
SEMF - Service Evolution Management Framework

Martin Treiber, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

{treiber,truong,dustdar}@infosys.tuwien.ac.at

Abstract

With the growing popularity of Web services, an increas-
ing number of Web services have been integrated into and
used by complex service oriented systems. As a result, the
management of Web services has gained more importance
as Web services management systems can provide various
useful, runtime and historical, service information to ser-
vice consumers, developers and providers. However, cur-
rent Web service management systems do not provide a
holistic view of Web services. These management systems
use independent information models covering different as-
pects of Web services, for instance, QoS, licensing, taxon-
omy information, to name just a few. In this paper, we ad-
dress the challenges of (1) integrating available informa-
tion into a common Web service information model, while
(2) providing an extensible information model, and at the
same time, (3) keeping track of evolutionary changes of Web
services and (4) offering the means for complex analysis
of Web services. We introduce a Service Evolution Man-
agement Framework (SEMF) that addresses the aforemen-
tioned challenges using a generic Web service information
model. We illustrate how we utilize our proposed Web ser-
vice information model to manage changes of Web services,
and present a case study that shows how our framework
could be used in practice.

1 Introduction

Web services were designed to address the general prob-
lem of the integration of heterogeneous applications, re-
gardless of their implementation platforms. During the last
years, Web services-based systems became more complex
and management issues are becoming more and more im-
portant. There is a need to manage individual Web services
and complex systems of Web services over the course of
their lifetime. Being able to manage Web services helps to
answer many questions related to the development and de-
ployment of Web services, such as (i) when and based on
which information a Web service should be improved, (ii)

which factors influence on the employment of a Web ser-
vice, and (iii) why a Web service is not widely used. Such
questions are frequently asked by not only the service de-
veloper but also the provider and the consumer: they want
to understandhow Web services evolve in order to optimize
the development, deployment and employment.

To understand the evolution of Web services, we need
to rely on manageable information of Web services. Ex-
isting approaches provide only a fraction of information
associated with Web services such as, WSOL [19], SLA
[13, 18, 14], licensing information [10]. In fact, existing
approaches mainly focus on interface descriptions and as-
sume that interface descriptions can be augmented with ad-
ditional information, e.g., semantic meta information [10].
However, there are diverse types of information that origi-
nate from various sources. Such diverse types of informa-
tion are required by different stake-holders with different
perspectives on Web services, such as developers, integra-
tors, consumers and providers [2]. Furthermore, there is
a lack of tools and frameworks that support managing and
integrating of a vast source of information into a common
information model.

We tackle the above-mentioned challenge by developing
a holistic view on Web services related information. In par-
ticular, we address two main issues related to Web services:
(i) what type of information is required for a given perspec-
tive and how to integrate all types of information into a sin-
gle model, and (ii) how to collect, manage and provide those
types of information. The first issue is related to the devel-
opment of a novel aggregated information model for Web
services. To address this, we need to ensure the flexibil-
ity and extensibility of the model and to preserve existing
information models and seamlessly integrate them into the
new model. The latter is related to the development of a
management framework that deals with various types of in-
formation whose management strategies are different. For
example, a particular type of information may change asyn-
chronously, such as QoS parameters; one type might not be
frequently changed, such as WSDL-based interface and li-
cense, while others might change rapidly such as SLA. Fur-
thermore, Web service related information should be kept

and managed over the time because historical data provides
key insights into the understanding of why Web services
change and which factors impact on the changes. Such his-
torical data can be utilized in various purposes in the selec-
tion, execution, maintenance, etc., of Web services.

This paper contributes (i) a novel, common Web service
information model that integrates heterogeneous, diverse
types of information about Web services, and (ii) the design
and implementation of SEMF (Service Evolution Manage-
ment Framework), a distributed Web services management
framework that is capable of tracking changes of Web ser-
vices and providing various types of Web services related
information according to different perspectives.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 introduces our
Web service information model along with the associated
roles and perspectives on the model. Section 4 describes
SEMF architecture. We discuss the implementation of the
current prototype of SEMF in Section 5. A case study illus-
trating SEMF is presented in Section 6. We summarize the
paper and give an outlook for further research directions in
Section 7.

2 Related work

Our work in this paper aims at (i) providing a novel in-
formation model that is capable of capturing and aggregat-
ing different types of information associated with Web ser-
vices, and (ii) a framework that collects, manages and pro-
vides Web services information according to that informa-
tion model. We outline our related work with respect to
the information model for Web services and middleware for
managing Web services.

2.1 Information Model

Category Language
Interface WSDL, OWL-S, WSMO, WSDL-S
QoS ORDL-S, WSLA
Pre Conditions OWL-S, WSMO
Post Conditions OWL-S, WSMO
Interaction Patterns WSMO
SLA WSLA, WS-Policy
Taxonomy OWL-S, WSMO
Folksonomy -
License ORDL-S

Table 1. Overview of Web service description
languages

Existing Web service models cover different aspects of
Web services such as service interface, QoS[17], SLA[13,

18, 14], licensing information [10], etc. However, those
models focus on only discovery issues. Table 1 gives an
overview of existing and adopted approaches and their de-
scriptive capabilities. For example, WSDL-S [1] embeds
semantic information into WSDL [5] files. The OWL-S
[20] semantically models Web services from three differ-
ent perspectives, namely the interface, process model and
the details about the transport protocol. The WSMO frame-
work [7] provides an ontology based solution to model Web
services. The authors use a dedicated language [9] to rep-
resent semantic information about Web services. Various
languages, such as WSLA [13], WSOL [19] [18], Slang
[14], and tools are developed for specifying service level
agreements, but they do not combine SLA-based informa-
tion with other types of information, such as interface de-
scriptions or licensing information.

The main difference of our work to the aforementioned
approaches is that we focus on the management of Web ser-
vices and do not assume that Web services information will
be described by a single specification. We explicitly con-
sider different types and providers of Web services informa-
tion and utilize aggregation techniques to gather different
sources of information which might have different represen-
tation models, such as OWL, WSDL, etc., for management
purpose. Both semantic and non-semantic based models are
considered in our framework.

What has not yet been provided by these proposed stan-
dards is the ability to tie together, at the point of service
offering, these various sources of information in a manner
which is both simple to create and use. Hence, our work
aims to tackle this issue. The WS-Inspection (WSIL) spec-
ification [12] also addresses this need by defining an XML
grammar which facilitates the aggregation of references to
different types of service description documents, and then
provides a well defined pattern of usage for instances of this
grammar. In contrast to WSIL, we explicitly focus on man-
agement related information, for instance run time informa-
tion about Web services (usage statistics, logging, etc.).

Recently, WS-RC (Web Service Resource Catalog)
schema [11] was introduced to describe management in-
formation of IT resources. In contrast to WS-RS which
is a general purpose model to describe all types of IT re-
sources, we focus explicitly on Web services. We provide
a lightweight approach for the integration of arbitrary data.
Furthermore, we use existing tools to integrate distributed
instances of our framework. We also provide the possibil-
ity to access the information with standard tools like email
clients and Web browsers. This allows for greater flexibility,
since users can for instance register for a feed that provides
information about QoS changes of a Web service without
having to install a dedicated client. WS-RC elements repre-
sent single entities, whereas our information model consid-
ers multiple elements for a single Web service.

2.2 Web Services Management Frame-
works

Although UDDI [6] is designed to store different kinds
of Web services information, it has never been widely
adopted. In addition, there is no support for the integration
of many types of Web services information into a common
information model.

Casati et. al. focus on the business perspective of
Web service management [3]. The authors provide a
high level analysis of the main issues (”holistic” Service
model, Metric and Architecture). They distinguish be-
tween infrastructure-level, application-level and business-
level management. However, to the best of our knowledge,
they do not deal with other perspectives. Furthermore, no
framework has been developed to provide management as-
pects given in [3].

The Web Services Management Framework (WSMF) [4]
defines a generic architecture for the management of re-
sources, including Web services. WSMF focuses on manag-
ing relationships between different resources and defining
monitoring interfaces associated with Web services. Simi-
larly, WSDM (Web Services Distributed Management) [16]
provides means to manage arbitrary resources and offer a
set of standardized management interfaces, such as obtain-
ing and controlling service capabilities. In contrast, we con-
centrate on management information associated with Web
services and their evolution.

The work in [8] discusses the management of service
interface change. It defines version-aware service descrip-
tions and directory models. Our work covers multiple as-
pects in service management rather than only versioning.
In this sense that work can be considered as a part of our
approach. The proposed model in [8] can be incorporated
into our management model.

3 Web Services Information Model

This section discusses our proposed Web service infor-
mation model. The basic principle is to create a meta model
that supports the management of evolutionary changes of
Web services and integrates different sources of data into a
common Web service information model.

3.1 Factors of Influence

Factors of influence can either change a Web service di-
rectly (e.g., change the interface) or have indirect effects on
Web services (e.g.,QoS changes can lead to a new imple-
mentation of a Web service). Figure 3.1 depicts the four ma-
jor factors of influence. These factors concern (1) the Web
service execution (hosting environment), (2) the Web ser-
vice usage (consumer/service integrator), (3) the Web ser-

S e r v i c e D e v e l o p e rC o n s u m e r
H o s t i n gE n v i r o n m e n texecut es

P r o v i d e r
u s e s d e v e l o p smonit orsI n t e g r a t o rext end s

Figure 1. Factors that influence Web ser-
vices.

vice creation/modification (developer), and (4) business/do-
main related aspects of the Web service (provider).

The hosting environment is responsible for the execu-
tion of the Web service. It constitutes the software envi-
ronment (e.g., operating system and Web service container)
and the corresponding hardware on which the software is
executed.

The provider of a Web service is responsible for pro-
viding domain or business expertise (e.g., service pricing,
etc.) and specifying functional and non-functional require-
ments for Web services. Changes in business aspects and
requirements have strong influence on the evolution of Web
services.

The developer implements the Web service and makes
the Web service actually run. The developer transforms the
high level business perspective to a technical level. The
developer writes technical specifications (interface descrip-
tions) and the actual code of the Web service.

The Web serviceconsumer/integrator uses a Web ser-
vice to fulfill a certain task. Rather than paying attention to
technical details, such as security and communication pro-
tocols, Web service consumers focus on QoS aspects, such
as response time, availability, and reliability. The Web ser-
vice integrator is similar to the consumer, but focuses on
technical aspects as well. Interface descriptions, pre- and
post-conditions of the Web service execution, are of con-
cern for Web service integrators.

3.2 Information Sources

As mentioned in Section 2, current approaches to de-
scribe Web services cover different aspects of Web services.
In our approach, we integrate Web service related informa-
tion from various information sources into a common Web
service information model (see Figure 2). This provides

us with a holistic view on Web services and establishes the
foundation for our analysis of evolutionary changes of Web
services.

W e bS e r v i c eI n f o r m a t i o nM o d e l I n t e r a c t i o nP a t t e r n sT a x o n o m y
Q o S

P o s tC o n d i t i o n sI n t e r f a c e
P r eC o n d i t i o n sF o l k > s o n o m yS L A

D a t a > s o u r c ep r o v i d e s i n f o r m a t i o n
Figure 2. Data sources of the Web service in-
formation model.

The properties shown in Figure 2 are subject to change
over the life-cycle of Web services. For instance, internal
optimization such as refactoring the source code of a Web
service and the use of new hardware can lead to changes
in the response time of a Web service. We analyze the cat-
egories of Web service changes and the relations between
changes in the next section.

3.3 Evolutionary changes in Web services

Every data change during the life cycle of a Web service
is considered as evolutionary change. In our approach, we
provide an extensible categorization for the classification of
the changes a Web service can have over its lifetime (see Ta-
ble 2). The classification of changes is the base for the anal-
ysis of Web service evolution. The combination of Web ser-
vice change classification and the time of changes allows us
to uncover the correlation of Web services changes. These
correlations can be used to predict potential Web service
behavior when certain changes happen. For instance, the
usage of a Web service may decrease, if response time of
the Web service increases (see Section 6 for more details).

3.4 Representation of Web Service Infor-
mation Model

From our abstract model of existing information sources
associated with Web services in Figure 2, we have devel-
oped a data representation model that is able to describe

c o n t a i n sE x t e r n a l fi l e
L i c e n c e

W e bS e r v i c e
F e d d b a c kF e e d b a c kQ o SQ o S W S D LW S D LF e e d E n t r y

R o o t L e v e l] c o n t a i n s a l la l i s t o f a l l a v a i l a b l es e r v i c e sF i r s t L e v e l] d e s c r i b e s a l la v a i l a b l e i n f o r m a t i o nc a t e g o r i e s S e c o n d L e v e l] d e s c r i b e sc h a n g e s o fc o r r e s p o n d i n gc a t e g o r i e sL i n k

W e b S e r v i c e C a t a l o g
L i c e n c e Q o S F e e d b a c k I n t e r f a c e

Figure 3. Representation of Web Service in-
formation model

those existing information. Figure 3 shows how Web ser-
vice related information is organized in our data representa-
tion. We represent Web services information is in a hierar-
chy, starting with aWeb Service Catalog which lists
all available services.

Within aWeb Service Catalog, concrete informa-
tion can be stored internally in the body of the respec-
tive elements or linked to external source using URI. Every
Service Information element has meta data specify-
ing information category, given in Table 2. Therefore, based
on this meta-data, tools know how to process the content of
information associated with aService Information,
as well as how to obtain historical information within a cate-
gory. URIs enable reuse existing tools and frameworks, and
remain agnostic concerning the actual data model. More
importantly, this mechanism allows us to distribute informa-
tion of Web services into separate places as well as to easily
integrate with external tools which provide Web services re-
lated information. In addition, we can extend the available
Web service information model by adding new categories
to our model.

The examples in Listing 4 and in Listing 5 (see
Appendix) show how this meta information about the
WISIRISFuzzySearch service is embedded in the cor-
responding (sub-)elements. We model meta information
in category elements with links to external information,
such as schemas, directories, etc. Listing 4 illustrates how
general information about the Web service is encapsulated
in twocategory elements, namely in (i) directory related
information and (ii) versioning information. We refer to the
current version of the interface using thelink element.

We provide time-stamps to order the changes in the tem-
poral space. Our approach is flexible enough to integrate
arbitrary information (e.g. versioning, etc.) and to add cor-

Change category Description Trigger
Interface Operations added/removed changes in operation signatures Developer
Pre-conditions Change of pre-conditions because of new interface or SLA Developer, Provider
Post-conditions Change of post-conditions because of new interface or SLA Developer, Provider
Message exchange patternsChange of protocol because of changes in the interface Developer
Advertised QoS QoS properties were modified Provider
Measured QoS Monitored QoS properties have changed Consumer, Integrator
Hosting environment Changes in the hardware environment of a Web service and in the Web service

software execution environment
Developer

Implementation Refactoring of source code of Web service Developer
Consumer feedback Consumer provided feedback for a Web service Consumer, Integrator
SLA Modification of existing SLAs or addition of new SLAs Provider, Consumer
Documentation The description of the Web service was changed Provider, Developer
License The license description of the Web service was changed Provider, Consumer

Table 2. Evolutionary changes of a Web service during the lif e cycle of a Web service

responding meta information. This allows us to correlate
changes of Web service interface descriptions with other in-
formation, for instance QoS. The example (Listing 6) in the
Appendix shows two consecutive entries for QoS related in-
formation of a Web service. These entries show differences
in the execution time of a Web service. Having this kind
of information, we can search for instance for events that
happened between these two observations to find an expla-
nation for the behavior of the Web service.

3.5 Searching in SEMF

To search in the distributed database, we provide a
XQuery interface. XQuery expressions allow for complex
search criteria. For instance, it is possible to list all avail-
able Web services of a SEMF instances with its descriptions
(see Listing 1).

d e c l a r e namespace a ="http://www.w3.org/2005/Atom" ;
l e t $ p a t t e r n : = u t i l : u n e s c a p e−u r i
(r e q u e s t : g e t−pa ra me te r ("pattern" ,"’1’=’1’") , "UTF-8")
l e t $ s t r : = c onc a t ("for $x in
doc(’ServiceCatalog/.feed.atom’)
/a:feed/a:entry[" , $ p a t t e r n ,"] return $x")
l e t $ws : = u t i l : e v a l ($ s t r)
r e t u r n
f o r $x in $ws
r e t u r n

<S e r v i c e L i s t>
<Name> {d a t a ($ x / a : t i t l e)}</ Name>
<D e s c r i p t i o n>{d a t a ($ x / a : c a t e g o r y / @label)}<D e s c r i p t i o n>

</ S e r v i c e L i s t>

Listing 1. XQuery expression that returns a
list of all available services

This is a foundation for analysis of the behavior of services
during certain time intervals with regard to arbitrary criteria
(see section 6 for a more detailed example). Our current
prototype provides a simple Web based interface that allows
to search for Web services using XQuery expressions.

4 Architecture of Service Evolution Manage-
ment Framework

The management of evolutionary changes needs mech-
anisms to collect Web services information from various
sources, managing and providing the information to differ-
ent clients. Figure 4 depicts our service evolution manage-
ment framework (SEMF) which supports our proposed Web
service model from Section 3. SEMF is a distributed frame-
work where every SEMF instance is responsible to collect
the information locally and stores it in its XML database.
However, one SEMF instance can store its data into another
instance to distribute the content.

TheXQuery Interface provides the means to execute ar-
bitrary queries against the database. SEMF uses the XQuery
interface that is provided by most existing XML databases.
ThePlugin Manager manages the plugins (see Section 4.1
for details). TheAtom Feed Generator provides an Atom
based RSS feed. Users can register for arbitrary feeds in
order to get notifications of Web service changes. TheSyn-
dication Module allows the syndication of distributed Atom
feeds into a single coherent Atom feed. TheData Access
Module reads and writes Web services information from/to
a local XML database.

4.1 SEMF Plugins

The information integration from different sources is
based on extensible plugin mechanism. Given a type of in-
formation, many plugins can be developed to monitor Web
services or to gather the type of information from other tool-
s/frameworks. By employing different mechanisms, these
plugins are responsible for collecting Web services related
information, for example, using polling strategies (for in-
stance, for the QoS plugin) or user input from Web browsers
(e.g., user feedback and taxonomy information), and stor-

Q o SP l u g i nQ o SP l u g i n
S E M F D a t aA c c e s sX Q u e r yP l u g i nM a n a g e r

S 1 S 2Q o SP l u g i n
X M LD B

S E M FX Q u e r y A t o m F e e dG e n e r a t o rS y n d i c a t i o nM o d u l eA t o m F e e dG e n e r a t o r
p o l l s u s e sP o l i c y c a l l s I n t e r f a c eP l u g i n q u e r i e s

p o l l s u s e s w r i t e sr e a d s
P o l i c y

c a l l s

p o l l s
S E M F D a t aA c c e s sX Q u e r yP l u g i nM a n a g e r A t o m F e e dG e n e r a t o rc a l l sr e a d s r e a d s

S 1Q o SP l u g i np o l l s u s e sP o l i c y c a l l s X M LD Bq u e r i e sw r i t e sr e a d s
I 2 p u s h e sT r a n s f o r mP l u g i nu s e s

S e r v i c eC o n t a i n e r S 2S O A Pm e s s a g e S O A Pm e s s a g eS O A Pm e s s a g eS O A Pm e s s a g e
F e e d b a c kP l u g i n

B r o w s e r
u s e s

S e a r c h P a g e

F e e d b a c k F o r m

T a g g i n g P a g e B r o w s e r

u s e s
Figure 4. Overview of SEMF architecture

ing the collected Web services information into SEMF. In
SEMF, we provide a generic approach with the definition
of an interface, that every plugin must implement. The in-
terface describes the basic operations that are necessary to
write the a plugin in SEMF(see Listing 2).

p u b l i c S t r i n g getName () ;
p u b l i c S t r i n g getDataURL () ;
p u b l i c vo id p o l l D a t a () ;
p u b l i c vo id s e t U p d a t e P o l i c y (P l u g i n P o l i c y p o l i c y) ;
p u b l i c Schema getSchema () ;

Listing 2. SEMF Plugin Java Interface

The actual data collection is controlled by policies that
describe how often a data source writes data into the data
model. The data collection policy (see Listing 3) defines
the data collection interval, update frequency, etc.

<Upda te Po l i c y>
<Begin>03 . 01 . 2007</ Begin>
<End>17 . 01 . 2007</ End>
<F i e l d>Response Time</ F i e l d>
<UpdateFrequency>
<Type>Da i l y</ Type>
<From>07 : 0 0 : 0 0</ From>

<U n t i l>19 : 0 0 : 0 0</ U n t i l>
<R e c u r re nc e type ="min">10</ R e c u r re nc e>
<UpdateType>I n c r e m e n t a l</ UpdateType>

</ UpdateFrequency>
</ Upda te Po l i c y>

Listing 3. Web service information model up-
date policy

As shown in the architecture, we consider explicitly
pulling and pushing strategies for plugins. The latter re-
quires that a plugin is informed about asynchronous events,
such as for instance incoming SOAP messages. This ap-
proach requires that the service hosting environment sup-
ports message interceptors that notify the plugin about the
occurrence of such asynchronous events and is obviously
more intrusive.

4.2 Query and Subscription of Web Ser-
vices Information

Since the information is represented in XML, any client
can search for relevant information associated with par-
ticular Web services by defining requests in XQuery. As
the content of Web services information in aService
Information feed can be internally kept within the feed
or be linked to an external source using URI, and different
contents may be represented by different languages, we do
not support distributed or recursive search at this time of
writing. SEMF searches theWeb Service Catalog
and returns the result met the request. Based on that, the

client can access external information sources and perform
further requests based on meta-data information.

A particular type of Web services information can also be
subscribed through a simple registration mechanism. The
client has to provide a Web service endpoint and basic in-
formation based on meta-data such ascategory and time.

5 Implementation

Our prototype is implemented in Java and provides a
Web service and a REST (Representational State Transfer)
based interface for the management of Web services. We
use eXist [15] to persist the management information. We
utilize the eXist Atom servlet that provides a REST based
interface to write Web service related information into the
XML database. We encapsulate the REST based interface
in a lightweight Java API to provide the functionality to
register/unregister Web services. The Java API also sup-
ports the management of plugins. Currently, we are able to
attach a plugin to a Web service and we have developed a
management component that is capable to invoke the plugin
according to the update policy to collect data of a Web ser-
vice, based on a polling policy. This allows us to be as non
intrusive as possible. However, our approach is also capa-
ble of handling asynchronous update policies. To ensure a
”smooth” operation, we require a Web service that operates
in Web service container like Apache AXIS that allows to
intercept incoming SOAP messages of Web services and to
log them. In order to keep the performance penalty as low
as possible, we also foresee the possibility that the plugin
keeps a local file for the logging information. The plugin
collects the data during the activity of the Web service and
stores the data later in the database. The plugin also trans-
forms the content before writing it into the SEMF database.
This approach involves an overhead of several milliseconds
(depending on the usage of the Web service). Usually, this
overhead can be neglected compared to the executions times
of Web services (see Section 6).

The current implementation only supports a simple syn-
dication strategy. Basically, all information is gatheredfrom
the different SEMF instances as Atom feeds and the content
is integrated into a single Atom feed. In addition, we pro-
vide a basic Web based interface to browse and filter the
content using XQueries (see Figure 5).

6 Case Study

In this case study, we experienced with a set of Web
services for business reporting that are hosted by Wisur1.
Wisur provides business reports to customers and other fi-
nancial information of companies and consumer related in-

1Wisur http://webservice.wisur.at/services

formation. Wisur provides a number of Web services (see
Table 3) that cover these services. The Web services ac-
cess a relational database that consists of 200 tables with a
maximum of six millions of entries per table. These tables
contain all business related information of companies and
consumers.

The services are distributed on two separate Web servers.
Every server provides an Apache Tomcat container for Web
services and runs either consumer Web services or com-
pany Web services. Every Web service logs its activities
(invocation time, execution time, etc.) in plain text files.
Using our framework, we observed QoS information (exe-
cution time, availability), usage patterns (how often was a
service used during a day), and changes of the Web ser-
vice interfaces. To minimize the overhead for the pro-
duction system, we analyzed the log files of the Web ser-
vices offline. We exemplify the usage of our framework
with Company Search Service and theConsumer
Report Service. We observed QoS information, usage
frequency, the interface of the Web services as well as pre-
and post-conditions. To minimize the performance over-
head, we utilized a plugin that analyzed the log files of the
Web service once per day. The size of the log files was
considerably small (approximate one megabyte of raw data
per day). In addition, the plugin extracted only the relevant
data from the log file which lead to a few kilobytes of data
per day. The data was transformed by the plugin and was
stored in the xml database. Figure 6 presents the execu-
tion time of theCompany Search Service Web ser-
vice during working hours. Figures 7, 8, and 9 illustrate the
observation results for service interface, pre-condition, and
post-condition, respectively. TheConsumer Report
Service was observed with a different focus, namely ser-
vice execution time (Figure 11) and service usage (Figure
10).

During the observation period, new features for the
Company Search Service were desired by one cus-
tomer. The change of Web service interface, from
Version 1 to Version 2, was detected on Sept 3rd,
as shown in Figure 7. In addition to the interface change,
new customers were permitted to access to the Web service
in two batches. Those change of pre-conditions were on
Sep 6th and Sep 9th (Figure 8). The content of the database
was updated twice with consumer data that led to changes
of the post-conditions on Sep 6th and Sep 9th (Figure 9),
since the Web service offered more information about con-
sumers. As shown in Figure 6, the interface, pre- and post-
condition changes had no immediate effects on the response
times of the Web service. In addition, we analyzed the av-
erage service execution time of theConsumer Report
Service (Figure 11) in combination with service usage
(Figure 10). These remained rather constant in a certain
time interval during the observation period with on excep-

Figure 5. SEMF Web interface for browsing the Web service cat alog.

tion. Both, service usage and execution time showed a sin-
gle peak, but otherwise remained constant.

The observed data indicates that the back-end (i.e., the
database) is already at its limits. When more data was
added to the data base (Sep 6th and Sep 9th, see Figure 9
the execution times of theCompany Search Service
increased. This shows how Web services are affected by
changes in the back-end, even if the interface remains sta-
ble. In addition, we see that an increased usage also leads to
considerable changes in the Web service behavior as shown
in Figure 6. When the customers started to use the new
features beginning with Sep 12th, the response times of the
Web service increased considerably. Generally speaking,
more users mean more traffic and more data equals a greater
execution time.

However, the single peak of the average execution time
of theConsumer Report Service at October 1st not
related to more service usage as show in Figure 10. In this
case, there was an internal reorganization of the database.
Or to be more specific: manual data cleansing by the
employees, which had effects on the performance of the

database and in turn on the average execution time of the
service.

From the perspective of the customer, the only visible
changes are obviously changes concerning the interface.
However, while some changes remain transparent for the
customer (database changes, more users), the observed be-
havior of the Web services (e.g., response time or post-
conditions for higher hit rate when searching for compa-
nies or customers) changes. Such unexpected changes, es-
pecially when the service interface remains stable let cus-
tomers wonder if the Web service is stable after all and
whether the Web service can satisfy SLAs. Similarly, the
integrator who builds a system using third-party Web ser-
vices must rely on certain properties of a service so that the
integration works in practice. When the response time sud-
denly doubles the service might not work properly in the in-
tegrator’s system anymore, e.g., because of local time con-
straints. The provider desires to keep the system running at
constant speed all the time in order to fulfill contracts with
the customer. At the same time there is the desire to in-
crease the usage of the services and to increase the revenue.

Figure 6. Measured response time Figure 7. Changes in service interface

Figure 8. Changes in service pre-conditions Figure 9. Changes in service post-conditions

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 0
30 .08 .07 06 .09 .07 13 .09 .07 20 .09 .07 27 .09 .07 04 .10 .07 11 .10 .07 18 .10 .07 25 .10 .07 01 .11 .07 08 .11 .07 15 .11 .07 22 .11 .07 29 .11 .07 06 .12 .07 13 .12 .07 20 .12 .07 27 .12 .07S ervi ceI nvocati ons

Figure 10. Service usage

024681 01 21 41 61 82 0
3 0 .0 8 .0 70 6 .0 9 .0 71 3 .0 9 .0 72 0 .0 9 .0 72 7 .0 9 .0 70 4 .1 0 .0 71 1 .1 0 .0 71 8 .1 0 .0 72 5 .1 0 .0 70 1 .1 1 .0 70 8 .1 1 .0 71 5 .1 1 .0 72 2 .1 1 .0 72 9 .1 1 .0 70 6 .1 2 .0 71 3 .1 2 .0 72 0 .1 2 .0 72 7 .1 2 .0 7A verageP rocessi ngTi mei nS econd s

Figure 11. Average execution time

Service Description
Company Search Service lets customers search for companies in the Wisur database using different search criteria

(e.g. name, address and register number).
Consumer Search Service lets customers search for consumers in the Wisur database with fuzzy search criteria.
Consumer Report Service generates consumer reports that include financial information.
Company Report Service generates company reports that include financial information.
Company Creditworthiness Service checks the credit worthiness of a given company and providesa rating in the range from

1(any credit possible) to 5 (no credit).
Consumer Creditworthiness Service checks the credit worthiness of a given consumer and provides a rating in the range from

1(any credit possible) to 5 (no credit).
Consumer Address Service provides information about historical addresses of a consumer.
Consumer Address Monitoring Service notifies customer about changes of the consumers address.
Consumer Financial Monitoring Service notifies customer about changes of the consumers financial situation.
Consumer Scoring Service provides a statistical estimate (score) of a consumer that indicates the probability of finan-

cial problems within the next 12 month.
Company Scoring Service provides a statistical estimate (score) of a company that indicates the probability of financial

problems within the next 12 month.

Table 3. List of Web Services deployed at Wisur

With the data from the analysis, predictions about the be-
havior can be made. For instance, as shown by the data,
new customers lead to longer service response times (see
Figure 6). Moreover, the planing of maintenance activities
can be adjusted to service usage in order to prevent unex-
pected execution times for customers.

The lesson we learned by this case study is that there
is an urgent need to view Web services as dynamic enti-
ties. Static descriptions such as interfaces or ontologiesare
not sufficient when the Web services are used in produc-
tion systems. Runtime aspects are important, and questions
like how did the service behave in the past and what can
be expected upon changes can be answered by looking at
historical data.

Another aspect concerns potential applications that uti-
lize our proposed framework. As outlined in Figure 4 we
envision many different types of applications. For instance,
a Web portal could use the framework in order to pro-
vide the facilities for user feedback, searching, tagging,etc.
These applications are not limited to top level applications.
We also consider the creation of plugins that provide the
means for developers to attach information to Web services,
such as comments, technical descriptions, diagrams, etc.

7 Conclusion and future work

In this paper, we introduced a Web service information
model that integrates information of various data sources
and presented SEMF, a framework that provides manage-
ment features for the management of evolutionary changes
of Web services. Our prototype architecture provides the
necessary mechanisms to access and integrate the available
information from distributed sources.

SEMF provides the foundation for the management/-
monitoring of the evolution of Web services, based on that
we will focus on the analysis of the evolution of Web ser-
vices in a bigger context, and analyze in greater detail the
dependency among changes of Web services. Moreover, we
will concentrate on the full implementation of SEMF, its
performance analysis, and tooling on top of SEMF.

8 Acknowledgements

The work is funded by the FFG as part of the ITEA
project OSIRIS. The authors would like to thank Daniel
Gomes for his work on the graphical user interface.

References

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.
Schmidt, A. Sheth, and K. Verma. Web Services Semantics
– WSDL-S, 2005.

[2] G. Canfora and M. D. Penta. Testing services and service-
centric systems: Challenges and opportunities.IT Profes-
sional, 8(2):10–17, 2006.

[3] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-
oriented management of web services.Commun. ACM,
46(10):55–60, 2003.

[4] N. Catania, P. Kumar, B. Murray, H. Pourhedari, W. Vam-
benepe, and K. Wurster. Web services management frame-
work, version 2.0, July 2003.

[5] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana.
Web Services Description Language (WSDL) 2.0, 2007.

[6] L. Clement, A. Hately, , C. von Riegen, and T. Rogers.
UDDI Version 3.0.2, 2004.

[7] R. Dumitru, J. de Bruijn, A. Mocan, H. Lausen,
J. Domingue, C. Bussler, and D. Fensel. Www: Wsmo,

wsml, and wsmx in a nutshell.The Semantic Web - ASWC
2006, pages 516–522, 2006.

[8] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen,
and N. Du. A version-aware approach for web service direc-
tory. In ICWS, pages 406–413, 2007.

[9] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman,
A. Polleres, and J. Domingue. Wsml a language for wsmo.
Enabling Semantic Web Services, pages 83–99, 2007.

[10] G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella.
Service license composition and compatibility analysis. In
B. J. Krämer, K.-J. Lin, and P. Narasimhan, editors,ICSOC,
volume 4749 ofLecture Notes in Computer Science, pages
257–269. Springer, 2007.

[11] M. IBM and HP. Web services resource catalog (ws-rc), May
2007.

[12] IBM and Microsoft. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
wsil/ws-wsilspec.pdf.

[13] A. Keller and H. Ludwig. The wsla framework: Specifying
and monitoring service level agreements for web services.J.
Network Syst. Manage., 11(1), 2003.

[14] D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A
language for defining service level agreements. InFTDCS
’03: Proceedings of the The Ninth IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS’03),
page 100, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[15] W. Meier. exist, January 2008.
[16] OASIS. Web Services Distributed Management: Manage-

ment of Web Services (WSDM-MOWS) 1.1, August 2006.
[17] N. Thio and S. Karunasekera. Automatic measurement of a

qos metric for web service recommendation.aswec, 00:202–
211, 2005.

[18] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.
Management applications of the web service offerings lan-
guage (wsol).Advanced Information Systems Engineering,
pages 1029–1029, 2003.

[19] V. Tosic, K. Patel, and B. Pagurek. Wsol - web service offer-
ings language. InCAiSE ’02/ WES ’02: Revised Papers from
the International Workshop on Web Services, E-Business,
and the Semantic Web, pages 57–67, London, UK, 2002.
Springer-Verlag.

[20] W3C. OWL Web Ontology Language Overview, 2004.
W3C Recommendation 10 February 2004.

9 Appendix

<f e e d xmlns ="http://www.w3.org/2005/Atom">
<i d><! [CDATA[u rn :uu id :4668e 52e−cbb8−4840−8699−b94cbb6ae901]]></ i d>

<upda te d>2007−12−07T18:28:42 +01 :00</ upda te d>
< l i n k h r e f ="#" r e l ="edit" t ype ="application/atom+xml" />
< t i t l e> I n t e r f a c e</ t i t l e>

<e n t r y>
<i d>u rn :uu id :8576e 52e−cbb8−4840−8699−b94cbb6ae901</ i d>

<upda te d>2007−09−14T16:37:53 +02 :00</ upda te d>
<p u b l i s h e d>2007−09−14T16:37:53 +02 :00</ p u b l i s h e d>
< l i n k h r e f ="?id=urn:uuid:8576e52e-cbb8-4840-8699-b94cbb6ae901"
r e l ="edit" t ype ="application/atom+xml" />

< t i t l e> I n t e r f a c e</ t i t l e>

< l i n k h r e f ="http://webservice.wisur.at:8000/axis/
services/WISIRISFuzzySearchService?wsdl"
r e l ="alternate" t ype ="application/wsdl+xml" />

<c a t e g o r y te rm="Interface"
scheme="http://dmoz.org/Computers/Programming/
Internet/Service-Oriented_Architecture/Web_Services/WSDL/" />
<summary>The s e r v i c e s e a r c h e s a r e l a t i o n a l d a t a b a s e
us ing fuz z y s e a r c h c r i t e r i a . The i n t e r f a c e i s exposed as
WSDL d e f i n i t i o n . To use the Web s e r v i c e ,
a key must be downloaded from Wisur .</ summary>
<c o n t e n t t ype ="application/wsdl+xml">

<w s d l : d e f i n i t i o n s xm lns : imp l="http://www.wisur.at/
WISIRISFuzzySearchService/"
x m l n s : i n t f ="http://www.wisur.at/WISIRISFuzzySearchService/"
xm lns :a pa c he s oa p="http://xml.apache.org/xml-soap"
xm lns :ws d l s oa p="http://schemas.xmlsoap.org/wsdl/soap/"

xm lns : s oa pe nc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
xmlns :wsd l ="http://schemas.xmlsoap.org/wsdl/"
t a rge tNa me s pa c e="http://www.wisur.at/WISIRISFuzzySearchService/">

. . .
</ w s d l : d e f i n i t i o n s>

</ c o n t e n t>
</ e n t r y>

</ f e e d>

Listing 4. WISIRISFuzzySearch interface.

<f e e d xmlns ="http://www.w3.org/2005/Atom">
<i d>u rn :uu id :3043a bc a−90a5−45d4−8508−bba a 4945 f fa d</ i d>

<e n t r y>
<i d>u rn :uu id :121 f3368−aea8−4197−86b0−f0561a428042</ i d>

<upda te d>2007−09−14T16:37:53 +02 :00</ upda te d>
<p u b l i s h e d>2007−09−14T16:37:53 +02 :00</ p u b l i s h e d>
< t i t l e>L i c e nc e</ t i t l e>

<!−− l i n k t o c u r r e n t i n f o r m a t i o n −−>

< l i n k h r e f ="http://wisur.at:8080/axis/
/services/WISIRISFuzzySearchService?odrls" />

<c a t e g o r y te rm="License"
scheme="http://www.dmoz.org/Computers/
Software/Licensing/" />

<c a t e g o r y te rm="http://odrl.net/1.1/ODRL-EX-11.xsd" />
<c o n t e n t t ype ="application+xml">
<agreement>

<c o n t e x t>
<u id>u rn :uu id :5321 g5 2 j−f fg8 −6377−9001−g00cbb9ae111</ u i d>
<d a t e><f i x e d>2001−07−01T10:31:30</ f i x e d></ d a t e>
<pL oc a t i on>Vienna , A u s t r i a</ pL oc a t i on>

</ c o n t e x t>
<p a r t y>

<c o n t e x t>
<u id>u rn :uu id :2334−g99j−ghg8−8711−9871−g74cbb9ae345</ u i d>
<name>Wisur Gmbh</ name>
<r e f e r e n c e>h t t p : / /www. w is u r . a t</ r e f e r e n c e>

</ c o n t e x t>
</ p a r t y>
<a s s e t>
<e xe c u te>
<r e q u i r e m e n t>
<pe rus e>

<payment>
<amount c u r re nc y ="EUR">1 . 00</ amount>
<t a x p e r c e n t code="VAT">20 . 0</ t a x p e r c e n t>

</ payment>
</ pe rus e>
</ r e q u i r e m e n t>

</ e xe c u te>
</ a s s e t>
</ agreement>
</ c o n t e n t>

</ e n t r y>
</ f e e d>

Listing 5. WISIRISFuzzySearch license information

<f e e d xmlns ="http://www.w3.org/2005/Atom">
<i d>u rn :uu id :0d03c 40b−104a−43e2−b85f−959c4cb5ce58</ i d>

< t i t l e>QoS</ t i t l e>

<e n t r y>
<i d>u rn :uu id :a 1612c e 0−d8b6−11dc−95f f −0800200c9a66</ i d>

<upda te d>2007−09−14T16:37:53 +02 :00</ upda te d>
<p u b l i s h e d>2007−09−14T16:37:53 +02 :00</ p u b l i s h e d>
< t i t l e>QoS</ t i t l e>

< l i n k h r e f ="http://wisur.at:8080/axis/
/services/WISIRISFuzzySearchService?qos" />
<c a t e g o r y te rm="QoS"

scheme="http://www.dmoz.org/Computers/
Software/Licensing/" />

<c o n t e n t t ype ="xml">
<QoS>
<Execut ionT ime>17</ Execut ionT ime>
<A v a i l a b i l i t y>100</ A v a i l a b i l i t y>

</ QoS>
</ c o n t e n t>
</ e n t r y>
<e n t r y>
<i d>u rn :uu id :127c 2b28−086e−4992−8b44−b6b997889776</ i d>

<upda te d>2007−09−15T16:37:53 +02 :00</ upda te d>
<p u b l i s h e d>2007−09−15T16:37:53 +02 :00</ p u b l i s h e d>
< t i t l e>QoS</ t i t l e>

< l i n k h r e f ="http://wisur.at:8080/axis/
/services/WISIRISFuzzySearchService?qos" />
<c a t e g o r y te rm="QoS"

scheme="http://www.dmoz.org/Computers/
Software/Licensing/" />

<c o n t e n t t ype ="xml">
<QoS>
<Execut ionT ime>19</ Execut ionT ime>
<A v a i l a b i l i t y>100</ A v a i l a b i l i t y >

</ QoS>
</ c o n t e n t>
</ e n t r y>

</ f e e d>

Listing 6. WISIRISFuzzySearch Qos information

