
The inContext Pervasive Collaboration Services
Architecture?

Stephan Reiff-Marganiec1, Hong-Linh Truong2, Giovanni Casella3, Christoph
Dorn2, Schahram Dustdar2, and Sarit Moretzky4

1 Department of Computer Science, University of Leicester, UK, srm13@le.ac.uk
2 Distributed Systems Group, Vienna University of Technology, Austria,

{truong,dorn,dustdar@infosys.tuwien.ac.at}
3 Softeco Sismat SpA, Italy, giovanni.casella@softeco.it

4 Innovation Lab,Comverse, Israel, Sarit.Moretzky@comverse.com

Abstract. Traditional collaborative work environments are often pro-
prietary systems. However, the demands of todays e-worker are such
that they use their own tools and services and collaborate across com-
pany boundaries making highly integrated solutions less feasible. Ser-
vice oriented computing provides an obvious solution here, in providing
mechanisms to loosely integrate many tools and services. In this paper,
we present the inContext PCSA (Pervasive Collaboration Services Ar-
chitecture), which is a reference architecture for building context aware
collaborative systems that are based on service oriented techniques.

1 Introduction

Collaborative systems are tools supporting collaborative work, typical examples
are document management systems or customer information systems where dif-
ferent staff of the same organisation can access information and contribute to
information in order to jointly bring forward the aim of the organistion. Many
of the existing collaborative systems are not integrated with each other, so for
example workflow and document management are not connected, or the com-
munications systems are entirely separate from the other two. This means that
information either needs to be transferred manually (e.g. logging call activities
in a workflow system), or is simply not available where and when it is required.
Clearly this calls for an infrastructure that allows for integration of the different
activities. The other major disadvantage is that systems are usually used within a
single organization, while nowadays collaborative work often spans institutional
boundaries calling for platforms that operate across these boundaries. A further
disadvantage of existing systems is that they are not context aware, that is the
user’s context is not automatically available to support the given activities.

Work in the past has addressed some of the above aspects, in particular
the issue about context. However, it has not done so by considering a single
platform addressing all needs – which partly might have been due to limitations
with the available middleware and underlying systems. In the inContext project
? This work is supported by inContext (Interaction and Context Based Technologies

for Collaborative Teams) project: IST IST-2006-034718

we have developed a platform, or reference architecture called inContext PCSA
(Pervasive Collaboration Services Architecture) which provides a context aware
setting in which independent collaborative services, exposed as web services,
can be used to build different collaboration tools. The platform provides a novel
middleware layer that allows selection and composition of services at runtime
to fulfil a users current needs. It is pervasive in both the sense that the user
does not need to be aware of how and which services are selected, they simply
achieve the desired aim by using systems build on top of the platform and thath
services can run on different types of devices or platforms. To achieve this service
selection, and in particular to identify the most suitable service for a user in
their current context the platform is context aware. Context here covers not
only location and devices, but also activities creating the all-essential link for
integrating collaborative artifacts and information.

Overview. This paper is structured as follows: the next section provides a
motivating example and background information on context aware and collabo-
rative systems. We then turn our attention to the PSCA by providing an overview
and discussing the essential subsystems. Before drawing concluding remarks and
discussing further work, we present examples of the use of the architecture.

2 Motivation and Background

In terms of motivation, let us consider a scenario that is typical in the area of
collaborative work, and which calls for many of the PCSA features presented
in this paper. Imagine a user in an internal project A in his company requires
a document relevant for his current activity. The PCSA will utilize document
search service dsA, through which the documents for the project can be accessed.
Later the same user switches to project B – a joint venture between his own
company and an external association. Again the user request a document search
service, this time the platform will use dsB, a public repository service with
access by subscribers. We can see that in this simple example based on the user
context (mostly his activity in this case) differing services are selected as most
appropriate and are consequently invoked in a transparent manner to achieve the
user’s aim. Behind the scenes there is much technical activity and usual examples
are much larger: the document search might be part of a meeting planning tool
or a governmental policy review systems.

A vast number of tools supporting collaborative work is available today, as
indicated in [1–3]. However, many of these tools are used within a single or-
ganization’s boundaries, while many emerging collaborative work scenarios are
spanning these boundaries. When we consider the dynamic and distributed col-
laboration spanning different organizations and the support of user participa-
tion/customization required we find that existing collaborative tools are simply
insufficient. There is a number of requirements that emerging collaborative tools
need to support. First, there is a need to utilize different collaboration tools
which can be provided and hosted by different organizations. Second, there is
a need to adapt collaboration tools to the context of the collaboration as we
have seen in the motivating example earlier on. Existing collaboration tools pro-
vide rich features which work very well when utilised in isolation, for example,

Collaboration Services

Document
Search

User Applications

InContext Platform

User interaction

Service selection
and invocation

Interaction patterns and
metrics, log information

Log
information

Context
Information

Service Invocation/
Adaptation

Context
Information

Context
Information

Log information,
Interaction

Patterns and
Metrics

Interaction
Mining

Access Layer

Service Management

Context
Management

SMS Email Calendar Instant
Messaging

Document
Management

Meeting
Scheduler

User and Team
Management

Team Analysis
Service

Management Portal

Client App Interaction
Viewer

User Portal

Fig. 1. An overview of the inContext system [4]

for sharing documents or for managing activities. However, those features are
not easily integrated into a single collaboration toolset, where various features
are required to accomplish the collaboration for various reasons, such as they
are propriety collaboration tools, they provide no open interface, or they are
tightly-coupled systems.

Dynamic user-defined and user-customized collaboration calls for well-defined,
common collaboration services which can be easily composed and adapted for
different collaboration contexts. We have found that commodity of CWE services
is in increasing use and open standards are widely employed for collaboration
tools [3]. However, there are many open questions that need addressing: How can
we support diverse collaboration services that can be composed and customized?
How can we enable context-awareness and collaboration adaptation across or-
ganizational boundaries? How can we support the user to perform collaboration
from anywhere with any device? These questions motivated us to investigate the
concept of commodity collaboration services which are composable and common.
We approach this concept by utilizing Web services technologies and activity-
based collaboration techniques to develop a so-called pervasive collaboration
services architecture (PCSA).

3 Overview of the PCSA

The inContext Architecture, also referred to as PCSA (Pervasive Collaboration
Services Architecture), consists of three main parts: the user applications, the
collaboration services and the inContext core platform [4] - we consider these in
turn. To provide an overview, the overall architecture is depicted in Figure 3.

User applications have not been at the forefront of the development here, but
our case studies have been supported with respective frontends. Applications at
this level are meant to be used by the collaborative worker, so some effort has
been spent on considering user applications technologies for both mobile and
stationary workers.

Underpinning the environemnt are collaborative services: essentially any ser-
vice (implemented as a web service) or any software whose interfaces have been

exposed as web services that have a meaning for collaborative work. Services at
this level are, for example, a Document Service (allowing to retrieve and collate
documents that are relevant to the current user activity), an Activity Service
(concerned with any information regarding activities), or an User and Team
Management Service (providing all sorts of team related information).

The core platform contains four main ingredients: the Access Layer, the Con-
text Management, the Service Management and the Interaction Mining. Each of
these is developed as services, providing much flexibility to the platform.

The Access Layer controls access to the platform by checking user credentials
– it is the main entry point to using the inContext platform. However, its func-
tionality goes beyond authentication: any transaction across the Access Layer is
tracked to gather information on user activities (which in turn enrich the context
information) and user decisions (e.g. when a number of services was available it
is monitored which was actually selected by the user).

The Context Management sub-system is concerned with gathering, storing,
providing and enriching context information, but also provides mechanisms to
retrieve context from the store. Furthermore, reasoning techniques allow deriving
new, richer context information from the information available in the store. The
contex model implementation is based upon RDF triples and the reasoning is
based on an enhanced version of the Jena engine. Interaction Mining provides
additional information by considering past behavior. Context management and
interaction mining are beyond the scope of this paper1.

The Service Management constitutes the part of the inContext platform most
relevant for this paper, as it is here were the collaboration services are drawn
together and composed into rich context aware collaboration tools on demand.
Service Management is concerned with registration and lookup of services and
their execution – this goes beyond standard web service functionality by iden-
tifying the best suitable choice for the users current context and activity based
on non-functional attributes of services.

4 Common SOA-based Collaboration Services

The inContext PCSA is based on SOA to allow for collaboration services to
be dynamically located and invoked. The platform supports flexible and dy-
namic collaborative working environments able to aggregate heterogeneous ser-
vices while at the same time considering and exploiting the user’s context.

Common collaboration services can be developed and provided by differ-
ent organizations, following well-defined interfaces to support fundamental tasks
typically required by collaboration tools. Based on the inContext’s case studies,
we have analyzed requirements for collaboration platforms and identified vari-
ous common collaboration services and have as part of the platform provided a
set of such services. Although, these services were demanded by the inContext
case studies, they are not specific to these. The services are more general and
can be used in a wide variety of emerging collaborative work scenarios as well

1 inContext D2.2 and D2.3 discuss these in detail; both are available at www.in-
context.eu

Collaboration Services Description
User and Team
Management Service

provides a list of projects related to a user with detailed in-
formation on project members, timeline and team structure.

Member Search Service searches for relevant people based on specific role or exper-
tise.

Personal Document
Search Service

allows searching for text patterns inside a set of documents
stored on specific hosts which were declared as shared for the
inContext platform.

Document Service manages virtual ’shared areas’ for documents.
Short Message Service enables to send SMS to mobile users.
Meeting Scheduling
Service

is a composed service allowing setting up a meeting.

Activity Service manages the activities associated to a project, enabling the
creation and the organization of such activities in an activity
tree and assigning them to users, documents, locations, etc.

Table 1. Examples of common collaboration services

as be served as basic services for building different collaboration tools. Table 1
presents a selection to show the flavour of typical collaboration services.
Common collaboration services can be atomic or composite – as is typical for web
services. By utilizing well-developed publish-registry techniques in Web services,
common collaboration service will be registered in a repository named Service
Registry. However, when registering a service some extra information is required:
All services (actually each operation) are organized in categories, within the
Service Registry. Each registered service belongs to at least one category. The
category is important, as it is this which is used for lookup; each category also has
associated non-functional attributes and a well defined generic service interface.
Then, common collaboration services can be used to build collaboration tools
which could discover and execute the services based on collaboration context.

5 Context-aware Service Management

The context-aware service management identifies the most appropriate services
based on the user’s context and current needs and composes these into a col-
laborative tool-set. There are three aspects here that go beyond what standard
service oriented techniques offer: (1) we have addressed the need to select the
most appropriate service automatically, (2) we have addressed the requirements
for selecting services as part of a worklfow and (3) we have provided techniques
to invoke services through a standard interface by automatically mapping spe-
cific service interfaces to more generic interfaces that are exposed to the user
application. We will consider these 3 aspects in the next few sections.

Selecting Services. One of the challenging aspects in service oriented computing
is selecting the best service if a number of services are on offer. We devised a
ranking mechanism called the RelevanceEngine which ties in with service lookup
in the service management subsystem. The RelevanceEngine has one job: to
consider a list of suitable services that all seem to functionally address the user’s
requirements and rank these so that the user can see which service is most
appropriate for supporting their activity in their current situation.

The ranking mechanism makes use of a number of inputs: it queries the
context management system to obtain information about the user’s context; it
queries the data mining component to gain an insight into historical handling of
a similar situation and it of course explores the services profile – the extra meta
data in the registry that is associated with the service category. For example,
if the user is looking for a printing service, the meta data will tell us static
information such as whether the service is colour or not and how fast the printer
is; it will also provide a query URL to find out about the current service use
(e.g. queue length). The user’s context will amongst others provide insight into
whether he requires the printout very quickly and whether the document is
very long. All these facts are combined and a rank value is calculated for each
service by using an automated, type based version of LSP (Logic Scoring for
Preferences). This paper provides a wider overview of the architecture and a
very detailed discussion of the ranking mechanism is beyond the scope, however
this has extensively been described in [5]. Briefly, the LSP mechanism can handle
large numbers of criteria while maintaining an assurance that even factors with
a small weight but which a user cares strongly about are given appropriate
weighting in the resulting score. It can also act as both “ranker” and “filter” –
that is we consider hard and soft criteria using the same mechanism and ensure
that services which do not meet hard criteria are shown as inappropriate in the
ranking (essentially a score of 0): for example a hard criteria might be “the
service must be free”, while the related soft criteria would be “the service should
cost as little as possible”.

It is worthwhile pointing out that we are using a pragmatic extension to
service models in a standard UDDI repository: we have developed a model for
capturing key non-functional data about services in this way. This mechanism is
lightweight and requires little technologythat goes beyond standard web services;
in particular it only requires for a service developer to register a few extra values
in the repository. Of course one could consider semantic web technologies here,
which provide mechanisms to express properties but these are a more fundamen-
tal shiftin the technology used and hence we decided against them. Independent
of this, the data about services is an input to the ranking mechanisms and the
same would be still appropriate in the context of semantic web services with
richer service descriptions.

The Composition Context. The mechanism just described was initially devel-
oped to find the most appropriate service for a given activity, considering the
user’s context but not necessarily the context of execution of the service. How-
ever, usually services are not required in isolation but are often invoked as part
of a workflow. The ranking mechanism has been extended by what is called com-
position context, essentially information gathered about the last stages in the
workflow that we have executed: did services from a certain provider fail? Are
there policies that disallow us to select (or would mean preferential treatment
if we chose) a future service from a specific provider? The concept and related
ranking mechanism have been described in [6], but the idea is probably best
explained with a small example: consider ordering a book. You have a choice
of two providers, provider A charges e10 for the book, provider B e13. If we
select the most optimal single service, we would select provider A. But in our

workflow context, we know that the book also has to be shipped to us and find
that provider A charges e5 for shipping, while provider B offers it for free, thus
overall provider B is the better choice. This example is simple but it is only
meant to show that local optima differ from global ones; further one could argue
that some websites currently already provide such functionality: they usually do
so by considering services offered by the same provider. The composition context
explored here is not bound to just relating information by the same provider,
but can be applied to services from different providers.

Mapping Interfaces. Considering that we retrieve services from all sorts of
providers at runtime, we must ensure that they can be invoked by the platform
in a coherrent way. In order to achieve this, we have assigned to each category
a common interface and each service in that category has to provide mapping
information on how to map the service interface to the common interface. This
way we enable transparent execution of various services with different interfaces
for a specific category.

To support this mechanism of service interface mapping, we implemented a
service called Interface Mediator. This service forwards web service calls after
applying a transformation in order to match the destination web service inter-
face. As already mentioned, if a service is registered under a certain category the
consumer should use the common interface to use service of this category. During
runtime the interface mediator relies on XSLT style sheets to map the common
interface to a service interface. This allows the service providers to perform some
complex data manipulation to match their requirements. In order to expose the
PCSA capabilities, we created some XSLT templates that can be directly used
to (1) query and use context data, (2) gather user preferences / information or
(3) Query any service metadata.
While offering high flexibility and enabling scenarios like translating content
based on user’s language, sending an SMS to the relevant phone number, or
converting data to the right format (e.g. currency units, or temperature scales),
this transformation implies of course an overhead compared to a direct call. Its
impact on the performance is very limited for several reasons.
– The style sheet is compiled to machine code allowing for very fast execution.
– The data is manipulated at the XML level without being marshaled to any

programming model which removes expensive conversions.
– The external service calls go through the Access Layer anyway in order to

be logged and to provide feedback to the system. Integrating the interface
mediator there implies no network overhead for the transformation itself.

– XSLT is standard technology with very fast engines emerging.
The overheads are outweighed by the benefits of being able to dynamically select
a service based on the current situation. This mechanism makes the platform
more robust (being able to use another service if one fails), but also increases its
adaptability by offering to add/ remove services to existing categories.

6 Context-aware Collaboration Services

In typical service composition one considers functional and QoS parameters.
Collaborative work scenarios require in addition for context to be considered as

a main criteria. In this section we address two issues: context-aware composition
and adaptation support for collaboration services.

Context-aware Composition The composition of collaboration services is based
on collaboration context. By utilizing collaboration services, collaboration tools
can be built. In our PCSA, a collaboration is described by collaboration activities
which are performed by a set of users. Consequently, a collaboration context will
be determined when the activities are specified and the context will be updated
by the user or by the services which monitor actions within activities.

A tool supporting the end user to collaborate can utilize collaboration ser-
vices, thus it has to manage compositions for collaborations. During the collab-
oration, the user will specify activities which include information about who is
involved in them, which artifacts are needed, the type of collaboration services
used, etc. Specified activities are managed by the Activity Service. All context
information related to activities are managed, for example, the location of in-
volved people and the status of services being used for the activities. When
collaboration services are required, the most appropriate services will be deter-
mined and composed based on the current collaboration context; we discussed
the technical mechanism for service ranking in the previous section.

Supporting Adaptation based on Collaboration Context Collaboration services
are deployed as web services. These services must be aware of changes in the
collaboration context, and therefore they need access to the current collabora-
tion context. The PCSA supports two types of context-based adaptation: (1)
service-level adaptation focuses on improving the behavior of the invoked ser-
vice depending on provided context information and (2) composition-level adap-
tation aims at selecting and combining the most suitable set of services to fulfil
the user’s requirements in the given situation.

To this end, we provide a generic solution for distributed collaboration con-
text sharing. The sharing mechanism remains context model agnostic. While the
actual context information is managed by the context management framework,
the context sharing mechanism is responsible for providing correlation informa-
tion. This correlation information acts as the initial context entry point, thereby
allowing a service to retrieve the relevant information from the context store. To
remain independent of service interface and Web service stack, we insert the cor-
relation information in the header part of a SOAP message. Whenever a service
operation is invoked, the message header includes the URI of the invoking user
and the user’s current activity. This provides sufficient correlation for a service
to obtain the context information and adapt its operation, if needed.

One of the main advantages of using Web services technologies for common
collaboration services is the ability to loosely couple context information: (1)
services do not need to explicitly pass along large sets of context information
of which each individual service requires potentially only a small subset; (2)
services need to understand only that part of the overall context model that
they require; and (3) extensions for domain specific collaboration services (e.g.,
health care) can place additional correlation information in the SOAP header
without having to update existing services.

Utilizing the SOAP header extension for context correlation yields another
benefit to simplify cross-organizational collaboration. SOAP intermediaries such
as the Access Layer but also message routers, security checkpoints, and gover-
nance mechanism for SLAs in general can access the header information and
subsequently base their decision on the available context instead of inflexible
policies and rules. Thus, adaptation at the service composition level becomes
increasingly feasible and manageable. For example, consider the following adap-
tation supported by the PCSA: (a) The Access Layer forwards a notification
request to the most suitable communication service based on user preferences,
costs, and available devices. (b) The service interface mediator is able to extract
missing data from the context to invoke a service demanding for additional input
parameters not specified by the generic service interface. (c) Once a shared doc-
ument space is selected for an activity, all subsequent service calls are forwarded
to the same service endpoint.

7 Experimental Evaluation

In this section, we discuss how we utilize PCSA to build different collaboration
tools. We present our experiences based on the development of two real case
studies proposed by our end-user partners:

Scheduling a meeting: The Electrolux Group is one of the world’s largest
manufacturers of white goods. Within the company secretaries must often
organize meetings which is a difficult task. In fact, managers are often un-
available to participate to meetings due to the multiple activities in which
they are involved, in which case the secretary can select his/her project proxy
which requires an understanding of the project team structure. Moreover it
is often difficult to communicate with them (e.g. to establish a meeting date)
due to their travels (they are frequently in different time zones, are not al-
ways able to access the web or to answer phone calls).

Wolverhampton Fair: Every year the West Midlands Local Government As-
sociation organizes and manages the Wolverhampton fair. In particular a
manager must build the staff to manage the fair (the workers belong to dif-
ferent departments and have different skills and experiences), must assign
the activities related to the fair and must check that during the fair coordi-
nation and communicating between all staff is as expected, which requires
tools to exchange documents and to communicate quickly.

The two usage scenarios are addressing very specialised needs which are very
different in their requirements. We were able to exploit the PCSA successfully to
build two user applications to handle these scenarios. The two user tools exploit
a subset of common collaborative services, which are composed and adapted in
different ways to satisfy the user needs. Figure 2 shows the GUI of the Event
Management Tool as an example. The Event Management Tool offers a set of
tools to organize events but is also applicable to manage general projects. The
Meeting Scheduling Tool addresses the needs of the Electrolux case study.
The following shows some collaboration services used for each of the two tools,
where SM and EM are used for the Schedule a Meeting Tool and the Event
Management Tool respectively; the last three servcies are composite.

Fig. 2. The Event Management Tool

User & Team Management Service is used to retrieve participants details
and project team structures (SM) and to maintain the event stuff structure
and to retrieve user details, skills, experiences, etc. (EM)

Activity Service is used to explore the project activity tree in which the meet-
ing is created (SM) and to create the activities that must be handled in the
event and to assign such activities to the staff members (EM).

Document Service is used to retrieve information about relevant documents
for a meeting and to store the meeting agenda (SM) and to share and orga-
nize documents (EM).

The Relevant Documents Finder is a composition of the activity service
and the document service. Based on relations between the current user ac-
tivity (e.g. the meeting that is scheduled and a general activity) and others
project activities it retrieves the documents associated to these activities.
Some reasoning rules are applied to identify the relevant documents.

The Relevant User Finder is a composition of of the activity service and
the User & Team management service. Based on the relations between the
current user activity and others project activities it provides information
about users involved in these activities. Again, some reasoning rules help to
ensure that all appropriate users are identified.

The Notification Service is a composition of the Instant Messaging Service,
the SMS and the Mail Service. By exploiting the user context this service
decides which is the best way to notify a user about something (e.g. an
important message informs that he must attend a meeting) and sends the
message using the best service selected.

Collabration services become sometimes unavailable (this is unavoidable in a
distributed, dezentralised environment). In these cases the PCSA lookup mech-
anism enables selection of an alternative service in a manner transparent to the
user by using context and the interface mediator.

Our experimental evaluation shows that the PCSA enables the exploitation
of a set of collaboration services to build heterogeneous collaboration tools ad-
dressing different requirements and functionalities. Moreover, by using the ser-

vice common interfaces composition of simple services to offer new complex
services which are able to satisfy the user needs is possible. Finally the dynamic
management of services enables integration of different services with the same
functionalities and to exploit them according to their availability.

While we considered two specific cases here – both taken from the domain of
collaborative work – these are only meant to illustrate the ideas. The platform
developed addresses the need of collaborative systems which we have analysed
and briefly introduced at the start of the paper and hence allows for the dynamic
building of tools for collaborative work environments which tend to require flex-
ible system structures where the system takes much of the burden of providing
the right service at the right time based on the users activity. Many of the devel-
oped mechanisms can be applied outside collaborative systems, for example the
approach for service selection has not been developed with only collaboration
services in mind, but rather with a wider view of service slection.

8 Related Work

Many basic collaboration tools and services, such as document sharing, calen-
dars, and instant messaging have been developed. However, currently it is not
easy to compose these services and make them interoperable for Web-based, user-
customized collaborations because most of them lack well-defined Web services
interfaces. Web services support have been incorporated into few collaboration
services such as BCWS, Google Doc, and Microsoft Sharepoint for document
sharing. In our work, we not only propose solutions for the interoperability of
collaboration services but also present how common collaboration services can
be composed suitable for different collaborations based on context.

Recently, various researchers have advocated the standardization of (basic)
collaboration services. A CoCoS Working Draft2 proposes common collabora-
tion services in terms of message representation, service operations and service
behaviors. CoCoS addresses a subset of common collaboration services proposed
in our PCSA but does not discuss the composition and execution aspects of col-
laboration services. The ECOSPACE project3 also investigates various common
collaboration services. However, it focuses on document sharing services. The
OCA-WG (Open Collaborative Architecture Working Group4) aims at defining
a reference architecture for collaboration services.

In the area of service selection [7] propose the addition of a broker component
to the service selection architecture which essentially sits between the UDDI
repository and the invoker and monitors service invocations and the resulting
quality. However they, like most other approaches (e.g. [8]), only consider service
quality as criteria for service ranking. We have signifcantly added to this with the
more complex context model that is used in our work. Also, we have extended
the Data model in the repository itself to get richer service information.

2 http://www.ubicollab.net/images/stories/UbiCollab/Standards/ CoreCollabora-
tionServices v0.1.pdf

3 http://www.ip-ecospace. org
4 http://www.oca-wg.org

9 Conclusion and Further Work

The lack of common collaboration services and an open architecture for collab-
orative working environments hinders the integration and reusability of diverse
collaboration tools. We have presented the inContext PCSA – a reference ar-
chitecture for context aware collaborative systems that defines and provides an
open platform with various common collaboration services. The PCSA allows to
combine collaboration services into larger platforms that fulfil the needs of an
organisation or user. What should be noted is that the combination is loose, in
the sense that the actual service for a specific task is only selected at runtime
based on the users activites and current needs.

What constitutes a collaboration service is open: in principle any service
could be used as part of a collaboration and can be easily introduced to the
platform by the creator of the service registering the same and providing some
meta data. The PCSA itself is also built from services and hence can be used in
its entirety, or selected components can be used within other contexts.

The resulting technical platform has been used to implement two quite di-
verse toolsets for two real case studies and initial test results have been discussed.
Currently we are running extensive end-user tests by exposing the toolsets to
larger audiences. Another line of future work is improvements at the level of indi-
vidual system components, such as further refinement of the ranking mechanisms
or enhancement of service profiles.

References

1. O’Leary, D.E.: Wikis: From each according to his knowledge. Computer 41(2)
(2008) 34–41

2. Optaros, Inc.: Unleashing the power of open source
in document management. Optaros Whitepaper (2006)
http://www.optaros.com/system/files/optaros wp os crm 20060316%282%29.pdf.

3. Skopik, F., Truong, H.L., Dustdar, S.: Current and Future Tech-
nologies for Collaborative Working Environments (2008) ESA Report,
https://www.vitalab.tuwien.ac.at/autocompwiki/index.php/Main Page.

4. Truong, H.L., Dustdar, S., Baggio, D., Corlosquet, S., Dorn, C., Giuliani, G., Gom-
botz, R., Hong, Y., Kendal, P., Melchiorre, C., Moretzky, S., Peray, S., Polleres, A.,
Reiff-Marganiec, S., Schall, D., Stringa, S., Tilly, M., Yu, H.: incontext: A pervasive
and collaborative working environment for emerging team forms. In: SAINT, IEEE
Computer Society (2008) 118–125

5. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service selection based on non-functional
properties. In: NFPSLASOC 2007. LNCS (2007) (in press)

6. Yu, H., Reiff-Marganiec, S., Tilly, M.: Composition context for web services selec-
tion. In: ICWS 2008. (2008) (in press)

7. Al-Masri, E., Mahmoud, Q.: Discovering the best web service. In: Proceedings of
the 16th international conference on World Wide Web, ACM (2007) 1257 – 1258

8. Seo, Y., Jeong, H., Song, Y.: A study on web services selection method based on
the negotiation through quality broker: A maut-based approach. In: Proceedings of
International Conference on Embedded Software and Systems. (2004) 65 – 73

