
SEMF - Service Evolution Management Framework∗

Martin Treiber, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

{treiber,truong,dustdar}@infosys.tuwien.ac.at

Abstract

With the growing popularity of Web services, an increas-
ing number of Web services have been integrated into and
used by complex service oriented systems. As a result, the
management of Web services has gained more importance
as Web services management systems can provide useful
service information to service consumers, developers and
providers. However, current Web service management sys-
tems do not provide a holistic view of Web services. These
management systems use independent information models
covering different aspects of Web services, for instance,
QoS, licensing, taxonomy information, to name just a few.
In this paper, we address the challenges of (1) integrating
available information into a common Web service informa-
tion model, while (2) providing an extensible information
model, and at the same time, (3) keeping track of Web ser-
vices changes and (4) offering means for complex analysis
of Web services. We introduce a Service Evolution Man-
agement Framework (SEMF) that addresses the aforemen-
tioned challenges using a generic Web service information
model. We illustrate how we utilize our proposed Web ser-
vice information model to manage changes of Web services,
and present a case study that shows how our framework
could be used in practice.

1 Introduction

Web services were designed to address the general prob-
lem of the integration of heterogeneous applications, re-
gardless of their implementation platforms. During the last
years, Web services-based systems became more complex,
resulting in a strong need to manage individual Web ser-
vices and complex systems of Web services over the course
of their lifetime. The management of Web services helps
to answer questions such as (i) when and based on which
information a Web service should be improved, (ii) which
factors influence the employment of a Web service, and (iii)

∗The work is funded by the FFG as part of the ITEA project OSIRIS.

why a Web service is not widely used. Such questions are
frequently asked by service developers, by the provider and
also by the consumer: they want to understandhow Web
services evolve in order to optimize the development, de-
ployment and employment. To understand the evolution of
Web services, we need to rely on manageable information
of Web services. Existing approaches provide only a frac-
tion of information associated with Web services, such as
WSOL [19], SLA [14, 18, 15], and licensing information
[9]. In fact, existing approaches mainly focus on interface
descriptions and assume that interface descriptions can be
augmented with additional information, e.g., semantic meta
information [9]. However, there are diverse types of infor-
mation that originate from various sources and different per-
spectives on Web services [2].

In particular, we address two main issues related to Web
services: (i) what type of information is required for a given
perspective, how to integrate all types of information intoa
single model, and (ii) how to manage those types of infor-
mation. The first issue is related to the development of a
novel aggregated, flexible and extensible information model
for Web services. The latter is related to the development of
a management framework. The framework deals with vari-
ous types of information, whose management strategies are
different (e.g., asynchronous or synchrnous updates), and
keeps track of historical information. This paper contributes
(i) a novel, common Web service information model that in-
tegrates heterogeneous information about Web services, and
(ii) the design and implementation of SEMF (Service Evo-
lution Management Framework), a distributed Web services
management framework that addresses the aforementioned
challenges.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 introduces our
Web service information model along with the associated
roles and perspectives on the model. Section 4 describes
SEMF architecture. We discuss the implementation of the
current prototype of SEMF in Section 5. A case study illus-
trating SEMF is presented in Section 6. We summarize the
paper and give an outlook for further research directions in
Section 7.

2 Related work

2.1 Web Services Information Model

Category Language
Interface WSDL, OWL-S, WSMO, WSDL-S
QoS ORDL-S, WSLA
Pre Conditions OWL-S, WSMO
Post Conditions OWL-S, WSMO
Interaction Patterns WSMO
SLA WSLA, WS-Policy
Taxonomy OWL-S, WSMO
Folksonomy -
License ORDL-S

Table 1. Overview of languages used to de-
scribe Web services information

Existing Web service models cover different aspects of
Web services such as service interface, QoS[17], SLA[14,
18, 15], and licensing information [9]. However, those mod-
els focus on only discovery issues. Table 1 overviews exist-
ing and adopted approaches and their descriptive capabili-
ties. The main difference between our work and the afore-
mentioned approaches (WSDL [5], OWL-S [20], WSMO
[7], WSDL-S [1]) is that we focus on the management of
Web services and do not assume that Web services informa-
tion will be described by a single specification. We explic-
itly consider different types and providers of Web services
information and utilize aggregation techniques to gather
Web service related information different sources.

In addition, what has not yet been provided by these pro-
posed standards is the ability to tie together these various
sources of information in a manner which is both, simple
to create and use. Hence, our work aims to tackle this is-
sue. The WS-Inspection (WSIL) specification [13] also ad-
dresses this need by defining an XML grammar which fa-
cilitates the aggregation of references to different typesof
service description documents, and then provides a well de-
fined pattern of usage for instances of this grammar. The
collection of run time information about Web services (us-
age statistics, logging, etc.) is discussed in [10]. Our frame-
work integrates this kind of information and provides the
means to analyze the available information.

Recently, WS-RC (Web Service Resource Catalog)
schema [12] was introduced to describe management in-
formation of IT resources. In contrast to WS-RC which
is a general purpose model to describe all types of IT re-
sources, we focus explicitly on Web services. We provide
a lightweight approach for the integration of arbitrary data.
We also provide the possibility to access the information
with standard tools like email clients and Web browsers.

This allows for greater flexibility, since users can for in-
stance register for a feed that provides information about
QoS changes of a Web service without having to install a
dedicated client. WS-RC elements represent single entities,
whereas our information model considers multiple elements
for a single Web service.

2.2 Web Services Management Frame-
works

Although UDDI [6] is designed to store different kinds
of Web services information, it has never been widely
adopted. In addition, there is no support for the integration
of many types of Web services information into a common
information model.

Casati et. al. focus on the business perspective of
Web service management [3]. The authors provide a
high level analysis of the main issues (”holistic” Service
model, Metric and Architecture). They distinguish be-
tween infrastructure-level, application-level and business-
level management. However, to the best of our knowledge,
they do not deal with other perspectives. Furthermore, no
framework has been developed to provide management as-
pects given in [3].

The Web Services Management Framework (WSMF) [4]
defines a generic architecture for the management of re-
sources, including Web services. WSMF focuses on manag-
ing relationships between different resources and defining
monitoring interfaces associated with Web services. Simi-
larly, WSDM (Web Services Distributed Management) [16]
provides means to manage arbitrary resources and offer
a set of standardized management interfaces, such as ob-
taining and controlling service capabilities. In contrastto
WSMF/WSDM, we concentrate on management informa-
tion associated with Web services and their evolution.

The work in [8] discusses the management of service in-
terface changes. It defines version-aware service descrip-
tions and directory models. Our work covers multiple as-
pects in service management rather than only versioning.
In this sense that work can be considered as a part of our
approach. The proposed model in [8] can be incorporated
into our management model.

3 Web Services Information Model

This section discusses our proposed Web service infor-
mation model. The basic principle is to create a meta model
that supports the management of evolutionary changes of
Web services and integrates different sources of data into a
common Web service information model.

3.1 Factors of Influence

Factors of influence can either change a Web service di-
rectly (e.g., change the interface) or have indirect effects
on Web services (e.g., QoS changes can lead to code op-
timizations of a Web service or new requirements to new
operations). Based on our observations, we’ve identified
four major factors of influence (see Figure 1). These fac-
tors concern (1) the Web service execution (hosting envi-
ronment), (2) the Web service usage (consumer/service in-
tegrator), (3) the Web service creation/modification (devel-
oper), and (4) business/domain related aspects of the Web
service (provider).

S e r v i c e D e v e l o p e rC o n s u m e r
H o s t i n gE n v i r o n m e n texecut es

P r o v i d e r
u s e s d e v e l o p smonit orsI n t e g r a t o rext end s

Figure 1. Factors that influence Web services

The hosting environment is responsible for the execu-
tion of the Web service. It constitutes the software environ-
ment (e.g., operating system and service container) and the
corresponding hardware on which the software is executed.

Theprovider of a Web service provides domain or busi-
ness expertise (e.g., service pricing) and specifies functional
and non-functional requirements for Web services. Changes
in business aspects and requirements have strong influence
on the evolution of Web services.

The developer implements the Web service and makes
the Web service actually run. The developer transforms the
high level business perspective to a technical level. The
developer writes technical specifications (interface descrip-
tions) and the actual code of the Web service.

The Web serviceconsumer/integrator uses a Web ser-
vice to fulfill a certain task. Rather than paying attention to
technical details, such as security and communication pro-
tocols, Web service consumers focus on QoS aspects, such
as response time, availability, and reliability. The Web ser-
vice integrator is similar to the consumer, but focuses on
technical aspects as well. Interface descriptions, pre- and
post-conditions of the Web service execution, are of con-
cern for Web service integrators.

3.2 Information Sources

Web service changes caused by factors of influence are
reflected by information changes. For instance, a new func-
tional requirement leads to a new service interface. In our
approach, we integrate these changes that originate from
various information sources into a common Web service in-
formation model (see Figure 2). This provides us with a
holistic view on Web services and establishes the founda-
tion for our analysis of evolutionary changes of Web ser-
vices.

W e bS e r v i c eI n f o r m a t i o nM o d e l I n t e r a c t i o nP a t t e r n sT a x o n o m y
Q o S

P o s tC o n d i t i o n sI n t e r f a c e
P r eC o n d i t i o n s

F o l k > s o n o m y
S L A

D a t a > s o u r c ep r o v i d e s i n f o r m a t i o n
D o c u >m e t a t i o n L i c e n c s e

Figure 2. Data sources of the Web service in-
formation model

The properties shown in Figure 2 are subject to change
over the life-cycle of Web services. For instance, internal
optimization such as refactoring the source code of a Web
service and the use of new hardware can lead to changes
in the response time of a Web service. We analyze the cat-
egories of Web service changes and the relations between
changes in the next section.

3.3 Evolutionary Changes in Web services

Every data change during the life cycle of a Web service
is considered as evolutionary change. In our approach, we
provide an extensible categorization for the classification of
the changes a Web service can have over its lifetime (see Ta-
ble 2). The classification of changes is the base for the anal-
ysis of Web service evolution. The combination of Web ser-
vice change classification and the time of changes allows us
to uncover the correlation of Web services changes. These
correlations can be used to predict potential Web service
behavior when certain changes happen. For instance, the
usage of a Web service may decrease, if the response time
of the Web service increases. Furthermore, the classifica-

Change category Description Trigger
Interface Operations added/removed changes in operation signatures Developer
Pre-conditions Change of pre-conditions because of new interface or SLA Developer, Provider
Post-conditions Change of post-conditions because of new interface or SLA Developer, Provider
Message exchange patternsChange of protocol because of changes in the interface Developer
Advertised QoS QoS properties were modified Provider
Measured QoS Monitored QoS properties have changed Consumer, Integrator
Hosting environment Changes in the hardware environment of a Web service and in the Web service

software execution environment
Hosting environment

Implementation Refactoring of source code of Web service Developer
Consumer feedback Consumer provided feedback for a Web service Consumer, Integrator
SLA Modification of existing SLAs or addition of new SLAs Provider, Consumer
Documentation The documentation of the Web service was changed Provider, Developer
License The license of the Web service was changed Provider

Table 2. Evolutionary changes of a Web service during the lif e cycle of a Web service

tion makes it feasible to distinguish between information
that is relevant for service developers, managers and users.
Section 6 provides a detailed discussion about these issues.

3.4 Representation of Web Service Infor-
mation Model

c o n t a i n sE x t e r n a l fi l e
L i c e n c e

W e bS e r v i c e
.Q o SQ o S W S D LW S D LF e e d E n t r y

R o o t L e v e l] c o n t a i n s a l la l i s t o f a l l a v a i l a b l es e r v i c e sF i r s t L e v e l] d e s c r i b e s a l la v a i l a b l e i n f o r m a t i o nc a t e g o r i e s S e c o n d L e v e l] d e s c r i b e sc h a n g e s o fc o r r e s p o n d i n gc a t e g o r i e sL i n k

W e b S e r v i c e C a t a l o g
L i c e n c e Q o S . . . I n t e r f a c e

Figure 3. Representation of Web Service in-
formation model

From our abstract model of existing information sources
associated with Web services in Figure 2, we have devel-
oped a data representation model that is able to aggregate
those existing information. In order to have an extensible
and flexible data model we utilized an Atom feed based rep-
resentation of of the data. Figure 3 shows how Web service
related information is organized in our data representation.
We represent Web service information in a hierarchal Atom
feeds, starting with aWeb Service Catalog feed which lists
all available services. As shown in the figure, we mapped

every category that we introduced in table 2 (sub-)feed. No-
tice that, for the sake of brevity, we didn’t include all avail-
able categories in the figure and present a simplified view
of our data model. A Web service catalog includes a list of
Web services feeds, each is used to store meta information
that specifies different types of information given in Table
2. Every type of information is managed as a a list of entries
ordered based on time stamps of the corresponding changes.
An entry element describes the content of the Web service
information (see Listing 1).

<i d>u r n : u u i d : 7 d 9 f . . .</ i d>

<upda te d>2007−09−14T17:01:51 +02 :00</ upda te d>
< t i t l e>WISIRISFuzzySearchServ ice></ t i t l e>

<e n t r y>
<i d>u r n : u u i d : 8 5 7 6 . . .</ i d>

<upda te d>2007−09−14T16:37:53 +02 :00</ upda te d>
<p u b l i s h e d>2007−09−14T16:37:53 +02 :00</ p u b l i s h e d>
< t i t l e> I n t e r f a c e</ t i t l e>

<!−− l i n k t o c u r r e n t i n f o r m a t i o n −−>

< l i n k h r e f ="http://www.wisur.at:8000/axis
/services/WISIRISFuzzySearchService?wsdl" />

<c a t e g o r y l a b e l ="Directory information"
te rm="Interface" scheme="http://dmoz.org/

Computers/Programming/Internet/
Service-Oriented_Architecture/Web_Services/WSDL/">

</ c a t e g o r y>
<c a t e g o r y l a b e l ="WSDL Versioning Scheme"
te rm="Interface versioning"
scheme="http://webservice.wisur.at/wsdl/versioning">
</ c a t e g o r y>
<c o n t e n t t ype ="application+xml">
<!−− ws d l d e s c r i p t i o n a t 2007−09−14 T16:37:53 +02 :00 −−>

<wsdl> . . .</ wsdl>
</ c o n t e n t>

</ e n t r y>

Listing 1. WISIRISFuzzySearch interface.

As shown in the listing, we store the data either directly in-
side the entry element or refer to external data with links.
Links to external information allow us to remain agnostic
concerning the actual data model. In addition, the use of ex-
ternal links supports the distribution of information in dif-
ferent databases. Based on meta-data, tools know how to
process the content of information associated with Web ser-

vices. We order the changes in the temporal space which al-
lows us to correlate changes of Web service properties with
each other. For instance, changes of interface descriptions
may correlate with changes of QoS.

To search information in our model, XQuery language
can be used1. For instance, it is possible to list all available
Web services of a SEMF instances (see Listing 2).

d e c l a r e namespace a ="http://www.w3.org/2005/Atom" ;
l e t $ p a t t e r n : = u t i l : u n e s c a p e−u r i
(r e q u e s t : g e t−pa ra me te r ("pattern" ,"’1’=’1’") , "UTF-8")
l e t $ s t r : = c onc a t ("for $x in
doc(’ServiceCatalog/.feed.atom’)
/a:feed/a:entry[" , $ p a t t e r n ,"] return $x")
l e t $ws : = u t i l : e v a l ($ s t r)
r e t u r n
f o r $x in $ws
r e t u r n

<Name>{d a t a ($ x / a : t i t l e)}</ Name>

Listing 2. XQuery expression that returns a
list of all available services

Note that XQuery in this case can be used not only by soft-
ware applications but also advanced users or developers to
access the information. However, this does not deal with the
content of information described by semantics specification
or via external link.

The proposed Web services information model is a foun-
dation for analysis of the behavior of services during certain
time intervals with regard to arbitrary criteria (see Section 6
for a more detailed example).

4 Architecture of Service Evolution Manage-
ment Framework

The management of evolutionary changes requires
mechanisms to collect Web services information from var-
ious sources. Figure 4 depicts our service evolution man-
agement framework (SEMF) which supports our proposed
Web service model from Section 3. SEMF is a distributed
framework where every SEMF instance is responsible to
collect the information locally and to store data in its XML
database. However, one SEMF instance can store its data
into another instance to distribute the content.

Depending on the role, there are different usages for our
framework. For instance, a developer might use the XQuery
interface to extract Web service related information con-
cerning processing times, etc. A service provider can make
use of a transformation a plugin that offers a web based rep-
resentation of usage statistics or that generates spreadsheets
for further statistical analysis of usage patterns, etc. A user
of a Web service might use a feedback plugin that allows
to provide feedback about the service. TheXQuery Inter-
face provides the means to execute arbitrary queries against

1http://www.vitalab.tuwien.ac.at:8000/exist/sandbox/sandbox.xql

the database. SEMF uses the XQuery interface that is pro-
vided by most existing XML databases. ThePlugin Man-
ager manages the plugins (see Section 4.1 for details). The
Atom Feed Generator provides an Atom based RSS feed.
Users can register for arbitrary feeds in order to get notifi-
cations of Web service changes. TheSyndication Module
allows the syndication of distributed Atom feeds into a sin-
gle coherent Atom feed. TheData Access Module reads
and writes Web services information from/to a local XML
database.

4.1 SEMF Plugins

The information integration from different sources is
based on extensible plugin mechanism. In SEMF, we pro-
vide a generic plugin approach with the definition of an in-
terface, that every plugin must implement. The interface
describes the basic operations that are necessary to write
the a plugin in SEMF(see Listing 3).

p u b l i c S t r i n g getName () ;
p u b l i c S t r i n g getDataURL () ;
p u b l i c vo id p o l l D a t a () ;
p u b l i c vo id s e t U p d a t e P o l i c y (P l u g i n P o l i c y p o l i c y) ;
p u b l i c Schema getSchema () ;

Listing 3. SEMF Plugin Java Interface

The actual data collection is controlled by policies that de-
scribe how often a data source writes data into the data
model. The data collection policy (see Listing 4) defines
the data collection interval, update frequency, etc. Our ap-
proach supports pulling and pushing strategies for plugins
to persist Web service relevant data in the database.

<Upda te Po l i c y>
<Begin>03 . 01 . 2007</ Begin>
<End>17 . 01 . 2007</ End>
<F i e l d>Response Time</ F i e l d>
<UpdateFrequency>
<Type>Da i l y</ Type>
<From>07 : 0 0 : 0 0</ From>

<U n t i l>19 : 0 0 : 0 0</ U n t i l>
<R e c u r re nc e type ="min">10</ R e c u r re nc e>
<UpdateType>I n c r e m e n t a l</ UpdateType>

</ UpdateFrequency>
</ Upda te Po l i c y>

Listing 4. Web service information model up-
date policy

By employing different mechanisms, e.g. Java Server Pages
and Apache Axis Handlers, SEMF plugins are capable of
collecting Web services related information directly from
users (e.g., user feedback, taxonomy information and SOAP
requests) and to store this information in SEMF.

Q o SP l u g i nQ o SP l u g i n
S E M F D a t aA c c e s sX Q u e r yP l u g i nM a n a g e r

S 1 S 2Q o SP l u g i n
X M LD B

S E M FX Q u e r y A t o m F e e dG e n e r a t o rS y n d i c a t i o nM o d u l eA t o m F e e dG e n e r a t o r
p o l l s u s e sP o l i c y c a l l s I n t e r f a c eP l u g i n q u e r i e s

p o l l s u s e s w r i t e sr e a d s
P o l i c y

c a l l s

p o l l s
S E M F D a t aA c c e s sX Q u e r yP l u g i nM a n a g e r A t o m F e e dG e n e r a t o rc a l l sr e a d s r e a d s

S 1Q o SP l u g i np o l l s u s e sP o l i c y c a l l s X M LD Bq u e r i e sw r i t e sr e a d s
I 2 p u s h e sT r a n s f o r mP l u g i nu s e s

S e r v i c eC o n t a i n e r S 2S O A Pm e s s a g e S O A Pm e s s a g eS O A Pm e s s a g eS O A Pm e s s a g e
F e e d b a c kP l u g i n

B r o w s e r
u s e s

S e a r c h P a g e

F e e d b a c k F o r m

T a g g i n g P a g e B r o w s e r

u s e s
Figure 4. Overview of SEMF architecture

4.2 Query and Subscription of Web Ser-
vices Information

Since the information is represented in XML, any client
can search for relevant information associated with partic-
ular Web services by defining requests in XQuery. The
content of Web service relation information in aService
Information feed can be internally kept within the feed.
Alternatively, links to external sources using URIs, can are
used. This way, we can support content represented by dif-
ferent languages. However, at this time of writing, we do
not support distributed or recursive search. SEMF searches
theWeb Service Catalog and returns the result met
the (XQuery-)request. Based on that, the client can access
external information sources and perform further requests
based on meta-data information.

5 Implementation

Our prototype is implemented in Java and provides a
SOAP and a REST (Representational State Transfer) based
interface for the management of Web services. We use eX-
ist 2 to persist the management information. Our current im-
plementation allows for the attachment of arbitrary plugins

2http://exist.sourceforge.net/

to a Web service. The management component is capable
to invoke the plugin according to a polling policy to collect
data of a Web service. This allows SEMF to be as non in-
trusive as possible. However, our approach is also capable
of handling asynchronous update policies as well. In such
cases, we require a Web service that operates in Web ser-
vice container like Apache AXIS that allows to intercept in-
coming SOAP messages. In order to keep the performance
penalty as low as possible, we require that the plugin col-
lects the data during the activity of the Web service, keeps
the collected data locally, and stores the data later in the
database. This approach involves an overhead of several
milliseconds per Web service invocation which can be ne-
glected compared to the executions times of Web services
(see Section 6). The syndication of distributed content is
currently provided by a basic syndication scheme. In our
current approach, all information is gathered from different
SEMF instances as Atom feed and the content is integrated
into a single Atom feed. In addition, we provide a basic
Web based interface to browse and filter the content using
XQuery3.

3http://berlin.vitalab.tuwien.ac.at:8000/exist/wsc/catalog.xql

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 0
30 .08 .07 06 .09 .07 13 .09 .07 20 .09 .07 27 .09 .07 04 .10 .07 11 .10 .07 18 .10 .07 25 .10 .07 01 .11 .07 08 .11 .07 15 .11 .07 22 .11 .07 29 .11 .07 06 .12 .07 13 .12 .07 20 .12 .07 27 .12 .07S ervi ceI nvocati ons

Figure 5. Service usage

024681 01 21 41 61 82 0
30 .08 .07 06 .09 .07 13 .09 .07 20 .09 .07 27 .09 .07 04 .10 .07 11 .10 .07 18 .10 .07 25 .10 .07 01 .11 .07 08 .11 .07 15 .11 .07 22 .11 .07 29 .11 .07 06 .12 .07 13 .12 .07 20 .12 .07 27 .12 .07A verageP rocessi ngTi mei nS econd s

Figure 6. Average processing time

6 Case Study

In this case study, we experienced with a set of Web
services for business reporting that are hosted by Wisur4.
Wisur provides business reports to customers and other fi-
nancial information of companies and consumer related in-
formation. The Web services access a relational database
that consists of200 tables with a maximum of six millions
of entries per table. These tables contain all business re-
lated information of companies and consumers. The Web
services that access the company and consumer data are dis-
tributed on two separate Web servers. Each server provides
an Apache Tomcat container for Web services and runs ei-
ther consumer Web services or company Web services. Ev-
ery Web service logs its activities (processing time, etc.)in
plain text files.

In the following, we illustrate the usage of our frame-
work that was used to gather relevant information of Web
services. We’ve deployed two instances of SEMF proto-
type, one at VitaLab5 and one at Wisur. After a thorough
investigation of publicly available Web services, we have
registered556 ”real-world” services with or framework at
VitaLab and monitor the interfaces of the registered services
once per day. The monitoring process takes from280 to 340

seconds to read the WSDL descriptions from556 registered
services and to store them in the database.

The second instance at Wisur uses dedicated plugins to
extract relevant data from the log files of Wisur’s Web ser-
vices and to store the extracted data into SEMF. We ob-
served QoS information (processing time, availability, etc.),
usage patterns (how often was a service used during a day)
and changes of the Web service interfaces of Wisur’s Web
services. We also provided a transformation plugin that
converted XML data into comma separated files that were
imported by open office to generate charts.

We now exemplify the use of our framework through

4Wisur http://webservice.wisur.at/rss/WISIRISServices.rss
5http://berlin.vitalab.tuwien.ac.at:8000/exist/wsc/catalog.xql

a deeper analysis of Wisur’sCompany Search
Service. In particular, we show how SEMF helps
to identify changes of certain characteristics (e.g. interface)
that affect other characteristics of the Web service (e.g.
processing time). Figure 6 presents the processing time of
the Company Search Service Web service during
working hours during our observation period. The corre-
sponding service usage is depicted in Figure 5. During
the observation period, new features for theCompany
Search Service were desired by one customer. This
led to an extension of the service interface with additional
methods on September 3rd.

These new methods provide a different sort order of the
search result as well as additional information of the com-
panies that match the search criteria (a solvency indicator
in addition to the company address). The addition of the
new feature didn’t have any impact on the processing time
of Company Search Service as indicated by Figure
6. Considering the fact that the internal complexity of the
service grew (more queries, more joins, different sort or-
der) indicates that the hardware environment is capable of
handling the higher service complexity well.

However, we observed a single peak of the service pro-
cessing time on October, 1st. When comparing this with
the usage data we observed no additional service usage. So
the sudden change was not related to additional service us-
age. In this particular case, an internal reorganization ofthe
database was the reason for the increase of the processing
time.

In addition to the interface change, new customers were
permitted to access to the Web service in two batches on
September 6th and September 9th. Again, the extension of
the user base didn’t have any negative effect on the service
in terms of processing time which supports the assumption
that the hardware is able to handle a higher service load,
before this has a measurable impact on the observable ser-
vice processing time. The service invocation pattern (Fig-
ure 5) also showed no change in the overall usage patterns

of the users concerning the usage frequency that remained
stable until 22nd of November where the use considerable
declined. A comparison with historical data (not shown in
the figure) indicated that this behavior is seasonal as well
as the increase of the service usage towards the end of the
year.

Another aspect that is illustrated by the use of our frame-
work concerns potential applications that utilize SEMF. As
outlined in Figure 4 we envision many different types of
applications. Depending on the role there are different pos-
sibilities for applications. As already shown by the charts
of our case study, statistical data can be put into graphs
to provide an overview of the service behavior for service
providers. Furthermore, we consider applications with plu-
gins that allow developers to add technical information, e.g.,
(UML-)diagrams and how-tos, to services. And finally, we
foresee the possibility of Web portals with facilities for user
feedback, such as collaborative tagging[11].

7 Conclusion and Future Work

In this paper, we introduced a Web service information
model that integrates information of various data sources
and presented SEMF, a framework that provides manage-
ment features for the management of evolutionary changes
of Web services. Our prototype architecture provides the
necessary mechanisms to access and integrate the available
information from distributed sources.

SEMF provides the foundation for the management/-
monitoring of the evolution of Web services, based on that
we will focus on the analysis of the evolution of Web ser-
vices in a bigger context, and analyze in greater detail the
dependency among changes of Web services. In particu-
lar, we will investigate data mining techniques to assess
changes of Web services and extend our Web service in-
formation model to incorporate this kind of information.

We are concentrating on the full implementation of
SEMF, its performance analysis, and tooling on top of
SEMF. We will focus on the investigation of the perfor-
mance regarding multiple distributed plugins of SEMF. Fur-
thermore, we are going to extend the graphical user inter-
face and offer a plugin registry as well. In parallel, a pow-
erful searching mechanism is being developed that will be
able to search information described by different specifi-
cations in SEMF using XQuery. Furthermore, we intend
to extend SEMF’s service management capabilities beyond
monitoring functionality. In particular we are going to look
at issues like enforcement of SLAs and other related issues.

References

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.
Schmidt, A. Sheth, and K. Verma. Web Services Semantics

– WSDL-S, 2005.
[2] G. Canfora and M. D. Penta. Testing services and service-

centric systems: Challenges and opportunities.IT Profes-
sional, 8(2):10–17, 2006.

[3] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-
oriented management of web services.Commun. ACM,
46(10):55–60, 2003.

[4] N. Catania, P. Kumar, B. Murray, H. Pourhedari, W. Vam-
benepe, and K. Wurster. Web services management frame-
work, version 2.0, July 2003.

[5] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana.
Web Services Description Language (WSDL) 2.0, 2007.

[6] L. Clement, A. Hately, , C. von Riegen, and T. Rogers.
UDDI Version 3.0.2, 2004.

[7] R. Dumitru, J. de Bruijn, A. Mocan, H. Lausen,
J. Domingue, C. Bussler, and D. Fensel. Www: Wsmo,
wsml, and wsmx in a nutshell.The Semantic Web - ASWC
2006, pages 516–522, 2006.

[8] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen,
and N. Du. A version-aware approach for web service direc-
tory. In ICWS, pages 406–413, 2007.

[9] G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella.
Service license composition and compatibility analysis. In
B. J. Krämer, K.-J. Lin, and P. Narasimhan, editors,ICSOC,
volume 4749 ofLecture Notes in Computer Science, pages
257–269. Springer, 2007.

[10] C. Ghezzi and S. Guinea. Run-time monitoring in service-
oriented architectures. InTest and Analysis of Web Services,
pages 237–264. Springer, 2007.

[11] S. Golder and B. A. Huberman. The structure of collabora-
tive tagging systems, 2005.

[12] M. IBM and HP. Web services resource catalog (ws-rc), May
2007.

[13] IBM and Microsoft. http://download.boulder.ibm.com/ibmdl
/pub/software/dw/specs/ws-wsil/ws-wsilspec.pdf.

[14] A. Keller and H. Ludwig. The wsla framework: Specifying
and monitoring service level agreements for web services.J.
Network Syst. Manage., 11(1), 2003.

[15] D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A
language for defining service level agreements. InFTDCS
’03: Proceedings of the The Ninth IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS’03),
page 100, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[16] OASIS. Web Services Distributed Management: Manage-
ment of Web Services (WSDM-MOWS) 1.1, August 2006.

[17] N. Thio and S. Karunasekera. Automatic measurement of a
qos metric for web service recommendation.aswec, 00:202–
211, 2005.

[18] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.
Management applications of the web service offerings lan-
guage (wsol).Advanced Information Systems Engineering,
pages 1029–1029, 2003.

[19] V. Tosic, K. Patel, and B. Pagurek. Wsol - web service offer-
ings language. InCAiSE ’02/ WES ’02: Revised Papers from
the International Workshop on Web Services, E-Business,
and the Semantic Web, pages 57–67, London, UK, 2002.
Springer-Verlag.

[20] W3C. OWL Web Ontology Language Overview, 2004.
W3C Recommendation 10 February 2004.

