lack of semantics description
possessed by current techniques that are used in exist-
ing performance monitoring and measurement tools
to describe performance data in Grids. We have
developed an ontology for representing performance
data and introduced an architecture for an ontology-
based model for performance analysis, data sharing
and tools integration. The core of this architecture
is a Grid service for archiving and providing ontology
models and performance data. Initial results show
that ontology is a promising solution in the domain
of performance analysis because it not only provides a
means for seamlessly utilizing monitoring and perfor-
mance data but also increases the degree of automa-
tion of performance analysis.

Besides working toward the full prototype, we are
currently enhancing and reevaluating our proposed
ontology. We are extending resource-related con-
cepts to cover dynamic data of compute and network
systems at runtime, and advancing the experiment-
related ontology to describe performance properties,
performance data of workflow applications, etc. An-
other future work is to study the use of ontology for
mapping between different representations of perfor-
mance data. In addition, we plan to develop a task-
based ontology that describes conceptualizations of
tasks and processes along with their interrelationships
and properties for an automatic performance analysis
system described in [11].

Acknowledgements

This research is supported by the Austrian Science
Fund as part of the Aurora Project under contract
SFBF1104. We thank Dr. Ian Glendinning at the
Institute for Software Science, University of Vienna,
for his useful comments and suggestions.

References

[1] R. A. AYDT. SDDF: The pablo self-describing
data format. Tech. rep., Department of Com-
puter Science, University of Illinois, April 1994.

[2] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Hand-
book: Theory, Implementation and Applications.
Cambridge University Press, January 2003.

[3] Common Information Model (CIM).
http://www.dmtf.org/standards/standard
cim.php.

[4] DAML+OIL. http://www.daml.org/2001/03/daml+oil-
index.html.

[5] D. De Roure, N.R. Jennings, and N.R. Shadbolt.
The semantic grid: A future e-science infrastruc-
ture. In F. Berman, G. Fox, and A. J. G. Hey,
editors, Grid Computing - Making the Global In-
frastructure a Reality, pages 437–470. John Wi-
ley and Sons Ltd., 2003.

[6] J.E. Lopez de Vergara, V.A. Villagra, J.I. Asen-
sio, and J. Berrocal. Ontologies: Giving seman-
tics to network management models. IEEE Net-
work, 17(3):15–21, May-June 2003.

[7] T. Fahringer, M. Gerndt, Bernd Mohr, Felix
Wolf, G. Riley, and J. Träff. Knowledge Specifi-
cation for Automatic Performance Analysis, Re-
vised Version. APART Technical Report, August
2001.

[8] D. Fensel. Ontologies: Silver Bullet for Knowl-
edge Management and Electronic Commerce.
Springer-Verlag, Berlin, 2001.

[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
Grid Services for Distributed System Integra-
tion. IEEE Computer, pages 37–46, June 2002.

[10] M. Gerndt, A. Schmidt, M. Schulz, and R. Wis-
mueller. Performance Analysis for Teraflop Com-
puters - A Distributed Automatic Approach.
In Proceedings of 10th Euromicro Workshop on
Parallel, Distributed, and Network-based Pro-
cessing (EUROMICRO-PDP 2002), Canary Is-
lands, SPAIN, 2002.

[11] Michael Gerndt and Bernd Mohr. Au-
tomatic Performance Analysis Roadmap Re-
port. APART Deliverable, http://www.kfa-
juelich.de/apart/result.html, January 2001.

10

[12] GGF Network Measurements Working Group.
http://forge.gridforum.org/projects/nm-wg/.

[13] T. R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
5(2):199–220, 1993.

[14] N. Guarino. Formal Ontology in Information
Systems. In Proceedings of the 1st Interna-
tional Conference of Formal Ontology in Infor-
mation Systems(FoIS’98), Trento, Italy, 1998.
IOS Press, Amsterdam.

[15] Ian Horrocks. Reasoning with expressive de-
scription logics: Theory and practice. In Andrei
Voronkov, editor, Proc. of the 19th Int. Conf.
on Automated Deduction (CADE 2002), number
2392 in Lecture Notes in Artificial Intelligence,
pages 1–15. Springer, 2002.

[16] HP Labs Semantic Web Research.
http://www.hpl.hp.com/semweb/.

[17] Jena - A Semantic Web Framework for Java.
http://jena.sourceforge.net.

[18] Joseki. http://www.joseki.org/.

[19] DAML: The DARPA Agent Markup Language.
http://www.daml.org/.

[20] RDQL: RDF Data Query Language.
http://www.hpl.hp.com/semweb/rdql.htm.

[21] OIL: Ontology Inference Layer.
http://www.ontoknowledge.org/oil/.

[22] Deborah L. McGuinness, Richard Fikes, James
Rice, and Steve Wilder. An Environment for
Merging and Testing Large Ontologies. In Pro-
ceedings of the Seventh International Conference
on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, Colorado,
USA, April 2000.

[23] Leo J. Obrst Michael C. Daconta and Kevin T.
Smith. The Semantic Web: A Guide to the
Future of XML, Web Services, and Knowledge
Management. John Wiley & Sons, 2003.

[24] N. Noy and D. L. McGuinness. Ontology De-
velopment 101: A Guide to Creating Your First
Ontology. Technical Report KSL-01-05, Knowl-
edge Systems Laboratory, March 2001.

[25] OWL Web Ontology Language Reference.
http://www.w3.org/tr/owl-ref/.

[26] Resource Description Framework (RDF).
http://www.w3.org/rdf/.

[27] RDF Vocabulary Description Language
1.0: RDF Schema. http://www.w3.org/tr/rdf-
schema/, January 2003. W3C Working Draft.

[28] H. Tangmunarunkit, S. Decker, and C. Kessel-
man. Ontology-based Resource Matching in the
Grid—The Grid meets the Semantic Web. In
Proceedings of the Second International Seman-
tic Web Conference, Sanibel-Captiva Islands,
Florida, USA, October 2003.

[29] F. Tao, L. Chen, N. R. Shadbolt, G. Pound, and
S. J. Cox. Towards the semantic grid: Putting
knowledge to work in design optimisation. In 3rd
International Conference on Knowledge Manage-
ment (I-KNOW ’03), pages 555–566, 2003.

[30] TAP: Building the Semantic Web.
http://tap.stanford.edu/.

[31] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan,
R. Stevens, M. Hereld, and Ivan R.Judson.
Prophesy:An Infrastructure for Analyzing and
Modeling the Performance of Parallel and Dis-
tributed Applications. In Proc. of HPDC’s 2000,
Pittsburgh, August 2000. IEEE Computer Soci-
ety Press.

[32] The Grid Laboratory Uniform Environ-
ment (GLUE). http://www.cnaf.infn.it/ ser-
gio/datatag/glue/index.htm.

[33] Hong-Linh Truong and Thomas Fahringer. On
Utilizing Experiment Data Repository for Per-
formance Analysis of Parallel Applications. In
9th International Europar Conference(EuroPar
2003), LNCS 2790, pages 27 – 37, Klagenfurt,
Austria, August 2003. Springer-Verlag.

11

